
Integrated Worst-Case Execution Time
Estimation of Multicore Applications∗

Dumitru Potop-Butucaru1 and Isabelle Puaut2

1 INRIA, Paris-Rocquencourt, dumitru.potop@inria.fr
2 University of Rennes 1/IRISA, Rennes, isabelle.puaut@irisa.fr

Abstract
Worst-case execution time (WCET) analysis has reached a high level of precision in the analysis of
sequential programs executing on single-cores. In this paper we extend a state-of-the-art WCET
analysis technique to compute tight WCETs estimates of parallel applications running on multi-
cores. The proposed technique is termed integrated because it considers jointly the sequential
code regions running on the cores and the communications between them. This allows to capture
the hardware effects across code regions assigned to the same core, which significantly improves
analysis precision. We demonstrate that our analysis produces tighter execution time bounds
than classical techniques which first determine the WCET of sequential code regions and then
compute the global response time by integrating communication costs. Comparison is done on
two embedded control applications, where the gain is of 21% on average.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases WCET estimation, multicore architectures, parallel programming

Digital Object Identifier 10.4230/OASIcs.WCET.2013.21

1 Introduction

Multi-core systems are becoming prevalent in both general purpose and embedded systems.
Their adoption is driven by scalable performance arguments, but this scalability comes at
the price of increased software complexity. Indeed, multi-core systems run parallel software
involving potentially complex synchronizations between the sequential programs executed
on the various cores. In the current state of the art of validation of real-time multi-task
software, temporal validation is achieved by computing the worst-case response time (WCRT)
of every task, defined as an upper bound for the duration between the task arrival and
its termination. Two main classes of techniques, usually applied sequentially, are used:
(i) Worst-case execution time (WCET) estimation, which works on sequential programs, and
(ii) WCRT estimation, that computes response times thanks to WCET values as inputs.

WCET analysis emphasizes the importance of hardware micro-architecture. Indeed,
in its double quest for execution speed and programming simplicity, modern hardware
architectures include user-transparent performance enhancing features (e.g., pipelining,
caching). The presence of these elements complicates WCET estimation. Limiting generality
to sequential code running on single-cores and selecting moderately complex hardware allows
the preservation of computational tractability, while the hardware micro-architecture is
precisely modeled. This allows the computation of tight execution time bounds.

∗ This work was partially supported by EU COST Action IC1202 Timing Analysis at Code-Level (TACLe)

© Dumitru Potop-Butucaru and Isabelle Puaut;
licensed under Creative Commons License CC-BY

13th International Workshop on Worst-Case Execution Time Analysis (WCET 2013).
Editor: Claire Maiza; pp. 21–31

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2013.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

22 Integrated Worst-Case Execution Time Estimation of Multicore Applications

WCRT analysis emphasizes the system-level complexity, by taking into account aspects
such as inter-task task communication/synchronization, and interaction with the environment.
The objective here is usually to provide execution time bounds for execution flows involving
several tasks, possibly running on multiple processors, and their communications and syn-
chronizations. To limit computational complexity of WCRT analysis, hardware and software
are usually represented in much less detail than in WCET estimation techniques. Typical
objects at this level are sequential tasks characterized by functional and non-functional
properties, such as: inputs and outputs, WCET, period, execution conditions, etc.

When dealing with parallel applications running on multicore architectures, the classical
separation between WCET and WCRT analysis has to be revisited, since an application, even
when considered in isolation from the others, includes parallelism. In this paper, we address
the issue of determining the WCET of an isolated parallel application where each core is
statically allocated one sequential thread. Since the threads synchronize with each other, our
integrated WCET estimation technique must address issues that are usually dealt with by
WCRT estimation techniques (integration of synchronization and communication costs). On
the other hand, as a WCET estimation technique, our proposal calculates execution times of
a parallel application considered in isolation from the other activities that run concurrently
on the multi-core architecture.

Contribution. Classical WCRT-based timing analysis techniques for parallel code isolate
micro-architecture analysis from the analysis of synchronizations between cores by performing
them in two separate analysis phases (WCET and WCRT analysis). This isolation has its
advantages, such as a reduction of the complexity of each analysis phase, and a separation
of concerns that facilitates the development of analysis tools. But isolation also has a
major drawback: a loss in precision which can be significant. To consider only one aspect,
to be safe the WCET analysis of each synchronization-free sequential code region has to
consider an undetermined micro-architecture state. This may result in overestimated WCETs,
and consequently on pessimistic execution time bounds for the whole parallel application.
The contribution of this paper is an integrated WCET analysis approach that considers
at the same time micro-architectural information and the synchronizations between cores.
This is achieved by extending a state-of-the-art WCET estimation technique and tool to
manage synchronizations and communications between the sequential threads running on
the different cores. The benefits of the proposed method are twofold. On the one hand, the
micro-architectural state is not lost between synchronization-free code regions running on
the same core, which results in tighter execution time estimates. On the other hand, only
one tool is required for the temporal validation of the parallel application, which reduces the
complexity of the timing validation toolchain.

Such a holistic approach is made possible by the use of deterministic and composable
software and hardware architectures (homogeneous multi-cores without cache sharing, static
assignment of the code regions on the cores) as detailed later in this paper. We demonstrate
the interest of the approach using an adaptive differential pulse-code modulation (adpcm)
encoder where the integrated WCET approach provides significantly tighter response time
estimations than the more classical WCRT approaches.

Outline. The rest of this paper is organized as follows. Section 2 presents the application
model and defines more formally what is meant by worst-case execution time of a parallel
application. Section 3 details and motivates the class of multi-core architectures considered
in this study. Section 4 defines our WCET estimation method. Experimental results are
given in Section 5. Our proposal is briefly compared to related work in Section 6. Finally,
we conclude and discuss future work in Section 7.

D. Potop-Butucaru and I. Puaut 23

void core1 () {
int tqmf [2 4] ; long xa , xb , e l ;
int xin1 , xin2 , d e c i s_ l e v l ;
for (; ;) { // I n f i n i t e loop

// Computation phase 1
xa = 0 ; xb = 0 ;
for (i =0; i <12; i++) { // 12 i t e r a t i o n s

xa += (long) tqmf [2∗ i] ∗ h [2∗ i] ;
xb += (long) tqmf [2∗ i +1]∗h [2∗ i +1] ;

}
// Send the r e s u l t s to core 2
send (channel1 , (int) ((xa+xb)>>15)) ; −−−−−
// Read inputs
xin1=read_input () ; xin2=read_input () ;
// Computation phase 2
for (i =23; i >=2; i−−) { // 22 i t e r a t i o n s

tqmf [i]=tqmf [i −2] ;
}
tqmf [1] = xin1 ; tqmf [0] = xin2 ;
// Receive data from core2 and output i t
de c i s_ l e v l = r e c e i v e (channel2) ; <−−−−−−
write_output (d e c i s_ l ev l) ;

}
}

const int de c i s_ l e v l [3 0] ;
int core2 () {

int q , e l ;

for (; ;) {// I n f i n i t e loop

// Receive data from core1
−−> e l = r e c e i v e (channel1) ;

// Computation phase 1
e l = (e l >=0)? e l :(− e l) ;
for (q = 0 ; q < 30 ; q++) {

// 30 i t e r a t i o n s
i f (e l <= dec i s_ l e v l [q])

break ;
}
// Send r e s u l t to core1

−−− send (channel2 , d e c i s_ l e v l) ;

}
}

Figure 1 Toy example: parallel version of adpcm, from the Mälardalen WCET benchmark
suite [8].

2 Application model and problem formulation

The simplest embedded control systems running on mono-processor architectures follow
a so-called simple control loop paradigm. In such systems, the software is simply a loop
whose body is the sequence of calls to the various input sampling, processing, and actuation
functions. The sequence of calls is fixed off-line. In this paper, we consider the multi-core
equivalent of simple control loops, where each core executes a simple control loop (the
practical importance of such a code structure mainly derives from the use of automatic
mapping techniques [7], which often generate such code). We shall denote with task τi the
program that forms the body of the loop executed by core CPUi, 1 ≤ i ≤ n. Each task τi

satisfies the classical requirements allowing WCET analysis (all loops it contains except the
main loop have statically bounded numbers of iterations).

Tasks τi, 1 ≤ i ≤ n can communicate with each other through a set of logical message-
passing channels C = {c1, . . . , cm} which are bounded FIFO buffers that do not lose, duplicate,
or corrupt messages. Communication is done using send and receive primitives that can
be invoked at any statically known position in task τi. The two primitives are blocking
(send on full channel, receive on empty channel), which means that channels can be used for
synchronization. For the scope of this paper, we make the following assumptions concerning
the channels: (i) each channel connects exactly two processors (one sender and one receiver);
(ii) Each channel allows the storage of only one message. No assumption is made on how
the logical message passing channels are implemented on the execution platform. We also
assume that inter-task communications are free of deadlocks by construction.

An illustrating application, that will be used all along the paper, is given in Figure 1.
The application is a portion of a bi-processor parallel version of adpcm (adaptive pulse code
modulation) from the Mälardalen WCET benchmark suite [8]. We emphasized with arrows
the two send/receive pairs associated with channel1 and channel2 respectively.

Assuming the previously-defined application model, the worst-case execution time analysis
problem we solve in this paper is to compute the worst-case duration of a fixed number
of iterations of the application, considered in isolation from the other activities running
concurrently on the multi-core architecture.

WCET 2013

24 Integrated Worst-Case Execution Time Estimation of Multicore Applications

3 Execution platform

As noted by Puschner et al. [14], obtaining precise and composable timing information in a
multiprocessor system is only possible if we can ensure spatial or temporal separation between
concurrent accesses to shared resources. The shared resources we consider in our work are
the memory subsystem, the on-chip buses and networks (including I/O), DMA controllers,
and the synchronization subsystem. We shall make on all of them hypotheses that allow both
a precise timing characterization of complying architectures, and the modeling of complex,
real-life architectures. Multi-processor systems with shared caches, although amenable to
WCET estimation, may yield pessimistic WCET estimates, because the state of these caches
becomes difficult to approximate in the presence of concurrent requests. Our choice is to
consider architectures where each processor has its private cache subsystem, independent
from the ones of other processors. It is also assumed that each core has separate instruction
and data caches. We consider such architectures because separate caches are analyzable
more precisely than unified caches by WCET estimation techniques. All caches have a Least
Recently Used (LRU) replacement policy. LRU is selected because it was shown to be the
most predictable cache replacement policy [15]. Finally, cores are homogeneous (all cores
have the same micro-architecture).

Another significant source of WCET estimation imprecision is the presence of shared
memory banks and shared communication busses. Our choice here is to consider architectures
where the duration of all memory accesses and data transmissions can be precisely determined.
The timing precision can be ensured: (i) fully by hardware mechanisms, for instance through
the use of time division (TDM) memory controllers or on-chip buses [5], (ii) or through a mix of
software and hardware mechanisms. In these cases, software and/or hardware synchronization
mechanisms (semaphores, locks) are used to guarantee the absence of contentions due to
access to RAM banks or communication buses. In this paper we consider architectures of
the second type, as this case covers classical distributed bus-based architectures, shared
memory architectures featuring multiple RAM banks, but also mixes of the two, such as
the Network-on-Chip (NoC) based architectures proposed by various vendors [17, 12]. Our
NoC-based experimentation platform that will be detailed in Section 5 falls in this last
case. An upper bound of the communication latency for every send/receive pair is assumed
known, which is realistic on all the previously-mentioned architectures. The determination
of communications latencies is considered outside the scope of the paper.

4 WCET computation

Our approach to WCET computation for parallel applications (§ 4.2) consists in extending a
state-of-the-art WCET estimation method (§ 4.1) to compute WCETs of parallel applications.

4.1 Existing state-of-the-art WCET estimation technique
Static WCET estimation techniques are commonly organized in three phases performing
different analyses [4]: Control-flow analysis, Hardware-level analysis and WCET calculation.

Control-flow analysis. This phase extracts information about possible execution paths from
the program source or binary. The output of this phase is a data structure representing
the possible flows. For the scope of this paper, this phase produces Control Flow Graphs
(CFG), extracted from the program binary. The CFGs are annotated with additional flow

D. Potop-Butucaru and I. Puaut 25

information such as maximum number of loop iterations. The CFG of the loop body of the
task running on core1 (from our sample application) is given in Fig. 2(a).

Hardware-level analysis. This step, also called low-level analysis, estimates the worst-case
execution times of basic blocks. The difficulty during this phase is to take into account
micro-architectural components of the target processor (caches, pipelines, branch predictors).
In the presence of such components, the execution time of a statement is dependent on the
context it is called in. The overall typical outcome of hardware-level analysis is a maximum
execution time per basic block in two different contexts to cope with cache effects: the first
execution of the basic block in a loop, denoted tf and its subsequent executions, denoted tn,
as more formally defined in [9]; (negative) execution times may also be associated to edges
to account for pipeline effects between basic blocks.

WCET calculation. The purpose of this final phase is to determine an estimate for the
WCET, based on the flow and timing information derived in the previous phases. The most
widespread calculation method, that will be adopted in this paper, is called implicit-path
enumeration (IPET). In IPET, program flow and basic-block execution time bounds are
combined into sets of arithmetic constraints. Each entity (basic block or program flow edge) in
the code is assigned two values: a time coefficient, denoted tentity, which expresses the upper
bound of the contribution of that entity to the total execution time every time it is executed,
and count variable (xentity), corresponding to the number of times the entity is executed.

core1_body

N1

N3

N2

N4

N5

N6

N7

N8

N9

loop[12]

loop[22]

(a) CFG of
the loop body

of core1

// Start constraint
x1 = 1
// Structural constraints
x1 = x1,2

x2 = x1,2 + x2,3 = x2,3 + x2,4

x3 = x2,3 = x3,2

x4 = x2,4 = x4,5, ...
// Loop bound constraints
x3 ≤ 12
x7 ≤ 22
// Cache-induced constraints
x1 = xf

1 + xn
1

xf
1 ≤ 1, ...

// WCET expression
maximize(xf

1 ∗ 10 + xn
1 ∗ 10

+xf
2 ∗ 120 + xn

2 ∗ 14 + ...

+x1,2 ∗ −1 + ...);
(b) Constraints for WCET
calculation of core1_body

Figure 2 State-of-the-art WCET calculation on
the loop body of core1 in our illustrating example.

The program’s WCET of the program
is determined by maximizing the sum of
products of the execution counts and times
(
∑

i∈entities xi ∗ ti), where the execution
count variables are subject to constraints
reflecting the structure of the code and pos-
sible flows. The result of an IPET calcula-
tion is an upper timing bound and a worst-
case count for each execution count variable.

Fig. 2(b) illustrates the constraints and
formulas generated by an IPET-based bound
calculation method on the loop body of
core1, assuming it is the program entry
point. The start constraint states that the
code is executed once. The structural con-
straints reflect the possible program flows,
meaning that each basic block must be
entered the same number of times as it is
exited. The loop bounds constrain the num-
ber of executions of basic blocks inside loops.
Cache induced constraints express that basic
blocks have different execution times, one
for their first execution, another for the next

ones. In the WCET expression to be maximized, there are two execution durations per basic
block to model cache effects. For instance, in the formula, tf2 = 120 (first execution, cold
cache), whereas tn2 = 14 (subsequent executions, warmed-up cache).

WCET 2013

26 Integrated Worst-Case Execution Time Estimation of Multicore Applications

4.2 WCET computation of parallel applications
Starting from the WCET estimation method sketched above, we build our WCET estimation
technique for parallel applications by performing a per-core hardware-level analysis and
then adding new edges in the CFG to model synchronization/communications between code
regions. The modified analyzer runs as follows, with the analysis phases presented in their
invocation order:
1. The original control flow analysis extracts the CFG of the tasks to be run on the cores,

from the application binary.
2. The hardware-level analysis runs unmodified on each task (control loop running on

each core). During this step, each task is analyzed as if it was not communicating with
the other tasks executed concurrently on the other cores.

3. A new step dubbed modeling of communications, is invoked. This step adds new
edges between the control flow graphs of these tasks, the result being a single CFG. A
new edge is added for each communication between code regions; it is associated with a
duration to model its execution time (message transmission time for communications).

4. The WCET computation step is executed unmodified, even though the CFG corres-
ponds to a parallel application and has slightly different topological properties. This is
due to the fact that the analysis works by finding the critical path in a directed acyclic
graph. The fact that the graph represents purely sequential behaviors, or parallel ones
(including the new edges that model communications) is not important.

The method was integrated into the Heptane static WCET estimation tool [1] through
the addition of a new pass, corresponding to phase 3, interposed between hardware-level
analysis and WCET calculation. Communications between code regions are detected through
annotations in the source code of the analyzed application, specifying at each communication
point the recipient of the message and the communication latency. The code of the new pass
represents around 200 lines of C++ code.

N13

N14

N15

N16

N17

N18

N19

N20

N2

N3 N4

N6

N7 N8

N5

N9

N1 N21

loop[30]

loop[12]

loop[22]

core1 core2

N22

core1_body core2_body

r1

main

r2

r3

r4

r5

r6

N10

N11

N12

Figure 3 WCET computation of parallel
application.

The method is illustrated step by step in
Fig. 3 on our toy application of Fig. 1. The
shaded areas labeled r1–r6 correspond to the
code regions, which are by definition the por-
tions of the two tasks that are separated by
communications. For instance, node N4 of the
core1_body CFG is the basic block containing
the send call on channel1. After the hardware-
level analysis phase runs unmodified on the
tasks of the parallel program, the modeling
of communications adds new edges in the ap-
plication CFG to model communications (bold
arrows in the figure). These new edges corres-
pond to: message passing between code regions
(edges N4 → N11 and N19 → N9) and par-
allel launching of code regions on the different
cores (edges to and from nodes N21 and N22
in the application entry point main).

D. Potop-Butucaru and I. Puaut 27

During the hardware-level analysis phase, our WCET analysis method applies instruction
cache, data cache, and pipeline analysis on the two CFGs core1_body and core2_body. This
allows to benefit from the tightness of hardware-level analysis on each task. For instance, in
task core1_body, it allows to detect that array tqmf is still in the data cache after calling
primitive send. This would not have been possible if a decoupled approach was used (WCET
estimation of regions followed by an aggregation of individual WCETs to compute the global
WCET). If a decoupled method was used, conservative assumptions would have been taken
for the analysis safety (assuming the worst-case hardware state, i.e. empty cache at WCET
analysis start). Using an integrated approach, the hardware-level analysis is able to capture
hardware effects between regions (instruction caches, data caches, pipeline) naturally.

Finally, the WCET computation step is applied unmodified. Thanks to the introduction of
the new edges, new constraints are automatically added in the WCET calculation equations,
and communication delays are automatically taken into account. The new or modified
formulas of the WCET calculation equations are illustrated below for our running example,
with the modified parts in bold face. Communication/synchronization edges are taken into
account in the new structural constraints (e.g. number of executions of communication/syn-
chronization edges, x4,11). Data transmission latencies are considered as well (e.g. 250 time
units to communicate data from node N4 to node N11 according to the amount of data to
be transmitted between the two nodes).

// New or modified structural constraints (non exhaustive)
x4 = x2,4 = x4,5 + x4,11

x11 = x10,11 + x4,11 = x11,12 + x11,13

// New WCET expression
maximize(xf

1 ∗ 10 + xn
1 ∗ 10 + xf

2 ∗ 120 + xn
2 ∗ 14 + x4,11 ∗ 250 + x1,2 ∗ −1 + ...);

5 Experimental evaluation

5.1 Experimental setup

Multi-core architecture. Given that our claims mainly concern the precision of the timing
analysis, we considered an evaluation platform allowing us to perform cycle-accurate estima-
tions and measurements of execution time, in both single-processor and multi-processor cases.
We achieved this by using the SoCLib library [16] for virtual prototyping of multi-processor
systems-on-chips (MPSoC). The hardware components we use are of cycle-accurate, bit
accurate type, written in SystemC.

The precise architecture we worked on using SoCLib is a scaled-down version of that
of [2]. While the original platform scales up to 4096 cores, we have only used for the
presented experiments single-, double-, and quad-core configurations. Each core has separate
L1 instruction and data caches, both implementing a Least Recently Used (LRU) cache
replacement policy. Both caches feature 32 sets, 4 ways, and 32 bytes per cache line. All
CPU cores are of the same type, using the MIPS32 instruction set. Each core is part of a
computing tile containing a multi-bank RAM (to accommodate non-interferent concurrent
accesses to program text and data by the CPU cores), a DMA unit, and a hardware lock unit.
The local interconnect of each tile is a full crossbar. The tiles are inter-connected through a
2D mesh network-on-chip. The overall structure of our architecture is very similar to that of
commercial many-core architectures [12].

WCET 2013

28 Integrated Worst-Case Execution Time Estimation of Multicore Applications

Studied applications. The proposed WCET estimation method was experimented on two
small signal processing applications. The first one is a parallel version of the adaptive differ-
ential pulse-code modulation (adpcm) from the Mälardalen WCET benchmark suite [8]. The
global dataflow of the code executed at each iteration of the modulation application is depicted
in Fig. 4, where boxes represent code regions and arrows communications between them.

audio

CPU0

CPU1

QMF
(quadrature

mirror
filter)

High−band

encoder

Low−band

encoder
Multiplexer

audio

compressed

Figure 4 adpcm application: dataflow and
mapping on a 2-core architecture.

Fig. 4 also depicts mapping of regions to cores
when the application is parallelized for a 2-core ar-
chitecture. Only the arrows crossing CPU bound-
aries are coded as communications; the sequen-
cing of QMF, low-band encoder and multiplexer
is implemented simply by calling successively the
three codes in the main loop of CPU0. When
parallelized for a 4-core architecture, every re-
gion is assigned to a different core, and software
pipelining is used to allow more parallelism. The
communication latency of every inter-core com-

munication was determined by an analysis of the hardware platform as a formula dependent
on the volume of data to be transferred.

The second application, named filter, is a simple load balancing example, where two
processors are needed to improve the throughput of a simple image filter. In this bi-processor
application, processor 0 successively receives image lines in a buffer. The buffer content must
be stored elsewhere to allow a new line to arrive, and this new line will be sent to processor 1,
cyclically.

Application code was compiled using a standard GNU MIPS compilation toolchain with no
optimization. For the scope of this performance evaluation, application code was parallelized
manually. Automatic code parallelization software like [6] or offline real-time scheduling tools
like [7] that generate efficient parallel code could have been used instead.

5.2 Experimental results
Experimental results are given: (i) to evaluate the accuracy of the hardware model used in
the base timing analysis tool; (ii) to compare WCETs obtained using our integrated approach
against those obtained using a decoupled estimation method; (iii) to evaluate the pessimism
of our integrated method. We do not give numbers on the run-time of the analysis, simply
because modifying the application’s CFG turned out to take negligible time compared to
hardware-level analysis and WCET calculation.

Accuracy of hardware model. To show the accuracy of the hardware model used in the
analysis, we have validated Heptane’s hardware model against the SoCLib simulator on
single-path code. Experiments were conducted on randomly generated single-path code,
starting with known contents of the instruction and data caches. After a careful and extensive
comparison of the analyzer and simulator cycle counts, both tools returned exactly the same
number of cycles for all considered code.

Comparison with baseline decoupled WCET estimation method. To evaluate the tight-
ness of WCET estimates, we have compared them with a baseline decoupled approach that
first estimates WCETs of code regions and then computes the overall WCET through a com-
position of the regions WCETs. The baseline method operates as follows. It first computes
computes WCETs of all regions; to be safe, the worst-case hardware state is assumed by the

D. Potop-Butucaru and I. Puaut 29

Table 1 Experimental results: computed WCET bounds using our integrated approach and
a base-line decoupled approach, and measured execution time. Improvement over the baseline is
defined as Decoupled−Integrated

Integrated ∗ 100. Analysis pessimism is defined as Integrated−Measured
Measured ∗ 100.

Name Integrated Decoupled Gain (%) Measured Pessimism (%)
adpcm – 2 cores 73563 101431 36.5% 64944 13.3%
adpcm – 4 cores 44568 55919 25.5% 41468 7.5%
filter – 2 cores 110825 112543 1.55% 108296 2.3%

static analyzer at the start of every region. Then, the application overall WCET is computed
in an ad hoc manner according to the synchronization pattern between code regions. This
turned out to be very easy for the considered applications, that have simple and regular
communications, never more complex that the ones illustrated in Figure 1.

The estimated WCETs are given in Table 1, for 10 iterations of the main control loop on
each core. The WCETs produced by our integrated approach are always tighter than using
the decoupled method (21% in average on the three case studies). The gain varies depending
on the amount of reuse between successive regions assigned to the same core. When the
amount of reuse is high, like in application adpcm, that features intensive code and data
reuse between code regions, the gain is significant. When the amount of reuse is smaller like
in filter (no reuse of data, modest reuse of code between regions), the gain is much smaller.

Comparison with observed execution times. The pessimism of our WCET evaluation
method is evaluated by comparing estimated WCETs with observed execution times, obtained
using the SoCLib simulation software. Regarding simulation results, due to time constraints,
we made no attempt to identify the worst-case input data and execute the code with
typical input data, not necessarily representative of the worst-case situation. The estimated
pessimism is thus an upper bound of the method pessimism. Results are reported in Table 1.
The numbers show that even without executing the code using its worst-case input data,
the results are encouraging: estimated and measured execution times are close to each
other (of 7.7% in average). Further experiments need to be conducted to identify the actual
overestimation and not only an upper bound of the overestimation.

6 Related work

Much research effort has been spent in the past in estimating WCETs of sequential code
and WCRTs of multi-task applications. Research on WCET estimation has mainly targeted
software running on single-core architectures (see [4] for a survey). A lot of effort has been
put on hardware-level analysis, allowing architectures with caches and in-order pipelines to
be analyzed precisely. The research presented in this paper is not a new WCET estimation
technique, but rather takes benefit of state-of-the-art low level analysis to produce tight
WCET estimates of parallel applications.

Many WCRT estimation methods compute end-to-end response times of distributed
applications communicating using message passing, or multiprocessor systems (e.g. [11]). To
our best knowledge, all these methods can be qualified as decoupled, in the sense that they
use as input WCET estimations of code regions computed before the WCRT analysis. By
comparison, we have shown that an integrated analysis allows to produce tighter WCRTs
than a decoupled approach, because it allows hardware effects between code regions to be
captured accurately.

WCET 2013

30 Integrated Worst-Case Execution Time Estimation of Multicore Applications

The research we found to be closer to our approach is described in [3, 13, 10]. Paper [3]
is devoted to WCET estimation of a parallel application running on a predictable multi-core
architecture. Similarly to our work, emphasis is put on predictability of the hardware
and software architectures. However, in contrast to [3] that provides formulas to combine
WCETs of code snippets to obtain the WCET of the parallel application, in our work the
application running on each core is analyzed as a whole. As a consequence, we are able to
exploit knowledge of the hardware state between code snippets and thus can provide tighter
estimates, especially for fine-grain parallelism.

In [13], a method to determine residual cache states after the execution of sequential code
on a mono-core platform is provided. The method allows to obtain tighter WCETs in case of
repetitive executions of the analyzed code. Using our method, we obtain the same benefits,
but without needing a specific analysis and tool. This benefit comes as a side product of
our method because the WCET computation of the parallel application is integrated into a
WCET estimation tool that originally was analyzing sequential code.

Paper [10] proposes an ILP formulation for WCRT computation of task graphs running
on multi-core systems. The method computes the application WCRT given a task-to-
core mapping, architecture and scheduling policy, with contentions when accessing shared
resources. Unlike [10], we currently rule out resource contentions, that is left for future work.
However, contrary to [10], our analysis of the hardware is expected to be tighter because of
our integrated approach.

7 Conclusion

We have presented in this paper a method to compute the WCETs of parallel applications
running on multicore platforms. Thanks to small modifications of a WCET computation
method, the parallel application can be analyzed as a whole, such that hardware effects
across code regions of the application are dealt with naturally. We have demonstrated that
our approach produces WCETs that are tighter than using a classical method by 21% in
average. Preliminary experiments show that the WCET over-approximation is below 7.7% in
average. We believe that our method can be integrated easily in other WCET estimation tools
using the implicit path enumeration techniques to the extent that the analysis framework is
sufficiently modular (hardware-level analysis and WCET computation are clearly separated).
The proximity of our test architecture to existing commercial many-core architectures also
suggests that our results are easily transposable to them.

In this paper, assumptions have been made regarding the software structure in order to
demonstrate the validity of our approach on simple but yet realistic setting. In future work,
our first objective will be to relax as much as possible these assumptions to broaden the
scope of application of the approach. Another area for future research will be to use obtained
WCETs to refine the structure of the parallel application (mapping of code regions on the
cores, execution order). Finally, scalability to a larger number of cores is another area for
future work.

References
1 A. Colin and I. Puaut. A modular and retargetable framework for tree-based wcet analysis.

In ECRTS, pages 37 –44, July 2001.
2 M. Djemal, F. Pêcheux, D. Potop-Butucaru, R. de Simone, F. Wajsbürt, and Z. Zhang.

Programmable routers for efficient mapping of applications onto NoC-based MPSoCs. In
DASIP, 2012.

D. Potop-Butucaru and I. Puaut 31

3 C. Rochange et al. WCET analysis of a parallel 3D multigrid solver executed on the
MERASA multi-core. In WCET workshop, 2010.

4 R. Wilhelm et al. The worst-case execution-time problem overview of methods and survey
of tools. ACM TECS, 7(3):36:1–36:53, May 2008.

5 K. Goossens, J. Dielissen, and A. Radulescu. Æthereal network on chip: Concepts, archi-
tectures, and implementations. IEEE Design & Test of Computers, 22(5):414–421, 2005.

6 M.I. Gordon, W. Thies, M. Karczmarek, J. Lin, A.S. Meli, A.A. Lamb, C. Leger, J. Wong,
H. Hoffmann, D. Maze, and S.P. Amarasinghe. A stream compiler for communication-
exposed architectures. In ASPLOS-X, 2002.

7 T. Grandpierre and Y. Sorel. From algorithm and architecture specification to automatic
generation of distributed real-time executives. In MEMOCODE, 2003.

8 J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen WCET benchmarks
– past, present and future. In WCET workshop, 2010.

9 D. Hardy and I. Puaut. Wcet analysis of multi-level non-inclusive set-associative instruction
caches. In RTSS, 2008.

10 J. Kim, H. Oh, H. Ha, S. Kang, J. Choi, and S. Ha. An ILP-based worst-case performance
analysis technique for distributed real-time embedded systems. In RTSS, 2012.

11 M. Kuo, R. Sinha, and P. Roop. Efficient WCRT analysis of synchronous programs using
reachability. In Proceedings DAC’11, San Diego, CA, USA, 2011.

12 The MPPA256 many-core architecture. Online http://www.kalray.eu/products/
mppa-manycore/mppa-256/, 2012.

13 F. Nemer, H. Cassé, P. Sainrat, and J.P. Bahsoun. Inter-task WCET computation for
a-way instruction caches. In SIES, 2008.

14 P. Puschner, R. Kirner, and R. Pettit. Towards composable timing for real-time programs.
In STFSSD’09, 2009.

15 J. Reineke, D. Grund, C. Berg, and R. Wilhelm. Timing predictability of cache replacement
policies. RTSJ, 37(2), 2007.

16 SoCLib: an open platform for virtual prototyping of multi-processors system on chip, 2011.
Online at: http://www.soclib.fr.

17 The TilePro64 many-core architecture. Online http://www.tilera.com/sites/default/
files/productbriefs/TILEPro64_Processor_PB019_v4.pdf, 2008.

WCET 2013

http://www.kalray.eu/products/mppa-manycore/mppa-256/
http://www.kalray.eu/products/mppa-manycore/mppa-256/
http://www.tilera.com/sites/default/files/productbriefs/TILEPro64_Processor_PB019_v4.pdf
http://www.tilera.com/sites/default/files/productbriefs/TILEPro64_Processor_PB019_v4.pdf

	Introduction
	Application model and problem formulation
	Execution platform
	WCET computation
	Existing state-of-the-art WCET estimation technique
	WCET computation of parallel applications

	Experimental evaluation
	Experimental setup
	Experimental results

	Related work
	Conclusion

