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—— Abstract

Multi-core systems have become prevalent in the last years, because of their favorable properties
in terms of energy consumption, computing power and design complexity. First attempts have
been made to devise WCET analyses for multi-core processors, which have to deal with the
problem that the cores may experience interferences during accesses to shared resources. To limit
these interferences, the vast amount of previous work is proposing a strict TDMA (time division

multiple access) schedule for arbitrating shared resources. Though this type of arbitration yields
a high predictability, this advantage is paid for with a poor resource utilization. In this work,
we compare different arbitration methods with respect to their predictability and average case
performance. We show how known WCET analysis techniques can be extended to work with the
presented arbitration strategies and perform an evaluation of the resulting ACETs and WCETs
on an extensive set of realworld benchmarks. Results show that there are cases when TDMA is
not the best strategy, especially when predictability and performance are equally important.
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1 Introduction

In the last years, many proposals on how to compute safe WCET values for programs running
on multi-core systems have been made, but analyses that scale well and are precise at the
same time are much harder in the multi-core case than in the single-core one. The central
property, that must be accounted for, is that cores may access shared resources and these
accesses will have to be arbitrated at some point. Among most of the analysis techniques
that have been introduced, it is a common denominator that TDMA should be used for
arbitrating the shared resources, since it allows an easy derivation of worst-case bounds for
the duration of accesses. In this paper, we compare previously published arbitration methods
experimentally both in terms of average and worst-case performance. For the experiments
we use a static analyzer and a cycle-true system simulator on a multi-core ARM-platform
with a configurable shared bus, which is arbitrated among the cores. We also examine a
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more flexible variant of TDMA, called Priority Division, and show its effects on ACET and
WCET. In summary, the contributions are:
Generalization of previously published WCET analysis techniques to the mentioned
arbitration methods
Experimental evaluation of average-case and worst-case properties of different arbitration
methods on a realistic multi-core platform

The rest of the paper is organized as follows: In Section 2 we will present related work, and
Section 3 introduces our system model used in the analyses. In Section 4 the overall analysis
framework as well as the changes that are needed to incorporate the different arbitration
methods are presented. Section 5 provides the experimental evaluation of the approaches.
Finally, we provide a summary of our results and give directions for future work in Section 6.

2 Related Work

The initial scenario covered by WCET analyses was the case of a single program being run
uninterruptedly on a single core. This is a well-understood problem for which structured
analyses were devised [16]. For the WCET estimation to be safe the analyzer must usually
operate on a binary of the analyzed program, since only then locations of code and data
are fixed, which affects e.g. cache performance. The problem is separated into control-flow
reconstruction, value analysis, microarchitectural analysis and path analysis. Control-flow
reconstruction can be tackled by a combination of heuristics and data-flow analysis, whereas
value and microarchitectural analysis are usually done as a pure data-flow analysis with
the domain of register / memory values or abstract machine states, respectively. In these
analyses it may be possible to throw away abstract states that are not inducing a local worst-
case, but this is only possible if the architecture under examination is timing-anomaly-free
[13]. For the last step in this WCET analysis pipeline, the path analysis, an integer linear
program is formulated and solved, which models all paths through the program together
with user-defined flow restrictions, which are needed to bound loops and recursions in the
program.

In this work, we also conduct the WCET analysis in the presented way, where the
modeling of accesses to shared resources is integrated into the microarchitectural analysis
stage with the help of an existing approach for analyzing TDMA offsets [5, 1].

The Priority Division (PD) arbitration policy was first introduced in [14]. The authors
provide experimental results of an FPGA-based system which uses PD to arbitrate the
shared memory bus, and they state that PD is well-suited for WCET analysis, but this is
not investigated further. In this paper we show how to integrate PD into existing WCET
analysis frameworks.

The second major category of timing-analysis tools models the multicore system as a set
of timed automata and performs model-checking of timing predicates to find the WCET [3].
The drawback of this approach, as discussed in [15], is the possible lack of scalability since
the generated models quickly become intractably big. To overcome this, mixtures of abstract
interpretation and model-checking have been proposed [8].

Finally, the last approach to deriving multicore WCET values it to derive arrival curves
which bound events on the shared resources and compute worst-case access delays from those
curves [11]. This has the advantage that the timing behavior of sequences of accesses can be
analyzed more easily, therefore these approaches are also called “cumulative” in [2]. On the
other hand, the abstraction towards access curves alone already loses some precision.
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There have been numerous discussions of arbitration policies for real-time systems.
The PROMPT principles for predictable multicore architectures [2] advocate “deterministic’
arbitration with TDMA as one example. The comparison in [12] examined different arbitration
methods for the shared bus of a Java real-time processor and TDMA arbitration resulted as
the most predictable method. This tendency can be further supported by the long-standing
work on the Time-Triggered Architecture (TTA) [6], where timing-predictable communication
is implemented by customized TDMA schedules. The TTA and other works also define
Networks-on-Chip (NoCs) which use TDMA to provide guaranteed delays. With minor
adaptions, the analysis techniques presented in this paper are also applicable to such NoCs.

The adaptation of multicore hardware to exhibit better timing properties is related to
our work, since we also propose a configurable arbiter for the shared resource, but we assume
standard components for the rest of the system. In other works, architectures which can
explicitly produce a measurable WCET [10] or which are at least highly predictable [7]
are proposed. Compared to our architecture these approaches require more changes to the
hardware.

9

3 System Model

The system architecture that we assume is sketched in Figure 1. It is built according to the
PROMPT guidelines [2], and thus is composed from n fully timing-composable ARM7TDMI
cores. Each core has local scratchpads for instructions and data and is connected to the
shared memory via a shared bus with configurable arbitration logic. The shared memory
finally holds RAM memories for instructions and data and a boot ROM from which the cores
read their packed binaries during system startup. We have deliberately not included caches

in the architecture to be able to focus on the effects of the employed arbitration methods.

Otherwise, imprecisions in the cache analysis might be able to affect the results for the shared
bus. Nevertheless, caches can be easily integrated into the analysis framework, since we
follow the standard approach from [16]. The whole system was modeled in the cycle-accurate
virtual prototyping IDE COMET [4] to be able to perform detailed measurements. A custom
implementation of the bus arbitration logic has been designed, to be able to track the bus
utilization and the imposed access delays in detail.

All implemented arbitration methods share the assumptions that bus transactions are
uninterruptible and that a maximum duration m,., of an access to any device behind the

ARM 7 TDMI ARM 7 TDMI
| |

| Internal Bus | ..... | Internal Bus |

[ [ [ [

| LSPM | | D-sPM | | LSPM | | D-sPM |

Shared bus with configurable arbitration logic

| Memory Bus |
I I I
| I-RAM || D-RAM || Boot-ROM |

Figure 1 The employed system architecture (simplified).
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bus is known. For simplicity of presentation we also assume that the bus runs at the same
clock as the cores, but the offset analysis sketched in Section 4 can easily be extended to
include a bus clock which is slower than the core clock, since it is tracking the schedule
position in (higher precision) core ticks.

Fuair arbitration (FAIR), also called Round-Robin, rotates the bus access among all cores.
It maintains an active core ¢, € {0,...,n — 1}. When an access finishes ¢, is advanced to
the next core which requests the bus. Thus, each core can acquire the bus after at most
n — 1 other cores have performed their accesses.

Static priority-based arbitration (PRIO) assigns a unique priority p; € {1,...,n} to each
core ¢; and when there are multiple requests only the request from the core with the highest
priority is granted. Nevertheless, since accesses are uninterruptible even the highest-priority
core may have to wait until an ongoing transaction is completed.

TDMA creates a schedule consisting of n slots of size [ and assigns an owner core
0; € {0,...,n —1} to each slot. The current position in the schedule is determined by taking
the current clock tick modulo nl. In each slot ¢ only the owner is granted access to the bus
and only in the interval [il,..., (i + 1)l — Myqz]. The subtraction of my,q. is necessary to
make sure that accesses complete before the next slot begins.

Priority division (PD) is a generalization of TDMA. Instead of assigning an owner o;
it assigns unique priorities p;; € {0,1,...,n} for each slot ¢ and each core j. The bus is
granted to the requesting core with the highest positive priority, only those with priority 0
are excluded from arbitration (this can be used to emulate TDMA behavior).

4  Analysis Framework

The general analysis framework is depicted in Figure 2. The analysis begins with a CFG
reconstruction, which is based on pattern matching, and then does a simple register value
analysis to identify memory access targets of load/store instructions. The main component,
which is influenced by the choice of the arbitration policy, is the microarchitectural analysis.
This stage computes bounds on the execution time of basic blocks. We sketch its architecture
for the case with caches to show how caches can be integrated, even though our target
architecture currently does not contain caches (see Section 3). The microarchitectural
analysis associates an abstract pipeline state with each node in the CFG. Each abstract
pipeline state is complemented by an abstract cache and bus state. The pipeline analysis is
the driver of this stage: It simulates the possible processor actions on the abstract states and
sends a request to the cache and bus stages whenever a memory access is performed (solid
gray arrows in Figure 2). This request contains information about the target of the access
and the timing of the access relative to the begin of the block’s execution. If caches are
present then the cache analysis may forward the request to the bus analysis, depending on
whether the access is guaranteed to hit the cache or not. Similarly, the bus analysis receives
the request together with its associated timing information and must decide how long it
may take for this request to be granted the bus. We base this analysis on local abstract
state information only, i.e. the bus analysis may not assume information about concurrently
occurring accesses performed by other cores !. This means that for the worst-case we have to
assume that concurrent accesses are occurring all the time. The bus and cache analyses must

L If concurrently occurring accesses are to be considered, a Parallel Control Flow Graph is needed together
with analysis techniques which guarantee to cover all possible instruction and pipeline stage interleavings.
These techniques, though principally possible, are prohibitively expensive since the enumeration of all
possible interleavings leads to a state explosion [9].



T. Kelter, T. Harde, P. Marwedel, and H. Falk

I CFG Reconstruction

¥ . .
Microarchitectural .
I Value Analysis I . . Path Analysis
| Analysis I
— Private | [Shared | Shared
PEINC L Cache = Bus > Cache

Analysis [«-= . e . [ il

: Analysis : Analysis | : Analysis :

Figure 2 Analysis stages and their interaction.

then update the cache and bus state which is associated to the current abstract pipeline
state and return an approximation of the timing behavior of the memory access to the
pipeline analysis (dashed gray arrows in Figure 2). The updates of the basic block states
(transfer functions) are integrated into a data-flow fixpoint iteration which converges in a safe
approximation of the WCET for single executions of basic blocks (see [16]). This information
is then used in the path analysis to compute the longest (shortest) path through the program
whose length is the WCET (BCET). In the following we examine the abstract state and
transfer functions for the shared bus analysis in more detail.

The abstract bus state for a basic block b as introduced in [5] is the set of TDMA offsets
O C {0,...,nl — 1}, i.e. positions in the TDMA schedule with which the block execution
may start. The bus analysis then computes multiple intermediate bus states O} and finally
a result state Og*! that denotes the offsets after the block execution is finished. Initially,
O} is set to O{™. The pipeline analysis then repeatedly hands accesses a; € b,i € N to
the bus analysis, together with an execution time set T,, € 2" that bounds the time that
passed since access a;—1 (or the block start for ¢ = 1). The bus analysis must then determine
the set of possible memory access times D,, that the shared memory may need to serve
this access. With these values the bus analysis computes Ol’; = uc(Oé_l, Tu,, Da,), where ¢
is the core which issued request a;. Also it must return a set of possible execution times
56(0271, T.,,Da,) to the pipeline analysis to describe the resulting timing for a;.

By considering each input offset in separation we can define y.(0, T, D) = U,co ;er{®c(0
+t mod nl,D)}. ®(o, D) determines the resulting offsets for an access at the offset o whose
runtime is bounded by D.

® : N x 2V — 2N must be defined for each arbitration method, to reflect the timing of
the specific method. For TDMA and PD we define s, as the slot containing offset o and s,

as the first slot after offset o where core ¢ has maximum priority or which is owned by c.

Se = S, is explicitly allowed. With these definitions we have

if 0 € w(s.)

4TPMA(p, D) = {{“} N (1)

{scl} ® D if else

The first case in Equation 1 models an access inside slot s, and the second case handles
accesses outside of it. The operator @ is defined by &(X,Y) ={z+ylz € X,y € Y} and
w(se) = {sel, ...y (8¢ + 1)l — Mymas} is a shorthand for the “grant window” of offsets inside
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se where an access from core ¢ will be immediately granted.

{0}®{07"‘7mmaz}@D ifOEOJ(SC)
<I>5D(0,D) = < U A D)) U @fDMA(o,D) if o ¢ w(s.) (2)
$i€{S0,...8c—1}
1] if Ps.
sl (s D= mpaa i pee >0
¢C($1D) = {@ olse (3)

The case structure for 7P in Equation 2 is similar to the one for ®7PMA but with the
additional case that ¢ is not the top-priority core in any slot (case three). Also it has to
account for possibly ongoing transactions, even in slots in which ¢ has the highest priority
(case one). For accesses outside of s, (case two) ¢.(s, D) as given in Equation 3 contributes
all offsets which may result from the access being granted in a successive slot where ¢ has
positive but not the highest priority.

For fair and priority-based arbitration we can only supply conservative bounds, since
these methods require knowledge about all possibly concurrently occurring transactions,
which is hard to obtain in general, as noted above.

OLAR (o, D) = {0} @ {0, ..., nMumaz} ® D (4)
{0} ®&{0,....mmaz} ®D ifVie{l,...,n}:p; <p.
200, D) = {@ else ®)

Therefore, Equations 4 and 5 are only stating that FAIR accesses may experience 0 to nm 44
cycles delay. For PRIO accesses the two listed cases are symmetric to case 1 and case 3 in
Equation 2 since PRIO is just a specialization of PD.

It is easy to extend the definition of ® such that it does not only return the resulting
offset but also the time that it took to perform the arbitration and the access. With this
extension we can define J. similar to p.. In cases in which the original ® returned an empty
set, the runtime is defined to be {00}, which happens for accesses which have no bounded
duration (e.g. PRIO).

As mentioned before, the u. and §, functions are then used in the transfer function of
the microarchitectural analysis stage. The join function, which is used when control flow
from at least two different predecessors joins at a basic block, is simply the set union of the
incoming offset sets.

5 Evaluation

Due to the lack of standard multicore real-time benchmarks, we chose to execute independent
tasks from the MRTC, UTDSP, MiBench, MediaBench and DSPstone benchmark suites
on the single cores, amounting to 110 flow-fact-annotated, independent benchmark tasks
in total. In the experiments, we grouped together benchmarks with similar runtime and
executed packages with one benchmark per core. The packages were formed by sorting the
benchmarks in the order of their single-core ACET and then having a window of size 1/2/4/8
slide over this list, collecting all 110/109/107/103 possible combinations. All cores start
their assigned task synchronously and execution finishes when all tasks have been completed.
Thus, since the benchmarks have different runtimes there will be some amount of inevitable
completion time jitter, but apart from that this scenario models a system with high load. All
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Figure 3 Average total bus utilization for different platforms.

the benchmarks read their inputs and store their outputs in the shared memory, whereas all
program code as well as the stack was allocated in the scratchpad memory of the individual
cores. This emulates the (reasonable) scenario that I/O is done via a shared device, whereas
code and local data are kept in local memories for performance reasons. Also, all benchmarks
were compiled with moderate optimization (optimization level O1). The memory access

durations were set to 1 cycle for the scratchpads and m,,q, = 3 cycles for the shared memory.

For most data-processing instructions the ARM7TDMI needs only 1 cycle, branches need 3
cycles and multiply instructions may need up to 5 cycles.

Concerning the parametrization of the arbitration methods we have selected simple
heuristics to demonstrate some key impacts. For PRIO the priorities were assigned such that
t; > t; & p; > p; where t; is the single-core runtime of the task mapped to core i. We use
this strategy, also known as “largest job first”, here to speed up long-running tasks and thus
to decrease the completion time jitter. For TDMA (and also for PD) we set the slot size
I = Mpaz to keep delay times as small as possible. Our experiments have shown that higher
slot lengths impose both higher WCET and ACET values. Also, for TDMA we set 0; =i
such that each core owns a single slot. For PD (linear) each slot i is “owned” by core i by
setting p;; = n. Priorities for all other cores are distributed in the same way as for PRIO
i.e. in the order of single-core task runtime. The variation PD (half TDMA ) for all slots
i €{0,...,|n/2]} assigns p;; = 1 and Vj # i : p;; = 0, thus effectively making these slots
pure TDMA slots. All slots i € {|n/2] +1,...,n} are configured in the same way as for PD
(linear).

Figure 3 shows the average? utilization resulting for different values of n. As expected,
FAIR and PRIO show superior utilization that scales linearly with the number of cores, since
these are work-conserving arbitration methods, i.e. as long as there are active requests they
do not insert wait cycles. TDMA shows some increase in utilization with rising n, but it is
stagnating at around 20% due to slots which remain unused by their owners. For n = 8 the
utilization is actually decreasing again below 20%. PD is also not work-conserving, since
it must delay requests when they cannot be served in the current slot, which may happen
frequently for our setting of I = my,q,. Still both PD configurations show a linear increase
in utilization, with PD (half TDMA) being slightly behind PD (linear). For PD (linear) the
utilization is twice as high as for TDMA, which is also reflected in the average ACETs of the

2 Since we only report relative values here, we use average as a synonym for the geometric mean.
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Figure 4 Average relative measured execution time (ACET) for different platforms (Baseline =
execution time on single-core platform).
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Figure 5 Average benchmark execution time jitter for different platforms.

benchmarks as shown in Figure 4.

In general, the ACET per task is inversely proportional to the achieved utilization values.
The dotted areas in Figure 4 show the portion of the ACET which is used for computation
and local memory accesses (stack and program code, see Section 3), the crosshatched areas
show the portion in which the task is using the shared bus and the areas with vertical bars
show the percentage of the ACET in which the task is waiting for the shared bus. For TDMA
it becomes visible that e.g. for the configuration with 8 cores, the tasks are on average using
more cycles for waiting than for performing computation and actual memory accesses.

The ACET and utilization values are influenced by the completion time jitter of the
benchmark packages, that is the length of the time interval between the first termination of
a benchmark on any core and the termination of the last benchmark. Especially for TDMA
the jitter is problematic since it leaves slots of already terminated cores unused. Figure 5
shows the jitter as a percentage of the total runtime of the benchmark package (i.e. the
runtime of the longest benchmark). It is visible that the low utilization values for TDMA
are to some extent related to the rising jitter, but since this increase is itself triggered by the
usage of TDMA this is an inherent drawback of the policy.

Finally, Figure 6 shows the average of the quotient of single-task WCET and single-task
ACET, which is a bound on the maximum possible WCET overestimation. The highest
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Figure 6 Average maximum task WCET overestimation for different platforms. Since the baseline
corresponds to the measured ACET on the respective platform, the values represent maximum
overestimation ratios.

WCET increases are attained by FAIR since it must always assume a worst-case delay of
(n — 1)Mypqq cycles, but up to 2 cores FAIR is still competitive. Concerning the PRIO results
in Figure 6, they are almost constant between the different configurations since here only the
tasks for which a WCET can be determined at all are considered. This in all cases is only
the highest-priority task whose WCET is increased by 40% to 81% on average, due to the
presence of uninterruptible lower-priority accesses. TDMA shows the smallest overestimation
ratio, but it is notable that both PD approaches are following very closely after TDMA
in the WCET ranking. The small increase in WCET for e.g. PD (linear) is compensated
by far better ACET and utilization values which makes PD a very appealing method for
mixed-criticality systems.

6 Summary & Future Work

Current multi-core processors are mainly not timing-predictable due to a number of reasons,
with one of them being accesses to shared resources. Since some amount of sharing is
inevitable in multi-core systems we have demonstrated advantages and disadvantages of
arbitration schemes for shared resources. Therefore, this work can serve as a basis for
selecting a suitable arbitration policy, depending on the needs of the platform. For the
first time, the drawbacks of TDMA in terms of average-case performance were quantified
in comparison to other arbitration methods and it was shown, that priority division is a
promising alternative for systems running mixed-criticality workloads, since it allows the
fine-grained trading of ACET and bus utilization vs. WCET.

In the future, we would like to examine the effects of software optimizations to the
achievable prediction accuracy, e.g. by grouping bus accesses or by restructuring tasks into
read, execute and write phases. Another interesting perspective is the optimization of bus
schedule parameters and the refinement of the presented multi-core WCET analysis.
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