
Search-Based Ambiguity Detection in
Context-Free Grammars
Naveneetha Vasudevan1 and Laurence Tratt2

1 Informatics, King’s College London
Strand, London, WC2R 2LS, United Kingdom. naveneetha@yahoo.com

2 Informatics, King’s College London
Strand, London, WC2R 2LS, United Kingdom. laurie@tratt.net

Abstract
Context Free Grammars (CFGs) can be ambiguous, allowing inputs to be parsed in more than one
way, something that is undesirable for uses such as programming languages. However, statically
detecting ambiguity is undecidable. Though approximation techniques have had some success in
uncovering ambiguity, they can struggle when the ambiguous subset of the grammar is large. In
this paper, we describe a simple search-based technique which appears to have a better success
rate in such cases.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases Ambiguity, Parsing

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.142

1 Introduction

Context Free Grammars (CFGs) are widely used for describing formal languages, including
programming languages. The full class of CFGs includes ambiguous grammars—those which
can parse inputs in more than one way. Since this causes conceptual and performance
problems, most parsing algorithms can parse only a narrow subset of CFGs, avoiding
ambiguity issues altogether. However, this is not without cost: the subsets are restrictive
and rule out useful actions such as composing grammars. The starting point for this paper is
that parsing using the full class of CFGs is a useful activity.

Ambiguity is a huge problem for machine processed languages, such as programming
languages. If an input can be parsed in two ways, which should be taken? Unfortunately, we
know that it is impossible to statically detect whether an arbitrary CFG is ambiguous or
not [6].

Over the years, therefore, there has been a steady stream of work trying to uncover
ambiguity in arbitrary CFGs. Exhaustive methods such as AMBER [9] systematically
generate strings to uncover ambiguity, but even medium sized grammars quickly lead to
unmanageable huge state spaces. Approximation techniques, on the other hand, sacrifice
accuracy for termination. For instance, ACLA [5] is an approximation method where the
original language of the grammar is extended into an approximated language that can be
expressed with a regular grammar. Since all the strings from the original language are
also included in the approximated one, there are no false negatives reported. However, the
approximated language may contain strings that may not be part of the original one, and
therefore the method can report false positives. Noncanonical Unambiguity (NU) Test is
another approximation technique, where the original grammar is converted to a bracketed
grammar by adding two terminals – a derivation (di) and a reduction (ri), where i is the

© Naveneetha Vasudevan and Laurence Tratt;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 142–148

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.142
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

N. Vasudevan and L. Tratt 143

Sentence Generator
Grammar

artifacts

Sentence Earley

parser

Parsed

output Yes

No

No

StopAmbiguous?

 Time

exceeded?

Yes

<Backend 1>
<Backend 2>

<Backend n>

uses

Stop

Figure 1 SinBAD architecture.

number of the production – at the front, and at the end of every grammar rule respectively.
The introduction of these two terminals makes the bracketed grammar unambiguous. The
challenge then, is to find two bracketed strings from the approximated grammar that map
to a string in the original grammar. However, this method does not scale well for large
grammars [3].

Hybrid approaches – where an approximation method is combined with an exhaustive
method – increase the chances of detecting ambiguity. Basten’s hybrid approach [4] – based on
grammar filtering – applies an approximation method (NU Test) to filter out the unambiguous
portions of the grammar, and then runs AMBER on the resulting smaller grammar to detect
ambiguities. In principle, Basten’s approach can be extended to other tools: ACLA, an
approximation method, can be combined with CFG Analyzer [1], an exhaustive method, to
search for ambiguous strings of bounded length. However, such hybrid approaches still rely
on an exhaustive search although on a relatively smaller state space.

This paper is the first to explore a random search-based approach to grammar ambiguity
detection. Given a grammar, our approach generates random strings, which are then parsed
to detect ambiguity. In section 2.1 we describe our prototype tool: Search-Based Ambiguity
Detection (SinBAD). In section 3 we set out the objective of our experiment, and then
explain the choice of various data sets used for our experiment. In section 4 we compare and
analyse our results. In section 5 we highlight the threat to validity of our random grammar
generator, and finally in section 6 we conclude our experiment and provide future directions
of our work.

2 Search-based ambiguity detection

Search-based techniques seek to find ‘adequately’ optimal solutions for problems that have
no algorithmic solution and whose search space is too big to exhaustively scan. Such
techniques have been applied to a wide range of problems including software itself (see
e.g. [7]). Search-based techniques are either purely random or metaheuristic (such as hill
climbing and genetic algorithms). Whereas in a random search the search space of candidate
solutions is scanned randomly, in a metaheuristic search, a fitness function – to distinguish
between a good and a poor solution – is used to guide the search. Since, this is the first
paper to explore search-based techniques to ambiguity detection in CFGs, we have chosen
the simplest search-based technique – a pure random search – for our experiment.

2.1 SinBAD framework
In this paper, we apply search-based techniques to ambiguity detection. We do so using a
new tool, SinBAD, which allows us to experiment with different search-based approaches.
Figure 1 shows SinBAD’s architecture. Given a grammar and a lexer, the Sentence Generator

ICCSW’12

144 Search-Based Ambiguity Detection in Context-Free Grammars

component generates random sentences using a backend instance. A backend, in essence, is an
algorithm that governs how sentences are generated. For instance, a backend can use a unique
scoring mechanism to favour an alternative when expanding a nonterminal, or one that can
generate sentences of bounded length. The generated sentence is then fed to an Earley-based
parser to check for ambiguity. The search stops when an ambiguity is found or when a time
limit is exceeded. SinBAD can be downloaded from https://github.com/nvasudevan/sinbad.

2.2 Definition and Notations
A CFG is a four-tuple 〈N,T,P,S〉 where N is the set of nonterminals, T is the set of terminals,
P is the set of production rules over N × N ∪ T and S is the start symbol of the grammar.
V is defined as N ∪ T. A production rule A: α is denoted as P [A] where A ∈ N, and α is
V*. We define a sentence of a grammar as a string over T*. For a rule P [A], P [A]alt denotes
an alternative, and ΣP [A]alt denotes all its alternatives. The number of alternatives for a
rule and the number of tokens in a rule are denoted as N(P [A]) and N(P [A]alt) respectively.
Notation R(L,n) indicates n items chosen randomly from a list L, and R[m..n] indicates a
number chosen randomly between m and n.

2.3 Search-based backends
Given a grammar, Algorithm 1 describes how a sentence is generated. The function START
is initialised with a grammar (G), the start time (ts), the time duration (T) of search, and
the threshold depth (D). To generate a sentence, we start deriving the start symbol S of
the grammar by invoking the function GENERATE-SENTENCE recursively. To derive a
nonterminal we randomly select one of its alternatives (line 11). We keep a note of when we
have entered a rule and when we have exited. When the depth of the recursion exceeds a
certain threshold depth, we start favouring alternatives (lines 8,9).

Algorithm 2 shows how an alternative is favoured for the Dynamic1 backend. When
invoked for a rule, the function FAVOUR-ALTERNATIVE uses a scoring mechanism to
favour an alternative. The score for an alternative is calculated as follows: terminal symbols
are given a score of zero; for nonterminal symbols, the score is based on the ratio of their
number of derivations that haven’t been fully derived yet to the total number of derivations
(line 8). One of the alternatives with a minimum score is then favoured.

3 Experiment

The objective of our experiment is to understand how well our search-based approach uncovers
ambiguity. Since ambiguity is inherently undecidable, it is impossible to evaluate such a tool
in an absolute sense. Instead, we evaluate our approach against two other tools – ACLA
and AmbiDexter [2] – and on two sets of grammars: 1000 grammars that we have randomly
generated1; grammars for Pascal, SQL, Java and C that have been manually altered to be
ambiguous2.

The three tools differ in their approach: ACLA uses an approximation technique; Am-
biDexter uses a hybrid approach; and SinBAD uses a search-based approach. We evaluate
these three tools for both sets of grammars for varying time limits – 10, 30, 60, and 90
seconds – to understand how long each tool takes to uncover reasonable quality results. For

1 Available at https://github.com/nvasudevan/sinbad/tree/master/experiment.
2 Taken directly from [4].

https://github.com/nvasudevan/sinbad
https://github.com/nvasudevan/sinbad/tree/master/experiment

N. Vasudevan and L. Tratt 145

Algorithm 1 Algorithm for generating a sentence
1: function start(G, ts, T,D)
2: return generate-sentence(P [S], G, ts, T , d = 0, D)
3: end function

4: function generate-sentence(P [A], G, ts, T, d,D)
5: exit if time_elapsed(ts, T)
6: Sen← empty string
7: P [A].entered← P [A].entered+ 1 . We enter rule
8: if d ≥ D then
9: P [A]alt ← favour-alternative(P [A], G)

10: else
11: P [A]alt ← R(ΣP[A]alt, 1)
12: end if
13: for each V ∈ P [A]alt do
14: if V ∈ N then
15: Sen← Sen+ generate-sentence(P [V], G, t, T , d+ 1, D)
16: else
17: Sen← Sen+ V

18: end if
19: end for
20: P [A].exited← P [A].exited+ 1 . We exit rule
21: d← d− 1
22: return Sen

23: end function

Algorithm 2 Algorithm for favouring an alternative for Dynamic1 backend
1: function favour-alternative(P [A], G)
2: scores← []
3: for each P [A]alt ∈ ΣP[A]alt do
4: scorealt ← 0
5: for each V ∈ P [A]alt do
6: if V ∈ N then
7: if P [V].entered > 0 then
8: scorealt ← scorealt + (1− (P [V].exited/P [V].entered))
9: end if
10: end if
11: end for
12: scores← scorealt
13: end for
14: altsmin ← { alt | ∀alt ∈ ΣP[A] ∧ scorealt = min(scores) }
15: return R(altsmin, 1)
16: end function

the (generally much larger) programming language grammars, we also evaluate the tools for
extended periods (180 and 300 seconds) as the number of production rules is much higher
than for our random grammars.

We evaluate AmbiDexter for two versions of a grammar—unfiltered and filtered (with

ICCSW’12

146 Search-Based Ambiguity Detection in Context-Free Grammars

SLR1). AmbiDexter provides an option for generating filtered versions of a grammar.
For random grammars, we generate the filtered version, and for the altered programming
language grammars, we take it directly from [4]. We evaluate SinBAD with the Dynamic1
and Dynamic2 backends for two threshold depths (D), 10 and 30. We have chosen these
two values for depth to uncover reasonably long ambiguous fragments. Our experiment was
performed on an Intel Core2 Quad Q9450 2.66GHz machine with 4 GB of memory. The
maximum JVM heap size for ACLA and AmbiDexter was 2048Mb.

3.1 Random grammar generation algorithm
Algorithm 3 outlines the algorithm for our random grammar generator. We initialise
nonterminal and terminal sets with equal numbers of symbols. To generate an alternative, a
token is picked randomly from set V. Each rule can have 1 or more alternatives, and each
alternative can have 0 or more symbols. The maximum number of alternatives for a rule
and the maximum number of tokens in an alternative is controlled by the MAXalts and
MAXtokens parameters respectively. The MAXε controls the maximum number of empty
alternatives.

Algorithm 3 An algorithm for generating a random grammar
1: function generate-grammar(MAXalts,MAXtokens,MAXε)
2: P ← {}
3: N ← Set of nonterminals
4: T ← Set of terminals
5: V ← N ∪ T
6: Nε ← R(N,MAXε)
7: for each A ∈ (N ∪ S) do
8: Nalts ← R[1..MAXalts]
9: while N(P[A]) < Nalts do
10: P [A]alt ← []
11: Ntokens ← R[1..MAXtokens]
12: while N(P[A]alt) < Ntokens do
13: P [A]alt ← P [A]alt + R(V, 1)
14: end while
15: end while
16: P [A]← P [A] + [] if A ∈ Nε . Append an empty list
17: end for
18: return 〈N,T,P,S〉
19: end function

All the grammars the algorithm generates are syntactically valid, though there is no
guarantee that they resemble ‘real-world’ grammars. For example: a grammar with a start
rule S: x can’t be derived further; a rule A: A with no other alternatives never terminates.

4 Comparison and Analysis

Table 1 displays the results of our experiment. We now present a brief analysis of some of
the most interesting parts.

Given a grammar, ACLA will report it to be ambiguous, unambiguous, or possibly
ambiguous (that is, it is unsure if the grammar is ambiguous). For both sets of grammars,

N. Vasudevan and L. Tratt 147

Table 1 Number of ambiguities detected for random and programming language grammars.

ACLA AmbiDexter SinBAD
Time - - Dynamic1 Dynamic2

(seconds) Unfiltered SLR1 D=10 D=30 D=10 D=30

Random CFGs

10 81 355 356 357 15 499 26
30 201 373 371 499 57 634 55
60 316 376 371 545 54 631 80
90 360 378 376 554 72 629 82

Altered
real-world
CFGs

10 14bc 16ab 16ab 20 18b 16ac 17ab

30 14bc 16ab 16ab 20 18b 16ac 18ab

60 14bc 16ab 16ab 20 18b 16ac 18ab

90 14bc 16ab 16ab 20 19a 16ac 19a

180 15bc 18ab 19b 20 20 16ac 19a

300 15bc 18ab 19b 20 20 16ac 20
a) Ambiguity not found for at least one of: Java.1, Java.3, and Java.4
b) Ambiguity not found for at least one of: C.1, C.2, C.4, C.5
c) Ambiguity not found for at least one of: Pascal.3, Pascal.5

ACLA performs better when we increase the time limit. For random grammars, ACLA
did not report any grammar to be unambiguous. For the altered programming language
grammars, Pascal.3 and Pascal.5 were reported to be possibly ambiguous. Analysis for the
(large) C grammars – C.1, C.2 and C.4 – did not complete within a time limit of 300 seconds.

AmbiDexter fared better than ACLA for both sets of grammars. For random grammars,
increasing the time limit does not lead to a significant increase in the number of ambiguities
found. This is because AmbiDexter searches for ambiguity based on increasing sentence
length. Therefore, for grammars with a short ambiguous fragment, AmbiDexter is quick
to find it. However, when the ambiguous fragment is long, AmbiDexter struggles. For the
altered programming language grammars, the results were slightly better for the filtered
version set. This is because in filtered grammars, production rules that do not contribute to
ambiguity are filtered out, thus resulting in a smaller state space. Further, we noted that for
larger grammars (such as C), increasing the time limit lead to better results.

SinBAD, for random grammars, performs better for a lower value of threshold depth
(D=10) than for a higher value (D=30). This is because, for case D=10, sentence generation
is quick whereas for case D=30, sentence generation takes much longer. Generating sentences
quicker allows the search to try a greater number of sentences possible, thereby increasing
the chances of detecting ambiguity. Further, Dynamic2 – which has a better mechanism to
converge sentence generation than Dynamic1 – performs better. For the altered programming
language grammars, Dynamic1 performs better than Dynamic2. Dynamic1 uses a scoring
mechanism that ensures every alternative gets an opportunity to be selected for sentence
generation. Dynamic2, however, uses a scoring mechanism that focuses on converging the
sentence generation. As a result, Dynamic1 covers a much wider area of the search space
than Dynamic2. As table 1 shows, SinBAD performs much better on random grammars than
the other tools, and performs at least as well on altered programming language grammars.

We also noted that whilst the number of ambiguities found for ACLA, AmbiDexter,
and SinBAD’s Dynamic1 stayed the same or increased, Dynamic2 got slightly worse with
increased time limits and D=30. This is because both ACLA and AmbiDexter search through
the state space systematically, and therefore the search space for higher time limits is inclusive
of the search space for lower time limits. SinBAD, however, randomly selects points in the
search space, and can give substantially different results from run to run.

ICCSW’12

148 Search-Based Ambiguity Detection in Context-Free Grammars

5 Threats to validity

The most obvious threat to validity is our random grammar generator. We have no easy way
of being confident that the CFGs it produces span the entire possible set of CFGs. Although
we wrote the generator without any particular ambiguity tool in mind, it may produce a
subset of CFGs which unintentionally favour SinBAD’s algorithms. In the future, we hope
that a CFG equivalent of the work on random generation of automata [8] may be developed.
By using Basten’s set of manually altered real programming language grammars, we have
some confidence that SinBAD’s algorithms work well beyond our random grammars.

6 Conclusions

In this paper, we introduced the concept of a search-based approach to CFG ambiguity
detection. Our experiments show that simple techniques give promising results, detecting
a larger number of ambiguities in random grammars than previous tools, and executing
in reasonable time. Our next step is to add more tools to the study and perform a larger
experiment with more real-world-esque grammars to see if these initial results apply to the
sort of CFGs that tend be to be used in practice.

References
1 Roland Axelsson, Keijo Heljanko, and Martin Lange. Analyzing context-free grammars

using an incremental sat solver. In Proceedings of the 35th international colloquium on
Automata, Languages and Programming, Part II, ICALP ’08, pages 410–422. Springer-
Verlag, 2008.

2 Bas Basten and Tijs van der Storm. Ambidexter: Practical ambiguity detection. In
Tenth IEEE International Working Conference on Source Code Analysis and Manipulation,
SCAM 2010, Timisoara, Romania, 12-13 September 2010, pages 101–102. IEEE Computer
Society, 2010.

3 H.J.S. Basten. Msc. thesis. Master’s thesis, 2007.
4 H.J.S. Basten and J. J. Vinju. Faster ambiguity detection by grammar filtering. In Proc.

of the Tenth Workshop on Language Descriptions, Tools and Applications, pages 5:1–5:9.
ACM, 2010.

5 Claus Brabrand, Robert Giegerich, and Anders Møller. Analyzing ambiguity of context-free
grammars. Science of Computer Programming, 75(3):176–191, March 2010.

6 David G. Cantor. On the ambiguity problem of backus systems. page 477–479, 1962.
7 Mark Harman. The current state and future of search based software engineering. In FOSE,

pages 342–357, 2007.
8 Pierre-Cyrille Héam, Cyril Nicaud, and Sylvain Schmitz. Random generation of determ-

inistic tree (walking) automata. In Proceedings of the 14th International Conference on
Implementation and Application of Automata (CIAA’09), volume 5642 of Lecture Notes in
Computer Science, pages 115–124. Springer-Verlag, July 2009.

9 Friedrich Wilhelm Schröer. Amber, an ambiguity checker for context-free grammars. Tech-
nical report, 2001. http://accent.compilertools.net/Amber.html.

	Introduction
	Search-based ambiguity detection
	SinBAD framework
	Definition and Notations
	Search-based backends

	Experiment
	Random grammar generation algorithm

	Comparison and Analysis
	Threats to validity
	Conclusions

