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Abstract
We present a novel approach to the verification of multi-agent systems using bounded model
checking for specifications in LTLK, a linear time temporal-epistemic logic. The method is based
on binary decision diagrams rather than the standard conversion to Boolean satisfiability. We
apply the approach to two classes of interpreted systems: the standard, synchronous semantics
and the interleaved semantics. We provide a symbolic algorithm for the verification of LTLK
over models of multi-agent systems and evaluate its implementation against MCK, a competing
model checker for knowledge. Our evaluation indicates that the interleaved semantics can often
be preferable in the verification of LTLK.
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1 Introduction

It is often crucial to ensure that multi-agent systems (MAS) conform to their specifications
and exhibit some desired behaviour. This can be checked in a fully automatic manner using
model checking [4], which is one of the rapidly developing verification techniques. Model
checking has been studied by various researchers in the context of MAS and different modal
logics for specifying MAS properties [2, 6, 7, 10, 13, 14, 20, 21].

In the verification of multi-agent systems, the construction of the full, reachable state-space
is often required. This exploration can lead to the state-space explosion, where the size of the
model grows exponentially with the number of agents. Therefore, several approaches alleviating
this problem have been proposed. One of them is bounded model checking (BMC) [1], in
which only a portion of the original model, truncated up to some specific depth, is considered.
This approach can be combined either with a translation of the verification problem to the
propositional satisfiability problem (SAT) [10, 18] or with techniques based on binary decision
diagrams (BDDs) [9].

In this paper we present a novel approach to verification of MAS by BDD-based bounded
model checking for linear time temporal logic extended with the epistemic component (LTLK,
also called CKLn [7]). The systems are modelled by two variants of Interpreted Systems:
standard (IS) [5] and interleaved ones (IIS) [12]. IIS restrict IS by enforcing asynchronous
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semantics. This modifies the popular modelling approach for MAS by bringing the semantics
known from verification of concurrent systems like networks of automata or variants of Petri
nets. Our paper shows that the modelling approach has a very strong impact on the efficiency
of verification. The experimental results exhibit that the IIS-based approach can greatly
improve the practical applicability of the bounded model checking method for LTLK.

There has been already some intensive research on BMC for MAS, but mostly for the
properties expressible in CTLK, based either on SAT [8, 18] or on BDDs [9]. A SAT-based
verification method for the LTLK properties of MAS, modelled by IIS, was put forward
in [19]. Our technical report [15] presents a BDD-based approach to verification of LTLK for
IIS, while the SAT- and BDD-based approaches for IIS are compared in [17].

The rest of the paper is organised as follows. Sec. 2 provides the basic definitions and
notations for LTLK and IS. Our method is described in Sec. 3. The last section contains the
discussion of an experimental evaluation of the approach and the final remarks.

2 Preliminaries

2.1 Interpreted Systems
The semantics of interpreted systems [5] provides a setting to reason about MAS by means
of specifications based on knowledge and linear or branching time. We begin by assuming
a MAS to be composed of n agents1 A. We associate a set of possible local states Li and
actions Acti to each agent i ∈ A. We assume that the special action εi, called “null”, or
“silent” action of agent i belongs to Acti; as it will be clear below the local state of agent i
remains the same if the null action is performed. Also note we do not assume that the sets
of actions of the agents are disjoint. We call Act =

∏
i∈AActi the set of all possible joint

actions, i.e. tuples of local actions executed by agents. We consider a local protocol modelling
the program the agent is executing. Formally, for any agent i, the actions of the agents are
selected according to a local protocol Pi : Li → 2Acti . For each agent i, we define a relation
ti ⊆ Li × Act × Li, where (l, (a1, . . . , an), l) ∈ ti for each l ∈ Li if ai = εi. A global state
g = (g1, . . . , gn) is a tuple of local states for all the agents corresponding to an instantaneous
snapshot of the system at a given time. Given a global state g = (g1, . . . , gn) we denote by
li(g) the local component gi of agent i ∈ A in g.

For each agent i ∈ A, ∼i ⊆ G×G is an epistemic indistinguishability relation over global
states defined by g ∼i h if li(g) = li(h). Further, let Γ ⊆ A. The union of Γ’s accessibility
relations is defined as ∼EΓ =

⋃
i∈Γ ∼i. By ∼CΓ we denote the transitive closure of ∼EΓ , whereas

∼DΓ =
⋂
i∈Γ ∼i.

A global evolution T ⊆ G × Act × G is defined as follows: (g, a, h) ∈ T iff there exists
an action a = (a1, . . . , an) ∈ Act such that for all i ∈ A we have ai ∈ Pi(li(g)) and
(li(g), a, li(h)) ∈ ti. For g, h ∈ G and a ∈ Act s.t. (g, a, h) ∈ T we write g a−→ h. We assume
that the global evolution relation T is total, i.e., for each g ∈ G there exists a ∈ Act and
h ∈ G such that g a−→ h.

An infinite sequence of global states and actions ρ = g0a0g1a1g2 . . . is called a path
originating from g0 if there is a sequence of transitions from g0 onwards, i.e., gi

ai−→ gi+1 for
every i ≥ 0. Any finite prefix of a path is called a run. By length(ρ) we mean the number of
the states of ρ if ρ is a run, and ω if ρ is a path. In order to limit the indices range of ρ which

1 Note in the present study we do not consider the environment component. This may be added with no
technical difficulty at the price of heavier notation.
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can be a path or run, we define the relation �ρ. Let �ρ
def= < if ρ is a path, and �ρ

def= ≤ if ρ is
a run. A state g is said to be reachable from g0 if there is a path or a run ρ = g0a0g1a1g2 . . .

such that g = gi for some i ≥ 0. The set of all the paths and runs originating from g is
denoted by Π(g). The set of all the paths originating from g is denoted by Πω(g).

I Definition 1. Given a set of propositions PV such that {true, false} ⊆ PV , an interpreted
system (IS), also called a model, is a tuple M = (G, ι, T , {∼i}i∈A,V), where G is a set of
global states, ι ∈ G is an initial (global) state such that each state in G is reachable from ι,
T is the global evolution relation defined as above, and V : G→ 2PV is a valuation function.

We define Π =
⋃
g∈G Π(g) to be the set of all the interleaved paths and runs originating from

all states in G. By Πω we denote the set of all the paths of Π.

2.2 Interleaved Interpreted Systems

We define a restriction of interpreted systems, called interleaved interpreted systems in which
global evolution function is restricted, so that every agent either executes a shared action or
the null action. We assume that εi ∈ Pi(l), for any l ∈ Li, i.e., we insist on the null action to
be enabled at every local state. For each action a ∈

⋃
i∈AActi by Agent(a) ⊆ A we mean

all the agents i such that a ∈ Acti, i.e., the set of the agents potentially able to perform a.
Then, the global evolution relation T is defined as before, but it is restricted by the following
condition: if (g, a, h) ∈ T then there exists a joint action a = (a1, . . . , an) ∈ Act, and an
action α ∈

⋃
i∈AActi \ {ε1, . . . , εn} such that: ai = α for all i ∈ Agent(α), and ai = εi for all

i ∈ A \Agent(α).

2.3 Syntax and Semantics of LTLK

I Definition 2 (Syntax). Let PV be a set of atomic propositions to be interpreted over the
global states of a system, p ∈ PV, q ∈ A, and Γ ⊆ A. Then, the syntax of LTLK is defined
by the following BNF grammar: ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ |
Kqϕ | Kqϕ | EΓϕ | EΓϕ | DΓϕ | DΓϕ | CΓϕ | CΓϕ.

The temporal operators U and R are named as usual, respectively, until and release; X is the
next step operator. The epistemic operators Kq, DΓ,EΓ, and CΓ [5] represent, respectively,
knowledge of agent q, distributed knowledge in the group Γ, “everyone in Γ knows”, and
common knowledge among agents in Γ, whereas Kq, DΓ,EΓ, and CΓ are the corresponding
dual.

The logic LTL is the sublogic of LTLK which consists only of the formulae built without
the epistemic operators, whereas ELTL is a fragment of LTL where negation can be applied
to propositions only. ELTLK is the existential fragment of LTLK, defined by the following
grammar: ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕRϕ | Kqϕ | EΓϕ | DΓϕ | CΓϕ.

I Definition 3 (Semantics). Given a model M = (G, ι, T , {∼q}q∈A,V), where V(s) is the set
of propositions that hold at s, let Π be a set of all the paths and runs of M , and ρ(i) denote
the i-th state of a path or run ρ ∈ Π, and ρ[i] denote the path or run ρ with a designated
formula evaluation position i, where i�ρ length(ρ). Note that ρ[0] = ρ. The formal semantics
of LTLK is defined recursively as follows:

M,ρ[i] |= p iff p ∈ V(ρ(i)),
M,ρ[i] |= ¬ϕ iff M,ρ[i] 6|= ϕ,
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M,ρ[i] |= ϕ1 ∧ ϕ2 iff M,ρ[i] |= ϕ1 and M,ρ[i] |= ϕ2,
M,ρ[i] |= ϕ1 ∨ ϕ2 iff M,ρ[i] |= ϕ1 or M,ρ[i] |= ϕ2,
M,ρ[i] |= Xϕ iff length(ρ) > i and M,ρ[i+ 1] |= ϕ,
M,ρ[i] |= ϕ1Uϕ2 iff (∃k ≥ i)[M,ρ[k] |= ϕ2 and (∀i ≤ j < k) M,ρ[j] |= ϕ1],
M,ρ[i] |= ϕ1Rϕ2 iff [ρ ∈ Πω(ι) and (∀k ≥ i) M,ρ[k] |= ϕ2]

or (∃k ≥ i)[M,ρ[k] |= ϕ1 and (∀i ≤ j ≤ k) M,ρ[j] |= ϕ2],
M,ρ[i] |= Kqϕ iff (∀ρ′ ∈ Πω(ι))(∀k ≥ 0)[ρ′(k) ∼q ρ(i) implies M,ρ′[k] |= ϕ],
M,ρ[i] |= Kqϕ iff (∃ρ′ ∈ Π(ι))(∃k ≥ 0)[ρ′(k) ∼q ρ(i) and M,ρ′[k] |= ϕ],
M,ρ[i] |= YΓϕ iff (∀ρ′∈Πω(ι))(∀k ≥ 0)[ρ′(k) ∼Y

Γ ρ(i) implies M,ρ′[k] |= ϕ],
M,ρ[i] |= YΓϕ iff (∃ρ′∈Π(ι))(∃k ≥ 0)[ρ′(k) ∼Y

Γ ρ(i) and M,ρ′[k] |= ϕ],
where Y ∈ {D,E,C}.

Moreover, an ELTLK formula ϕ holds in the model M , denoted M |=∃ ϕ, iff M,ρ |= ϕ for
some path or run ρ ∈ Π(ι). The intuition behind this definition is that ELTLK is obtained by
restricting the syntax of the epistemic operators while the temporal ones remain the same.

3 BDD-based Bounded Model Checking for ELTLK

To perform BMC of ELTLK using BDDs [4] we combine the standard approach for ELTL [3]
with the method for the epistemic operators [20] in a similar manner to the solution for
CTL∗ of [4] where the methods for CTL and LTL are combined into a method for CTL∗.

Algorithm 1 Labelling algorithm
1: Mc := M , ϕc := ϕ

2: while γ(ϕc) 6= 0 do
3: pick ψ ∈ Y(ϕc) such that γ(ψ) = 1
4: for all g ∈ JMc, sub(ψ)K do
5: VMc(g) := VMc(g) ∪ {psub(ψ)}
6: end for
7: ψ := ψ[sub(ψ)← psub(ψ)]
8: for all g ∈ JMc, ψK do
9: VMc

(g) := VMc
(g) ∪ {pψ}

10: end for
11: ϕc := ϕc[ψ ← pψ]
12: end while
13: return JMc, ϕcK

Labelling algorithm. Given a model M = (G, ι, T , {∼q}q∈A,V), a set GR ⊆ G of its
reachable states, and an ELTLK formula ϕ, we compute the set JM,ϕK = {g ∈ GR |
M, g |=∃ ϕ} by reducing ELTLK to ELTL under the assumption that we have the algorithms
for computing this set for each ϕ being an ELTL formula or in the form Yp, where p ∈ PV,
and Y ∈ {Kq,EΓ,DΓ,CΓ} (we use the algorithms from [3] and [20], respectively). In order
to obtain this set, we construct a new model Mc together with an ELTL formula ϕc, and
compute the set JMc, ϕcK, which is equal to JM,ϕK. Initially ϕc equals ϕ, which is an ELTLK
formula, and we process the formula in stages to reduce it to an ELTL formula by replacing
with atomic propositions all its subformulae containing epistemic operators. If ϕ = Yψ is an
ELTLK formula, by sub(ϕ) we denote the formula ψ nested in the epistemic operator Y. We
begin by choosing some epistemic subformula ψ of ϕc, which consists of exactly one epistemic
operator (line 3), and process it in two stages. First, we modify the valuation function of
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Mc (line 5) such that every state initialising some path or run along which sub(ψ) holds is
labelled with the new atomic proposition psub(ψ), and we replace with the variable psub(ψ)
every occurrence of sub(ψ) in ψ (line 7). In the second stage, we deal with the epistemic
operators having in their scopes atomic propositions only. By modifying the valuation function
of Mc (line 9) we label with a new variable pψ every state initialising some path or run
along which the modified simple epistemic formula ψ holds. Similarly to the previous stage,
we replace every occurrence of ψ in ϕc with pψ (line 11). In the subsequent iterations, we
process every remaining epistemic subformulae of ϕc in the same way until there are no more
nested epistemic operators in ϕc (line 2), i.e., we obtain an ELTL formula ϕc, and the model
Mc with the appropriately modified valuation function. Finally, we compute the set of all
reachable states of Mc that initialise at least one path or run along which ϕc holds (line 13).

Algorithm 2 BMC algorithm
1: Reach := {ι},New := {ι}
2: while New 6= ∅ do
3: Next := New;

4: if ι ∈ JM |Reach, ϕK then
5: return true

6: end if
7: New := Next \Reach
8: Reach := Reach ∪New
9: end while

10: return false

BMC algorithm. Given a model M and an ELTLK formula ϕ, the algorithm checks if
there exists a path or run initialised in the initial state ι along which ϕ holds. The algorithm
starts with the set Reach of reachable states that initially contains only the state ι. With
each iteration the verified formula is checked (line 4), and the set Reach is extended with
new states reachable in one step from old states in Reach (line 8). The algorithm operates
on submodels M |Reach generated by the set Reach (i.e., models restricted to contain only
the states of Reach) to check if the initial state ι is in the set of states from which there is
a path or run on which ϕ holds. The loop terminates if there is such a path or run in the
obtained submodel, and the algorithm returns true (line 5). The search continues until no
new states can be reached from the states in Reach. When we obtain the complete set of
the reachable states, and a path or run from the initial state on which ϕ holds could not be
found in any of the obtained submodels, the algorithm terminates returning false.

4 Experimental Evaluation

We have considered three scalable systems to evaluate the efficiency of our BDD-based
BMC for LTLK: Faulty Generic Pipeline Paradigm (FGPP), Faulty Train Controller (FTC),
and Dining Cryptographers (DC). The systems were modelled using two semantics, and
the benchmarks were performed with several formulae. For the detailed descriptions of the
benchmarks see [15]. Our method was implemented as two separate prototype modules of
Verics [11] for IS and IIS semantics (named Verics-IS and Verics-IIS, respectively). We have
also compared our results with those obtained using MCK [6], another model checker for
multi-agent systems, implementing standard IS semantics. Results for some of the performed
benchmarks are included in the figures below.
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Comparing algorithms for IS, in most cases MCK is better than Verics-IS, but remains
close when looking at the orders of magnitude. The reason for better performance of MCK
may come from the fact that it is based on the translation to SAT, and SAT-based BMC
does not need to store the whole examined part of the state space.

For most of the considered benchmarks the Verics-IIS method is superior to the two IS
approaches: MCK and Verics-IS, sometimes even by several orders of magnitude. This can
be observed especially in the case of FTC. However, in the case of FGPP and formula 3 with
no epistemic modalities, MCK proved to be more efficient, but for the formula 4 containing
the K operator, Verics-IIS was superior. This can be justified by the fact that introducing
epistemic modalities partitions the ELTL verification task into several smaller ones.

In the case of IIS, the reordering of the BDD variables does not cause any significant
change of the performance in the case of FGPP and FTC, but for DC it reduces the memory
consumption. Therefore, for IIS the fixed interleaving order we used can often be considered
optimal. The penalty in the verification time to reorder the variables, in favour of reducing
memory consumption, is also not significant and can be worth the tradeoff. However, in the
case of IS the performance did not change, thus we include only the results for the fixed
order of the variables for Verics-IS.

It is important to note that from our comparison of [17] it follows that in the case of IIS,
the general performance of BDD-based approach is superior to the SAT-based one. Therefore,
we can conclude now that BMC for LTLK is less efficient for IS when comparing with IIS.
This could be explained by the different structure of the state space, which for IS is more
dense, i.e., more states are explored at every iteration of the BMC algorithm. The case of
DC shows that this factor can be more important than the lengths of the counterexamples,
which can be shorter for IS, or may even be of constant length when scaling the system.

The experimental results show that the approach based on the interleaved interpreted
systems can greatly improve the practical applicability of the bounded model checking method.
Although, we have tested only properties of LTLK, we suspect this to also be true for similar
specification formalisms, e.g., CTLK.

5 Final Remarks

In this paper, we have presented a BDD-based method for bounded model checking of
LTLK over models of multi-agent systems. We evaluated the methodology in two different
settings: interleaved interpreted systems and synchronous interpreted systems. The results
are preliminary and the comparison is by no means complete. It ignores the fact that for
some formulae the choice of the semantics influences the existence of a witness in the model.
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