
A compositional model to characterize software
and hardware from their resource usage
Davide Morelli and Antonio Cisternino

Computer Science Department, University of Pisa
Largo B. Pontecorvo 3, Italy
(morelli|cisterni)@di.unipi.it

Abstract
Since the introduction of laptops and mobile devices, there has been a strong research focus
towards the energy efficiency of hardware. Many papers, both from academia and industrial
research labs, focus on methods and ideas to lower power consumption in order to lengthen the
battery life of portable device components. Much less effort has been spent on defining the
responsibility of software in the overall computational system’s energy consumption.

Some attempts have been made to describe the energy behaviour of software, but none of
them abstract from the physical machine where the measurements were taken. In our opinion
this is a strong drawback because results can not be generalized. We propose a measuring method
and a set of algebraic tools that can be applied to resource usage measurements. These tools
are expressive and show insights on how the hardware consumes energy (or other resources),
but are equally able to describe how efficiently the software exploits hardware characteristics.
The method is based on the idea of decomposing arbitrary programs into linear combinations of
benchmarks of a test-bed without the need to analyse a program’s source code by employing a
black box approach, measuring only its resource usage.

1998 ACM Subject Classification D.2.8 Metrics, D.4.8 Performance, B.8.2 Performance Analysis
and Design Aids

Keywords and phrases Performance, Metrics, Energy consumption

Digital Object Identifier 10.4230/OASIcs.ICCSW.2012.95

1 Introduction

Energy consumption is a global concern; as the Environmental Protection Agency of the U.S.
stated in a report [8] dated 2007, the energy consumed by data centres and servers alone can
account for 1.5% of the global energy use, and is doubling every five years.

The adoption rate of portable devices raised the attention towards energy efficiency of
hardware components (in order to lengthen battery life) and network protocols. Much less
effort has been spent on defining the responsibility of software in the overall computational
system’s energy consumption, none of them abstract from the physical machine where the
measures are taken. In our opinion this is a strong drawback because results can not be
generalized.

We propose a measuring method and a set of algebraic tools that can be applied to
resource usage measurements (energy consumption and completion time being just two
instances of resource usage). These tools are expressive and show insights on how the
hardware consumes energy (or other resources). They are also able to describe how efficiently
the software exploits the hardware characteristics.

Typically, measurement techniques proposed in the literature aim to break down the energy
consumption to atomic components, associating an average cost to every instruction [16, 15,

© Davide Morelli and Antonio Cisternino;
licensed under Creative Commons License NC-ND

2012 Imperial College Computing Student Workshop (ICCSW’12).
Editor: Andrew V. Jones; pp. 95–101

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.95
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

96 Characterizing HW and SW from their resource usage

9, 2, 17]. We believe that a different approach should be used, as modern computational
systems tend towards complex systems. Hardware started developing parallelism when the
CPU frequency reached its cap, and software systems are becoming increasingly complex.
The result of this process is that the resource usage of a single instruction is hardly predictable
and depends on the execution context. For example, the time required to load a location
depends on both the program’s memory access pattern, the hardware characteristics, and
the memory used by the other processes running on the same computational system, leading
to almost non deterministic results. For this reasons we have chosen to follow a black
box approach, measuring the resource usage of the software running on a computational
system as a whole, following the approach proposed in [11], instead of trying to profile the
software [9], simulating the execution of algorithms on modified virtual machines or power
level performance simulators [2, 17]. This is because these approaches either require source
code access or are only feasible for simple architectures, where a cycle accurate simulator is
possible and for relatively small programs. A black box approach measures the software as
a whole without trying to break down the energy consumption of single instructions. This
approach is the most simple to implement, does not need modifications to the operative
system and works with a simple ammeter with the simplest possible approach: the current is
measured in AC from the wall outlet [14, 17, 4].

Metrics for software similarity are very interesting because they allow us to predict the
behaviour of programs using measurements of similar programs, and allow their characteriza-
tion. Yamamoto proposes a metric of similarity based on source code analysis in [18]. For
the scope of our research, we are interested in methods that do not require access to the
source code because we want to be able to characterize software as a black box.

In a 1992 paper [12] we found an approach that was particularly inspiring for our work:
a model was proposed to characterize both hardware and software. The overall completion
time of a program was modelled as a linear decomposition of abstract operations. Our model
is very similar to their with respect to the linear composition model. Nevertheless, there are
many important differences:

they use abstract operations as computational patterns (e.g. add, store, divide, etc.); we
allow more articulate entities, long combinations of instructions

the program analysis is performed by means of static analysis and instrumentation of the
source code; we don’t require the source code to analyse the program

their model focuses on completion time solely; our model is capable of describing the
usage of every measurable resource, we are most interested in completion time and energy
consumption, but could be applied to any other metric (i.e. memory usage, CPU time,
etc.)

[17] also proposed an energy characterization model for both hardware and software.
In [1], the use of performance counters leverages the characterization of software, a

technique that is becoming a de facto standard [5, 10, 7, 6]. Benchmarks are analyzed, PCA
is used to reduce the solution space and clustering techniques are used to identify families of
programs and to find a representative workload for a certain task.

Two other key concepts are the idea that the environment where the program is run must
be taken into account [3] and the need to find a model capable of offering results resilient
with change of hardware: Sherwood [13] characterized software with a model consistent with
the change of architecture; he proposed a high level approach (not at instruction level), but
he did not focus on energy consumption.

D. Morelli and A. Cisternino 97

2 A compositional model

Programs are composed of instructions that once executed affect the resource consumption
of the system. There are many different kinds of computational resources a program can
consume (CPU time, memory, network, etc.). We define computational pattern a sequence of
instructions that expose a peculiar resource usage, that is subject to change as we change
the computational system where the pattern is executed on, e.g. on a processor family
FPU operation may consume more energy to complete with respect to a different class of
processors.

In our model we assume that actual programs can be seen as composed of computational
patterns, i.e. a matrix multiplication algorithm will read data from memory (showing a
peculiar memory read pattern with cache hit and miss), perform FPU then write the result
back to memory.

A computational pattern will have a different resource usage on each computational
system, e.g. the same memory pattern of data read could rise to a much lower number of
cache miss if a processor is capable of predicting the pattern and prefetching data. The
composition of a program from the point of view of the computational patterns does not
change when the program is run on a different computational system, but the resource usage
behaviour will change because the computational pattern the program is composed of will
have a different resource usage profile.

Therefore, we chose a set of synthetic benchmarks as our test-bed, where every benchmark
is intended to capture a particular computational pattern that we expect to find in different
quantities in every program we intend to analyse, with zero being a legitimate quantity.

3 Linear algebra model

We define the measurement matrix a computational system S as a Rm×n matrix where n is
the number of benchmarks in our test-bed and m is the number of attributes (resource usage)
we measure for each program. Each one of these matrices holds the knowledge we have about
a particular computational system. The ith column of M shows the resource usage of the
ith benchmark of our test-bed. The jth cell of that column holds the measurement of the
resource usage of the jth attribute (e.g. CPU time, cache hit, etc.).

When we want to decompose a program p using the benchmarks of our test-bed as the
building block we measure the resources usage of p running on S and we build a vector µp

with those measures. The jth element of µp holds the measurement of the resource usage of
the jth attribute; µp is like a column of M but is composed of measurements of a program
that is not part of the test-bed. Now consider the following linear system:

M · sp = µp (1)

We call sp the split-up of p, it holds a decomposition of p using the benchmarks of our
test-bed as building blocks.

Standard vector algebra can be used to analyse and interpret measures, splitups and
programs. We can analyse vectors using vector norm:

‖v‖ =

√√√√ n∑
i=1

(vi)2 (2)

ICCSW’12

98 Characterizing HW and SW from their resource usage

and vector similarity:

cos(θ) = v1 · v2

‖v1‖‖v2‖
(3)

3.1 Measurements space
The columns of M can be seen as vectors in an m dimensional vector space that we call
the measurements space. The position of the ith vector shows the resource usage of the ith

benchmark of the test-bed. More generally speaking, the µp vector shows the resource usage
of the program p in a particular system S.

The norm can be used to get an insight on the overall resource usage of a benchmark, i.e.
more resource demanding benchmarks will have a higher norm than less resource demanding
ones.

Vector similarity will tell us how similar two programs are: if the angle between the
vectors is small it means that they may use more or less resources in absolute terms (have
different norms), but their resource usage behaviour is similar.

3.2 Splitup space
Splitups can be seen as vectors in a n dimensional vector space that we call the splitup
space. The position of a vector in this space shows the composition of the program using the
benchmarks as building blocks.

When comparing the splitup vectors of two programs we can say that the one with a
higher norm is the more resources demanding. If the vector similarity is very close to 1 but
the norms are different we are probably looking at the same program running with different
input sizes, e.g. if p1 and p2 are the same sorting algorithm with p1 running on half the
array size of p2 we’ll probably see ‖sp2‖ = 2‖sp1‖ and

sp1 ·sp2
‖sp1‖‖sp2‖

= 1
When a program is run on different input sizes the balance of the computational patterns

used may vary, e.g. the cache hit ratio could grow logarithmically while the FPU usage may
grow linearly. Analysing how the splitup of a program changes with the input size is highly
informative of the program structure. When the splitup does not change with the input size
we call the program uniform; and if it changes, we call it non uniform.

If the test-bed is well formed the splitup of a program has to be the same when we run it
on different computational systems. If it is different it means that this program is capturing
a resource usage behaviour not captured by any benchmark in the test-bed, in other words
this program contains an unknown computational pattern, therefore it should be added to
our test-bed.

3.3 Benckmark space
MS is the M of a system S. Its rows can be seen as vectors in a nth dimensional space
that we call the benchmark space. We can see how resource usage changes when we change
computational system from Sa to Sb analysing the position of the ith row of MSa

(where i is
the index of the resource we are interested in) against the position of the ith row of MSb

in
the benchmark space.

E.g. when the norm of the energy consumption vector of S1 is higher than the norm of
the energy consumption vector of S2 it means that S1 is (generally speaking) less energy
efficient than S2. If the angle between their completion time vectors is small it means that S1
and S2 have a similar architecture and probably one is just more efficient than the other (i.e.

D. Morelli and A. Cisternino 99

a newer machine). If the angle is large it means that the systems have a different architecture
that makes some of the benchmarks in the test-bed more efficient than others; the direction
of the difference between the vectors tells us how S1 is different from S2.

4 Real data

Measuring resource attribute will usually involve error, i.e. the accuracy of the measuring
tool, sampling frequency, etc. Equation 1 could be not solvable and has to be rewritten in
order to minimise a norm of the error vector:

ε = |M · sp − µp| (4)

If we use a Manhattan norm instead of an Euclidean norm, this is a linear programming
problem that can be solved using the simplex algorithm.

We want all the elements of sp to be non negative numbers, because each of them expresses
an estimation of the number of iterations of the respective benchmark, as present in p. The
benchmark space is therefore not a vector space but a convex cone. This limitation does not
change the approach needed to find the splitup, since we just need to add a few conditions
to the simplex.

Being the benchmark space a convex cone, the number of vectors (the benchmark in
the test-bed) that form a basis is not generally known, but the process of selection of the
benchmarks in the test-bed can be incremental and automatic: if the splitup of a program
falls within the convex cone it means that it can be expressed as linear decomposition of
known computational patterns, if it falls outside the cone it means that it should be added
to the test-bed, widening the range of programs that can be expressed algebraically.

We can choose the level of detail we want to get with the decomposition of programs. I.e.,
we might want to have a computational pattern for every major memory read pattern or just
a general one. In the former case we would be able to discriminate how the program uses
memory, but we would need a lot of experimental data to solve the system. In the latter,
we would need few experimental data but might only see a raw estimate of the program’s
behaviour. The number of rows of the measurement matrix needs to be larger than the
number of columns, which means that we need to measure at least as many resources as
the number of the benchmarks in the test-bed. This could be difficult if we want to have a
large test-bed, in which case we could create a new measurement matrix with more rows just
merging measurement matrices of multiple systems.

5 Experimental data

As an example we present data of a preliminary test: we measured the completion time and
the energy consumption of a small set of programs running on a desktop computer equipped
with a CoreDuo processor with 2MB L2 cache and 1 GB RAM (from now on referred to
as S). We prepared two synthetic benchmarks: cpu is a simple add assembler instruction
executed 106 times; mem is a program that sums a fixed number of random locations from a
large array. We used cpu and mem as our test-bed and measured mergesort (from now on
referred to as p) sorting arrays of different sizes (1M, 2M, 4M, 8M, 16M, 32M).

cpu mem p(1M) p(2M) p(4M) p(8M) p(16M) p(32M)
time 2.14 s 7.26 s 0.22 s 0.33 s 0.67 s 1.39 s 2.85 s 5.79 s
energy 81.46 J 304.00 J 8.60 J 13.20 J 27.49 58.29 J 121.79 J 254.82 J

ICCSW’12

100 Characterizing HW and SW from their resource usage

MS is composed of the first two columns of the above table and the measurement vectors
for mergesort at various input sizes are:

µp(1M) =
(

0.22 s
8.60 J

)
µp(2M) =

(
0.33 s

13.20 J

)
µp(4M) =

(
0.67 s

27.49 J

)
µp(8M) =

(
1.39 s

58.29 J

)
µp(16M) =

(
2.85 s

121.79 J

)
µp(32M) =

(
5.79 s

254.82 J

)
The resulting splitup vectors (calculated minimizing formula 4 using the simplex algorithm)

are:

sp(1M) =
(

0.075118
0.008161

)
sp(2M) =

(
0.075862
0.023093

)
sp(4M) =

(
0.069347
0.071845

)
sp(10M) =

(
0

0.248125

)
sp(20M) =

(
0

0.528191

)
sp(30M) =

(
0

0.780954

)
The splitup vectors show how quickly mergesort gets dominated by memory usage as the

input size grows. This is expected because as the array grows it will not fit into cache and a
lot of cache miss will occur, therefore most of the time and energy will be spent accessing
memory.

6 Conclusion

We have presented a method to decompose arbitrary programs into linear combinations of
benchmarks of a test-bed by employing a black box approach, measuring only its resource
usage, without the need to analyse a program’s source code. Valid metrics of resource usage
are both performance counters and energy consumption (or completion time). Performance
counters can therefore be used to build a model capable of predicting the energy consumption
(or completion time) of the same program on a different computational system. The same
method also gives us useful information about what the differences between computational
systems are, thereby showing which computational patterns consume more resources. We
intend to apply this method to heterogeneous computing (CPU/GPU), virtual machines and
cloud systems to provide realtime analysis and forecasting of energy consumption (as well as
completion time) of software, without prior knowledge of its source code.

References
1 Jan Lodewijk Bonebakker. Finding representative workloads for computer system design.

Technical report, Mountain View, CA, USA, 2007.
2 David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework for

architectural-level power analysis and optimizations. In Proceedings of the 27th annual
international symposium on Computer architecture, ISCA ’00, pages 83–94, New York, NY,
USA, 2000. ACM.

3 Fay Chang, Keith Farkas, and Parthasarathy Ranganathan. Energy-driven statistical
sampling: Detecting software hotspots. In Babak Falsafi and T. Vijaykumar, editors,
Power-Aware Computer Systems, volume 2325 of Lecture Notes in Computer Science, pages
105–108. Springer Berlin / Heidelberg, 2003.

4 A. Cisternino, P. Ferragina, D. Morelli, and M. Coppola. Information processing at work:
On energy-aware algorithm design. In Green Computing Conference, 2010 International,
pages 407 –415, aug. 2010.

D. Morelli and A. Cisternino 101

5 Matthew Curtis-Maury, James Dzierwa, Christos D. Antonopoulos, and Dimitrios S. Niko-
lopoulos. Online power-performance adaptation of multithreaded programs using hardware
event-based prediction. In Proceedings of the 20th annual international conference on Su-
percomputing, ICS ’06, pages 157–166, New York, NY, USA, 2006. ACM.

6 Evelyn Duesterwald, Calin Cascaval, and Sandhya Dwarkadas. Characterizing and predict-
ing program behavior and its variability. In Proceedings of the 12th International Conference
on Parallel Architectures and Compilation Techniques, PACT ’03, pages 220–, Washington,
DC, USA, 2003. IEEE Computer Society.

7 Lieven Eeckhout, Hans Vandierendonck, and Koen De Bosschere. Workload design: Select-
ing representative program-input pairs. Parallel Architectures and Compilation Techniques,
International Conference on, 0:83, 2002.

8 R. Brown et al. Report to congress on server and data center energy efficiency: Public law
109-431, 2008.

9 Jason Flinn and M. Satyanarayanan. Powerscope: A tool for profiling the energy usage
of mobile applications. In Proceedings of the Second IEEE Workshop on Mobile Computer
Systems and Applications, WMCSA ’99, pages 2–, Washington, DC, USA, 1999. IEEE
Computer Society.

10 Aashish Shreedhar Phansalkar. Measuring program similarity for efficient benchmark-
ing and performance analysis of computer systems. PhD thesis, Austin, TX, USA, 2007.
AAI3285977.

11 Suzanne Marion Rivoire. Models and metrics for energy-efficient computer systems. PhD
thesis, Stanford, CA, USA, 2008. AAI3313649.

12 Rafael H. Saavedra and Alan J. Smith. Analysis of benchmark characteristics and bench-
mark performance prediction. ACM Trans. Comput. Syst., 14:344–384, November 1996.

13 Tomothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automatically char-
acterizing large scale program behavior. SIGOPS Oper. Syst. Rev., 36:45–57, October
2002.

14 Amit Sinha and Anantha P. Chandrakasan. Jouletrack - a web based tool for software
energy profiling. In In Design Automation Conference, pages 220–225, 2001.

15 Stefan Steinke, Markus Knauer, Lars Wehmeyer, and Peter Marwedel. An accurate and
fine grain instruction-level energy model supporting software optimizations. In in Proc. Int.
Wkshp Power and Timing Modeling, Optimization and Simulation (PATMOS, 2001.

16 Vivek Tiwari, Sharad Malik, and Andrew Wolfe. Power analysis of embedded software: a
first step towards software power minimization. In Proceedings of the 1994 IEEE/ACM
international conference on Computer-aided design, ICCAD ’94, pages 384–390, Los Alam-
itos, CA, USA, 1994. IEEE Computer Society Press.

17 N. Vijaykrishnan, M. J. Irwin, H. S. Kim, and W. Ye. Energy-driven integrated hardware-
software optimizations using simplepower. pages 95–106, 2000.

18 Tetsuo Yamamoto, Makoto Matsushita, Toshihiro Kamiya, and Katsuro Inoue. Measur-
ing similarity of large software systems based on source code correspondence. In Frank
Bomarius and Seija Komi-Sirviö, editors, Product Focused Software Process Improvement,
volume 3547 of Lecture Notes in Computer Science, pages 179–208. Springer Berlin / Heidel-
berg, 2005.

ICCSW’12

	Introduction
	A compositional model
	Linear algebra model
	Measurements space
	Splitup space
	Benckmark space

	Real data
	Experimental data
	Conclusion

