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Abstract
The reachability problem, whether some unsafe state can be reached, is known to be undecidable
for nonlinear dynamical systems. However, finite-state abstractions have successfully been used
for safety verification. This paper presents a method for automatically abstracting nonpolynomial
systems that do not have analytical or closed form solutions.

The abstraction is constructed by splitting up the state-space using nonpolynomial Lyapunov
functions. These functions place guarantees on the behaviour of the system without requiring
the explicit calculation of trajectories. MetiTarski, an automated theorem prover for special
functions (sin, cos, sqrt, exp) is used to identify possible transitions between the abstract states.
The resulting finite-state system is perfectly suited for verification by a model checker.
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1 Introduction

Abstracting continuous systems into a finite state representation has been a successful
method for the formal verification of real world problems. Current abstraction methods can
only handle linear or polynomial nonlinear systems. Nonpolynomial terms must be either
linearised or over-approximated [4]. These approximations can introduce abstract states
that are seen as false-positives by the model checker. In this paper, the automated theorem
prover MetiTarski is used to create an abstraction of a nonpolynomial continuous system by
working with the nonpolynomial terms directly. This goal is to enhance the quality of the
resulting finite state abstraction.

MetiTarski [2] is an automated theorem prover for arithmetical conjectures involving
transcendental functions (sin, cos, exp etc.). It has been successful in proving arithmetical
theorems that are used to verify analogue circuits [3] and linear hybrid systems [1].

Most systems of interest can only be specified using nonlinear differential equations. This
is because, not surprisingly, nonlinear systems present a richer set of dynamics. It is for these
reasons that both qualitative analysis and repeated numerical simulation is used [10]. The
finite level of precision of numerical methods is often a source of significant error.

Safety, the fact that some bad behaviour will never happen, is the most important
property that should be verified for a system. The reachability computation remains the most
common way to check safety of a system. Unfortunately, the reachability decision problem of
continuous systems is undecidable [6]. Abstraction methods are commonly employed to solve
this problem.

By abstracting properly and preserving the relevant underlying behaviour of the system,
tools that are already developed can be used. Sloth and Wisniewski [12] developed a method
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for creating a sound and complete abstraction of continuous systems using Lyapunov functions.
By using the Lyapunov function as a predicate for partitioning, they were able to convert
the infinite state space of a continuous system into timed automata. They are however only
able to abstract a restricted class of linear systems.

Another abstraction method borrows ideas from the domain of qualitative reasoning.
Qualitative reasoning is motivated by the idea that numerical simulation is limited when not
all the parameters of the system are known. Instead of trying to compute a solution, it is
sufficient to look at how the vector field itself changes over time. Tiwari [14] uses predicates
that evaluate over the three symbols {+,−, 0} to split up the infinite state space. This
construction of the abstraction uses the decidability of the first order theory of real closed
fields [13] to compute the transitions between abstract states. Once the abstraction is created
then a model checker is used to evaluate Computation Tree Logic (CTL) properties on the
abstract system. The method proposed by Tiwari is limited to nonlinear polynomial vector
fields.

2 Dynamical Systems

A dynamical system can be thought of as an abstract entity that changes its behaviour and
state with respect to time. The state is the current value of the variables of the system. The
behaviour is a function that returns the next state of the system, given the current state.
These two quantities are required to completely model the system.

I Definition 1 (Dynamical System). An n-dimensional dynamical system DS is represented
by the state vector x(t) ∈ Rn and a function f : Rn → Rn

For continuous systems time will progress as a smooth function. Instead of giving an
explicit value of the next state, function f will define how the system evolves continuously.
The simplest way to model this smooth change of variables is using differential equations.

I Definition 2 (Continuous Dynamical System). A continuous dynamical system is compactly
modelled using a set of differential equations of the form

x′(t) = f(x(t)) (1)

It is common convention to drop the explicit reference to the time variable.

x′ = f(x) (2)

The benefit of using differential equations is that continuous systems can be completely
represented by how their variables change. Even for the simplest of systems, it can be quite
difficult and in most cases impossible to analytically solve Equation (1). If the functions f(x)
are polynomial, that is f(x) = anx

n + an−1x
n−1 + ...+ a1x+ a0 where n is a non-negative

integer and a0, a,.., an are constants then the resulting system is polynomial. Otherwise the
system is nonpolynomial.

I Example 1 (The Pendulum). Take for instance the friction-free pendulum of Figure 1a.
A rod of length L is attached to a ball of mass m. As the ball swings, the angle θ between
the rod and the vertical changes. The angular velocity (rotational speed in the tangential
direction) ω(t) is equivalent to the change of the angle θ or dθ

dt . Acceleration, velocity and
position of the ball are related by a = v′ = x′′. The arc-distance travelled by the ball is
x = θL. The effective force returning the ball to the center is mg sin θ. The differential
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(a) Regular pendulum (b) Whirling pendulum

Figure 1 Two nonpolynomial systems.

equations of the system can be derived from Newton’s 2nd Law F = ma. Taking F
m = a,

a = x′′ = (θL)′′ = ω′L gives the system in state space form

θ′ = ω (3a)

ω′ = − g
L

sin θ (3b)

This model is exactly described by two simple differential equations. The problem is that
there is no known method that can obtain a solution with respect to time for either of the
state variables (θ(t) or ω(t)). This is due to the nonpolynomial sin θ term in Equation (3b).
Under certain conditions, nonpolynomial systems like Example 1 can be approximated by a
linear system that is guaranteed to have a closed form solution.

I Definition 3 (Linear System). When f(x) (Equation (2)) is defined by an affine line ax+ b,
the continuous system is said to be linear. If the state vector x is n-dimensional then,
f(x) = Ax+ b where A is an n by n matrix b is an n vector.

Since the linear system is defined using a square matrix, it is easy to extract the eigenvalues
[11]. These eigenvalues can be used to construct the solution to the system of equations and
to understand the qualitative behaviour of the system’s trajectories. The interesting result is
that if a nonpolynomial system is replaced by a linear approximation, the eigenvalues of the
approximation can be used to understand the behaviour of the original system. The linear
approximation is only valid in a close neighbourhood of a particular point. In dynamical
system analysis, this is usually chosen to be an equilibrium point.

I Definition 4 (Equilibrium Point). An equilibrium or fixed point is a location in the state-
space x̃ where f(x̃) = x̃. When the system is at the equilibrium point, it will stay there for
all time if not disturbed. If a slight disturbance causes the system to leave the equilibrium
point and never return then the equilibrium point is unstable, otherwise the system is stable.

Since nonpolynomial systems cannot be solved analytically, verification relies on the
analysis of the qualitative behaviour of the system near its equilibrium points. This qualitative
analysis looks to see how sets of trajectories move in the state-space. For linear systems,
if the eigenvalues of the system all have a negative real part, then the stability of the
equilibrium point is guaranteed. If the real parts of the eigenvalues are all 0 then nothing
can be concluded and the linearisation method fails. An alternative method that operates
on the original nonlinear vector field directly can be used instead.
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I Definition 5 (Lyapunov Function). A function V (x) is a Lyapunov function, if for an
equilibrium point (fixpoint) located at the origin (0,0) the following conditions hold

V (x) > 0 for x 6= 0 (4a)
V (0) = 0 (4b)

∂V (x)
∂t

≤ 0 for all x (4c)

If a Lyapunov function exists, then the equilibrium point is guaranteed to be stable [10].
The Lyapunov property is a sufficient condition for stability.

Return to Example 1 but assume now that the system is real by including friction
effects. V (x) can be chosen as the total energy (kinetic plus potential) of the system. It is
clear that when the pendulum is displaced, energy is put into the system causing V (x) to
increase and V (x) > 0 . The energy of the system will only be zero when the pendulum
has stopped swinging and is hanging straight down at position 0, therefore V (0) = 0. The
system continuously loses energy due to friction and V (x) is always decreasing, implying
that V ′(x) < 0. Since the three constraints have been met, V (x) is an Lyapunov function
and by definition the equilibrium point at rest is stable.

The Lyapunov method does not require that V (x) be the energy of the system, any
function can be used. The caveat is that finding a Lyapunov function in general can be quite
difficult. There are several advanced methods based on sum-of-squares (SOS) techniques that
make the search for the Lyapunov function tractable. These methods have been implemented
in a MATLAB package called SOSTOOLS [9]. The next section describes an abstraction
algorithm that uses Lyapunov functions.

3 Abstracting the Dynamical System

The end-goal of verification is to prove that a system has been built correctly. For continuous
systems we specifically want to prove that all trajectories starting in a safe state will never
reach a bad or unsafe state. This reachability analysis is known to be decidable for discrete
systems such as finite automata, but it is undecidable for nonpolynomial systems. Abstraction
methods are a shortcut used to obtain a decidability result from the undecidable brick wall.

The abstraction method of Tiwari [14] discretizes the state-space using predicates evalu-
ated over three symbols {+,−, 0}. Each abstract state is defined by a conjunction of these
predicates. For the example in Figure 2a, predicates P1 and P2 represented by thick lines
have been used to discretize a two dimensional state space. Taking P1 : f(x, y) = x and P2 :
f(x, y) = y, state S1 is P1 > 0 ∧ P2 > 0, S7 is P1 = 0 ∧ P2 > 0 and so on.

The difficulty in creating finite state abstractions is choosing the predicates used to
discretize the state space. Tiwari has developed several heuristics for defining good predicates.
Lyapunov functions are a good choice because they represent a positively invariant set. By
definition, the solutions of the system will only pass through the level sets of Lyapunov
functions in one direction. Including Lyapunov functions greatly simplifies the construction
of abstract transition relations by limiting the reachable state space.

A decision procedure is used to determine all possible transitions between the abstract
states. For instance, in the example shown in Figure 2a the following cases must be checked
to determine the transitions between S2, S4 and S5. For brevity, P1 is assumed to be positive.
Transitions between abstract states are decided by checking the sign of the derivative of the
predicate with respect to the vector field of the system. To take this derivative, the chain
rule for partial derivatives is used dPn

dt = ∂Pn
∂x

dx
dt + ∂Pn

∂y
dy
dt .
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(a) Discretizing the state space with predicates (b) Transitioning between abstract states

Figure 2 Tiwari’s Abstraction Method.

1. If the current state is S4 : (P2 < 0) then:
If P2′ > 0, the next state is either S4 or S5
If P2′ = 0, the next state is S4
If P2′ < 0, the next state is S4
If unknown, the next state is S4 or S5

2. If the current state is S5 : (P2 = 0) then:
If P2′ > 0, the next state is S2
If P2′ = 0, the next state is S5
If P2′ < 0, the next state is S4
If unknown, the next state is S2 or S5 or S4

3. If the current state is S2 : (P2 > 0) then:
If P2′ > 0, the next state is S2
If P2′ = 0, the next state is S2
If P2′ < 0, the next state is S5 or S2
If unknown, the next state is S2 or S5

One issue is that the decision procedure used by Tiwari is only applicable to polynomials.
This restriction limits the type of systems that can be analysed. The next example shows
how Tiwari’s method is extended to work with nonpolynomial systems. MetiTarski is used
to reason about the inequalities that are generated during the abstract transition analysis
described above.

I Example 2 (Whirling Pendulum). Consider Figure 1b, where a pendulum of length lp
is attached to a movable rigid arm of length la. Taking the following assumptions: the
pendulum is light enough to be swung up with a small φ′, ignore friction and consider that
each pendulum arm is thin enough to make the moment of inertia negligible [5]. With x1 = φ

and x2 = φ′ the system of equations are

x′1 = x2 (5a)

x′2 = ω2 sin x1 cosx1 −
g

lp
sin x1 (5b)

The predicates used to split up the state space are obtained by repeatedly taking the
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(b) Discretized state-space

Figure 3 The whirling pendulum system.

derivative of the vector field.

P1 = x′′2 = −x2 sin2(x1) + x2 cos2(x1)− 10x2 cos(x1) (6a)

P2 = P1′ = 1
4 sin(x1)(8x2

4(8 cos(x1)− 5)− 8x2
2(561 cos(x1)− 210 cos(2x1)

+ 11 cos(3x1)− 65)− 1104 cos(x1)− 8040 cos(2x1) + 2304 cos(3x1)
− 175 cos(4x1) + 4 cos(5x1) + 4095) (6b)

and a Lyapunov function of the system is found using SOSTOOLS

V 1 = 0.3345x2
2 + 1.4615 sin2 x1 + 1.7959 cos2 x2 − 6.689x2 + 4.8931 (7)

The behaviour of the system is shown in the vector field plot of Figure 3a with x1 on the
horizontal axis and x2 on the vertical axis. Using the predicates obtained from the equations
of the system (Equations 6a and 6b) along with several level sets of the Lyapunov function
(Equation 7 : V 1 = 0.25, V 1 = 0.5, V 1 = 0.85 and V 1 = 2), the state-space is discretized as
shown in Figure 3b. MetiTarski is used to determine the transitions between the abstract
states using the method described in Section 3. The methods of Sloth, Wisniewski and
Tiwari cannot deal with this system because of the nonpolynomial components.

4 Conclusion

An abstract system has been constructed by choosing the appropriate predicates and dis-
cretizing the continuous state space of a nonpolynomial dynamical system. The abstract
transitions have been automatically obtained using MetiTarski. The resulting finite state
transition system can be sent to a model checker for verification purposes.

One important open question is concerned with choosing good predicates. Tiwari’s method
uses predicates that are constructed by taking repeated derivatives of the vector fields. The
motivation being that for polynomial systems this process terminates. For nonpolynomial
systems this is not necessarily the case. It will be necessary to quantify the quality of the
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48 Abstracting Continuous Nonpolynomial Dynamical Systems

abstractions. One potential option to increase the quality of the generated abstractions is to
use the Counter Example Guided Abstraction Refinement (CEGAR) framework.

Barrier Certificates can be used for safety analysis [7] and are another source of good
predicates. Instead of being concerned with the stability of an equilibrium point, they are
used to prove that certain states of a system cannot be reached. This is done using Lyapunov
theory (see Definition 5). The important point is that SOSTOOLS can be used to search
for Barrier Certificates. Linear hybrid systems have been successfully verified using these
techniques [8]. Future work includes using MetiTarski for determining abstract transitions of
systems discretized by Barrier Certificates.
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