
A General Introduction To Graph Visualization
Techniques
Raga’ad M. Tarawneh1, Patric Keller2, and Achim Ebert1

1 Computer Graphics and HCI Group
University of Kaiserslautern, Germany
{tarawneh, ebert}@cs.uni-kl.de

2 Software Engineering: Dependability Group
University of Kaiserslautern, Germany
pkeller@cs.uni-kl.de

Abstract
Generally, a graph is an abstract data type used to represent relations among a given set of data
entities. Graphs are used in numerous applications within the field of information visualization,
such as VLSI (circuit schematics), state-transition diagrams, and social networks. The size and
complexity of graphs easily reach dimensions at which the task of exploring and navigating gets
crucial. Moreover, additional requirements have to be met in order to provide proper visual-
izations. In this context, many techniques already have been introduced. This survey aims to
provide an introduction on graph visualization techniques helping the reader to gain a first insight
into the most fundamental techniques. Furthermore, a brief introduction about navigation and
interaction tools is provided.

1998 ACM Subject Classification A.1 Introduction and Survey, B.7.2 Design Aids

Keywords and phrases Graph Visualization, Layout Algorithms, Graph Drawing, Interaction
Techniques

Digital Object Identifier 10.4230/OASIcs.VLUDS.2011.151

1 Introduction

One goal of information visualization is to provide techniques for converting (abstract)
information e.g., in form of textual description into visual representations facilitating the
perception and handling of hidden structures from underlying data sets [18]. In cases in
which corresponding data elements have inherent relationships among each other, graph
visualization methods are commonly applied to support the better understanding.
I Definition 1. Formally, a graph G = (V, E) is a mathematical structure consisting of two
sets, V the set of vertices (or nodes) of the graph, and E the set of edges. Each edge has
a set of one or two vertices associated to it, which are called endpoints [53].

Many application areas use graphs to represent existing structures: For example, in social
networks people of a group my represent the vertices of a graph where the different relations
among them are represented by a set of edges. In other areas, like biology and chemistry
graphs are widely used to represent molecular and genetic maps, as well as protein production
paths. In the field of software engineering, graphs are used e.g., to represent the structure
of complex software systems, or to represent the internal behavior/states of compilers. In
the object-oriented field, graphs are used to depict the relations among different classes, e.g.,
UML diagrams. In general, any hierarchical structure may be represented as a tree, which
is a subtype of a graph. An example for this sort of structure is the file structure of an

© Raga’ad M. Tarawneh, Patric Keller, and Achim Ebert;
licensed under Creative Commons License ND

Proceedings of IRTG 1131 – Visualization of Large and Unstructured Data Sets Workshop 2011.
Editors: Christoph Garth, Ariane Middel, Hans Hagen; pp. 151–164

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.VLUDS.2011.151
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


152 A General Introduction To Graph Visualization Techniques

operation system. The organization structure of an institute may also be represented as a
tree. For more information we refer to [53, 22].

Although graph visualization techniques are widely used in many application domains,
they have some limitations one has to deal with. For example, the size of the represented
graph may become an issue, e.g., providing layouts for very large graphs is possible, but often
comes along with the loss of readability, at least for untrained users. This is associated with
the limited human cognitive power and the screen space constraints given by the visualization
devices. Providing a suitable technique helping the user interacting and navigating through
the data is another important issue. The goal of graph visualization techniques is to increase
the comprehension level of the data by providing intuitive, intelligible layouts as well as
suitable interaction mechanisms.

This survey is organized as follows: In Section 2 we present a general overview concerning
layout algorithms and a set of criteria to generate clean layouts. In order to increase the
comprehension level of the visualized information, many interaction techniques have been
proposed in the literature. In this context we present a brief introduction in Section 3. We
conclude the survey by Section 4.

2 Graph Layout Algorithms

As mentioned in Section 1, a graph consists of a set of nodes connected by a set of edges. The
trivial way to display this sort of data is to use node-link diagrams. They depict the relations
among the data elements in form of lines [53, 22]. In [25], another visualization approach is
proposed to display graph structures by exploiting space-filling techniques or space-nested
layouts which implicitly represent the relations. This section provides an overview describing
both approaches and the used algorithms.

2.1 Node-Link Layouts
The basic requirement of the node-link layout concerns the computation of the coordinates
of the nodes and the representation of the lines. To increase the readability a clean layout
should comply with the following criteria [29]:

Nodes and edges should be evenly distributed.
Edge-crossings should be minimized.
Depict symmetric sub-graphs in the same way.
Minimize the edge bending ratio.
Minimize the edge lengths, which helps readers detecting the relations among different
nodes faster.
In cases where the data is inherently structured distribute the nodes into different layers.
This increases the understandability of the underlying graph. For example, in data-flow
diagrams it is recommended to separate the graph elements into different layers in a way
that the final representation reflects the original semantics.

Many other criteria have been proposed in the literature, for more details please refer to
[53, 29]. It is worth mentioning that it is hard to combine most of the criteria. Some of them
conflict with others. In contrast, others are hard to realize in an efficient way. Many solutions
have been proposed [29, 53] to overcome these issues. Most algorithms in practice represent
a trade-off. Specifying the required criteria is an application dependent process. Prioritizing
a set of criteria is an important pre-condition for finding suitable layout algorithms. The
work of [41] concentrates on the topic of how to prioritize such criteria.



R. M. Tarawneh, P. Keller, and A. Ebert 153

2.1.1 The Spring Layout Algorithm
The spring layout algorithm is widely known as force-directed layout, which was originally
proposed by Eades in 1984 [12]. Due to its simplicity and its ability to produce a symmetric
layout, the force-directed layout is considered to be one of the popular node-link layouts. The
spring layout algorithm represents the graph as a physical system, in which the graph nodes
are considered to be a charged particles connected to each other using a set of springs. The
first model was proposed by [12]. Each node is associated with two types of forces: attraction
forces and repulsive forces. Given the node coordinates and the spring attributes the method
aims at reducing the total energy of the the spring system by repositioning the nodes. The
attraction force fa is applied to the neighbor nodes which are connected by a spring, while
the repulsive force fr is applied to all graph nodes. These forces are defined as follows:

fa(d) = kalog(d), fr(d) = kr

d2 (1)

where ka and kr are constants and d is the current distance between two nodes. Figure 5b
shows a small example that emerged from applying this algorithm. Although, the force-
directed approach produces clean, symmetric layouts with respect to graphs having moderate
sizes, it is considered to be one of the expensive algorithms. Its time complexity exceeds
O(n3) (see [53, 29, 22]), where n is the total number of nodes. Moreover, force-directed
layouts lack in terms of predictability ([53, 29, 22, 58]), meaning that running the algorithm
twice, produces different results. This leads to problems in maintaining the users mental map
during the interaction with unstable layouts [58]. Despite the mentioned disadvantages, the
force-directed layout algorithm has been widely used in many visualization frameworks [56].
Furthermore, the algorithm itself has been revisited and optimized many times to overcome
its characteristic drawbacks (see [27, 14, 16, 13, 24, 53, 29, 24, 7]).

2.1.2 Topological Feature-Based Layout
The feature-based graph drawing concept has been proposed by Archambault et al. [2]. The
concept is called TopoLayout, which is a multi-level, feature-based approach. The pipeline of
this approach consists of four main steps, the first one is called the decomposition phase in
which the graph is decomposed into many sub-graphs based on the topological features of each
internal sub-graph. For example, if the nodes in one sub-graph are topologically connected
among each other in form of a tree, then the set of nodes are grouped together representing
a meta-node. Currently, TopoLayout detects seven topological features, including trees,
complete graphs, bi-connected components, clusters, and the undefined structure that is
called unknown feature. For more details we refer to [2]. The second step called the feature
layout phase in which the meta-nodes or the grouped sub-graphs are laid out using one
of the layout algorithms (tuned with its topological feature). The third phase called the
crossing reduction phase aims to eliminate the crossing ratio in the produced layout.
Finally, the overlap elimination phase aims to change the node sizes in the final layout to
ensure that no nodes overlap each other. The final result for TopoLayout is a tree representing
the graph hierarchy, in which each node represents a sub-graph in the original graph and
each meta-edge represents the relation between tow sub-graphs in the original graph. This
layout technique helps in drawing relatively large graphs. Also, it provides the user with
details about the internal structure of the graph, which can be useful in extracting more
information about the graph itself (see Figure 1). GrouseFlocks [3] was introduced to provide
an interactive way to explore large input graphs through cuts of a superimposed hierarchy.

VLUDS’11



154 A General Introduction To Graph Visualization Techniques

Figure 1 Layout generated by using the TopoLayout algorithm of [20].

The goal was to provide the user with the ability to see several different possible hierarchies
of the same graph.

Before we introduce the tree layout concepts, it is worth to mention that both force-
directed algorithms and the TopoLayout algorithm work perfectly with undirected graphs.
Unfortunately, not many algorithms were designed for visualizing directed graphs. The
Sugiyama algorithm was one of the first algorithm for drawing directed graphs [50]. The
basic approach is to first layer the graph nodes, which means assigning a layer for each
node and placing the nodes into the corresponding layer. Also, the algorithm includes two
steps for reducing the edge-crossings and the node-overlappings. In general, directed graph
layout algorithms are difficult to implement, this is due to the complexity of directed graphs.
Therefore, many of the Sugiyama algorithm steps are considered to be NP-hard (see [17]),
and some of them are NP-complete (see [11]).

2.1.3 Planar Graphs
Planar graphs are graphs that can be drawn without edge crossings in linear time. They
emerge in various fields: CAD systems, circuit schematics, VLSI schematics, entity relation-
ships diagrams and information system design [53, 29, 22]. To generate a planar layout for a
general graph, some pre-requisites have to be fulfilled [22]:

Testing whether it is possible to draw the given graph without edges crossings or not.
Finding a planar layout algorithm satisfying the required application constrains.

Drawing a planar graph is supported by two well known algorithms, the first one called
Fraysseix [9], Pach [28] and Pollack (FPP) [46] generates a drawing of a graph G on a grid
of size (2n − 4) ∗ (n − 2) in n log(n) time. Later, the FPP algorithm was improved to run in
linear time [28]. The second algorithm has been proposed by Schnyder [46]. It attempts to
find a straight line embedding on a grid of n2 nodes and runs in linear time. An example of
a planar graph is shown in Figure 4b.

2.2 Tree Layout
Many layout algorithms have been already proposed. In general, this may be attributed
to the tree structure’s simplicity and popularity. As a good starting point for tree layout
algorithms we refer [53, 29].

2.2.1 Node-Link Tree layout Algorithms
One of the basic approaches to draw a tree is to use node-link diagrams in which the
parent-child relations are depicted as edges (see Section 2.1). The classical tree layout



R. M. Tarawneh, P. Keller, and A. Ebert 155

algorithm proposed by [42] is one of the early methods (see Figure 2a), it produces clean
trees-representations in 2D and its implementation is straight forward. However, the technique
is not declared space efficient because of its preference for one of two dominating growth
directions, i.e., horizontal growth or vertical growth. To cope with this problem some compact
tree layout algorithms have been implemented to produce a classical tree appearance in more
compact fashion [10, 53, 29, 58, 22, 7].

Another example of a node-link tree layout is the radial layout algorithm which was
proposed by Eades [10]. A radial layout including its variations, places the root in the middle
of co-centric circles and distributes the children of a sub-tree into circular shape according to
their depth in the tree recursively. The radial layout uses space in more efficient way than
the classical method. But it lacks the understandability of classical tree layouts, e.g. it is
difficult to find the root of the tree (see Figure 2b) [53, 10, 39, 59]. As a sibling of the radial
layout, the balloon layout has been introduced in [6]. Here, sibling sub-trees are drawn in
a circle centered at their parents. This layout is effective in showing the tree structure. The
balloon layout can be obtained by projecting a cone tree onto a plane [43, 53, 29, 58, 22]
(see Figure 2c). H-Tree produces a classical layout for binary trees and works perfectly
for balanced trees. But, again, it is hard to identify the root position [47] (see Figure 2d).
All tree layout algorithms produce predictable results in at least linear time (the usual the
complexity reaches from O(n log(n)) to O(n)) [53, 29]. As a result of the comparison of
different tree layout algorithms, we observed that the classical tree layout perfectly depicts
the hierarchy structure of the tree, with sacrificing the screen space. While the radial layout,
the h-tree layout, and the balloon tree layout use the screen space more efficiently but with
difficulties in finding the root [53, 29, 58, 39].

(a) Classical tree layout, produced with [19]. (b) Radial tree layout Example.

(c) Balloon tree layout: produced by [22]. (d) H-Tree layout: produced by [22].

Figure 2 Tree Layout Examples.

VLUDS’11



156 A General Introduction To Graph Visualization Techniques

2.2.2 Space-Filling Techniques

Space-filling techniques can be subdivided in two types: the Space-Division layout and
the Space-Nested layout. In the Space-Division layout, the parent-child relation is
depicted implicitly by attaching the children to their parent. Sunburst algorithm uses
radial or circular space-filling techniques. The general belief of the developer community is
that radial layout methodology better convey a hierarchy’s structure without sacrificing the
efficient screen space usage [49, 26]. One of the problems of this layout is that it is difficult to
distinguish between the child-parent relationships and the sibling relationships, because both
of them are expressed using adjacency. Moreover, due to the different number of children for
each parent, the nodes sizes are difficult to control, the final layout might occupy a large
space for node, which has many children. While other nodes are represented using a tiny
thin rectangle that is not enough to show the node’s label or the node’s color (see Figure 3a).
Whereas, in Space-Nested layouts the child-parent relationship is drawn using nested
boxes. The idea is to place the children within their parent node. A good common example
is the Treemap, (see Figure 3b) [25, 48]. Nodes are represented as rectangles, each rectangle
is subdivided into number of sub-rectangles equal to its children number. The subdivision
process is performed recursively. This technique is popular because it uses the screen-space
efficiently, and it shows the size of the leaves in a tree. However, this technique lacks the
ability of showing the hierarchical structure of the tree. Also, due to the subdivision process
it is highly possible to produce long and thin rectangles, which leads to problems in with the
interaction (especially in selecting or highlighting the rectangles) [25, 48, 58, 22, 55].

(a) SunBurst layout. (b) TreeMap layout.

Figure 3 Examples of space-filling techniques [19].

2.3 Matrix Visualization

The matrix visualization is another technique that represents graph nodes relations
implicitly (see Figure 5a). Here, each row and each column represent a node. The edge
between two nodes is represented by the cell at which the corresponding row and column
intersect. Edge attributes can be shown using different visual parameters such as color, size
and shape. The scalability is limited, but the layout can produce clean representations of
graphs having moderate size. However, the way the data is represented makes it difficult to
detect the graph paths. For more details please refer to [1, 21].



R. M. Tarawneh, P. Keller, and A. Ebert 157

(a) Hyperbolic tree layout, produced with [52]. (b) Planar Graph Example.

(c) TreeCube layout, produced by [51]. (d) Cone trees, produced by [43].

Figure 4 Graph layout Examples.

2.4 3D Layout

In addition to 2D representations, many layout algorithms have been extended to 3D. The
reason behind it is that we are familiarized with 3D in the real world. So it is often more
natural for us to explore data in 3D space. One example for a 3D layout is Treecube (see
Figure 4c), a technique that has been proposed by [51] as an extension for the traditional
treemap layout; it uses nested cubes to represent the parent-child relationships. The
hyperbolic layout algorithm appeared for the first time in [32, 33], then it has successively
been used by many others (e.g., [38, 37, 36]). The idea was to distribute the data entities over
the hyperbolic space. Figure 4a shows an hyperbolic tree layout for a walrus-directory graph,
which has been generated using the Walrus package [52]. This method can be displayed in
2D and 3D, providing a distorted view of the tree, which makes the interaction with large
trees easier [22]. It is worth to mention that most of the force-directed techniques could be
generalized easily to three dimensions (see [8]).

Conetree [43] is a technique that was originally developed to layout trees in 3D space.
It places father nodes at the top of a cone with its children arranged evenly in the cone
base. The layout has many layers; each one represents a tree level, in which all cones have
the same height. The cone-base diameter for each layer is reduced in bottom-up fashion.
This helps the lowest layer to fit into the width of the box containing the full cone tree, see
Figure 4d . Based on [34], 3D visualization techniques face multiple challenges: First, objects
in 3D may occlude each other which causes an issue while exploring the data set. Second,
providing a suitable layout algorithm that assures less object-overlapping and reduces the
edge-crossing is also considered as a big challenge. Third, the development of interaction
techniques that are making the data exploration task easier and more intuitive is another
big challenge. Finally, choosing an appropriate metaphor that increases the information
understanding process is often hard to find. Many real-world metaphors were used to present
data in 3D; examples can be found in [31].

VLUDS’11



158 A General Introduction To Graph Visualization Techniques

(a) Matrix visualization layout [21]. (b) Example of a force-directed layout.

(c) Clustering example by [54]. (d) Edge bundling example by[23].

Figure 5 Graph layout Techniques examples.

2.5 Nodes and Edges Clustering

Clustering techniques were introduced in graph visualization as a method to reduce visual
cluttering in the final layout. This is achieved by producing an abstract view for the input
graph. Reducing the number of visual elements does not only increases the clarity but also
increases the rendering performance [30]. Clustering algorithms can be classified in two
main types based on the criteria in the clustering process. The first type is called natural
clustering, here the structural information among the graph nodes is used to find a pattern
of nodes having the same common criterion [44]. The second type is called the content-based
clustering, here the semantic meaning of the relations among the graph nodes is taken into
account [57]. This type of clustering is rarely used, since it heavily depends on the application
domain (reusing the same content-based clustering technique in another application usually
is not possible). Therefore most graph visualization applications are using structure-based
clustering algorithms. Many structural characteristics have been used as clustering criteria,
such as the distances between graph nodes and node degrees. Natural clustering is widely
applied to preserve the structure of the original graph [44]. This kind of clustering enables
improved interaction facilities, because it eases applying of filtering techniques for the layout
result and leads to an increased searching speed for specific data patterns. This could be
accomplished by partitioning the nodes into a set of groups, then filter them based on a
specified criteria, and finally narrow the search domain to the remaining clusters. Figure 5c
shows an example of clustering techniques applied in the graph visualization field.

In [4], a clustering techniques for a special type of graph called small-world networks is
presented. [53, 29] give a good overview on clustering and its applications, as well as a set of
heuristics for each clustering method.

Another method for reducing the cluttering ratio is the edge clustering approach. Its
goal is to free more space by grouping sets of edges that share the same end points, which
reduces the visual cluttering in the final picture. Edge-bundling techniques are also proposed



R. M. Tarawneh, P. Keller, and A. Ebert 159

to increase the readability of the graph. This is achieved by reducing the visual cluttering
from the adjacency edges (see Figure 5d). For more details we refer the reader to [23].

Another example is the flow-map method: all edges that have the same source are grouped
into one thick edge, generating a pattern of the edge-flow [40]. This technique intuitively
shows the flow of the data from a single source to different destinations. However, it is only
applicable for specific graph visualization applications, e.g., the migration path from a single
source. Furthermore, in case of multiple sources, this approach causes a visual cluttering
among the different flow maps, which leads to difficulties in reading the underlying graph.

3 Interaction Techniques

The goal of the visualization techniques mentioned above is to increase the comprehension
level of the given data. Often, this goal cannot be achieved by only producing a static image
representing the data. The ability of interacting with data has to be provided. Therefore,
interaction and navigation techniques to facilitate the data exploration mission have been
researched (e.g., [22, 48, 58]). In this section, we list a selection of interaction concepts that
have been applied together with the visual layout algorithms. In [60] a summary of popular
interaction techniques is presented:

Selecting: giving the user the ability to highlight and process specific objects.
Abstracting/Elaborating: changing the level of detail of the representation scheme. This
allows users to get different insights into the data.
Reconfiguring: giving the user the ability to change the layouts for the same representation
scheme, such as sorting the graph nodes based on a specific criteria.
Encoding: switching between different layout methods, such as converting the node-link
diagram into a sunburst layout.
Exploring: this is related to giving the user the ability to change the view point of the
graph layout. Zooming and panning are examples of this category.
Filtering: removing unnecessary detail and displaying the remaining items in a more
visible fashion. The main concept is to filter the data nodes based on their attributes in
order to make the querying process easy and fast. For more examples see [5].
Connecting: giving users the ability to highlight the paths between relevant objects and
the focus object.

3.1 Zooming and Panning
Zooming and Panning are basic tools for exploring large amounts of information. Panning
means moving the camera across the scene, while zooming allows users to switch between the
abstract and the detailed views. Geometric zooming adjusts the screen transformation and
thereby allows increasing or decreasing the magnification of the displayed graph. Semantic
zooming means that not only the size of objects but also the displayed information may
change when approaching a particular area of the graph.

Both, zooming and panning, are complement to each other. An example are geographical
maps, like the ones used by Google Earth: suppose the user zoomed into an area next to
Frankfurt in Germany. If he or she wants to change the view to another area, lets say Amman
in Jordan, he or she usually has to zoom out first to get a better overview, then pan to the
Amman region, and finally again zoom into Amman. Doing this procedure without panning
in the middle will need a long time to find the destination [22, 58]. In [15], an elegant model
was introduced to explain how zooming and panning work together. The proposed concept
is called space-scale diagrams. It defines an abstract space by first creating multiple copies

VLUDS’11



160 A General Introduction To Graph Visualization Techniques

of the original 2D image. In a second step, they are stacked up to construct an inverted
pyramid, on which each copy is placed in a certain magnification level. The space-scale
diagram can be used with both zooming types, not only for the geometric zooming but also
for the semantic zooming [15, 22].

3.2 Focus+Context Techniques

Focus+context techniques are addressing the problem of losing context when zooming into
given data. Suppose you have zoomed into a picture, the result would be that you can only
see the zoomed-in area without having an idea about the surrounding areas in the picture.
Here, focus+context comes into play: it gives users the ability to see the primary object
in a detailed view (focus) together with an overview of all the surrounding information
(context). In general, losing context is considered to be an issue in information visualization
applications. In order to alleviate this problem, focus+context techniques appeared to give
the user the ability to focus on some details without losing the global context [45]. This
concept does not replace the zooming and panning methods, but rather complements them.
The majority of visualization application systems implement both techniques together as an
interaction tool.

Many approaches provide focus+context views. Overview+detail is one of the earliest
focus+context approaches, in which separate display regions for different resolutions are
used. It enables users to switch between different displays frequently [35]. Fish-eye is one of
the most popular focus+context techniques [45]: the area of interest becomes larger while
at the same time the other regions of the layout are successively shown with less detail.
In the fish-eye approach, computing the hyperbolic coordinates is faster than the layout
algorithm, which is considered as an issue for the interaction with the visualization [22, 58].
The distortion appears as a negative consequence of this technique, which leads to destroying
many aesthetics criteria controlling the layout algorithm, e.g., unwanted edge crossings might
appear [22, 58].

4 Conclusion

The purpose of this survey was to give a brief and general overview on fundamental graph
visualization techniques, a sub-field of information visualization. Graph visualization focuses
on representing abstract data elements and the relationships between them visually, thus
reflecting the structure of the data. The goal is to increase the cognitive level of the local
and global structure.

Node-link diagrams were the first introduced approaches to depict graphs. In this regards,
a graph is drawn using a set of points representing the graph vertices which are connected
by lines or curves representing the graph edges. These approaches perform well for graphs
of moderate size. However, data sets reflecting real world data often become very large.
Consequently, this sort of algorithms appear to be insufficient and do not scale well. To adapt
to larger graph sizes, new layout schemes have been developed. Space-filling techniques such
as Treemaps are one approach attempting to display relatively large graphs, specifically trees,
by representing the relations between the nodes implicitly. Therefore, it is difficult to answer
the question: which approach performs better; This highly depends on the application and
the particular user requirements. On one hand, node-link approaches lack the scalability but
are able to display the relations between graph elements. On the other hand, space-filling
techniques are space-efficient but lack in terms of understandability.



R. M. Tarawneh, P. Keller, and A. Ebert 161

Along with the visual aspects, suitable and intuitive interaction techniques are key elements
to gain better insights into the visualized data. Many interaction methods were introduced in
the literature. In this context, zooming and panning are fundamental interaction techniques,
but using them separated can cause the loss of context. Therefore, focus+context techniques
were proposed to alleviate these drawbacks. Overview+detail, for example, constitutes an
approach using separate display regions to resolve those issues. Fish-eye methods can provide
different level of details at the same time by integrating them in a single display region. This
allows the users to zoom without losing their focus.

References
1 J. Abello and F. van Ham. Matrix zoom: A visual interface to semi-external graphs. In

Proceedings of the IEEE Symposium on Information Visualization, INFOVIS ’04, pages
183–190, Washington, DC, USA, 2004. IEEE Computer Society.

2 D. Archambault, T. Munzner, and D. Auber. Topolayout: Multilevel graph layout by
topological features. IEEE Transactions on Visualization and Computer Graphics, 13:305–
317, 2007.

3 D. Archambault, T. Munzner, and D. Auber. Grouseflocks: Steerable exploration of graph
hierarchy space. IEEE Transactions on Visualization and Computer Graphics, 14:900–913,
2008.

4 D. Auber, Y. Chiricota, F. Jourdan, and G. Melançon. Multiscale visualization of small
world networks. In Proceedings of the Ninth annual IEEE conference on Information visual-
ization, INFOVIS’03, pages 75–81, Washington, DC, USA, 2003. IEEE Computer Society.

5 E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose. Toolglass and magic
lenses: the see-through interface. In Proceedings of the 20th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’93, pages 73–80, New York, NY, USA,
1993. ACM.

6 J. Carriere and R. Kazman. Research report: Interacting with huge hierarchies: beyond
cone trees. In Proceedings of the 1995 IEEE Symposium on Information Visualization,
INFOVIS ’95, pages 74–, Washington, DC, USA, 1995. IEEE Computer Society.

7 Graph Drawing Community, November 2011. http://www.graphdrawing.org/.
8 I. F. Cruz and J. P. Twarog. 3d graph drawing with simulated annealing. In Proceedings

of the Symposium on Graph Drawing, GD ’95, pages 162–165, London, UK, UK, 1996.
Springer-Verlag.

9 H. de Fraysseix, J.s Pach, and R. Pollack. How to draw a planar graph on a grid. Combi-
natorica, 10(1):41–51, 1990.

10 P. Eades. Drawing free trees. Bulletin of the Institute for Combinatorics and its Applica-
tions, pp. 10 -36, 1992.

11 P. Eades and S. Whitesides. Drawing graphs in two layers. Theor. Comput. Sci., 131(2):361–
374, 1994.

12 P.A. Eades. A heuristic for graph drawing. In Congressus Numerantium, volume 42, pages
149–160, 1984.

13 B. Finkel and R. Tamassia. Curvilinar graph drawing using the force-directed method. In
Proc. 12th Int. Symposium on Graph Drawing, 2004, Springer LNCS 3383, pages 448–453,
2004.

14 T. M. J. Fruchterman and E. M. Reingold. Graph drawing by force-directed placement.
Softw: Pract. Exper., 21(11):1129–1164, November 1991.

15 G. W. Furnas and B. B. Bederson. Space-scale diagrams: understanding multiscale inter-
faces. In Proceedings of the SIGCHI conference on Human factors in computing systems,

VLUDS’11

http://www.graphdrawing.org/


162 A General Introduction To Graph Visualization Techniques

CHI ’95, pages 234–241, New York, NY, USA, 1995. ACM Press/Addison-Wesley Publish-
ing Co.

16 P. Gajer and S. G. Kobourov. Grip: Graph drawing with intelligent placement. In Pro-
ceedings of the 8th International Symposium on Graph Drawing, GD ’00, pages 222–228,
London, UK, UK, 2001. Springer-Verlag.

17 M. R. Garey and D. S. Johnson. Crossing Number is NP-Complete. SIAM Journal on
Algebraic and Discrete Methods, 4(3):312–316, 1983.

18 N. Gershon, S.T Card, and S. G. Eick. Information visualization tutorial. In CHI ’99
extended abstracts on Human factors in computing systems, CHI EA ’99, pages 149–150,
New York, NY, USA, 1999. ACM.

19 J. Heer, Ch. Collins, and M. Dudek, November 2011. http://prefuse.org/.
20 Ch. Heine, November 2011. http://www.informatik.uni-leipzig.de/~hg/libgraph/.
21 N. Henry and J. D. Fekete. Matrixexplorer: a dual-representation system to explore social

networks. IEEE Transactions on Visualization and Computer Graphics, 12:677–684, 2006.
22 I. Herman, G. Melançon, and M. S. Marshall. Graph visualization and navigation in

information visualization: A survey. IEEE Transactions on Visualization and Computer
Graphics, 6(1):24–43, January 2000.

23 D. Holten. Hierarchical edge bundles: Visualization of adjacency relations in hierarchical
data. IEEE Trans. Vis. Comput. Graph., 12(5):741–748, 2006.

24 D. Hume. Graph Drawing Algorithms, pages 400–401. Springer London, 2 edition, 2006.
25 B. Johnson and B. Shneiderman. Tree-maps: a space-filling approach to the visualization of

hierarchical information structures. In Proceedings of the 2nd conference on Visualization
’91, VIS ’91, pages 284–291, Los Alamitos, CA, USA, 1991. IEEE Computer Society Press.

26 H. H. Kagdi and J. I. Maletic. Onion graphs for focus+context views of uml class diagrams.
In Jonathan I. Maletic, Alexandru Telea, and Andrian Marcus, editors, VISSOFT, pages
80–87. IEEE Computer Society, 2007.

27 T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs. Inf. Process.
Lett., 31(1):7–15, April 1989.

28 G. Kant. Drawing planar graphs using the canonical ordering. Algorithmica, 16(1):4–32,
1996.

29 M. Kaufmann and D. Wagner. Drawing Graphs: Methods and Models (Lecture Notes in
Computer Science). Springer, 1 edition, January 2001.

30 D. Kimelman, B. Leban, T. Roth, and D. Zernik. Reduction of visual complexity in dynamic
graphs. In Proceedings of the DIMACS International Workshop on Graph Drawing, GD
’94, pages 218–225, London, UK, UK, 1995. Springer-Verlag.

31 E. Kleiberg, H. van de Wetering, and J. J. Van Wijk. Botanical visualization of huge
hierarchies. In Proceedings of the IEEE Symposium on Information Visualization 2001
(INFOVIS’01), INFOVIS ’01, pages 87–, Washington, DC, USA, 2001. IEEE Computer
Society.

32 J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based on hyperbolic geom-
etry for visualizing large hierarchies. In Proceedings of the SIGCHI conference on Human
factors in computing systems, CHI ’95, pages 401–408, New York, NY, USA, 1995. ACM
Press/Addison-Wesley Publishing Co.

33 Jonh Lamping and Ramana Rao. The hyperbolic browser: A focus+context technique for
visualizing large hierarchies. Journal of Visual Languages & Computing, 7(1):33 – 55, 1996.

34 M. Larrea, D. Urribarri, S. Martig, and S. Castro. Spherical layout implementation using
centroidal voronoi tessellations. CoRR, abs/0912.3974, 2009.

35 H. Lieberman. Powers of ten thousand: navigating in large information spaces. In UIST ’94:
Proceedings of the 7th annual ACM symposium on User interface software and technology,
pages 15–16+, New York, NY, USA, 1994. ACM.

http://prefuse.org/
http://www.informatik.uni-leipzig.de/~hg/libgraph/


R. M. Tarawneh, P. Keller, and A. Ebert 163

36 T. Munzner. H3: laying out large directed graphs in 3d hyperbolic space. In Proceed-
ings of the 1997 IEEE Symposium on Information Visualization (InfoVis ’97), pages 2–,
Washington, DC, USA, 1997. IEEE Computer Society.

37 T. Munzner. Drawing large graphs with h3viewer and site manager (system demonstration).
In In Proceedings of Graph Drawing’98, number 1547 in Lecture Notes in Computer Science,
pages 384–393. Springer-Verlag, 1998.

38 T. Munzner and P. Burchard. Visualizing the structure of the world wide web in 3d
hyperbolic space. Proceedings of the first symposium on Virtual reality modeling language
VRML 95, pages 33–38, 1995.

39 Q. V. Nguyen and M. L. Huang. Space-optimized tree: a connection+enclosure approach
for the visualization of large hierarchies. Information Visualization, 2:3–15, March 2003.

40 D. Phan, L. Xiao, R. Yeh, P. Hanrahan, and T. Winograd. Flow map layout. In Proceedings
of the IEEE Symposium on Information Visualization, pages 219–224, 2005.

41 H. C. Purchase. Which aesthetic has the greatest effect on human understanding? In
Proceedings of the 5th International Symposium on Graph Drawing, GD ’97, pages 248–
261, London, UK, UK, 1997. Springer-Verlag.

42 E. M. Reingold and J. S. Tilford. Tidier drawings of trees. IEEE Trans. Softw. Eng.,
7(2):223–228, March 1981.

43 G. G. Robertson, J. D. Mackinlay, and S. K. Card. Cone Trees: animated 3D visualizations
of hierarchical information. In Proceedings of the SIGCHI conference on Human factors in
computing systems: Reaching through technology, CHI ’91, pages 189–194, New York, NY,
USA, 1991. ACM.

44 T. Roxborough and A. Sen. Graph clustering using multiway ratio cut. In Proceedings of
the 5th International Symposium on Graph Drawing, GD ’97, pages 291–296, London, UK,
UK, 1997. Springer-Verlag.

45 M. Sarkar and M. H. Brown. Graphical fisheye views of graphs. In Proceedings of the
SIGCHI conference on Human factors in computing systems, CHI ’92, pages 83–91, New
York, NY, USA, 1992. ACM.

46 W. Schnyder. Embedding planar graphs on the grid. In Proceedings of the first annual
ACM-SIAM symposium on Discrete algorithms, SODA ’90, pages 138–148, Philadelphia,
PA, USA, 1990. Society for Industrial and Applied Mathematics.

47 Y. Shiloach. Arrangements of Planar Graphs on the Planar Lattices. PhD thesis, Weizmann
Institute of Science, Rehovot, Israel, 1976.

48 G. Sindre, B. Gulla, and H. G. Jokstad. Onion graphs: aesthetics and layout. In VL, pages
287–291, 1993.

49 J. Stasko and E. Zhang. Focus+context display and navigation techniques for enhancing
radial, space-filling hierarchy visualizations. In Proceedings of the IEEE Symposium on
Information Vizualization 2000, INFOVIS ’00, pages 57–, Washington, DC, USA, 2000.
IEEE Computer Society.

50 K. Sugiyama, Sh. Tagawa, and M. Toda. Methods for visual understanding of hierarchical
system structures. Ieee Transactions On Systems Man And Cybernetics, 11(2):109–125,
1981.

51 Y. Tanaka, Y. Okada, and K. Niijima. Treecube: Visualization tool for browsing 3d
multimedia data. International Conference on Information Visualisation, 0:427, 2003.

52 CAIDA The Cooperative Association for Internet Data Analysis, November 2011. http:
//www.caida.org/tools/visualization/walrus/.

53 I. G. Tollis, G. Di Battista, P. Eades, and R. Tamassia. Graph Drawing: Algorithms for
the Visualization of Graphs. Prentice Hall, July 1998.

VLUDS’11

http://www.caida.org/tools/visualization/walrus/
http://www.caida.org/tools/visualization/walrus/


164 A General Introduction To Graph Visualization Techniques

54 F. v. van Ham and J. J. v. van Wijk. Interactive Visualization of Small World Graphs. In
INFOVIS ’04: Proceedings of the IEEE Symposium on Information Visualization (INFO-
VIS’04), pages 199–206, Washington, DC, USA, 2004. IEEE Computer Society.

55 Jarke J. Van Wijk and Huub van de Wetering. Cushion treemaps: Visualization of hierarchi-
cal information. In Proceedings of the 1999 IEEE Symposium on Information Visualization,
INFOVIS ’99, pages 73–78, Washington, DC, USA, 1999. IEEE Computer Society.

56 C. Walshaw. A multilevel algorithm for force-directed graph drawing. In Proceedings of
the 8th International Symposium on Graph Drawing, GD ’00, pages 171–182, London, UK,
UK, 2001. Springer-Verlag.

57 M. Wattenberg. Visual exploration of multivariate graphs. In In Proceedings of the SIGCHI
conference on Human Factors in computing systems, pages 811–819. ACM Press, 2006.

58 C. Weiwei and Q. Huamin. A Survey on Graph Visualization. Hong Kong University of
Science and Technology Clear Water Bay, Kowloon, Hong Kong, 2008.

59 K.-P. Yee, D. Fisher, R. Dhamija, and M. Hearst. Animated exploration of dynamic graphs
with radial layout. In Proceedings of the IEEE Symposium on Information Visualization
2001 (INFOVIS’01), INFOVIS ’01, pages 43–, Washington, DC, USA, 2001. IEEE Com-
puter Society.

60 J. S. Yi, Youn Ah Kang, J. Stasko, and J. Jacko. Toward a deeper understanding of the
role of interaction in information visualization. IEEE Transactions on Visualization and
Computer Graphics, 13(6):1224–1231, 2007.


	Introduction
	Graph Layout Algorithms
	Node-Link Layouts
	The Spring Layout Algorithm
	Topological Feature-Based Layout
	Planar Graphs

	Tree Layout
	Node-Link Tree layout Algorithms
	Space-Filling Techniques

	Matrix Visualization
	3D Layout
	Nodes and Edges Clustering

	Interaction Techniques
	 Zooming and Panning
	Focus+Context Techniques

	Conclusion

