
Self-Learning Genetic Algorithm For Constrains
Satisfaction Problems∗

Hu Xu1 and Karen Petrie2

1 Computing School,
QMB 1.10, University of Dundee
huxu@computing.dundee.ac.uk

2 Computing School,
QMB 2.10, University of Dundee
karenpetrie@computing.dundee.ac.uk

Abstract
The efficient choice of a preprocessing level can reduce the search time of a constraint solver to
find a solution to a constraint problem. Currently the parameters in constraint solver are often
picked by hand by experts in the field. Genetic algorithms are a robust machine learning techno-
logy for problem optimization such as function optimization. Self-learning Genetic Algorithm are
a strategy which suggests or predicts the suitable preprocessing method for large scale problems
by learning from the same class of small scale problems. In this paper Self-learning Genetic Al-
gorithms are used to create an automatic preprocessing selection mechanism for solving various
constraint problems. The experiments in the paper are a proof of concept for the idea of combin-
ing genetic algorithm self-learning ability with constraint programming to aid in the parameter
selection issue.

1998 ACM Subject Classification I.2.6 Learning

Keywords and phrases Self-learning Genetic Algorithm, Constraint Programming, Parameter
Tuning

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.156

1 Introduction

The selection of a suitable preprocessing levels for a given constraint problem is an important
part of constraint programming(CP). Efficiently tuning a constraint solver will shorten the
search time and reduce the running cost. The key to increasing the search speed for a
constraint solver is partially due to tuning the solvers parameters [9]. Currently the job of
tuning the parameters is done by hand. The skilled researchers picks up the most suitable
preprocessing method using previous experience from similar classes of problems. In most
cases the best preprocessing method in similar classes of problems provide a useful clue to
aid the researchers selection. However this learning curve could be a barrier to novice user in
learning how to efficiently use a CP solver.

Genetic algorithms are a classic global optimization method posed by John Holland [7],
which mimic the competition of organisms in nature and the mechanisms of evolution. Genetic
algorithms are usually implemented in a computer simulation in which a population of abstract
representations of candidate solutions to an optimization problem evolves toward better
solutions. In the field of configuration tuning, Carlos [10] has posed a gender-based genetic

∗ This work was funded by Computing School of Dundee University and Henry Lester Turst

© Hu Xu and Karen Petrie;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 156–162

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.156
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


H. Xu and K. Petire 157

P1 Pi
0

N

Parameter Setting

R
u

n
n

in
g

 T
im

e

 

 

Small Instance

Media Instance

Large Instance

Figure 1 The Distribution of the Effect of Preprocessing for Various of Constrained Satisfaction
Problems.

algorithm for the automatic configuration of algorithms. In this paper genetic algorithms are
chosen to select preprocessing method for constraint satisfaction problems. There are two
main reasons to choose genetic algorithms to optimize preprocessing selection. One is that
genetic algorithm have a powerful ability to tackle optimization problems which lack auxiliary
information [1]. Another is that genetic algorithm do parallel search rather than linear
search [4]. Each chromosome races against another in each generation. Therefore the idea of
combining genetic algorithm and constraint programming seems worth exploring. Automatic
tuning will lead to improvements over manual tuning by researchers themselves. ParamILS
and CALIBRA [8] have shown the efficiency and possibility of automatic configuration
for constraints solver. However, the general framework of combing genetic algorithm and
constraint programming and the exploration of parameter sensitivity of genetic algorithm to
any problems, has not been achieved. Regrading this situation we proposed a genetic based
automatic method [12] for tuning minion [3] (method refered to as GACM) which is one
of the most efficient constraint solver in the world. In the constrained problem and their
preprocessing obey the normal (or Gaussian) distribution [5]. In most time the distribution
of the best preprocessing methods wouldn’t changed or slightly changed in the same classes
of the constraint satisfaction problems. Fig 1 shows that the best prepossessing could also
gradually move with the increase of the scale of the constraint satisfaction problem. Therefore
the best prepossessing method of a specific problem could learn from others in the same
class of problems. Meanwhile the search ability of genetic algorithm can improve by narrow
the starting population domain [4].Therefore this paper will propose a new self-learning
mechanism which is based on a new starting population and our pervious work.

2 Self-Learning Genetic Algorithm

Before self-learning genetic algorithms, Standard genetic algorithms will be introduced. In
Standard Genetic Algorithms, the starting population is randomly generated because the
search domain is unknown and the random chromosomes keeps the variety of the population
to prevent early convergency in evaluation. However if the search domain is limited to a
specific area it will improve the search speed for evaluation. We can use this by creating a
good starting popluation. The self-learning genetic algorithm is based on this idea. When
we solve small scale constraint satisfaction problem it is easy to find the best or good

ICCSW’12



158 Self-Learning Genetic Algorithm For Constrains Satisfaction Problems

Algorithm 1 Self-Learning Genetic Algorithm
if T (CS) < Time limit then . T (CS) is the running time of Solving some constrained
satisfaction problems with small instance

PL ← Best preprocessing for small instance . PL is the starting population for large
instance
else

PL ← Good preprocessing for small instance by standard genetic algorithm
end if
repeat

SGA(PL) . Using standard genetic algorithm to search better preprocessing with the
starting population PL

λ← Best preprocessing for large instance by Standard Genetic algorithm . λ is the
current best preprocessing method found for optimization problem
until λ = the best preprocessing or the searching time is out of time limit
return λ

preprocessing method within a acceptable running time. Those preprocessing methods
will provide a cue for searching for a good preprocessing methods in large scale problems.
Before the experiments the working principle of standard genetic algorithm for selecting
preprocessing level will be introduced.

The first step of a genetic algorithm (GA) is called the encoding which is to construct
the suitable chromosome for the optimization problem. Encoding in genetic algorithm
is to transfer solutions of optimization problem to the chromosomes. Each chromosome
presents one possible solution. The optimal or best solution will be gained by competing
chromosomes. In our self-learning genetic algorithm, each preprocessing method was encoded
as a chromosome.

Fitness describes the ability of an individual to reproduce in biology. The Fitness function
is the function which evaluates the difference between the desired result and the actual result.
In problem optimization, GA uses a fitness function to evaluate each individual and provide
the information to the evolution.

The Selection in genetic algorithm is a strategy which allows the perfect parents (with
high fitness) to have more of a chance to be selected to generate the next generation. In our
genetic configurator, the selection is the roulette wheel selection. Roulette wheel selection is a
way of choosing individuals from the population of chromosomes in a way that is proportional
to their fitness. Roulette does not guarantee that the fittest member goes through to the
next generation, merely that it has a very good chance of doing so.

Crossover can improve the whole population fitness quickly by mating parents to produce
an offspring. It is a very important operator in genetic algorithms. Single point crossover
is the basic and most common crossover in genetic algorithms because it can be easily
understood and realized. Mutations which change one or more genes in an individual is
another operator used in GA. Mutation can help genetic algorithms escape the local maximum
state by creating a new gene string. As with crossover, mutation also has a mutation rate to
control the amount of mutation in the recombination of each generation. The mutation rate
is the probability of a mutation happen. According to the mutation rate, any bit in each
chromosome has the chance to do a mutation.

Generally machine learning makes predictions by training, validation and testing itself
existing data [11]. Self-learning genetic algorithm (refered to as SLGA) is the algorithm



H. Xu and K. Petire 159

1 2 3 4 5 6 7 8 9 10 11
−1

0

1

2

3

4

5

6

Generations

R
u

n
n

in
g

 T
im

e

 

 

GACM

LFG

BEST

0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Generations

R
u

n
n

in
g

 T
im

e

 

 

LFG

Best

LFB

Figure 2 The Efficiency of Self-Learning Genetic Algorithm in Solving Lanford Number Problems.
The X axis is the generation number of genetic algorithm to find the best preprocessing for Lanford
Number problem. The Y axis is the running time for finding a solution of Lanford Number problem
with relative preprocessing setting.The left graph shows the efficiency comparison between standard
genetic algorithm and self-tranning genetic algorithm which learn the experience from the pervious
evolutionary result for small instance. The right graph in Figure 2 shows the efficiency of two
different strategies of self-learning genetic algorithm in solving the Landford number problem.

which help to make the preprocessing prediction by using the previous experience on the same
classes of constraint satisfaction problem. Self-Learning genetic algorithm improve the search
speed by defining the specific starting population instead of the normal random starting
population. The starting population of a Self-Learning genetic algorithm is gained from
the data training of the same class of small instance problems.There are two strategies to
realize the Self-Learning mechanism. Learning From Best (refered to as LFB) strategy is to
define the starting population with the best preprocessing which was gained by solving small
instance with whole preprocessing possibility. Learning From Genetic algorithm (refered to
as LFG) strategy is to define the staring population with the suggested preprocessing which
was got by solving small instance with our pervious genetic method.

The pseudocode of self-learning genetic algorithm introduces SLGA’s woking principle
and the way of applying those two strategies for different problems. It shows that the
self-learning genetic algorithm firstly evaluated the running time of Solving some constrained
satisfaction problems with small instance. If it is possible to find the best processing for
small instance problem, the starting population for large instance problems will be initialized
with the best processing for small instance problems or else the optimal processing gained
by GACM for small instance problems. According to the suggested starting population
from pervious experience, the standard genetic algorithm will be applied to find the best or
optimal processing for large instance problem. The standard genetic algorithm will explore
better processing generation by generation. The evolutionary search loop will stop when he
best preprocessing is found or the searching time is out of time expected.

3 Experiment Design

To prove the efficiency of the self-learning genetic algorithms, two different starting populations
were chosen which were mentioned in the methodology part. One starting population is the
top few of the best preprocessing of all the possible preprocessing combinations, another
one is the top preprocessing gained from standard genetic algorithm. The efficiency of those
two strategies (LFB and LFG) will compared with each other and with standard genetic

ICCSW’12



160 Self-Learning Genetic Algorithm For Constrains Satisfaction Problems

algorithm as well (GACM). In this paper the optimization problems chosen are the BIBD,
the N-queen problem, Golomb and the Landford’s number problem1. These four classical
constraint problems were chosen as optimization problem for testing the self-learning genetic
algorithm. The computational complexity of N-Queen problem depend on one variable. The
complexity of Open Stack Problem is up to the instance provided and the complexity of
Langfords Number Problem depends on multi-variables. From the definition description
of problems, it shows that those four constraint problem are very different to each other .
We hope that the self-learning genetic algorithm could be applicable to different constraint
satisfaction problem. Following the David’s MicroGA Settings [2], the crossover rate is 0.5
and the mutation rate is 0.04 in all experiments. Each trial was run 10 times and we observe
the average of the minimums.

4 Experimental Results

Figure 2 shows the efficiency of self-learning genetic algorithm to solve the Landford problem.
There are three curves in the left graph: Best, LFG and GACM. The best curves is the
minimum running time for solving Landford number problem with best preprocessing. The
GACM curve is the efficiency of using genetic algorithm to find better preprocessing for
optimisation problems. The LFG curve shows the self-learning genetic algorithm that learn
experience from pervious genetic algorithm evolution for the same class of problems. Its shows
a standard genetic algorithm can gradually approach the best preprocessing methods after a
few generations. But It clearly shows that the LFG can more easily and quickly approach
the best result by inheriting the useful information from others similar small instances.

There are three curves in the right graph: Best, LFG and LFB. The best curves is the
minimum running time same as in the left figure. The LFB curve shows the self-learning
genetic algorithm that learn experience from the best processing for the same class problems.
The LFG and the LFB curves both shows the efficiency of the self-learning genetic algorithm
to search for the best preprocessing method. The LFB selects the best preprocessing setting
of all possibility of small scale problem as the starting population. The LFG chooses good
preprocessing methods as a starting population which is gained from solving small scale
problems with a standard genetic algorithm. They both approach the best preprocessing
setting step by step as we expected. Although the approach speed of LFG is faster than
LFB, LFB still has better solutions due to the advantage in the starting population which
we can find from the definition of LFB and LFG.

To convince the correction and efficiency of Self-tanning genetic algorithm for other
problems, it was applied to solve the other three problems: BIBD[6], N-Queen problem and
Golomb problem. In reality it is not always possible to gain all possibility of preprocessing
combination from optimized problem which uses small instance due to the complexity of
preprocessing. Therefore only the lFG strategy of self-learning genetic algorithm was applied
to solve three optimization problems.

Table 1 describes the efficiency of the self-Learning genetic algorithm in solving different
problems by comparing standard genetic algorithm. Each value in the table represents the
running time of finding solution with the best found preprocessing. In all the optmization
problems the LFG could find better solution than the standard genetic algorithm. Especially
in Golomb problem the LFG could find the better solution but GA can’t. It is obvious that
the LFG has stronger ability than GA on searching for the best preprocessing method. The

1 All from http://www.csplib.org

http://www.csplib.org


H. Xu and K. Petire 161

Table 1 The Efficiency of Self-Learning Genetic Algorithm in Solving Different Problems by
comparing Standard Genetic Algorithm.

BIBD Langford N-Queen Golomb
GA 5.3 s 0.266 s 0.33 s N/A

LFG 4.5 s 2.1 s 0.04 s 8.7 s
Best 3.2 s 0.01 s 0.04 s 6.6 s

curves in fig. 2 and table 1 shows that the self-learning genetic algorithm can quickly approach
the best preprocessing within a few generations no matter which starting population strategy
is chosen. The LFB is quicker than the learning LFG, but the approaching speed is slower.
It means that the LFB strategy could be considered for self-learning genetic algorithm when
the running time for small instance is small. When the searching time of optimized problem
is unknown the LFG strategy is a better idea.

5 Future work

The results show the self-learning genetic algorithm are efficient methods on the preprocessing
selection of solving constraint satisfaction problems . However there are a few challenges we
need to face in the future. In this paper four classic problems were picked up to verify the
efficiency of self-learning genetic algorithm on medium size scale problem. More and larger
scale problems such as car sequence problem will be chosen to explore the efficiency and the
limitation of self-learning genetic algorithm. Currently the best model to solve a constraint
satisfaction problem is selected by hand by a researcher in the field. The next step is to apply
self learning genetic algorithms to find the best model for a constraint satisfaction problem.

References
1 C. Ansótegui, M. Sellmann, and K. Tierney. A gender-based genetic algorithm for the auto-

matic configuration of algorithms. In Principles and Practice of Constraint Programming-
CP 2009: 15th International Conference, CP 2009 Lisbon, Portugal, September20-24, 2009
Proceedings, page 142. Springer, 2009.

2 David L. Carroll. Chemical laser modeling with genetic algorithms. AIAA Journal, 34:338–
346, 1996.

3 Ian P. Gent, Christopher Jefferson, and Ian Miguel. Minion: A fast scalable con-
straint solver. In Proceedings of the 17th Eureopean Conference on Artificial Intelligence
(ECAI’06), pages 98–102, 2006.

4 David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.

5 Carla P. Gomes, Bart Selman, Nuno Crato, and Henry Kautz. Heavy-tailed phenomena
in satisfiability and constraint satisfaction problems. Journal of Automated Reasoning,
24:67–100, 2000. 10.1023/A:1006314320276.

6 Brahim Hnich, Zeynep Kiziltan, and Toby Walsh. Modelling a balanced academic cur-
riculum problem. In Proceedings of CP-AI-OR-2002, pages 121–131, 2002.

7 John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence. 1992.

8 Frank Hutter, Holger H. Hoos, and Thomas Stützle. Automatic algorithm configuration
based on local search. In Proceedings of the 22nd national conference on Artificial intelli-
gence - Volume 2, AAAI’07, pages 1152–1157. AAAI Press, 2007.

ICCSW’12



162 Self-Learning Genetic Algorithm For Constrains Satisfaction Problems

9 Lars Kotthoff, Ian Miguel, and Peter Nightingale. Ensemble classification for constraint
solver configuration. In CP’10, pages 321–329, 2010.

10 Tony Lambert, Carlos Castro, Eric Monfroy, María Riff, and Frédéric Saubion. Hybrid-
ization of Genetic Algorithms and Constraint Propagation for the BACP, volume 3668 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2005.

11 Simon Rogers and Mark Girolami. A First Course in Machine Learning. Chapman &
Hall/CRC, 1st edition, 2011.

12 Hu Xu, Karen Petire, and Keith Edwards. Genetic based automatic configuration for
minion. Doctoral Program at 2011 International Conference on Principles and Practice of
Constraint Programming, pages 91–96, 2011.


	Introduction
	Self-Learning Genetic Algorithm
	Experiment Design
	Experimental Results
	Future work

