
Applying Measurement-Based Probabilistic
Timing Analysis to Buffer Resources
Leonidas Kosmidis1,2, Tullio Vardanega3, Jaume Abella2,
Eduardo Quiñones2, and Francisco J. Cazorla2,4

1 Universitat Politècnica de Catalunya
2 Barcelona Supercomputing Center
3 University of Padova
4 Spanish National Research Council (IIIA-CSIC)

Abstract
The use of complex hardware makes it difficult for current timing analysis techniques to compute
trustworthy and tight worst-case execution time (WCET) bounds. Those techniques require
detailed knowledge of the internal operation and state of the platform, at both the software
and hardware level. Obtaining that information for modern hardware platforms is increasingly
difficult.

Measurement-Based Probabilistic Timing Analysis (MBPTA) reduces the cost of acquiring
the knowledge needed for computing trustworthy and tight WCET bounds. MBPTA based on
Extreme Value Theory requires the execution time of processor instructions to be independent
and identically distributed (i.i.d.), which can be achieved with some hardware support. Previous
proposals show how those properties can be achieved for caches. This paper considers, for the
first time, the implications on MBPTA of using buffer resources. Buffers in general, and first-
come first-served (FCFS) buffers in particular, are of paramount importance as the complexity
of hardware increases, since they allow managing contention in those resources where multiple
requests may be pending. We show how buffers can be used in the context of MBPTA and
provide illustrative examples.

1998 ACM Subject Classification D.2.4 Software Engineering: Software/Program Verification

Keywords and phrases WCET, Buffer, Probabilistic Timing Analysis

Digital Object Identifier 10.4230/OASIcs.WCET.2013.97

1 Introduction

There is an increasing need for high guaranteed performance in Critical Real-Time Embedded
Systems (CRTES) industry such as automotive, space, and aerospace. To respond to this
demand, more complex hardware is used, which allows increasing performance per chip unit,
which in turn enables running more functionalities per chip, thus reducing size, weight and
power consumption costs at system level.

Probabilistic Timing Analysis (PTA) [4][3] has recently emerged as an alternative to
conventional static (STA) and measurement-based timing analysis (MBTA) techniques [11].
Although PTA is not as mature as STA and MBTA yet, it promises to reduce dependence
on execution history. This is done by randomising the timing behaviour of some processor
resources, which reduces the amount of information needed to obtain tight WCET bounds in
comparison to other timing analysis approaches.

PTA provides WCET estimates with an associated probability of exceedance (pWCET). In
analogy to the practice that expresses reliability for embedded safety-critical systems in terms

© Leonidas Kosmidis, Tullio Vardanega, Jaume Abella, Eduardo Quiñones, and Francisco J. Cazorla;
licensed under Creative Commons License CC-BY

13th International Workshop on Worst-Case Execution Time Analysis (WCET 2013).
Editor: Claire Maiza; pp. 97–108

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2013.97
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


98 MBPTA and Buffer Resources

of allowable probabilities of hardware failures, PTA extends this notion to timing correctness
by determining the probability with which a given WCET bound can be exceeded during
system operation. PTA aims to obtain pWCET estimates for arbitrarily low probabilities,
so that even if the chosen pWCET estimate can be exceeded, it would be with low enough
probability (e.g., in the region of 10−12 per hour of operation, largely below the required
probability of hardware failures). PTA can be applied either in a static (SPTA) [3] or
measurement-based (MBPTA) [4] manner. This paper focuses on the latter, which is more
easily amenable to industrial practice.

Contribution. PTA can be applied to hardware/software platforms where the ETP
per instruction can be derived. PTA-compliance has been achieved so far for processors
equipped with cache memories [5, 6]. In this paper we extend this to buffer resources.
Buffers allow managing contention in those resources where multiple requests may be
pending, decoupling the speed at which requests are sent and processed. Our contribution is
threefold: (1) We prove that buffers can be used while preserving compliance with MBPTA
requirements. Unlike other resources like caches that need to be time-randomised in order to
work properly with MBPTA, buffers require no changes to be used with MBPTA. (2) We
provide a new classification of hardware resources and describe how they can be adopted
with MBPTA. (3) We show that, although buffers and any other complex resource in general
can create dependences across instructions, they can be analysed by MBPTA as long as those
dependences, regardless of their nature, whether deterministic or probabilistic, stay the same
at analysis and during operation. For buffers in particular, we show how the dependences
they create across instructions are purely probabilistic in a MBPTA-compliant processor and
do not change between analysis and deployment.

2 Background

Figure 1 Example of the pWCET curve.

Unlike previous analysis techniques that
provide a single WCET value per program,
PTA provides a distribution function that up-
per bounds the execution time of the program
under analysis, guaranteeing its execution
time only exceeds the corresponding execu-
tion time bound with a probability lower than
a given target threshold (e.g., 10−16 per activ-
ation). In this way the pWCET is defined as
the execution time bound with its associated
exceedance probability.

The timing behaviour of a program (and
equivalently that of individual processor in-
structions) is represented with an Execution
Time Profile (ETP). An ETP is the prob-
ability distribution function describing the
different execution times that the program can take (the latencies, for processor instructions)
and their associated probabilities. That is, the timing behaviour of a unit of execution (pro-
gram, instruction) can be defined by the pair of vectors (

→
l ,
→
p ) = {l1, l2, ..., lk}{p1, p2, ..., pk},

where pi is the probability the program/instruction having latency li with
∑k

i=1 pi = 1.
The ETP for a program (resp. instruction) may vary with the program input sets

that lead to different execution paths. Furthermore, the ETP for an instruction may vary



L. Kosmidis, T. Vardanega, J. Abella, E. Quiñones, and F.J. Cazorla 99

across multiple uses as execution events (e.g. previous accesses to memory) affect the state-
dependent timing behaviour of that instruction. In Annex I we analyse those aspects showing
that (1) the effect of past random events affect the ETP of an instruction in a probabilistic
manner, whereby PTA continue to be applicable; and (2) each PTA technique has its own
mechanisms to address the multiple execution path problem.

MBPTA requires the hardware to guarantee that each operation (at the granularity of
processor instructions or below) has its own ETP. However, unlike SPTA, which needs all
ETPs to be known, MBPTA only requires those ETPs to exist. In other words, if execution
times were collected by rolling a die, SPTA would need to know the number of faces of that
die, the value on those faces, and their individual probabilities of occurrence. Conversely,
MBPTA would derive pWCET estimates by simply rolling the die, that is to say, by executing
the program a given number of times, observing the resulting execution times and treating
them with Extreme Value Theory (EVT) [4, 8] to a trustworthy and tight upper bound to
the tail of the observed execution time distribution. By doing so, MBPTA provides pWCET
estimates for arbitrarily low target probabilities. Figure 1 shows a hypothetical result of
applying EVT to a collection of 1,000 observed execution times. The dotted line represents
the inverse cumulative distribution function (ICDF) derived from the observed execution
times. The continuous line represents the projection obtained with EVT.

2.1 Probabilistic Behaviour of Simple Processor Resources
Processor resources can be regarded as abstract components that process requests. Each
such request has a distinct service time or latency, which can either be fixed or variable.

Jitter-centric resource classification. We term jitter the difference between the best and
worst possible latency of any resource. Resources can be then classified depending upon
whether they exhibit jitter or not. Jitterless resources have a fixed latency, independent of
the input request or of the past history of service of the resource. Many hardware resources
in current processor architectures can be classified as jitterless. Other resources, for instance
cache memories, have a variable latency and hence are jittery resources; their latency depends
on their history of service, i.e., the execution history of the program, the input request, or a
combination of both. Jittery resources have an intrinsically variable impact on the WCET
estimate for a given program. The significance of this impact depends on the magnitude of the
jitter, the program under study, and the analysis method. A way to deal with jittery resources
in the absence of timing anomalies is to assume that all requests to those resources incur
the worst-case latency [9]. This is acceptable if the cumulative impact on the WCET from
assuming the worst-case jitter for the resource is deemed low enough by the system designer.
If taking the worst latency is not acceptable, then the timing behaviour of the resource must
be randomised. This is the case of the cache, since taking its worst latency would greatly
amplify the pWCET estimate. Several works propose time-randomising caches to reach both,
probabilistically analysable behaviour and high guaranteed and average performance [5, 6].

ETP and jitter. Jitterless resources are easy to model for all types of static timing analysis.
Building the ETP of a simple instruction that uses a single resource, requires knowing only
whether the resource in question is jitterless (information implicit in the instruction) or
whether the instruction is part of a sequence of instructions that must incur a delay when
using a jitterless resource (information implicit in the architecture). With proper path and
pipeline analysis, the types of the resources can be determined. Of course, measurements
obtained from program runs that only use jitterless resources will perfectly capture their

WCET 2013



100 MBPTA and Buffer Resources

Table 1 Code example with hit/miss probabilities for the instruction and data caches.

instruction instruction IL1 DL1
id type hit prob. miss prob. hit prob. miss prob.
i1 LD 1.0 0.0 0.9 0.1
i2 ADD 0.7 0.3 - -
i3 ADD 0.6 0.4 - -
i4 ADD 1.0 0.0 - -

constant impact on execution time. If the instruction accesses a jittery resource whose
worst-case latency is acceptable for the designer, forcing that resource to always take the
longest latency would be a simple yet effictive way to make the resource PTA-conformant:
the ETP of that resource would have a single latency value (its worst case) with probability
1, i.e. 100% probability of maximum latency, leading to a upper-bounded deterministic jitter.

Instructions may access multiple resources during their execution, and those resources can
be arranged in different manners, e.g. sequentially or in parallel. Under each arrangement,
the ETP of those resources can be properly combined to derive the ETP of the instruction.
To that end, several forms of convolution, ⊗ [3], can be used either adding latencies (se-
quential arrangements) or picking the maximum latency of the elements convolved (parallel
arrangements).

3 Complex Processor Resources

However, the taxonomy presented in previous section does not cover buffers, which in fact
are in widespread use in modern processor architectures. Buffers are used to temporarily
hold some information decoupling the timing of the sender and the receiving elements. If a
buffer is full it may create stalls that propagate backwards in the pipeline of the processor,
thus potentially increasing the execution time and affecting WCET.

3.1 Timing Behaviour of a Buffer in a Time-Randomised Architecture
For the sake of illustration, let us assume an architecture with two stages (fetch and execute)
that respectively access instruction and data caches (IL1 and DL1 for short). Caches deploy
random placement and random replacement [5], which enable computing a probability of
hit/miss for every access. In between both stages there is a 2-entry buffer (see Figure 2). In
case of hit in both caches and if the buffer is available, an instruction takes 3 cycles: Fetch
(F), buffer (b) and Execute (E).

Figure 2 Processor setup considered in Sec-
tion 3.1.

Further assume that we execute the pro-
gram with four instructions shown in Table 1,
whose hit and miss probabilities for each
cache are shown next to each instruction.
For this example, i1 always hits in IL1 and
has a 0.9 hit probability in DL1. The re-
maining instructions do not access DL1.

In the program fragment shown in
Table 1, i1 may introduce some delay in
the execution of the program when access-
ing DL1. In particular, if it misses in the
data cache it will cause a longer delay than if it hits. Note that the IL1 hit probability of i1
is 100%, hence always hitting in IL1. i2 and i3 may introduce some delay when accessing
IL1 only since they are not memory operations.



L. Kosmidis, T. Vardanega, J. Abella, E. Quiñones, and F.J. Cazorla 101

Figure 3 Potential chronograms based on the outcome of the different cache accesses. (<DL1-i1
IL1-i2 IL1-i3>) Grey rectangles show the cycles in which the processor is stalled due to the buffer.

In Figure 3 we depict the 8 different chronograms for each one of the combinations of hits
and misses in IL1 and DL1 of all 4 instructions. The x-axis shows the cycles of execution
while the y-axis shows each instruction. Each rectangle represents the stage in which each
instruction is in each cycle: ‘F’ fetch, ‘b’ buffer and ‘E’ execute. We use the vector <DL1-i1,
IL1-i2, IL1-i3> to describe the outcome of each DL1 and IL1 access, being H a hit and M
a miss. For instance <HHH> is the event ‘i1 hits in DL1’ and both ‘i2 and i3 hit in IL1’.
Similarly P(HHH) is the probability of that event to happen. Note that i1 and i4 have IL1
hit probability of 100% so for this reason IL1i1 and IL1i4 do not appear in the vector.

The key appreciation we do in the behaviour of the buffer is the following: given a set
of fixed initial conditions (e.g. empty state of the pipeline) each different combination of
probabilistic events (e.g. DL1 and IL1 accesses) leads to exactly one fully-deterministic
behaviour of the buffer. If we compare different outcomes of probabilistic events, we observe
that the buffer introduces a different number of stall cycles (0, 2, 4 or 6 cycles) for each
combination of probabilistic events. The number of stalls and the particular cycles in which
the stalls occur may repeat in different sequences of outcomes of the probabilistic events
occurring (for instance cases <M,H,M> and <M,M,H>). However, for a particular sequence
of random events the behaviour of the buffer is fully deterministic: all data dependences,
which are given by the sequence of instructions that are executed and their order. Given
that MBPTA works or a per-path basis, in each path the sequence of instructions executed
is known and fixed across runs of the same path.

The initial conditions can be caused to a fixed state by flushing the state of the resource
prior to its use. Alternatively, it might be possible to probabilistically determine the state

WCET 2013



102 MBPTA and Buffer Resources

left by previously executing code. We refer the reader to [7]. for more details.
In order to better understand this phenomenon, Figure 4 depicts, for the same example

shown before, the probability tree for the states of the processor in each cycle. In cycle 1 i1 is
fetched. In cycle 2 i1 is stored in the buffer while i2 is fetched. Accessing DL1 is a random
event that has two outcomes hit/and miss, and hence spawns into two possible probabilistic
states, which generates a new branch in the probability tree as shown in cycle 2.

In the left branch, during cycle 3, i1 accesses DL1 while i3 accesses IL1. Both are
probabilistic events that generate 4 new branches in the probability tree. Similarly, in the
right branch in cycle 3, i1 accesses DL1 generating two branches in the probability tree.

As shown, the variability in the execution time increases the number of potential probab-
ilistic states that we can reach. It is interesting noting that all the execution time variability
can only be introduced by probabilistic events.

In this diagram, the stalls due to the buffer are shown with grey boxes. Unlike caches that
introduce probabilistic variability, and hence generate new branches in the probability tree,
buffer stalls cannot produce probabilistic variability, instead buffer variability has no effect on
the probability of each execution time to occur. Therefore buffers cannot create probabilistic
jitter but simply propagate jitter or, in other words, given a sequence of outcomes for all
probabilistic events the delay of the buffer resources is fully deterministic.

Under MBPTA, the fact that buffer resources can affect the duration of the program
under each combination of probabilistic events but cannot affect the probability of each
combination, simplifies their analysis. As long as the execution time observations obtained
sufficiently cover, in probabilistic terms, the outcome of random events, it is also enough to
safely cover the effect of buffers.

3.2 Classification of Sources of Jitter
So far we regarded jitter as deterministic or probabilistic (the latter for time-randomised
resources). Yet, as shown above, the jitter caused by buffers does not fit into either category;
instead, it simply propagates the inbound jitter regardless of its nature.

With this insight, we classify the potential sources of jitter into 6 groups depending on
the combination of two factors: (i) whether the jitter is produced solely by the event under
consideration (no history dependence) or by the combination of previous events and the
current one (history dependence); and (ii) whether the jitter is deterministic, probabilistic or
simply propagated regardless of its source. We omit two groups for which we did not find
any existing resource to fit in.

This new classification of hardware resources will help analysing whether a given resource
or processor architecture is MBPTA-compliant. To that end, for each group we identify how
resources in that group can be used in the context of MBPTA.

No history dependence + deterministic jitter. This could be the case of a resource whose
latency does not depend on the sequence of requests it has received, but on the data of
each request. For instance, the floating-point unit in some processors is affected by the
particular operands (data) being operated. For this type of resources we typically enforce
the unit to experience always its maximum latency as explained before, which can be
done deploying a simple hardware mechanism called the worst-case mode [9].
History dependence + probabilistic jitter. This is the case of a time randomised cache [5].
The sequence of events between two consecutive accesses to the same data together with
the initial cache state, determine the hit/miss probability of that access. Time randomised
caches have been shown to be analysable with MBPTA [5].



L. Kosmidis, T. Vardanega, J. Abella, E. Quiñones, and F.J. Cazorla 103

Figure 4 Processor Stage Graph.

History dependence + deterministic jitter. This is the case of a deterministic cache
implementing modulo placement and LRU replacement. Events may experience different
latencies depending on previous history: for a given initial state and a sequence of events
their latency is always the same. This type of resources is not analysable by MBPTA in
general unless the factors that influence the jitter are fully under control, so that it can
be known whether the observations taken to feed MBPTA cover the worst behaviour of
those factors of influence. In general, the only easy way to enable the use of this type of
resources in the context of MBPTA is using the worst-case mode.

History dependence + jitter propagation. This is the case of a hardware buffer. A
particular instruction may spend a different number of cycles in a buffer depending
on previous events. However, as explained before, buffers do not create new jitter by
themselves. Instead, they only propagate deterministically the effect of the jitter induced
by other resources. If such jitter is probabilistic, then the stalls induced by buffers occur
also with a given probability and so they are analysable with MBPTA.

WCET 2013



104 MBPTA and Buffer Resources

3.3 Empirical Verification

Figure 5 Processor setup considered in Section 3.3.

Although we have described how
buffers meet the MBPTA require-
ments if they are already fulfilled
by the processor in use without buf-
fers, in this section we verify em-
pirically that this claim holds by
testing that execution times in such
a processor are independent and
identically distributed, as required
by MBPTA. To that end we ap-
ply the experimental methodology
shown in [4].

We consider a pipelined pro-
cessor with in-order fetch, dispatch
and retirement of instructions (see
Figure 5). Fetch and execution
stages are equipped with first level
instruction and data cache memories respectively (IL1 and DL1 caches for short). Instruction
and data translation look-aside buffers (ITLB and DTLB) are also in place. Buffers across
pipeline stages are deployed to mitigate stalls. Similarly, a store buffer is provided to allow
store instructions to retire quickly without stalling the pipeline1. Both IL1 and DL1 size are
4KB 8-way 16-byte line caches. Both caches implement random placement and replacement
policies [5]. DTLB and ITLB are 16-way fully associative, and page size is 1KB. The latency
of the fetch stage depends on whether the access hits or misses in the IL1 and ITLB: only
if the access hits in both its latency is 1-cycle, and 100 cycles otherwise. After the decode
stage, memory operations access the DL1 and DTLB and their behaviour is analogous to
that of IL1 and ITLB. The remaining operations have a fixed execution latency (e.g. integer
additions take 1 cycle).

For our experiments we use the EEMBC Autobench benchmark suite [10] that reflects the
current real-world demand of automotive systems. The fact that, unlike EEMBC, real-world
programs normally have multiple paths does not invalidate the conclusions of our analysis:
this is so because MBPTA considers individual paths.

In order to test independence we use the Wald-Wolfowitz independence test [2]. We use
a 5% significance level (a typical value for this type of tests), which means that absolute
values obtained after running this test are below 1.96 if there is independence, otherwise
are higher. For identical distribution, we use the two-sample Kolmogorov-Smirnov identical
distribution test [1] as described in [4]. For a 5% significance level, the outcome provided by
the test should be above the threshold (0.05) to indicate identical distribution, otherwise
non-identical distribution.

Table 2 shows the results of both tests for all EEMBC benchmarks, when running each
benchmark as many times as needed by MBPTA (up to 1,000 times per benchmark in our
evaluation). As shown, both tests are passed in all cases.

1 A store buffer is a particular incarnation of buffer resources.



L. Kosmidis, T. Vardanega, J. Abella, E. Quiñones, and F.J. Cazorla 105

Table 2 Independence and identical distribution tests results.

Benchmark a2time aifftr aifirf aiifft cacheb canrdr
Indep. test 0.90 0.10 0.27 0.11 0.51 0.21

Ident. distr. test 0.64 0.93 0.84 0.70 0.40 0.39
Benchmark iirflt puwmod rspeed tblook ttsprk
Indep. test 0.11 0.37 0.33 0.47 0.63

Ident. distr. test 0.80 0.89 0.27 0.93 0.73

4 Conclusions

In this paper we show that buffer resources do not create any jitter on their own but, instead,
they simply propagate inbound jitter regardless of the nature of it. With this, we prove that
buffers do not break PTA requirements, hence can be used in PTA-conforming processors
with no change. We also provide a comprehensive classification of hardware resources and
how they can be considered in the context of PTA.

Acknowledgements

The research leading to these results has received funding from the European Community’s Sev-
enth Framework Programme [FP7/2007-2013] under the PROARTIS Project (www.proartis-
project.eu), grant agreement no 249100. This work was partially supported by EU COST
Action IC1202: Timing Analysis On Code-Level (TACLe). This work has also been partially
supported by the Spanish Ministry of Science and Innovation under grant TIN2012-34557 and
the HiPEAC Network of Excellence. Leonidas Kosmidis is funded by the Spanish Ministry of
Education under the FPU grant AP2010-4208. Eduardo Quiñones is partially funded by the
Spanish Ministry of Science and Innovation under the Juan de la Cierva grant JCI2009-05455.

WCET 2013



106 MBPTA and Buffer Resources

A Annex I. Meeting MBPTA requirements

Next, we show how the existence of an ETP for each instruction in a program is a necessary
and sufficient condition to make a program and a target platform analysable with MBPTA.
To that end and without loss of generality we assume a processor architecture in which core
operations (e.g., MUL and ADD) take a fixed latency and memory operations (e.g., LD and
ST) access a fully-associative random-replacement cache [5].

Let us assume a fully-associative cache withW ways and random replacement2. An approx-
imation to the probability of hit of a given access Aj in the sequence < Ai B1 B2, ..., Bk Aj >,
where Ai and Aj access the same cache line and all Bl access other cache lines, is given by
[5]:

PhitAj
(S) =

(
W − 1

W

)l=k∑
l=1

PmissBl

(1)

In the equation, W−1
W is the probability of one access to evict Aj, while the exponent

gives a measure of the number of evictions Aj can suffer depending on the probability of
each {Bl}l∈(1..k) to miss in cache. We observe that Aj depends on execution history, i.e.,
{Bl}l∈(1..k). In particular, the probability of miss of {Bl}l∈(1..k) affects the probability of
hit/miss of Aj. In a given run, the fact that a given Bl hits/misses in cache affects the
probability of hit of Aj in that run. For instance the probability of hit of Aj in a run in
which B1 misses is different from another run in which B1 hits. Hence, under each history
of outcomes for {Bl}l∈(1..k), Aj may have a different hit probability.

We focus on two scenarios as depicted in Figure 6. In the first one, Figure 6(a), the whole
sequence of accesses is in the same basic block, while in the second one, Figure 6(b), the
sequence of accesses is spread across several basic blocks.

(a) single basic (b) branch structure
block (bb) (several bb)

Figure 6 Cache access sequences
and distribution over different basic
blocks.

1) Single path. When all accesses in a sequence affecting
a given access Aj are in the same basic block, they affect
Aj in each run systematically, since all {Bl}l∈(1..k) are
present in each run. Under each history of outcomes
Aj may have a different probability of hit, and hence
a different ETP.

Interestingly, hit/misses affecting Aj’s probability
of hit are random events by construction for a cache
using random replacement and random placement. This
introduces a probabilistic variation in the probabilities
of each execution time of Aj. Hence, if enough runs are
made the observed frequencies of hit/miss for each Bi

and Aj will converge to their actual hit/miss probability.
As a consequence, Aj can be regarded as having an
ETP, where the probability of hit of Aj is that resulting
from executing the program an infinite number of times.
In the example in Figure 6(a), for a cache with W=8 ways the ETP of Aj is as follows:
{lh, lm}{0.745, 0.255}.

Note that, if the variability that {Bl}l∈(1..k) causes on Aj is not probabilistic, which
happens for instance if cache is not randomised (e.g., if modulo placement is used), the hit

2 A similar analysis can be done for set-associative caches [5].



L. Kosmidis, T. Vardanega, J. Abella, E. Quiñones, and F.J. Cazorla 107

Table 3 ETPs of Aj under each history of outcomes.

B1-3 out- No. of Prob. of that ETP of (Aj) under
come hist. Evicts. outcome that outcome history

000 3 0.35 {lh, lm}{0.670, 0.330}
001 2 0.35 {lh, lm}{0.766, 0.234}
010 2 0 -
011 1 0 -
100 2 0.15 {lh, lm}{0.766, 0.234}
101 1 0.15 {lh, lm}{0.875, 0.125}
110 1 0 -
111 0 0 -

event for {Bl}l∈(1..k) is not random, so we could not derive an ETP for Aj disallowing the
use of MBPTA.

Results. In the example in Figure 6(a) there is a dependence between Aj and the history
of outcomes of B1, B2 and B3. In particular, for a given run the number of misses incurred
by B1-B3 determines the number of random evictions carried out between Ai and Aj. The
second column in Table 3 shows the number of evictions carried out under each outcome
history for B1-B3. The third column shows the probability of that outcome based on the
probability of miss of B1-B3. Finally, the fourth column shows the ETP of Aj assuming a
fully-associative cache of 8 ways. With enough runs, the final miss probability for Aj can be
computed as the addition of the probability of each possible history of outcome of B1-B3
times the probability of Aj to miss under that outcome:

P m
Aj =

No.Outcomes∑
k=1

ProbOutcomek
× P m

AjOutcomek
(2)

that in our example results in: P m
Aj = (0.330 × 0.35) + (0.234 × 0.35) + (0.234 × 0.15) +

(0.125× 0.15)=0.251, that accurately matches the value computed with Equation 63, where
P h

Aj = (7/8)(0,7+1+0,5). Hence the ETP for Aj is: {lh, lm}{0.749, 0.251}.
Therefore, although the probability of each latency of an instruction depends on its

execution history – the set of outcomes of previous accesses in our case – the fact that
factors of influence on its execution history are random, and hence they occur with a given
probability, makes it possible to derive an ETP for the instruction. If enough samples are
taken from the timing behaviour of Aj during analysis time, the observed behaviour is
representative of its behaviour during deploy time. This is so because the factors of influence
on Aj execution time have a random nature, so for a higher number of runs the observed
frequencies of each event converge to the actual probability of the event.

2) Multiple paths. In the situation depicted in Figure 6(b) we observe that the hit probability
of Aj depends on the particular path followed. Hence, the ETP of Aj is affected by: the path
followed and the history of hit/misses. If Aj is reached through the left path, hence under

3 Note that minor discrepancies are expected given that hit/miss events are not independent among them,
so the hit probability computed in Equation 1 is an approximation. In fact, there are only two ways to
derive the actual hit/miss probabilities: (i) Performing an infinite number of runs and measure actual
probabilities, or (ii) Computing the probability of each particular cache state left by the sequence of
hits and misses for previous accesses, and accumulating the probabilities for those cache states where
the current cache access would result in a hit/miss.

WCET 2013



108 MBPTA and Buffer Resources

the sequence < Ai B1 Aj > it has higher probability of hit than if it is reached through
the right path under the sequence < Ai B2 B3 Aj >: ETPleft = {lh, lm}{0.911, 0.089}
and ETPright = {lh, lm}{0.818, 0.182}. Differently to the single-path case, now there is
one ETP per path leading to Aj. MBPTA provides pWCET estimates for the set of paths
exercised with the input data used during the testing phase. It is also the case that MBPTA is
insensitive to the frequency each path is exercised as long as each path is exercised a minimum
number of times [4]. Overall, having for each instruction and path-leading-to-that-instruction
one ETP preserves the i.i.d. property in the execution time of each path. MBPTA [4] samples
the execution time observations obtained from each path to obtain an i.i.d. sample that
covers the execution time observed for all paths.

Results. In [4] it is shown how MBPTA works for multipath analysis: If enough execution
time observations are obtained under each path, the effect that Aj can suffer from any of the
Bl in each path is captured in probabilistic terms. This is a sufficient condition for MBPTA
to provide safe upper-bounds.

References
1 Sarah Boslaugh and Paul Andrew Watters. Statistics in a nutshell. O’Reilly Media, Inc.,

2008.
2 J.V. Bradley. Distribution-Free Statistical Tests. Prentice-Hall, 1968.
3 F.J. Cazorla, E. Qui nones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat, E. Berger,

J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis, C. Lo, and D. Maxim. Proartis:
Probabilistically analysable real-time systems. ACM TECS, 2012.

4 L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kosmidis, J. Abella,
E. Mezzeti, E. Quinones, and F.J. Cazorla. Measurement-based probabilistic timing ana-
lysis for multi-path programs. In ECRTS, 2012.

5 L. Kosmidis, J. Abella, E. Quinones, and F.J. Cazorla. A cache design for probabilistically
analysable real-time systems. In DATE, 2013.

6 L. Kosmidis, C. Curtsinger, E. Quinones, J. Abella, E. Berger, and F.J. Cazorla. Probab-
ilistic timing analysis on conventional cache designs. In DATE, 2013.

7 L. Kosmidis, E. Quinones, J. Abella, T. Vardanega, and F.J. Cazorla. Achieving timing
composability with measurement-based probabilistic timing analysis. In In IEEE Interna-
tional Symposium on Object/component/service-oriented Real-time distributed computing
(ISORC), 2013.

8 Samuel Kotz and Saralees Nadarajah. Extreme value distributions: theory and applications.
World Scientific, 2000.

9 M. Paolieri, E. Quinones, F.J. Cazorla, G. Bernat, and M. Valero. Hardware support for
WCET analysis of hard real-time multicore systems. In ISCA, 2009.

10 Jason Poovey. Characterization of the EEMBC Benchmark Suite. North Carolina State
University, 2007.

11 Wilhelm R. et al. The worst-case execution-time problem overview of methods and survey
of tools. ACM Transactions on Embedded Computing Systems, 7:1–53, May 2008.


	Introduction
	Background
	Probabilistic Behaviour of Simple Processor Resources

	Complex Processor Resources
	Timing Behaviour of a Buffer in a Time-Randomised Architecture
	Classification of Sources of Jitter
	Empirical Verification

	Conclusions
	Annex I. Meeting MBPTA requirements

