
Formal Modelling and Verification of Pervasive
Computing Systems
Yan Liu

National University of Singapore
yanliu@comp.nus.edu.sg

Abstract
Pervasive computing (PvC) systems are emerging as promising solutions to many practical prob-
lems, e.g., elderly care in home. However, such systems have long been developed without
sufficient verification. Formal methods, eps. model checking are sound techniques for complex
system analysis regarding correctness and reliability requirements. In this work, a formal model-
ling framework is proposed to model the general the system design (e.g., concurrent communic-
ations) and the critical environment inputs (e.g., human behaviours). Correctness requirements
are specified in formal logics which are automatically verifiable against a system model. Further-
more, Markov Decision Processes (MDPs) are adopted for modelling probabilistic behaviours
of PvC systems. Three problems are analysed which are overall reliability prediction based on
component reliabilities, reliability distribution w.r.t., how reliable should the component be to
reach an overall reliability requirement and sensitivity analysis w.r.t., how does a component re-
liability affect the overall reliability. Finally, the usefulness of our approaches are demonstrated
on a smart healthcare system with unexpected bugs and system flaws exposed.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases System Analysis, Formal Modelling and Verification, Reliability Analysis

Digital Object Identifier 10.4230/OASIcs.FSFMA.2013.61

1 Introduction

Many problems arise with the proliferation of ageing population in all industrialised societies,
e.g., creating enormous costs for elders’ intensive care. The context-aware and self-adaptive
PvC [11] system enables their independent living with little supervision [7]. Therefore PvC
systems are safety critical and should be verified before deployment. However, traditional
techniques such as simulation and testing are expensive and not complete. Formal methods
instead, especially model checking [4] techniques are promising solutions for their expressive
system modelling and exhaustive verification. Thus, we propose to apply these techniques
to formally analyse PvC systems.

Motivation. PvC systems are inherently complex making it a challenging task to perform
system analysis. They are usually composed of a physical layer with sensors to monitor the
environment changes; a middleware layer to manage and reason about the sensed contexts
with predefined rules; an application layer to make adaptations, as shown in Fig. 1a. Failures
happen with various reasons like a wrong reminder could be caused by a sensor failure or
an incorrect rule [5]. In practice, such faults could only be exposed during deployment as
it is impossible to capture all scenarios at development phase. Thus, there is a need of a
systematic and complete analysis approach. Furthermore, a PvC system is probabilistic due
to limited reliability of its components [8]. It is essential to manage the system reliability at

© Yan Liu;
licensed under Creative Commons License CC-BY

1st French Singaporean Workshop on Formal Methods and Applications 2013 (FSFMA’13).
Editors: Christine Choppy and Jun Sun; pp. 61–67

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.FSFMA.2013.61
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

62 Formal Modelling and Verification of Pervasive Computing Systems

an acceptable rate. Besides, the system behaviours are nondeterministic for unpredictable
user activities. Thus, we choose MDPs-based verification technique for reliability analysis.

Our contributions are two-fold. Firstly, a formal modelling framework is proposed with
modelling patterns for common features of PvC systems, e.g., compositional architecture
and concurrent interactions. Critical requirements of stakeholders are specified as desirable
properties (safety and liveness) and testing purposes (conflict cases). Case study on a smart
healthcare system revealed multiple bugs such as conflict reminders. Secondly, reliability
models of PvC systems are constructed using MDPs upon which three general problems are
investigated: 1) “What is the overall system reliability given the component reliabilities?”’
refers to reliability prediction. 2) “What is the reliability required on components for an
expected reliability on overall system?” refers to reliability distribution. 3) “What is the most
critical part contributes to the system reliability?” refers to sensitivity analysis. Experiments
on AMUPADH system shows that the overall system reliability is below 50%.

2 A running example – AMUPADH

AMUPADH [2] is a smart healthcare system providing assistance to elderly people who
have difficulties in remembering activities of daily living (ADLs). It is deployed in a nursing
home, PeaceHeaven1 for a six-month real life trial. The workflow in Fig. 1b consists of:

Step 1: Data Acquisition. Multiple sensors are deployed to monitor the environment
such as when someone turns on the shower tap, the shake sensor is triggered and a
Unstationary signal is sent to the system.
Step 2: Context Processing and Reasoning. Sensor signals are interpreted to
low-level contexts like “Tap turned on” in the inference engine, Drools2. By evaluat-
ing predefined reasoning rules (written in first order logic), high-level contexts such as
“Showering too long” are generated.
Step 3: Reminder Service Rendering. If an abnormal activity is recognised, the
system will render a reminder service to help the elder. For example, a bluetooth speaker
will play a voice reminder upon a error message. A number of devices like a TV or iPad
are used to prompt reminders.

3 Correctness Analysis of PvC Systems

A Formal Modelling Framework. According to the general structure shown in Fig. 1a,
we propose to model the system design and environment input separately. Modeling En-
vironments: PvC systems are user centric, thus modelling the user behaviours is essential.
However it is difficult because user behaviours are unpredictable. As suggested by domain
experts, such systems usually target at a determined group of activities whose sequences
remain unpredictable. In concurrent modelling languages, nondeterministic choices can be
used to enumerate the sequences, an example is illustrated in Fig. 2a. At a location, each
possible move of the user is modelled as a choice. An unrealistic scenario may arise that
the model allows an activity to be performed repeatedly e.g., the user sits on the bed again
and again without standing up. To eliminate such cases, we need a constraint model e.g., a
bed model (Fig. 2b, no more sitting is allowed once the bed is occupied). Modelling System

1 Located at 9 Upper Changi Road North, Singapore, 507706. Tel: +65-65465678.
2 Drools Expert: http://www.jboss.org/drools/drools-expert.html

Y. Liu 63

Pervasive Computing System Environment

Sensors
Pressure Sensor
RFID Reader
Vibration Sensor
Accelerometer

Middleware
Context Manager
Reasoning Engine
Adaptation Manager

Applications
Reminder Services
Actuators
Meeting Services
Alarm Services

User Behaviors
Start Projector
Cook
Sleep on Bed
Make a Phone Call
Have Lunch
Play a Game

Facilities
Projector
Microwave Oven
Bed
Mobile Phone
Chair
Tablet PC

BUS

BUS

(a) Common Architectures (b) An example PvC System, AMUPADH

Figure 1 Introduction of Pervasive Computing (PvC) Systems.

OSstart

BR

Bed

enterBedroomexitBedroom

sitOnBed

sitUp,
lay-
Down

leaveBed

(a) User Behaviours

Empstart

Sit

Ly

sitOnBedleaveBed

layDownsitUp

leaveBed

(b) Bed Behavior

Empty

Occupied

Reasoning
Engine

sitOnBed.ileaveBed

layDown

sitUp

port!Empty

port!Lying

port!Sitting

(c) Bed Pressure Sensor

Inv Stop

res?cmd.rid.pid

[cmd==Act] [cmd==Deact]

(d) Service Rendering

Figure 2 Modelling a PvC System.

Design: In PvC systems, communication and cooperation of components are most critical.
The sensing behaviour of sensors is a concurrent happening with the detectable event in
the environment. Thus, sensor models need to be paralleled with environment model such
that they are synchronised on common events. As shown in Fig. 2a, 2b and 2c, a sitOnBed
event will trigger three models to progress simultaneously. Additionally, the synchronised
channel models the message sending from sensors to reasoning engine in negligible time [6].
In the middleware, context managing and reasoning are performed. They are modelled
as data operations on global context variables and conditional statements respectively. At
the application layer, services are rendered upon decoding of the messages. As shown in
Fig. 2d, the reminding system is modelled using channel communications, shared variables
and guarded processes. Compose A Complete Model: Finally, component models should be
composed using sequential, interleave or parallel patterns according to their relations.

Formal Specification of Critical Requirements. Critical requirements from the stakehold-
ers are identified as desirable properties and testing purposes. Deadlock freeness (DF)
and Guaranteed reminder services (GR) properties are desirable which respectively re-
quires the system has no dead state where no more actions can be performed and ser-
vices should be provided at the right moment for the right user. For instance, a re-
minder should be sent to a patient whenever he is wandering somewhere is formalised as
“�(Wandering → ♦RemindLeave)”. It is also helpful to test the common problems i.e.,

FSFMA’13

64 Formal Modelling and Verification of Pervasive Computing Systems

Table 1 Results of Correctness Analysis Experiment.

Property Result # States # Transitions Time(s) Bug?
DFComplete – – – OOM No
DFBedroom True 1.43M 2.04M 815 No
DFWashroom True 10.8M 15.8M 7045 No
GRUsingWrongBed(UWB) True 1.60M 2.43M 1945 No
GRTapNotOff (TNO) False 0.07M 0.131M 39 Yes
GRWanderInWashroom(WiW) False 2.19M 4.53M 12414 Yes
GRShowerNoSoap(SNS) False 0.832M 1.66M 729 Yes
GRShowerTooLong(STL) False 4314 5150 1.6 Yes
GRSitBedTooLong(SBTL) True 1.58M 2.38M 1913 Yes
Inconsistency True 572 745 0.3 Yes
Conflict Reminder True 2446 3036 1.11 Yes
False Alarm True 0.01M 0.02M 6.1 Yes

system inconsistency and conflicting/ false services. Both of them can be specified as reach-
ability properties that are verified by checking if there is a state where system knowledge
contradicts with actual environment and a state where two conflict services are invoked/
where a service is rendered for a wrong user respectively.

Case Study on AMUPADH System. In the experiment, we implement the modelling
framework in CSP# language [9] and run verification by PATmodel checker [10]. In Table 13,
violation of guaranteed reminder(GR) properties reveals a design flaw i.e., inefficient update
of the patient’s location. An inconsistent state is found i.e., the patient’s location context
variable remains to be inside washroom even after he has left. The case study shows the
usefulness of our approach in analysing PvC system with the counterexamples help in ef-
ficient system debugging. It is also observed that the state space reaches the limits of the
model checker. Thus, a future direction is to explore state space reduction techniques.

4 Reliability Analysis using MDPs

System Modelling in MDPs. MDPs allow us to model both probabilistic and nondetermin-
istic behaviours. In general, nondeterministic choice is adopted when no definitive inform-
ation is given for resolving the choice. In Fig. 3a, it is used to model transitions between
sensors because of the randomness of user behaviours. States are abstract nodes of sensors,
software components and network devices associated with a target scenario while double
circled nodes are goals. In PvC systems, there are two types of transitions which are the
happen-before relation among sensors and message passing directions among the others.
Labels denote the reliability values of a node or a transition which are usually provided by
system engineers estimated from exemplar system runs.

Reliability Analysis Approaches. It consists of three parts, Fig. 4 (a) shows reliability pre-
diction which calculates the reachable probability, Pr(M, s) from an initial state to a goal
state s on an MDP model M . A reliability range i.e., max. and min. reachability is pro-
duced since multiple reachable paths (aka. schedulers) are created due to nondeterminism.
Reliability distribution calculation (Fig. 4 (b)) takes two inputs: (1) a reliability requirement
R on the overall system; (2) a parameterised MDP model M with weights wix (denotes the

3 The test bed is a PC with Intel Xeon CPU at 2.13GHz and 32GB RAM. OOM stands for out of
memory.

Y. Liu 65

start

rfid, 0.75 pir, 0.98 shakeT, 0.99

shakeS, 0.99

shakeS, 0.99

shakeT, 0.99

Zigbee 0.9

mini
server

1

rule
engine 1router

0.95

BlueTooth, 1

wifi

1

bridge

0.98

3G

1 SmartPhone, 1

PC, 1

iPad, 1

0.8

1 1

1

1

1

1

1
1 1

1

1

0.7

1

0.6

0.8

1 1

0.75

0.95

(a) Tap-Not-Off (TNO) Model

start

pressure, 0.98rfid, 0.75

rfid, 0.75pressure, 0.98

Zigbee

0.9
mini
server

1

rule
engine 1

BlueTooth, 1

router

0.95

TV, 1

3G

1

SmartPhone, 1

iPad, 1

wifi

1

bridge

0.98PC, 1

1

0.8

0.8

1

1 1 1

1

1
0.7

1
0.6

1

0.8

1

1

0.75

0.95

(b) Using-Wrong-Bed (UWB) Model

Figure 3 MDP models for Scenario TNO and UWB.

Step 2
Reachability

Checking

Step 1
Obtain an MDP

Components
Reliability

System Reliability

(b)

Step 1
Obtain a

Parameterized MDP
System

Reliability
Requirements

Step 2
Parameterized

 Reachability Checking

Distributed
Reliability on Each

Component

Step 3
Synthesize Reliability

Requirement for Components

A System
Architecture

 Legend
 Input/output of steps

 Input/output data

(a)

(c)

Step 1
Obtain a

Parameterized MDP

Step 2
Parameterized

 Reachability Checking

Reliability
Sensitivity of
Component i

Step 3
Obtain Differentiation Δi

A Component i
For Sensitivity

Analysis, And All
Components

Reliability

Figure 4 Workflow: (a) reliability prediction; (b) reliability distribution; (c) sensitivity analysis.

reliability of component x has a weight wi). Given a scheduler δ, we can obtain the system
reliability (i.e., Pr(M, s)) as a polynomial function of x only. Then the Newton’s method
is used to calculate the lower bounds on x for finitely many schedulers [1] among which the
maximum value gives us the minimum requirement on component reliability. Sensitivity
analysis is shown in Fig. 4 (c). The sensitivity si of the ith component’s reliability Ri is
defined as a partial derivation (denoted by f w.r.t. Ri) of system reliability R, denoted as
∆i = δf(R1,R2,...Ri,...Rn)

δRi
. In this work, we investigate one component each time that the

formula is then reduced to ∆i = δV (init)
δRi

(V (init) is obtained via reliability distribution).

Case Study on AMUPADH system. Six scenarios that need reminders are modelled sim-
ilarly with Fig. 3. These MDPs models are then analysed using the model checker RaPid [3].
Reliability of these reminders ranges from 0.25 to 0.4 (Table 2a) which is quite low. It is
because the RFID readers depend on the wearable tags that the patients throw away from
time to time. Furthermore, Table 2b shows the network nodes need a reliability 0.913 for all
the scenarios to achieve a system reliability of 0.4. For the requirement of 0.5, it is impossible
to distribute. It’s because the system cannot differentiate who is sitting on the bed that the
SBTL reminder is sent to the wrong person half of the time. As for sensitivity analysis, we
demonstrate one scheduler in UWB scenario (highlighted path in Fig. 3b). Fig. 5a suggests
improvement on RFID and Wi-Fi nodes gains higher system reliability than Zigbee node.
Furthermore, when their reliability reaches 0.7, improving Wi-Fi nodes is more efficient
than others (Fig. 5b). These experiments give a good estimation and useful guidance on
improving the system reliability, especially in budget concerned systems.

FSFMA’13

66 Formal Modelling and Verification of Pervasive Computing Systems

Table 2 Experiments of Reliability Prediction and Distribution Analysis.

(a) Reliability Prediction
Rel. UWB SBTL SNS STL TNO WiW

Scedulers 32 24 32 16 64 16
Max 0.374 0.419 0.367 0.371 0.371 0.371
Min 0.296 0.246 0.290 0.292 0.290 0.292
Time <1 ms

(b) Reliability Distribution
Req. Nodes UWB SBTL SNS STL TNO WiW
0.4 Network 0.854 0.904 0.913 0.911 0.911 0.911

Sensor 0.886 0.938 0.941 0.923 0.923 0.923
0.5 Network 0.914 - 0.965 0.963 0.963 0.963

Sensor 0.996 - 0.995 0.994 0.994 0.994
Time(s) 3.45 2.68 3.86 1.87 11.00 2.35

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Component Reliability Ri

S
ys

te
m

 R
el

ia
bi

lit
y

rfid
wifi
zigbee

(a) Distribution

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Component Reliability Ri

∆i
 =

 δ
R

/δ
R

i

rfid

wifi

zigbee

(b) Sensitivity

Figure 5 Using Wrong Bed (UWB)- Sensitivity Analysis on Nodes.

5 Conclusion

In this paper, we demonstrate the approaches of formally analysing PvC systems using model
checking techniques, i.e., a formal modelling framework is proposed for correctness analysis;
an MDPs-based approach for reliability analysis w.r.t., reliability prediction, distribution
and sensitivity analysis. In future, we intend to develop algorithms to alleviate the state
space explosion problem.

Acknowledgements. Supervisor: Dr. Jin Song Dong.

References
1 C. Baier and J. Katoen. Principles of Model Checking. The MIT Press, 2008.
2 J. Biswas, M. Mokhtari, J. S. Dong, and P. Yap. Mild dementia care at home - integrating

activity monitoring, user interface plasticity and scenario verification. In ICOST, pages
160–170, 2010.

3 L. Gui, J. Sun, Y. Liu, Y. Si, J. S. Dong, and X. Wang. Combining model checking and
testing with an application to reliability prediction and distribution. In ISSTA, Accepted
2013.

4 E. M. Clarke Jr., O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 1999.
5 V. Lee, Y. Liu, X. Zhang, C. Phua, K. Sim, J. Zhu, J. Biswas, J. S. Dong, and M. Mokhtari.

Acarp: Auto correct activity recognition rules using process analysis toolkit (pat). In
ICOST, pages 182–189. 2012.

Y. Liu 67

6 Y. Liu, X. Zhang, J. S. Dong, Y. Liu, J. Sun, J. Biswas, and M. Mokhtari. Formal analysis
of pervasive computing systems. In ICECCS, pages 169 –178, 2012.

7 J. Nehmer, M. Becker, A. Karshmer, and R. Lamm. Living assistance systems: an ambient
intelligence approach. In ICSE, pages 43–50, 2006.

8 M. Satyanarayanan. Pervasive computing: Vision and challenges. IEEE Pers. Commun.,
8:10–17, 2001.

9 J. Sun, Y. Liu, J. S. Dong, and C. Q. Chen. Integrating specification and programs for
system modeling and verification. TASE, pages 127–135, 2009.

10 J. Sun, Y. Liu, J. S. Dong, and J. Pang. Pat: Towards flexible verification under fairness.
In CAV, pages 709–714, 2009.

11 M. Weiser. The computer for the 21st century. Scientific American, 265(3):66–75, 1991.

FSFMA’13

	Introduction
	A running example – AMUPADH
	Correctness Analysis of PvC Systems
	Reliability Analysis using MDPs
	Conclusion

