
Blurring the Computation-Communication Divide:
Extraneous Memory Accesses and their Effects on
MPI Intranode Communications
Wilson M. Tan and Stephen A. Jarvis

Performance Computing and Visualisation Group
Department of Computer Science
University of Warwick, United Kingdom
Email: wilson.tan@warwick.ac.uk

Abstract
Modern MPI simulator frameworks assume the existence of a Computation-Communication Di-
vide: thus, they model and simulate the computation and communication sections of an MPI
Program separately. The assumption is actually sound for MPI processes that are situated in
different nodes and communicate through a network medium such as Ethernet or Infiniband.
For processes that are within a node however, the validity of the assumption is limited since the
processes communicate using shared memory, which also figures in computation by storing the
application and its associated data structures.

In this work, the limits of the said assumption’s validity were tested, and it is shown that
Extraneous Memory Accesses (EMAs) by a compute section could significantly slow down the
communication operations following it. Two general observations were made in the course of
this work: first, more EMAs cause greater slowdown; and second, EMAs coming from the com-
pute section of the processes containing the MPI_Recv are more detrimental to communication
performance than those coming from processes containing MPI_Send.

1998 ACM Subject Classification Modeling techniques

Keywords and phrases High performance computing, Message passing, Multicore processing,
Computer simulation, Computer networks, Parallel programming, Parallel processing

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.135

1 Introduction

Many current MPI simulator frameworks such as BSIM[10], WARPP[5] and SST-Macro[7]
work on the assumption of a Computation-Communication Divide. This assumption states
that a message passing program could be divided into two components, the computation
section and the communication section, each of which could be simulated independently of
each other. This assumption is currently being applied both to processes that are within a
single node, and those that are located in different nodes.

The Computation-Communication Divide is actually a reasonable assumption for pro-
cesses that are between nodes: computation would be the program segments that a processor
would handle, while communication would be taken care of by the NIC, routers, and inter-
connects. The two segments perform independently of each other.

For processes that are in the same node however, the divide is not as clear-cut. The
issue lies with the fact that in contrast to internode communication that relies on a dedic-
ated interconnect such as Ethernet or Infiniband, intranode communication relies on shared
memory. Aside from facilitating intranode communication, the memory subsystem is also

© Wilson M. Tan and Stephen A. Jarvis;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 135–141

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.135
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


136 Blurring the Computation-Communication Divide

involved in the process of computation: it stores data and instructions for the application
being executed.

Given the importance of intranode MPI in future systems, it is of interest to many to
know up to what extent currently held assumption about intranode communication holds.
This is the focus of this work: in particular, it investigates how Extraneous Memory Ac-
cesses(EMAs) affect the communication between MPI processes executing in a single node
setup. By "Extraneous Memory Accesses", the authors mean memory accesses that do not
figure in the communication process itself, and thus involve data structures that are not
being sent between processes. Two possible locations from which EMAs could come from
are tested: the sending process and the receiving process.

The rest of the paper is organized as follows: the methodology and system used are
described in Section 2, the results are presented and discussed in Section 3, and paper is
concluded in Section 5.

2 Methodology

A custom microbenchmark called PaMPIck was developed for this work. PaMPIck is primar-
ily based on a simple loop enclosing a send-receive operation pair between Process 0 and
Process 1. The loop iterates 100 times. The data being transferred in each send-receive is
composed of the first 100 elements of a 1 million element integer array. Each process has 2
1-million member integer arrays: a send array and a receive array. Given that each integer
is 4 bytes, 400 bytes were transferred in every iteration, from the sending process’ send array
to the receiving process’ receive array. Other sizes for the data being transferred(aside from
100 elements) were tested, but were not included in this paper for conciseness. The data
being transferred between the sending process and the receiving process is never changed
between send-receive iterations. The values for the 100 elements are assigned before the
very first send-receive, but never changed after that. In a way, this is to actually encourage
maximum cache reuse in the send-receive pair.

for(iterator = 0; iterator < 100; iterator = iterator + 1)
{

MPI_Barrier
PAPI_start(EventSet)

if (my_rank==0) MPI_Send
else MPI_Recv

PAPI_read(EventSet, values)

//---accumulation of PAPI event
counts from the iteration---//

PAPI_stop(EventSet, values)
%%%%%%%---variable section, depending on setup---%%%%%%%
%%%%%%%---either---%%%%%%%

if(my_rank == 0)
{

for(iterator2 = 0; iterator2 < limit;
iterator2 = iterator2 + 1)
{

receivearray[iterator2] = iterator;
}

}
%%%%%%%---or---%%%%%%%

if(my_rank == 1)
{

for(iterator2 = 0; iterator2 < limit;
iterator2 = iterator2 + 1)
{

sendarray[iterator2] = iterator;
}

}
}



W.M. Tan and S.A. Jarvis 137

Depending on the setup being tested, EMAs were done between send-receive operations.
Two kinds of EMAs were tested: those at the sending side(Process 0), and those at the
receiving side(Process 1).

Inducing EMAs consists of changing the values of some members of the array not being
used by the process for the send-receive operation: this is the receive array for Process 0(the
sending side), and the send array for Process 1(the receiving side). These represent accesses
done by processes participating in the send-receive on memory elements that do not figure
directly with the data being sent or received: in real situations, these could correspond to
intermediate or scratch variables.

Each send receive operation was measured using PAPI[9], and the following events and
parameters were recorded: virtual cycle time, number of instructions, number of cycles, L1
data cache misses, L2 data cache misses and LLC(last level cache) misses. To make sure
that the values being read by PAPI are accurate, each send-receive is preceded by a barrier:
this is necessary so that the times and cycles being spent for doing EMAs would not reflect
on the values measured by PAPI. The number of cache misses incurred during program
execution is very sensitive to many factors such as other programs concurrently running in
the system. Therefore, utmost care was taken to ensure that all experiments were carried
out in identical conditions as much as possible.

The processor used in this study is an Intel Core i5-2430M, running at 2.40GHz. The i5
is a dual core processor, with three levels of cache memory. Each core has two 32 KB first
level caches, one for instruction and one for data. The L2 cache is shared between data and
instructions, and is sized at 256 KB. It is core specific. The 3MB 3rd level cache is shared
among all cores in the processor.

The operating system of the platform is Linux kernel version 3.0.0-15. Programs were
compiled using gcc 4.6.1, with the -O0 optimization flag. The MPI implementation utilized
was OpenMPI[4] 1.4.3, and programs were ran with the "–bind-to-core" flag.

3 Results and Discussion

3.1 Latency: Send-side EMAs and Receive-side EMAs
For the EMAs coming from the Send-side and the Receive-side, several values were tested.
The values ranged from no extraneous array entries(0 bytes) modified between iterations
to the entire extraneous array being modified(4 Mbytes) between iterations. Values were
separated by increments of 100 elements or 400 bytes, resulting in a total of 10,000 runs for
each side.

The resulting average virtual/system times(or latencies) taken by the MPI_Recv for
setup with the Send-side EMAs are shown in Figure 1a, while those with the Receive-side
EMAs are shown in Figure 1b. Only the MPI_Recv data is shown primarily for the purpose
of brevity. It is nevertheless definitive of the send-receive pair, since a send-receive pair
could only be considered finished upon the successful completion of the receive half. Also,
according to measurements, an MPI_Recv operation significantly takes up more time than
its MPI_Send counterpart.

An immediate observation that could be made about the two graphs already presented
is the scattering of the values: the relationship between the number of bytes modified and
the operation time is definitely not linear for either setup. Nevertheless, despite the lack
of a perfectly linear relationship, it is clear that the time values do tend to increase as
the number of bytes modified between iteration increases. Of particular interest to us is the
development of the latency lower bound line, or the line defining lower boundary of the region

ICCSW’12



138 Blurring the Computation-Communication Divide

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000
0

2

4

6

8

10

12

14

16

Bytes

T
im

e
(m

ic
ro

se
co

n
d
s)

(a)

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000
0

20

40

60

80

100

120

Bytes

T
im

e
(m

ic
ro

se
co

n
d
s)

(b)

Figure 1 Average latencies for MPI_Recv, send-side EMA setup and receive-side EMA setup.

formed by the aggregation of data points. For instance in Figure 1b, while the average time
values fluctuate, the graph shows that beyond 238,400 bytes modified between iterations,
the latency would no longer go lower than a microsecond; beyond 2,337,000 bytes, it would
no longer go below 2 microseconds.

The First General Observation of the paper could now be stated: while the latency
of a receive operation could fluctuate up and down, there is always a lower bound value below
which it will never go lower than, and that value increases as the number of bytes modified
by the preceding compute section increases.

It is interesting to note that most MPI microbenchmarks also utilize repeated send-
receive pairs when measuring latency or bandwidth, not unlike what was utilized in this
study. The send-receive pairs in many of these benchmarks are usually separated by very
little if any computation, and thus correspond nicely with the leftmost part(bytes = 0) of
Figure 1a and Figure 1b.

3.2 Cache Misses: Send-side EMAs and Receive-side EMAs

As for the underlying reason behind the general increase in latency as the the number of
modified bytes increases, results indicate that the latency trend follows the trend of the
average LLC or Level 3 cache miss very closely. This makes is to be expected, since the
latency for cache misses in the last-level cache is several times larger than those in higher level
caches[6]. Like the latency, the number of cache misses also tend to fluctuate and form dense
scatter graphs. For ease of presentation, scatter graphs for the average cache misses were no
longer plotted. Instead, the lower bound of the region formed by the conglomeration of data
points was derived and plotted. This was done for all three cache levels. The extraction
process consisted of taking the minimum of 100-data point exclusive windows, with the first
window covering data points 1 to 100, the second window covering 101 to 200, etc. The
lower bound lines for the 3 cache levels of the receive side are plotted in Figure 2a.

It could be observed that on the side of the receive side, the number of L1 cache misses
always dominate and plateau early, followed by the 2nd level cache(Figure 2a). The number
of 3rd level cache misses start rising very slowly and plateaus much later than the other
two caches. Take note that the 3rd level cache is shared between all cores, so ascribing
the number the misses at that level to a specific core or process with absolute certainty is
difficult.



W.M. Tan and S.A. Jarvis 139

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000
0

10

20

30

40

50

60

70

80

90

L1 L2 L3

Bytes

M
is

se
s

(a)

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000
0

10

20

30

40

50

60

70

80

90

L1 L2 L3

Bytes

M
is

se
s

(b)

Figure 2 Average cache misses for MPI_Recv, receive-side EMA setup and send-side EMA
setup.

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Source Side EMAs Destination Side EMAs

Bytes

T
im

e
(m

ic
ro

se
co

n
d

s)

(a)

0 500000 1000000 1500000 2000000 2500000 3000000 3500000 4000000 4500000
0

20

40

60

80

100

120

Source Side EMAs Destination Side EMAs

Bytes

T
im

e
(m

ic
ro

se
co

n
d

s)

(b)

Figure 3 Lower bound and Upper bound values for the average latencies of MPI_Recv.

3.3 Comparison: Send-side EMAs vs Receive-side EMAs
To be able to compare the effects of Send-side EMAs and Receive-side EMAs, the upper
bound and lower bound lines of Figure 1a and Figure 1b were plotted in Figure 3a and
Figure 3b. The technique was the same as the one used in Section 3.2, with the exception that
the window maximum was taken for the upperbound instead of minimum. The minima(one
from each side) are then plotted in Figure 3a, and the maxima in Figure 3b.

Figure 3a, shows that for an equivalent number of EMAs, those from the Receive side
actually result in better(lower) bound values than those from the Send side. However, from
Figure 3b, it is apparent that in many instances, the Receive side has higher upper bound
values than the Send side.

Distribution-wise, the latency values produced by the Send-side EMAs(Figure 1a) are
significantly more clustered than the values from the Receive-side EMAs(Figure 1b): the
variance of the average latencies from the Receive-side EMAs is 2.95, for that from the
Send-side is just 0.6. Nevertheless, the average of the average latencies is higher in the setup
with Send-side EMAs: 3.43 microseconds, against 2.92 microseconds.

All these signify that while the lower bounds are better for setups with Receive-side
EMAs, in practice, most of the latencies experienced by the send-receive pairs are far higher
than the lower bound. In comparison, the lower bounds for setups with Send-side EMAs
are worse, but most of the latencies experienced by the send-receive pairs are closer to lower
bounds.

These results lead to this paper’s Second General Observation: in general, Receive-
side EMAs are more detrimental to send-receive performance than Send-side EMAs; at the
very least, they make the latency much less predictable than Send-side EMAs.

ICCSW’12



140 Blurring the Computation-Communication Divide

4 Related Works and Future Plans

Several proposals have been put forward before with the aim of improving intranode com-
munications. Some, such as [2] focused on user-level mechanisms, while some such as [8]
focused on techniques that leverage kernel-level privileges. [3] proposed a hybrid of the
two, using different mechanisms depending on message size. This paper is different from all
of these works in a sense that it does not propose any modification to existing intranode
communications mechanisms; instead, it studied the behavior of one specific intranode com-
munication subsystem(that of OpenMPI), and how it compares with an assumption about
it frequently made by simulator framework systems.

The closest previous work to this paper is probably [1], where separate intranode com-
munication mechanisms were compared in terms of latency, bandwidth, and effect on cache.
Part of the said work studied the effect of the data transfer mechanisms on the L2 cache.
In a sense, this work is the opposite of that work, since while the said work focused on the
effect of transfer mechanisms on the rest of the application, this paper focused on how the
non-data transfer portions(or compute sections) of the application affect the communication
section performance. This aspect is emphasized by the fact that in PaMPIck, sends and re-
ceives were just repeated in every iteration of the test program: the data being transferred
was never changed.

As for future work, the authors intend on carrying out the study on processors that
feature more than 2 cores. There is one potential source of EMA that was not tested in
this work: processes that do not figure in the send-receive pair, but are concurrently active
with the pair carrying out the send-receive. The third source of EMA was not tested in the
study covered by this paper because the Core i5-2430M is a dual-core processor, and testing
the third EMA source would have needed 3 processes. The Core i5-2430M could actually
support up to four MPI processes, but we would end up oversubscribing one of the cores, so
the results many not be conclusive.

In the long run, the authors hope that this work would lead to the development of a better
intranode communication model that takes into account the effects of EMAs, wherever they
may come from. Such a model is key to projecting optimal setups for future MPI-based HPC
systems, which would probably feature more intranode communications than internode ones.

5 Conclusion

The assumption of a Computation-Communication Divide is very convenient when reasoning
about message passing programs. Unfortunately, it is not always reasonable for cases wherein
the processes are located in the same node and communicate through shared memory. Ex-
periment results showed that memory-related activities of the compute section could sig-
nificantly slow down intranode communications. Two general observations were made in
the course of this work: first, the more EMAs made by the preceding compute section, the
greater the slowdown for the intranode communication would be; and second, EMAs made
at the side of the receiving node cause greater slowdown than those from the side of the
sending node. Simply put, when the interconnect has a "memory"(because it is memory),
the boundary blurs. At the level of the node, if the communication section performance is
to be successfully predicted, the behavior of the preceding compute section must be taken
into account.

While the failure of the Computation-Communication Divide assumption could not be
tagged as the source of all simulation inaccuracies, the authors nevertheless recommend
modellers to consider it as a "suspect" when reality-simulation discrepancies arise.



W.M. Tan and S.A. Jarvis 141

References
1 D. Buntinas, G. Mercier, and W. Gropp. Data transfers between processes in an smp

system: Performance study and application to mpi. In Parallel Processing, 2006. ICPP
2006. International Conference on, pages 487 –496, aug. 2006.

2 Lei Chai, A. Hartono, and D.K. Panda. Designing high performance and scalable mpi
intra-node communication support for clusters. Cluster Computing, IEEE International
Conference on, 0:1–10, 2006.

3 Lei Chai, Ping Lai, Hyun-Wook Jin, and D.K. Panda. Designing an efficient kernel-level
and user-level hybrid approach for mpi intra-node communication on multi-core systems.
In Parallel Processing, 2008. ICPP ’08. 37th International Conference on, pages 222 –229,
sept. 2008.

4 E. Gabriel, G. Fagg, G. Bosilca, T. Angskun, J. Dongarra, Jeffrey M. Squyres, Vishal Sahay,
P. Kambadur, B. Barrett, A. Lumsdaine, Ralph H. Castain, D. J. Daniel, R. L. Graham,
and Timothy S. Woodall. Open MPI: Goals, concept, and design of a next generation mpi
implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting, page
97–104, Budapest, Hungary, 09/2004 2004.

5 S. D. Hammond, G. R. Mudalige, J. A. Smith, S. A. Jarvis, J. A. Herdman, and
A. Vadgama. Warpp: a toolkit for simulating high-performance parallel scientific codes.
In Proceedings of the 2nd International Conference on Simulation Tools and Techniques,
Simutools ’09, pages 19:1–19:10, ICST, Brussels, Belgium, Belgium, 2009. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering).

6 John Hennessy and David Patterson. Computer Architecture - A Quantitative Approach.
Morgan Kaufmann, 2003.

7 Curtis L. Janssen, Helgi Adalsteinsson, Scott Cranford, Joseph P. Kenny, Ali Pinar,
David A. Evensky, and Jackson Mayo. A simulator for large-scale parallel architectures.
International Journal of Parallel and Distributed Systems, 1(2):57–73, 2010.

8 Hyun-Wook Jin, S. Sur, L. Chai, and D.K. Panda. Lightweight kernel-level primitives
for high-performance mpi intra-node communication over multi-core systems. In Cluster
Computing, 2007 IEEE International Conference on, pages 446 –451, sept. 2007.

9 Philip J. Mucci, Shirley Browne, Christine Deane, and George Ho. Papi: A portable
interface to hardware performance counters. In In Proceedings of the Department of Defense
HPCMP Users Group Conference, pages 7–10, 1999.

10 Ryutaro Susukita, Hisashige Ando, Mutsumi Aoyagi, Hiroaki Honda, Yuichi Inadomi,
Koji Inoue, Shigeru Ishizuki, Yasunori Kimura, Hidemi Komatsu, Motoyoshi Kurokawa,
Kazuaki J. Murakami, Hidetomo Shibamura, Shuji Yamamura, and Yunqing Yu. Perform-
ance prediction of large-scale parallell system and application using macro-level simulation.
In Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC ’08, pages 20:1–
20:9, Piscataway, NJ, USA, 2008. IEEE Press.

ICCSW’12


	Introduction
	Methodology
	Results and Discussion
	Latency: Send-side EMAs and Receive-side EMAs
	Cache Misses: Send-side EMAs and Receive-side EMAs
	Comparison: Send-side EMAs vs Receive-side EMAs

	Related Works and Future Plans
	Conclusion

