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Abstract
We have recently shown that symbolic execution together with the implicit path enumeration
technique can successfully be applied in the Worst-Case Execution Time (WCET) analysis of
programs. Symbolic execution offers a precise framework for program analysis and tracks com-
plex program properties by analyzing single program paths in isolation. This path-wise program
exploration of symbolic execution is, however, computationally expensive, which often prevents
full symbolic analysis of larger applications: the number of paths in a program increases expo-
nentially with the number of conditionals, a situation denoted as the path explosion problem.
Therefore, for applying symbolic execution in the timing analysis of programs, we propose to use
WCET analysis as a guidance for symbolic execution in order to avoid full symbolic coverage
of the program. By focusing only on paths or program fragments that are relevant for WCET
analysis, we keep the computational costs of symbolic execution low. Our WCET analysis also
profits from the precise results derived via symbolic execution.
In this article we describe how use-cases of symbolic execution are materialized in the r-TuBound
toolchain and present new applications of WCET-guided symbolic execution for WCET analysis.
The new applications of selective symbolic execution are based on reducing the effort of symbolic
analysis by focusing only on relevant program fragments. By using partial symbolic program
coverage obtained by selective symbolic execution, we improve the WCET analysis and keep the
effort for symbolic execution low.
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1 Introduction

Symbolic execution can analyze a program with high precision, by using symbolic instead of
concrete input values of the program. Programs are symbolically executed path-wise, and
each program path is analyzed in isolation. This, however, comes at the price that every
program path needs to be symbolically executed in order to infer results that are valid for
the entire program. In other words, a full symbolic coverage of the program is needed for
verifying program properties using symbolic execution. As the number of paths increases
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exponentially with the number of conditionals in the program, computing full symbolic
coverage for larger applications is in practice not realistic. Applications of symbolic execution
therefore only explore relevant parts of the program behavior and compute a partial symbolic
coverage of the program.

Such a compromise between precision and computability is also present in the Worst-
Case Execution Time (WCET) analysis of programs. Namely, a successful WCET analysis
requires a balance between the speed and the precision of the deployed analysis. Precision of
the analysis is gained by applying powerful program analysis techniques that gather infor-
mation about the program and pass it to further analysis- and computation-steps. Precision
of the analysis yields tight WCET estimates, however, at the cost of high computational
effort; this sometimes prevents the analysis to terminate within a given time-limit. Precision
of the WCET analysis is therefore often traded for its speed: faster analysis with likely im-
precise WCET estimates is preferred to a precise but slow one. Following this compromise,
automated methods for refining imprecise WCET results into tighter ones are needed in the
WCET analysis of programs.

In this article we argue that combining symbolic execution with traditional WCET anal-
ysis yields an efficient and precise method for computing WCET estimates. We show that,
for using symbolic execution in WCET analysis, a partial symbolic coverage of the program
is sufficient to tighten and, eventually, prove the computed WCET bound of the program to
be precise. We do so by applying selective symbolic execution over program parts and avoid
the path explosion problem of traditional symbolic execution. To this end, we use costly
symbolic execution only for those parts of the program that influence the WCET estimate.
Our WCET-guided symbolic execution is a precise selective symbolic execution for relevant
parts of the program, and avoids the computational overhead of full symbolic execution.
Our workhorse in this article is the r-TuBound toolchain [16].

We extend r-TuBound with symbolic execution (Section 3) and present three existing
applications of symbolic execution in r-TuBound for WCET analysis (Section 4):

We use symbolic execution in r-TuBound on selected program fragments to analyze pro-
grams which could not be analyzed by r-TuBound due to a too restrictive programming
model of [15];
We deploy symbolic execution in r-TuBound to compute loop bounds. This extension
allows r-TuBound to calculate loop bounds in cases where it has previously failed;
Based on the implicit path enumeration technique (IPET) [19], we use the result of
an initial WCET analysis and apply symbolic execution in r-TuBound to tighten initial
WCET estimates and eventually prove these bounds precise, by applying the work of [17].

Based on our current use of symbolic execution in r-TuBound, we also discuss further appli-
cations of symbolic execution for the WCET analysis of programs (Section 5). These new
directions rely on partial symbolic coverage of the program and include:

inferring precise execution frequencies for loops with conditionals;
generating WCET path test-cases used in measurement-based WCET analysis tools;
automated support for mode-sensitive analysis of programs after an initial (IPET-based)
WCET analysis.

We believe that the WCET applications proposed and discussed in this article encourage the
further use of symbolic execution in WCET analysis. The symbolic execution extensions that
are already implemented in r-TuBound were successfully applied to examples coming from
the WCET tool challenge [10]: WCET estimates were tightened and the cost of symbolic
execution was low. We are confident that the overhead for the proposed applications of
symbolic execution in WCET analysis can be kept low, while providing valuable information
about the program.
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2 Preliminaries

In this section we give an overview of the main ingredients of symbolic execution and WCET
analysis. For more details, we refer to [3, 6] and [15, 18], respectively.

Symbolic Execution. Symbolic execution uses symbolic instead of concrete input data to
symbolically execute a program. To do so, input variables of the program are assumed to be
“symbolic,” which means that they can have an arbitrary value (conforming to the specified
data-type). If a conditional statement splits the control-flow of the program, symbolic exe-
cution follows both successor edges of the conditional, restricting possible values of symbolic
variables according to the condition. For example, if a conditional executes the true-edge
of the condition only if a variable has a certain constant value, then symbolic execution as-
sumes the constant value for the variable when following this edge. Thus, symbolic variable
values are restricted by path conditions or assumptions involving the respective variable.
This allows to track complex constraints for each variable and use solvers, such as [5], to
reason about the derived constraints.
Symbolic execution of programs with conditionals and loops often leads to the path explosion
problem, as the number of paths needed to be symbolically executed increases exponentially
with the number of conditionals in the program. Hence, full symbolic coverage of larger
applications is infeasible in practice. The problem of path explosion can be addressed in
different ways, e.g., by using heuristics for computing only partial symbolic coverage of the
program, for instance in the context of test-case generation and bug-hunting.

WCET Analysis. A static WCET analysis toolchain typically includes several high-level
analyses that gather so-called flow fact information about the program. Essential flow facts
include loop bounds and execution frequencies of conditional edges in the program. When
computing WCET estimates, the underlying hardware architecture needs to be analyzed for
inferring execution times of program blocks. Additional hardware features, such as cache-
configuration and pipeline layout, also need to be taken into account. Precision of WCET
bounds denotes, in this article, that any over-estimation of the WCET is due to an imprecise
hardware modelling and not due to infeasible paths.

With the block execution times computed for the program, various techniques can be
applied to find the path that exhibits the WCET of the program. One of the most common
approaches is the implicit path enumeration technique (IPET) [19]. It is applied to the
control flow graph (CFG) of a program and relies on the fact that each program execution
satisfies the following flow properties: (i) a program execution executes the entry point of the
program once and (ii) other program blocks are executed as often as their predecessor blocks.
Therefore, any program block following the entry point is executed once, unless it appears
in a conditional or loop statement. For a conditional (iii) the total sum of the execution
frequencies of its conditional blocks (denoted the true- and false-block of the conditional)
coincides with the execution frequency of the predecessor block of the conditional, which is
the condition-block. For blocks inside loops, (iv) the execution frequencies are multiplied
by the loop bound. Hence, when applying IPET, loop bounds are assumed to be supplied
as flow-facts.

To apply IPET, the program is represented as an integer linear program (ILP) where each
program block is modeled by an ILP variable that has the block execution time associated
with it. An ILP-solver [2] is then used to solve the flow problem (i)–(iv) specified above.
By using an ILP encoding on execution frequencies, the solution of the corresponding ILP
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problem assigns values to the ILP variables, that is, execution counts of program blocks. The
WCET estimate for the program is then obtained by maximizing the sum of the products
of execution frequencies and block execution times for each block.

As flow facts about programs are not always precise (e.g. loop bounds are not exact
but are over-approximated), the ILP encoding of the program usually encodes numerous
spurious program paths. Some of these spurious program paths might yield high execution
times. Therefore, the WCET estimate computed from the ILP solution is usually an over-
estimation of the actual WCET: its precision crucially depends on the quality of additional
flow facts supplied to IPET. For example, supplying additional flow facts that specify valid
execution frequencies for conditional blocks can result in a tighter WCET estimate.

3 Selective Symbolic Execution in r-TuBound

In this section we describe our extensions to the r-TuBound toolchain [16], by integrating
symbolic execution into r-TuBound. The common theme of all these extensions relies on a
selective use of symbolic execution for timing analysis, instead of symbolically executing the
whole program.

r-TuBound applies high-level analyses on the source level and calculates WCET estimates
using a low-level analyzer. In a nutshell, the main steps of r-TuBound are as follows. Given
a program with loops written in a restricted class of C, r-TuBound deploys interval and
points-to analysis to derive bounds, called loop bounds, on the number of loop iterations.
The source code, annotated with the results of these analyses, is then compiled by a WCET
aware compiler. The resulting assembly is analyzed by the WCET analyzer CalcWCET167
of the Infineon C167 microprocessor [14]. It applies the IPET approach, solves the resulting
ILP problems and derives WCET estimates as outputs.

Relying on the infrastructure of [16], we extended r-TuBound by symbolic execution.

Figure 1 Architecture of the WCET
toolchain. Colored parts rely on symbolic
execution.

Figure 1 shows the current workflow of r-TuBound,
where the colored components correspond to the
new extensions. We refined the loop bound com-
putation step of r-TuBound by exhaustive sym-
bolic execution for loops, implemented in the
r-Loopbounds step of Figure 1. We also added a
selective symbolic engine to r-TuBound for deriv-
ing tight WCET bounds, listed as the Selective
SE step of Figure 1. In the rest of this section we
describe the integration of symbolic execution in
r-TuBound.

Symbolic Execution and r-TuBound. We use the symbolic execution engine of [3] in r-
TuBound to construct a precise memory-model of a program. Given an input program
(written in C), the program is first parsed and stored as an abstract syntax tree in the
code-list. The code-list is then further processed: program paths are extracted and are
symbolically executed by writing and reading the symbolic representation of the program
memory. As a result, a representation of the symbolic program execution is obtained as a
set of satisfiability modulo theory (SMT) formulas, where the SMT formulas are expressed
in theory of bit-vectors and arrays. Verification conditions, expressing runtime and memory-
access properties, are generated to guarantee runtime- and memory-safety of the program
(e.g. does not dereference NULL). Properties that hold in the symbolic representation of
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a program are also guaranteed to hold in the actual program. Instead of symbolically
executing all paths in the program, selective symbolic execution allows to execute paths
selectively by supplying a sequence of branching decisions that encode executions of the
program. The branching decisions are extracted from the IPET solution. These decisions
allow to iteratively select and symbolically execute WCET paths. Precise constraints are
only inferred about the WCET path, reducing the costs for symbolic execution.

4 Precise WCET Analysis without Path Explosion in r-TuBound

Symbolic execution infers precise program properties that can further be used in an IPET-
based WCET analysis. Nevertheless, symbolic execution comes with the cost of analyzing
each program path, a practically infeasible task for large programs with loops and condition-
als. To avoid this problem, when using symbolic execution for WCET analysis in r-TuBound,
we identify relevant program parts, that is program fragments for which symbolic execution
is necessary to be applied. More precisely, we apply symbolic computation in the following
three scenarios: (i) analyzing reduced program fragments in isolation of the entire program,
by reasoning about single statements in loop bodies, as well as about loops and nested loop
structures, (ii) deriving loop bounds on the number of loop iterations, and (iii) analyzing
a small number of paths for refining and proving precise WCET bounds. For doing so, (i)
relies on the programming model of [15], (ii) makes uses of [3] and is restricted only to the
programming model of the underlying symbolic execution engine, and (iii) is based on the
theoretical framework presented in [17].

1: int main (int flag) {
2: int i;
3: for(i = 0; i < 5; i++)
4: if(i == 4 && flag) {
5: i = 0;
6: flag = 0;
7: }
8: }

Figure 2 Our running ex-
ample. All data is assumed
uninitialized.

In what follows, we overview the relevant parts of symbolic
execution in each of the above scenarios of r-TuBound, and illus-
trate our work on the example of Figure 2. Based on the current
applications of symbolic execution in r-TuBound, in Section 5
we will outline new and ongoing applications of symbolic exe-
cution for WCET analysis.

(i) Analyzing reduced program fragments. We use the sym-
bolic execution framework of [3] to verify arithmetic properties
about one or more conditional updates of the loop counter in a
loop. Symbolic execution is appropriate in this setup as inter-

val analysis often lacks sufficiently precise analysis results. By using symbolic execution, in
the current version of r-TuBound we can verify arithmetic properties about loop counters
without the need of deriving tight intervals for the values of loop counters. Even more, we
are able to handle a more general programming model than the one used in [15]. Namely,
we can analyze loops whose conditional updates are arbitrary expressions in the combined
theory of linear arithmetic, bit-vectors and arrays, whereas [15] was restricted to the theory
of linear arithmetic. If the such derived arithmetic properties are proved to be correct by
using [3], the loop bound computation step of r-TuBound can safely be applied. Our use
of symbolic execution also allows to merge conditional updates of the loop counter into a
so-called combined minimal update, which then yields a tighter loop bound, and hence a
tighter WCET estimate.

I Example 1. The loop analysis step of [15, 16] fails to compute a bound for the loop in
Figure 2. This is so because the conditional update to the loop counter i (in line 5) violates
the computed loop bound in cases when the loop counter is reset, i.e. when flag is true. In
Figure 2, i increases in the loop header. Therefore, the r-Loopbounds step of r-TuBound
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symbolically executes the conditional update for an arbitrary (i.e. symbolic) loop iteration
and verifies that the conditional update can only increase the value of i. If this property is
violated, it is not safe to compute a loop bound using the techniques of [15, 16] implemented
in the Loopbounds step of Figure 1. In the example in Figure 2, the property is false, the
conditional update can decrease the loop counter, and therefore no loop bound is computed.

(ii) Loop bound computation. If the loop bound computation step of [15] in r-TuBound
fails, we apply exhaustive symbolic execution of the reduced program in r-TuBound. As a
reduced program we consider the program that only contains the loop under study together
with relevant variable declarations, i.e. the variables used in the loop. Variable values are
treated as symbolic, with the exception of the loop counter. Additional information, such as
intervals for variable values or program slices, can also be supplied in this step to improve the
precision of the loop bounds. A supplied time-limit guarantees termination of the approach.
The reduced program is symbolically executed in r-TuBound, where r-TuBound initially
sets the loop bound to 0. If symbolic execution reports that the negation of the loop
condition is unsatisfiable on the (unwound loop) path, the loop bound is increased by one.
Upon termination within the time-limit, no execution of the program exhibits a higher loop
bound. Such a use of symbolic execution in r-TuBound is especially useful when bit-precise
reasoning is required.

I Example 2. The approach of [15] cannot derive a loop bound for Figure 2. Therefore,
(bounded) exhaustive symbolic execution is applied to only analyze the program loop. By
using symbolic execution in r-TuBound, we derive 9 as the exact loop bound of Figure 2.

(iii) Deriving precise WCET bounds. The WCET analysis approach presented in [17] re-
lies on the tight combination of a symbolic execution engine and a WCET analyzer. It
first applies an IPET-based WCET analysis that yields an ILP problem that encodes con-
straints on the program flow and a WCET estimate. Next, symbolic execution on single
program paths is applied in order to infer constraints that allow tightening and ultimately
proving the WCET bound precise. For doing so, the ILP solution describing the execution
frequencies of program blocks and the ILP problem is analyzed, and one or more spurious
program execution traces exhibiting the WCET are identified. These execution traces are
then excluded from the set of possible program executions, by adding a new ILP constraint
to the ILP problem. The resulting new ILP problem is then used in the next iteration of
the approach, by again applying IPET in combination with symbolic execution. In each
iteration either a new and lower WCET estimate is derived or a program trace exhibiting
the old WCET is obtained. In the latter case, the computed WCET is the actual WCET
of the program, and the algorithm terminates. The computed WCET is precise wrt the
underlying hardware-model.

Note that in [17] only paths extracted from the ILP solution are symbolically executed,
avoiding thus the full path explosion problem. problem of symbolic execution. The WCET
estimates serve here as a measure for the relevance of paths: they allow to select relevant
paths that need to be symbolically executed in order to tighten the WCET.

We implemented the approach of [17] in r-TuBound and describe it here. The pro-
gram is parsed and the IPET approach is applied. An ILP problem is next obtained and
solved, by using the ILP solver lp_solve of [2]. The obtained ILP solution encodes a WCET
estimate of the program. Further, the execution trace specified by the ILP solution is
(re)-constructed. We encode execution traces as sequences of branching decisions, where
branching decisions are obtained as follows. For each conditional block, i.e. a program block
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with jump-instructions to other blocks, the execution frequency of the jump-targets specifies
which block is assumed to be executed on the path exhibiting the WCET estimate. If the
condition evaluates to false, the else-block of the conditional is executed. Thus, the ILP
solution specifies an execution frequency of 0 for the then-block and an execution frequency
of 1 for the jump-target, the else-block. The inferred branching decision is f.

If both edges of a conditional have an execution frequency ≥ 0 in the ILP solution,
both program blocks of the conditional are executed. In this case, the WCET candidate
encodes multiple actual program executions. Hence, from the ILP solution, one or more
program paths exhibiting the WCET estimate can be constructed. We therefore refer to
program paths exhibiting the WCET as WCET trace candidates. If one of these is feasible,
the computed WCET bound is proven precise and yields the actual WCET of the program
in the underlying hardware model. If all of them are infeasible, the ILP problem of IPET
can be refined and a tighter WCET estimate can be computed. WCET trace candidates in
r-TuBound are expressed as SMT formulas in the combined theory of bit-vectors and arrays,
and the SMT solver Boolector [5] is used to check their feasibility. In our current r-TuBound
implementation we rely on a manually constructed mapping between the assembly analyzed
with CalcWcet167 and the source of the application. In other words, we manually verify
that the source and assembly exhibit a compatible branching behaviour. Construction of
this mapping can be omitted when symbolic execution is performed on the binary level.

I Example 3. The initial ILP solution derived from the ILP problem of IPET (using the
loop bound 9) specifies the execution of the conditional block in each iteration of the loop
in Figure 2. The WCET trace candidate extracted from the ILP solution encodes exactly
one program path; this path executes the conditional block 9 times. This WCET trace
candidate is specified by the following sequence of branching decisions t. . . t (9 times t),
where t denotes the true-edge of the conditional statement. By symbolically executing
this WCET trace candidate, we derive the infeasibility of t. . . t. Thus, an additional ILP
constraint is constructed to exclude this WCET trace candidate from the ILP problem. The
new ILP problem is solved again, yielding a tighter WCET estimate and new WCET trace
candidates. This process is iterated until a feasible WCET trace candidate is found. In
Figure 2, a feasible WCET trace candidate is derived after 8 iterations. As a result, the
exact execution frequency of the true-block of the conditional is inferred and constrained
to 1. In a simplified scenario where execution of each program instruction takes 1 time unit
(t), the actual WCET of the program is then derived to be 40t. The WCET is derived by
summing up the execution times (a)-(c): (a) the initialization in the loop header (i=0) takes
1t; (b) Among the execution frequencies of loop iterations, based on the derived execution
frequency of the conditional statement, the following case distinction is made: for 8 loop
iterations, an iteration takes 4t, 1t is the evaluation of the loop condition i<5, 2t are needed
to execute the condition i==4 && flag of the conditional (two instructions) and 1t is taken
for the loop counter increment i++. All together, these eight loop iterations take 32t . One
loop iteration, namely the one in which the conditional statement is executed, requires 6t

to be executed. When compared to the previous cases, the additional 2t result from the
execution of the true-block of the conditional. (c) The last evaluation of loop condition i < 5
after 9 loop iterations takes 1t.

Summarizing, the applications (i)–(iii) discussed above share a common approach: in-
stead of symbolically executing the entire program, selective symbolic execution is performed
only on fragments or single paths of the program in order to prevent symbolic execution
from running into the path explosion problem.
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5 Further Applications of Symbolic Execution for WCET

In this section, we discuss three additional applications of symbolic execution in WCET
analysis, by using the symbolic execution framework presented in Section 3. Similarly to
Section 4, these applications apply only partial symbolic coverage of the program. The
material presented in this section is work-in-progress and requires further experimentation.

Precise execution frequencies for loops . When the loop bound computation techniques
of [15] fail, exhaustive symbolic execution of the loop is applied as described in Section 4(ii).
The application scenario of Section 4(ii) can be further extended to compute execution
frequencies for conditional blocks inside the loop: by applying exhaustive symbolic execution,
a loop bound and feasible WCET traces are derived. The execution frequencies of program
blocks in the feasible traces is also obtained. In case of multiple feasible traces, a set of
execution frequencies is inferred for each block. We then set the execution frequency of a
block to be less or equal to the highest and greater or equal to the lowest value among its
set of possible execution frequencies, and use this value in the ILP encoding of the program.
To ensure that the such chosen execution frequency is precise, we use the approach of
Section 4(iii) and iteratively refine the execution frequency of each edge inside the loop.

I Example 4. Consider Figure 2 again. An initial IPET-based WCET analysis (without
additional flow facts) sets the execution frequency of the true-block of the conditional to 9.
By applying our approach, we use exhaustive symbolic execution on the loop of Figure 2.
As a result, we derive the maximum execution frequency of 1 for the true-block of the
conditional. Using this additional flow fact in the initial IPET-based WCET analysis, the
precise WCET of the program is also derived.

(ii) WCET path test-cases. Our implementation of Section 4(iii) in r-TuBound can also
be used to generate WCET path tests-cases. The approach of Section 4(iii) already extracts
and symbolically executes WCET trace candidates. A symbolic execution engine can be
used to generate concrete program inputs from the trace that is symbolically executed,
forcing actual executions of the program to follow the same trace. The program inputs for
feasible WCET trace candidates thus represent program inputs which lead to the execution
of the actual WCET path, that is, a concrete program path exhibiting the WCET. The
program inputs generated by symbolic execution can be used by hardware-aware dynamic
WCET analyzers, see e.g. [20], to take additional, hardware-dependent, time measurements.
We refer to such analyzers as measurement-based WCET analyzers. The generated test-
cases can help measurement-based WCET analyzers to derive relevant timing behavior of
the application on the WCET path. At the same time, the measurements can be used
as feedback about the precision of static analyzers: little variation between the statically
computed WCET estimate and the measurements on the WCET path are an indication of
precision of the static analyzer. Even more, the statically calculated WCET estimate must
never be below the WCET value reported by the measurement-based analyzer.

I Example 5. Consider Figure 2. The WCET analysis of Section 4(iii) infers the WCET
path to execute the true-block of the conditional once, when i is 4 and when the value
of the symbolic variable flag is assumed to be true. Based on the symbolic execution of
this WCET trace, the symbolic execution engine in r-TuBound generates a test case which
initially assumes flag to evaluate to true. Supplying this input to a measurement-based
WCET analyzer that runs the actual program allows to take measurements on the WCET
path.
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(iii) Mode-sensitive analysis. The symbolic execution engine of r-TuBound used in Sec-
tion 4(iii) can further be used to support automated mode-sensitive WCET analysis. Modes
characterize a certain state that the program is executed in. For example, the program
could be in a “normal operation,” an “initializing” or an “error” mode. Given a program, its
precise WCET is derived using the method of Section 4(iii). Assume now that the program
is modified, e.g. , by setting a program flag resulting in a different mode of execution. The
approach of Section 4(iii) will then automatically recompute the WCET for the modified
program. This mode-sensitive behaviour can be observed in functions from the Mälardalen
benchmark suite of [10], where the flags (init, found) control the execution mode and thus
the WCET path. These control variables are not yet found automatically in r-TuBound.
However, simple methods could be used to identify these flags, for example by checking
whether two conditions are mutually exclusive. We leave the integration of r-TuBound with
such techniques for further work.

I Example 6. Consider again Figure 2 and assume that flag == true indicates an error-
mode. Changing the initial value of the variable flag from uninitialized to false changes the
feasible WCET path of the program, and hence the WCET. In the such modified program
the approach of Section 4(iii) infers that the loop is executed 5 times instead of 9 times as
computed in Section 4. Applying the technique of Section 4(iii) to the modified program
incrementally changes the ILP to reflect the change in the program behavior, resulting in a
WCET for the new WCET path, that is a WCET when the program is not executed in the
error mode.

Summarizing, similarly to Section 4 the three applications discussed in this section selec-
tively apply symbolic execution to the program. In (i), we argue that bookkeeping the exact
frequencies of program blocks can be done in a cheap way and exhaustive symbolic execution
can be applied to derive loop bounds. In (ii) and (iii) we rely on the implemented symbolic
execution infrastructure and use it in conjunction with the approach of Section 4(iii). This
way, we only apply symbolic execution on a (reduced) number of WCET trace candidates,
and avoid the burden of exploring all program paths.

6 Related Work

Symbolic execution was originally used for test-case generation and has recently found more
and more applications in program verification, for example, in bug-hunting [6]. Applications
of symbolic execution in program verification use various heuristics to speed up symbolic ex-
ecution, identify and track relevant program information and use constraint solvers to prove
caching queries. Our symbolic execution engine in r-TuBound offers only few heuristics and
derives as much program information as needed for the WCET analysis. In general, infer-
ring precise program information comes with high computational costs, a problem which
we avoid by using selective symbolic execution: r-TuBound applies symbolic execution only
when information about the program is too coarse or when other analysis methods fail.

A similar idea is presented in [4] where symbolic execution is used to refine spurious
def-use results via a path feasibility analysis. In [4] branching decisions are determined at
compile time and used to identify and remove infeasible paths. This method can be seen as
a light-weight on-demand symbolic execution of conditional nodes, whereas symbolic execu-
tion in r-TuBound always executes single paths.

Symbolic execution for WCET analysis is also used in [13] and avoids some typical pitfalls
of symbolic execution. For example, loops are not unfolded and hence multiple executions
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of the same block are omitted. We note that [13] analyses each program block whereas our
selective symbolic execution approach in r-TuBound only analyses relevant program blocks
and paths.

A related approach is the abstract execution framework of [11], where context-sensitive
abstract interpretation is applied to analyse loop iterations and function calls in separation.
Instead of applying a fix-point analysis, abstract operations on abstract values are applied
in [11], where an abstract value can, e.g. , be represented as an interval. When abstract
values prevent the evaluation of a conditional, both branches need to be followed. Abstract
states can be merged at join points to prevent the path explosion problem. As a result, a
single abstract execution can represent execution of multiple concrete paths. This is not the
case in the traditional use of symbolic execution. Compared to r-TuBound, abstract execu-
tion in [11] analyses the entire program, whereas in r-TuBound we apply symbolic execution
only to relevant parts of the program. An integration of abstract execution in r-TuBound
is an interesting research direction for future work.

In the traditional use of static WCET analyzers, high-level tools gather flow fact infor-
mation about the program under analysis. This information is subsequently used in further
(low-level) WCET analysis. Static WCET analyzers, see e.g. [16, 1, 9], often use the IPET
technique [19] to calculate WCET estimates. This leads to an over-estimation of the WCET
since the IPET modeling of a program usually encodes spurious execution traces that are
infeasible in the concrete program. The approach of [17] addresses the problem of refining
imprecise WCET estimates, by using symbolic execution in conjunction with IPET. We
implemented this combination in r-TuBound. The results and applications of our imple-
mentation offer an automated technique to reduce, and possibly avoid over-estimation in
WCET computation. A similar method is presented in [12], where an ILP encoding of the
program is used to check whether partial solutions of a specific size to the ILP problem
yield infeasible program paths. Feasibility of solutions is checked using model checking, by
encoding block execution frequencies as program assertions. Unlike [12], we apply path-wise
symbolic execution to avoid model checking the entire program and use SMT solving for
checking feasibility of program paths.

Measurement-based timing analysis techniques, such as [20], can be seen complementary
to static WCET analysis tools. Measurement-based tools require test inputs that cover
a sufficient portion of the program executions to infer a tight WCET bound with a high
confidence. The method of [20] systematically generates test-cases for arbitrary program
executions, based on model checking and various heuristics. In the proposed application of
symbolic execution in r-TuBound we generate test-cases only for program executions along
the WCET trace candidate path(s).

A different approach to WCET analysis is given in [7], that relies on segment- and state-
based abstract interpretation [8]. This state-based approach has similarities with the ILP
problem refinement of r-TuBound. Integrating this approach in r-TuBound is an interesting
task to be investigated.

7 Conclusion

We outlined applications of symbolic execution in WCET analysis, as implemented in r-
TuBound: reasoning about single statements in loops, computing loop bounds, and refining
the results of an a-priori used WCET analyzer. The approaches have successfully been tested
on a number of WCET benchmarks. Additional applications of symbolic execution can be
implemented in r-TuBound by only minor changes of the underlying symbolic execution
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engine. With such changes at hand, we are confident that symbolic execution can also
be used in hardware-aware dynamic WCET analyzers. We believe that, an efficient use
of symbolic execution, called selective symbolic execution in this article, gives a valuable
extension to the program analysis toolbox applied in WCET analysis.
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