
Automatic WCET Analysis of Real-Time Parallel
Applications∗

Haluk Ozaktas, Christine Rochange, and Pascal Sainrat

IRIT – Université de Toulouse
France
firstname.lastname@irit.fr

Abstract
Tomorrow’s real-time embedded systems will be built upon multicore architectures. This raises
two challenges. First, shared resources should be arbitrated in such a way that the WCET of
independent threads running concurrently can be computed: in this paper, we assume that time-
predictable multicore architectures are available. The second challenge is to develop software
that achieves a high level of performance without impairing timing predictability. We investigate
parallel software based on the POSIX threads standard and we show how the WCET of a parallel
program can be analysed. We report experimental results obtained for typical parallel programs
with an extended version of the OTAWA toolset.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases WCET analysis, parallel programming, thread synchronisation

Digital Object Identifier 10.4230/OASIcs.WCET.2013.11

1 Introduction

Future real-time embedded systems will have to follow the global trend towards multicore
computing units, which is mainly guided by power efficiency considerations. Designing
time-predictable multicore architectures is at the heart of several research projects, e.g.
T-CREST1 and parMERASA2. Now, when hardware solutions are available, software will
have to be carefully designed to optimise the usage of resources. In some cases, the target
is a high task throughput: it can be achieved by co-scheduling independent tasks on the
cores. Other applications, e.g. command-control functions in cyber-physical systems, instead
require shortened response times. For some of them, that exhibit intrinsic data or control
parallelism, the execution time of individual tasks can be reduced by applying parallel
programming techniques: a task is decomposed into threads that are run in parallel, each of
them processing one part of the workload. In this paper, we focus on this class of programs.

Several parallel programming paradigms can be considered depending on the problem
decomposition (task- or data-parallelism) and on the way threads can communicate, which
is highly related to the target hardware architecture. Various programming languages and
APIs can be used to develop parallel programs. We focus on the POSIX threads standard
which is widely used in the industry.

In real-time systems, special attention must be paid to task scheduling: it must be
guaranteed that critical tasks will meet their hard deadlines in any situation. Real-time

∗ The research leading to these results has received funding from the European Union Seventh Framework
Programme under grant agreement no. 287519 (parMERASA).

1 www.t-crest.org
2 www.parmerasa.eu

© Haluk Ozaktas, Christine Rochange, and Pascal Sainrat;
licensed under Creative Commons License CC-BY

13th International Workshop on Worst-Case Execution Time Analysis (WCET 2013).
Editor: Claire Maiza; pp. 11–20

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2013.11
http://www.t-crest.org
http://www.parmerasa.eu
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


12 WCET Analysis of Parallel Applications

task scheduling is a hot research topic. All the proposed strategies rely on estimations of
the worst-case execution times (WCET) of critical tasks. Several approaches have been
proposed in the past to determine WCET upper-bounds considering sequential tasks running
on uni-processors. If these techniques are still to be used when independent tasks run on
time-predictable multicores, specific solutions have to be developed for parallel applications,
composed of synchronising threads. This is the purpose of this paper.

The paper is organised as follows. In Section 2, we discuss the scope of our work and we
give an overview of related work. Section 3 introduces our approach to the automatic WCET
analysis of POSIX-based parallel tasks. Experimental results are reported in Section 4 and
Section 5 concludes the paper.

2 Scope of the paper and related work

2.1 Time-predictable multicores

Various classes of parallel architectures exist, from chip multicores to clusters and grids of
computers, or from general-purpose processing units to specialised accelerators like GPUs.
However, to be considered as candidates to build hard real-time systems, these architectures
should enforce timing analysability: it should be possible to compute the WCET of a critical
task running in parallel with other tasks. The main difficulty comes from inter-task conflicts:
they make the latencies of accesses to shared resources hard to predict. This mainly concerns
shared caches, memory controllers and interconnection networks.

Two kinds of approaches have been proposed. A first group of solutions consist in
considering all together the tasks that might be running at the same time in order to estimate
their possible interactions and their impact on the worst-case execution times. This strategy
has been considered for the analysis of shared caches [9, 11, 14] and shared busses [2, 20].
A second class of approaches aim at designing hardware that enforces spatial and timing
isolation for critical tasks. Cache locking and partitioning schemes [21, 16] belong to this
category. Timing isolation can also be supported by appropriate arbitration mechanisms,
e.g. for a shared bus [19, 10] or a memory controller [1, 15]. More globally, several European
projects have been launched to design time-predictable multicores, e.g. MERASA [22],
PREDATOR [4], T-CREST and parMERASA.

In the following, we assume we have a time-predictable shared-memory multicore archi-
tecture and the related WCET analysis tool capable of analysing sequential applications:
modelling hardware-level thread interactions is out of the scope of our work.

2.2 Real-time and WCET-aware parallel applications

Various parallel programming models exist and are supported by a large number of pro-
gramming languages and APIs. In this work, we focus on applications developed on the
widely-used POSIX threads standard.

Programs written with POSIX threads are characterised by explicit thread control
(creation and join) and explicit thread synchronisation through mutexes, condition variables
and barriers. Figure 1 shows a sample program that we will use as a running example in
the paper. Determining the WCET of such a parallel program comes up to computing the
WCET of the main thread, taking into account the costs for thread control and thread
synchronisations. The predictability of these costs highly depend on the implementation of
the system software. This is discussed in Section 2.3.



H. Ozaktas, C. Rochange, and P. Sainrat 13

int main () {
for (int i=0; i <2; i++)

CREATE_THREAD (& work );
...
BARRIER (&bar ,3); // ID=bar
...
for (int i=0; i <2; i++)

JOIN(i+1); // ID=join
}

void work () {
...
BARRIER (&bar ,3); // ID=bar
...
MUTEX_LOCK (& lock ); // ID=cs
... // critical section
MUTEX_UNLOCK (& lock ); // ID=cs
...

}

Figure 1 Example code.

Real-time parallel applications should be designed with time predictability in mind.
As we will see later, stall times at synchronisations impact the WCET. Then the main
recommendations come from the way these stall times can be estimated: synchronisation
operations as well as the involved threads should be easy to identify. As a consequence, the
number of threads should be statically fixed and synchronisation patterns should make it
possible to determine how long one thread may be stalled by another one. The latter can be
achieved by using standard synchronisation patterns, like critical sections and barriers.

In the following we also consider that the number of threads is lower than or equal to the
number of cores so that all the threads can execute in parallel, each on a different core. In
practice, it could be accepted that the number of threads exceed the number of cores. In
such a case, however, the scheduling of threads and their mapping to cores must be decided
statically [17]. This way, the timing analysis can determine how to compose their individual
WCETs. This option is not considered in the paper.

2.3 Time-predictable system software
The analysis of stall times requires the synchronisation to be implemented with time-
predictable primitives. Mainly, these primitives should allow upper bounding the stall time of
a thread at a synchronisation. Ticket locks should, for example, ensure that threads reaching
a critical section will be granted access in a First-Come First-Served fashion. The design
of such predictable primitives is discussed in [23, 5]. We assume that the applications are
developed using such routines. In addition, timing analysis either needs an upper-bound in
the latency of a thread creation or a hardware mechanism that enforces a synchronous start
of created child threads.

2.4 Related work
As mentioned earlier, using multicores to build hard real-time systems is not common yet.
Research on WCET analysis on multicores has essentially focused on the predictability
of accesses to shared resources, as overviewed in Section 2.1. There have been very few
contributions to the analysis of parallel programs. The timing analysis of a parallelised
control-loop style application was reported in [6]. In [18], a first attempt to manually compute
the WCET of an industrial parallel program with static analysis techniques was reported.
Individual code segments were analysed using the OTAWA toolset, then their WCETs were
combined outside the toolset by hand to determine the WCET of the whole application.

In [7], the authors propose a method based on timed automata to model the behaviour of
a parallel program. Model checking techniques are used to determine the WCET of the whole
program by verification. In [8], they consider a simplified parallel programming language

WCET 2013



14 WCET Analysis of Parallel Applications

and introduce an approach based on abstract interpretation to perform simultaneous timing
analysis of the different threads. The predictability of various parallel programming models,
e.g. GPU and data parallel programming, is investigated in [13].

3 Approach to the WCET analysis of parallel applications

The execution time of a parallel program is the execution time of its longest thread. In our
model, the main thread creates child threads and later joins them. Then determining the
WCET of a parallel program comes to computing the WCET of its main thread. This time
is impacted by the child threads:

The latency of the thread creation operation must be accounted for;
The main thread may have to wait for other threads when it reaches a barrier or the
lock acquisition operation before a critical section. The worst-case stall time must be
estimated.
When joining the child threads, the main thread has to wait for their termination

3.1 Timing analysis of synchronisations
We distinguish two kinds of synchronisations: critical sections, guarded by locks, and progress
synchronisations, implemented by barriers or conditions (wait and signal). In both cases, a
thread that reaches a synchronisation primitive may be forced to wait before proceeding. Its
worst-case stall time (WCST) must be estimated.

3.1.1 Worst-case stall times
Critical section

Entering a critical section is typically achieved by acquiring a lock. If no other thread requests
the lock at the same time, then the synchronisation does not generate any stall. But in the
worst case, all possible contenders try to acquire the lock simultaneously, and the thread has
to wait for all other threads to release the lock (provided locks are granted in a First-Come
First-Served fashion). This is illustrated in the left-side part of Figure 2.

The WCST at the critical section for the leftmost thread, denoted by S, is computed
assuming the two other threads already have requested the lock. Then S is the sum of the
times during which each of them holds the lock, i.e. the WCETs of their critical sections:

S = w1 + w2

Progress synchronisation (barrier)

The right-side part of Figure 2 illustrates the stall time of a thread at a barrier. The WCST
is determined by considering the previous collective synchronisation point, i.e. the previous
point where all the involved threads did synchronise before the barrier.

The (actual) stall time of one thread (thread i) at a barrier to be reached by a single
other thread (thread j) would be given by max(0, tj − ti), where ti and tj are the actual
execution times of threads i and j to reach the barrier from the previous synchronisation
point: either ti ≥ tj and thread i does not have to wait, or the stall time is the difference
between their execution times.

Now, threads generally exhibit variable execution times: ti ∈ [bi, wi] where bi and wi are
the best- and worst-case execution times for thread i (similarly, tj ∈ [bj , wj ]). Then attention
should be paid to how the difference between their execution times is computed.



H. Ozaktas, C. Rochange, and P. Sainrat 15

c.s	  

c.s	  
lock 

c.s	  
unlock 

w0 

w1 

w2 
S 

barrier 

previous collective synchronisation 

w0 w1 w2 

S 

Figure 2 Stalls due to synchronisations.

Theoretically, the longest stall time by thread i when ti < tj is given by wj−bi (difference
between the worst-case execution time of thread j and the best-case execution time of
thread i). However, computing the WCST for thread i is done in the context of determining
its WCET. As a result, the worst-case value for tj − ti is computed as wj − wi.

Generalising to several threads, as in the example shown in Figure 2 (right side), we get:

S = max(0, (w1 − w0), (w2 − w0))

3.1.2 Abstract view of synchronisation primitives
While a synchronisation operation is simply seen as a call to a system-software primitive,
things are a bit more complex from the point of view of WCET analysis which is done
at cycle-/instruction-level. The main issue is to identify key locations in the code of the
primitives: the point where a thread may be stalled and the point where a thread may signal
other threads (allowing them to resume their execution). Finding out these locations is a
hard task and having it done automatically is still challenging. This is the reason why we
need the parallel application to use known primitives, that have been previously analysed
manually (as described in [18]). We plan to release this constraint by designing a specific
format to describe synchronisation routines, so that the user could use his own primitives
and provide a description for them.

3.1.3 Computation of the global WCET
The WCET of the whole application is computed as the WCET of the main thread to which
WCSTs at synchronisations are added. In our example (see Figure 3), two WCSTs must be
estimated for the main thread. The first one, S1, is related to a barrier. As explained in
Section 3.1.1, it is determined considering the threads’ WCETs from the previous collective
synchronisation, which is the creation of the child threads, to the barrier (we assume that the
cost of thread creation is known). The second stall time, S2, at the join with child threads,
can be analysed similarly. The previous collective synchronisation is the barrier. However,
the code executed by the child threads from the barrier to the exit includes a critical section.
Then S2 depends on S3, which can be determined as shown earlier.

Figure 5 depicts the global procedure to perform the timing analysis of a parallel program.
First, synchronisation patterns must be identified. This may be a complex task. To make
it simpler, we rely on user-provided annotations that we will describe in Section 3.2. The
second step determines the dependencies among the stall times and builds a WCST tree,
as the one shown in Figure 4. This is done from the root down to the leaves: a branch
ends when a WCST can be computed from partial execution paths that do not include any
synchronisation. WCSTs can then be estimated by climbing up the tree from the leaves to the

WCET 2013



16 WCET Analysis of Parallel Applications

main 

create 

barrier 
barrier 

barrier 

child threads 

lock 
c.s	  

unlock lock 
c.s	  

unlock join 

S1	  

S2	  

S3	  

Figure 3 Example program.

root 

S1 S2 

S3 

Figure 4 WCST tree.

Iden%fica%on	  of	  synchronisa%ons	  

Building	  of	  WCSTs’	  tree	  

Computa%on	  of	  WCSTs	  

Integra%on	  of	  WCSTs	  to	  the	  CFG	  of	  main	  thread	  
Computa%on	  of	  global	  WCET	  

Figure 5 Global procedure.

<barrier id="bar">
<thread id="0-2">

<last_sync ref="BEGIN"/>
</ thread >

</ barrier >
<csection id="cs">

<thread id="1-2"/>
</ csection >
<sync id="join">

<thread id="0">
<wait id="1-2">

<sync ref="END"/>
<last_sync ref="bar"/>

</wait >
</ thread >

</sync >

Figure 6 Annotations for the example
code.

root. They are added to the WCETs of the corresponding basic blocks in the program CFG.
The final stage integrates the WCSTs into the ILP formulation of the WCET computation
(IPET method [12]).

3.2 Annotations of parallel programs
To help the analysis of parallel programs, and in particular of their synchronisations, we have
designed an annotation format. It can be used to provide information on synchronisation
patterns. The annotation format includes two parts:

A set of identifiers annotated in the source code, to allow further reference to specific
points in the program, i.e. calls to synchronisation primitives. Identifiers are specified as
C comments (// ID=...), as can be seen in the example code (see Figure 1).
Additional information, e.g. the threads involved in a synchronisation, are provided in a
separate XML-based file. Some elements of this file are described below3.

3 Due to space limitations, only a subset of our annotation language is described in this paper. The full
language supports more complex synchronisation patterns.



H. Ozaktas, C. Rochange, and P. Sainrat 17

Figure 6 shows the annotation file that describes our example code. It specifies three
synchronisations that are likely to generate stall times: a barrier, a lock-based protection for
a critical section, and joining the child threads for the main thread.

The barrier element refers to a barrier identifier put in the source code. The inner
thread element indicates which threads should meet at the barrier (0 is the main thread). For
these threads, the previous collective synchronisation is specified in the last_sync element,
with the BEGIN built-in value that refers to the start of each thread. The csection element
provides details on the synchronisation at the entry of the critical section. The inner thread
element shows that the two child threads may compete for the lock. Finally, the sync element
refers to the join operation executed by the main thread as specified by the nested thread
element. The innermost wait element indicates that it should wait for threads 1 and 2 to
reach the end of their execution (as specified with the built-in value END).

4 Experiments

4.1 Methodology

Our solution to automatically analyse the WCET of parallel programs helped with user-
provided annotations has been implemented on top of the OTAWA toolset [3]. OTAWA
provides an API to build WCET computation tools based on static analysis techniques. We
have extended the library with utilities to parse annotation files, to retrieve synchronisations
in the binary code, to build the WCST tree, to analyse the WCSTs and then to integrate
them in the linear program used to determine the global WCET.

Since we focus on software interactions, we have considered a simple architecture in which
each instruction executes in a single cycle with a configurable additional latency for memory
accesses. We have found that the results presented below do not depend on the value of the
latency (raw values do, but not the shape of curves).

4.2 Benchmarks

We have analysed two different parallel implementations of a kernel solving a partial differential
equation on a 2D-grid. The first version uses the iterative Gauss-Seidel method where each
point is computed based on its immediate north and west neighbours. There is no dependency
between the points belonging to the same anti-diagonal: they can be computed in parallel.
However, dependencies among anti-diagonals should be respected. The algorithm iterates
until convergence. Our parallel implementation first divides the grid into compartments
such that the main anti-diagonal has the same number of compartments as the number of
threads. It exploits the independence of the compartments within a same anti-diagonal. This
implementation includes three barriers and one critical section. The main thread participates
in the computation and execute the same function as the child threads.

The second version implements the Jacobi method where each point can be computed
independently of other points: this improves the intrinsic parallelism but generally requires
a larger number of iterations to converge. Our parallel implementation of this algorithm
assigns a block of lines to each thread. Threads execute in parallel within an iteration. The
code contains two barriers and one critical section. For both methods, we have defined a
maximum number of iterations in order to be able to compute a WCET value.

WCET 2013



18 WCET Analysis of Parallel Applications

0%	  

10%	  

20%	  

30%	  

40%	  

50%	  

60%	  

70%	  

80%	  

2	   4	   8	   16	   32	   64	  

N
or
m
al
is
ed

	  W
CE

T	  

#threads	  

Jacobi	   Gauss-‐Seidel	  

Figure 7 Normalised WCET.

0%	  

1%	  

2%	  

3%	  

4%	  

5%	  

6%	  

7%	  

8%	  

9%	  

2	   4	   8	   16	   32	   64	  

St
al
l	  &

m
e	  
/	  
W
CE

T	  

#threads	  

Gauss-‐Seidel	   Jacobi	  

Figure 8 Impact of stall times.

Gauss-Seidel Jacobi
2 0.559 0.379
4 1.046 0.705
8 2.177 1.446
16 3.718 2.679
32 8.796 5.782
64 17.999 11.855

Figure 9 Computation times in seconds.

0	  

100	  

200	  

300	  

400	  

500	  

600	  

2	   4	   8	   16	   32	   64	  

N
or
m
al
is
ed

	  c
om

p.
	  /
m
e	  

#threads	  

Jacobi	   Gauss-‐Seidel	  

Figure 10 Normalised computation times.

4.3 Results

We report experiments carried out for the two algorithms described above, considering both
sequential and parallel (from 2 up to 64 threads) versions.

Figure 7 shows the WCETs of parallel implementations normalised to the WCET of the
sequential code. For the same number of threads, the Jacobi algorithm gets higher speed-ups
than the Gauss-Seidel method: this was expected since there is no dependence between
points in Jacobi method which yields to higher parallelism.

Figure 8 plots the contribution of stall times to the WCET of the application. For up
to 32 threads, the impact of worst-case stall times is negligible. For 64 threads, stall times
contribute from 4% (Gauss-Seidel) to 8% (Jacobi) of the WCET. These low contributions
are mainly due to the fact that all the threads run the same code. Then their worst-case
arrival times at barriers are equal. Thus the stall times are only due to the critical section.
They rapidly increase with the number of threads because, in the worst case, a thread is
stalled until all the possible contenders execute the critical section and release the lock. This
shows the importance of limiting the number of contending threads to optimise the WCET.

Figure 9 provides the raw values of the computation time (in seconds) of the automatic
WCET analysis of the parallel codes. In Figure 10 these times are normalised to the
WCET computation time of the sequential version (which is 0.031 seconds). Analysing
a parallel application is noticeably longer than analysing its sequential version. This was
somewhat expected since the WCET estimation of a parallel program requires many small
WCET analyses on partial paths. Now, in these experiments, the WCET was analysed
as if the threads did execute different functions, to reflect a pessimistic situation. In our



H. Ozaktas, C. Rochange, and P. Sainrat 19

two benchmark codes, all the threads instead share the same function. As a result, the
real computation cost would be that of the parallel program with two threads (the main
and one child), i.e. about 18 times the computation cost for the sequential version for the
Gauss-Seidel algorithm (about 12 times for the Jacobi method).

5 Conclusion

With the emergence of multicore architectures in the embedded systems market, one strategy
to get high computing power will be to parallelise software. Now, for hard real-time systems,
timing predictability is a key issue. It requires specific solutions at the hardware level, since
interactions among concurrent threads must be controlled in some way to make their timing
analysis possible. This point is at the core of several terminated and ongoing research projects
and was considered as solved in this paper. Parallel programming introduces software-level
interactions between threads through synchronisation operations. These synchronisations
engender stall times that must be accounted for when analysing the worst-case execution
times of tasks. This is the problem we have tackled in this work.

We have introduced an approach for an automatic timing analysis of parallel applications.
It consists in estimating the synchronisation-related stall times of each individual thread and
in considering them as extra-costs for the associated basic blocks in the CFG. This way, the
stall times are accounted for within the WCET computation process.

Determining the worst-case stall times due to synchronisations requires a detailed analysis
of the synchronisation patterns and of the binary code of synchronisation primitives. To
perform this task we rely on annotations that must be generated by the user. Once
synchronisation operations are identified, WCSTs are recursively computed.

We have implemented our algorithm on top of the OTAWA library and experimented it
on parallelised versions of the Gauss-Seidel and Jacobi algorithms. Experimental results show
that the worst-case impact of synchronisation stalls on WCET estimates remains limited (8%
for 64 threads). The cost of analysing a parallel code remains reasonable when all the threads
execute the same function (around 12 to 18 times the computation cost of the sequential
version) but rapidly increases with the number of threads when they run different codes.

As future work, we plan to apply our approach to larger applications and to analyse the
impact of parallel programming patterns to the worst-case performance of programs. We
will also investigate automatic extraction of synchronisation patterns from the binary code.

References
1 B. Akesson, K. Goossens, and M. Ringhofer. Predator: a predictable SDRAM memory

controller. In 5th Int’l Conf. on Hardware/Software Codesign and System Synthesis, 2007.
2 B. Andersson, A. Easwaran, and J. Lee. Finding an upper bound on the increase in

execution time due to contention on the memory bus in COTS-based multicore systems.
In WiP of Real-Time Systems Symposium (RTSS), 2009.

3 C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. OTAWA: an open toolbox for adapt-
ive WCET analysis. In Workshop on Software technologies for Embedded and Ubiquitous
Systems (SEUS), 2011.

4 C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund, C. Maiza, J. Reineke, B. Triquet, and
R. Wilhelm. Predictability considerations in the design of multi-core embedded systems.
In Int’l Conf. on Embedded Real Time Software and Systems, 2010.

5 M. Gerdes, F. Kluge, T. Ungerer, and C. Rochange. The split-phase synchronisation
technique: Reducing the pessimism in the WCET analysis of parallelised hard real-time

WCET 2013



20 WCET Analysis of Parallel Applications

programs. In Int’l Conf. on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2012.

6 M. Gerdes, J. Wolf, I. Guliashvili, T. Ungerer, M. Houston, G. Bernat, S. Schnitzler, and
H. Regler. Large drilling machine control code—parallelisation and WCET speedup. In
Int’l Symp. on Industrial Embedded Systems (SIES), 2011.

7 A. Gustavsson, A. Ermedahl, B. Lisper, and P. Pettersson. Towards WCET analysis of
multicore architectures using uppaal. In Workshop on WCET Analysis, 2010.

8 A. Gustavsson, J. Gustafsson, and B. Lisper. Toward static timing analysis of parallel
software. In Workshop on WCET Analysis, 2012.

9 D. Hardy, T. Piquet, and I. Puaut. Using bypass to tighten WCET estimates for multi-core
processors with shared instruction caches. In Real-Time Systems Symposium (RTSS), 2009.

10 T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roychoudhury. Bus-aware
multicore WCET analysis through TDMA offset bounds. In Euromicro Conf. on Real-
Time Systems (ECRTS), 2011.

11 Y. Li, V. Suhendra, Y. Liang, T. Mitra, and A. Roychoudhury. Timing analysis of con-
current programs running on shared cache multi-cores. In Real-Time Systems Symposium
(RTSS), 2009.

12 Y.-T. S. Li and S. Malik. Performance analysis of embedded software using implicit path
enumeration. In ACM SIGPLAN Notices, volume 30, 1995.

13 B. Lisper. Towards parallel programming models for predictability. In Workshop on WCET
Analysis, 2012.

14 M. Lv, W. Yi, N. Guan, and G. Yu. Combining abstract interpretation with model checking
for timing analysis of multicore software. In Real-Time Systems Symposium (RTSS), 2010.

15 M. Paolieri, E. Quiñones, F. J Cazorla, and M. Valero. An analyzable memory controller
for hard real-time CMPs. Embedded Systems Letters, IEEE, 1(4), 2009.

16 P. Paolieri, E. Quiñones, F. Cazorla, G. Bernat, and M. Valero. Hardware support for
WCET analysis of hard real-time multicore systems. In Int’l Symp. on Computer Architec-
ture (ISCA), 2009.

17 M. Pelcat, P. Menuet, S. Aridhi, and J.-F. Nezan. Scalable compile-time scheduler for
multi-core architectures. In Design, Automation and Test in Europe (DATE), 2009.

18 C. Rochange, A. Bonenfant, P. Sainrat, M. Gerdes, J. Wolf, T. Ungerer, Z. Petrov, and
F.šek Mikulu. WCET analysis of a parallel 3D multigrid solver executed on the MERASA
multi-core. In Workshop on WCET Analysis, 2010.

19 J. Rosen, A. Andrei, P. Eles, and Z. Peng. Bus access optimization for predictable im-
plementation of real-time applications on multiprocessor systems-on-chip. In Real-Time
Systems Symposium (RTSS), 2007.

20 S. Schliecker, M. Negrean, and R. Ernst. Bounding the shared resource load for the per-
formance analysis of multiprocessor systems. In Design, Automation and Test in Europe
(DATE), 2010.

21 V. Suhendra and T. Mitra. Exploring locking & partitioning for predictable shared caches
on multi-cores. In Design Automation Conference (DAC), 2008.

22 T. Ungerer, F. Cazorla, P. Sainrat, G. Bernat, Z. Petrov, C. Rochange, E. Quiñones,
M. Gerdes, M. Paolieri, J. Wolf, H. Cassé, S. Uhrig, I. Guliashvili, M. Houston, F. Kluge,
S. Metzlaff, and J. Mische. MERASA: Multicore execution of hard real-time applications
supporting analyzability. IEEE Micro, 30(5), 2010.

23 J. Wolf, M. Gerdes, F. Kluge, S. Uhrig, J. Mische, S. Metzlaff, C. Rochange, H. Cassé,
P. Sainrat, and T. Ungerer. RTOS support for parallel execution of hard real-time applica-
tions on the MERASA multi-core processor. In Int’l Conf. on Object/Component/Service-
Oriented Real-Time Distributed Computing (ISORC), 2010.


	Introduction
	Scope of the paper and related work
	Time-predictable multicores
	Real-time and WCET-aware parallel applications 
	Time-predictable system software 
	Related work

	Approach to the WCET analysis of parallel applications
	Timing analysis of synchronisations
	Worst-case stall times
	Abstract view of synchronisation primitives
	Computation of the global WCET

	Annotations of parallel programs

	Experiments
	Methodology
	Benchmarks
	Results

	Conclusion

