
Improving System-Level Verification of SystemC
Models with SPIN∗

Martin Elshuber, Susanne Kandl, and Peter Puschner

Institute of Computer Engineering
Vienna University of Technology
Treitlstr. 3, 1040 Wien, Austria
{martine,susanne,peter}@vmars.tuwien.ac.at

Abstract
SystemC is a de-facto industry standard for developing, modelling, and simulating embedded
systems. As embedded systems become more and more integrated into many aspects of human
lives (e.g., transportation, surveillance systems, . . . ), failures of embedded systems might cause
dangerous hazards to individuals or groups. Guaranteeing safety of such systems makes formal
verification crucial. In this paper we present a novel approach for verifying SystemC models
with SPIN. Focusing on system-level verification we reuse compiled and executable code from
the original model and embed it into the verifier generated by SPIN. In contrast to most other
approaches, which require a complete model transformation, in our approach the transformation
focuses only on the relevant parts of the model while leaving functional blocks untransformed.
Our technique aims at reducing the state vector size managed by the verifier of SPIN, at improv-
ing state exploration performance by avoiding unnecessary model transformation steps, and at
concentrating on verifying properties that emerge from the composition of multiple functional
units.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases SystemC, SPIN, Promela, System-Level Verification

Digital Object Identifier 10.4230/OASIcs.FSFMA.2013.74

1 Introduction

Nowadays computer systems are more and more introduced into many aspects of human
lives. Especially when they contain safety-relevant features, failing may cause dangerous
hazards. Consequently, formally verifying that certain properties of the system hold under
all circumstances becomes a central task in system design.

With the growing complexity of state-of-the-art computer systems, manual proofs often
turn out to be infeasible and error prone. To circumvent this problem, tools have been
developed that analyse models at different abstraction levels (e.g., system specification,
system implementation, ...) in order to formally prove that system properties match the
desired behaviour of the developed product.

SystemC: SystemC is a de-facto industry standard for modelling systems at system level,
and can be used to model software and hardware aspects in a single language. SystemC
is an add-on library to C++. SystemC extends C++ by constructs similar to Hardware

∗ This work has been partially funded by the ARTEMIS Joint Undertaking and the National Funding
Agency of Austria for the project VeTeSS under the funding ID ARTEMIS-2011-1-295311.

© Martin Elshuber, Susanne Kandl, and Peter Puschner;
licensed under Creative Commons License CC-BY

1st French Singaporean Workshop on Formal Methods and Applications 2013 (FSFMA’13).
Editors: Christine Choppy and Jun Sun; pp. 74–79

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.FSFMA.2013.74
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


M. Elshuber, S. Kandl, and P. Puschner 75

Description Language (HDL) languages and a scheduler. Such models can be compiled to
native machine code for most of the existing hardware architectures, thus allowing fast and
accurate simulation of the system.

State-of-the-art verification: Although simulation is a proper method for detecting many
bugs in a system, it cannot be used to verify whether a property of a system holds for every
possible system state or not. Formal verification, on the other hand, guarantees the validity
of a property for all possible system states.

Amongst others, we emphasise two reasons that make it difficult to formally verify
SystemC models: (1) the constructs introduced by SystemC use a scheduler to execute
and schedule processes activated on specific events. (2) SystemC allows to freely use C++

constructs like class inheritance, library functions, or Standard Template Library (STL), ...
State-of-the-art techniques address these problems by transforming the model to another

language and use existing tools. This transformation requires (ad 1) to model the scheduler
explicitly, thus increasing the overall state space, and (ad 2) to restrict the SystemC model
to a specific subset of SystemC (e.g., prohibiting class inheritance).

This paragraph gives a short summary of existing verification tools. The SystemC
category in the 2nd International Competition on Software Verification (SV-COMP) 2013 [2]
provided the SystemC benchmarks already transformed to C. Cimatti et al. [6] describe the
transformation of SystemC to C, thus reducing SystemC verification to software verification.
The implementation presented in this work uses the tool Pinapa [11]. Pinapa is a predecessor
of PinaVM [10], the tool we are referring to in this work. The SystemC category of
SV-COMP 2013 was won by UFO [1], a framework for software verification working on
LLVM Bitcode (LLVM BC). Second and third place were assigned to two CPAchecker-based
verifiers [3]. Also worth to mention are Bounded Model Checking (BMC) [4] approaches
used for example by CBMC [7]. Scoot [5] is an extension to CBMC allowing SystemC
verification. SPIN [8] is a popular tool for proving properties of asynchronous distributed
systems specified in the language Promela. PAT (Process Analysis Toolkit) [12] is a modular
toolkit for verification and simulation of concurrent systems.

A glance at our approach: In system-level verification we concentrate on the composability
aspects of systems consisting of several functional blocks. Assuming that each functional
block works as specified, we are interested in verifying properties that emerge from the
composition of those blocks. The approaches mentioned above aim to exhaustively verify the
system with all implementation aspects included.

Our approach solely transforms the interaction of functional blocks into the formal
language Promela and executes code within a functional block as a single transition. Based
on a model analysis done by PinaVM at LLVM BC level, we split the model into several
functions which are embedded into the SPIN verifier and executed atomically. With this
technique we can use the model checking capability of SPIN on a model that represents the
relevant aspects of the system, whereas details within single blocks of the system are hidden.
Thus it is possible to focus on the verification of system properties without considering
functional details which may easily cause a state space explosion during the verification. In
[13] a similar approach for multi-threaded C programs, where SPIN orchestrates the search,
is proposed.

The remainder of this paper is structured in four further sections. Section 2 gives a more
detailed overview on existing technology reused during this work. Section 3 describes the
verification process of our approach. In the following sections we discuss the advantages and
disadvantages of the concept and conclude with a summary of the paper.

FSFMA’13



76 Improving System-Level Verification of SystemC Models with SPIN

2 Prerequisites

This section gives a brief introduction to existing technology (namely SystemC , SPIN, and
PinaVM ) we build our approach on top.

SystemC: SystemC is a library on top of C++. For hardware aspects SystemC modules
are defined. They contain input-, output-, bidirectional ports for communication, and
processes acting on these ports. Software aspects can be implemented using classic C++.
The important fact is that SystemC processes are executed non-preemptively. The effect is
that all modifications to the system state semantically take place at the instant when the
process preempts itself. As already mentioned above, state-of-the-art verification of SystemC
models often requires a transformation from SystemC to another language, and to model the
scheduler separately.

SPIN: SPIN is an on-the-fly model checker, which can be used to run and verify models
described in the language Promela. The interesting part is the way SPIN verifies a model.
It first translates the Promela model into a C verifier which has to be compiled and run to
execute the verification. In the verifier the Promela model is translated into a transition
system represented as a switch/case statement. The verifier then searches the transition
system for errors and reports paths if a problem was found. To allow backtracking the state
vector is stored and compared against states which have already been investigated. SPIN
also implements various performance features, like partial order reduction, and techniques
reducing the memory requirements for storing the state vector. Promela provides constructs
for in-lining C-Code into the verifiers transition system.

PinaVM: PinaVM is a tool, developed by Verimag [10], able to analyse the structure
SystemC models. It detects which SystemC modules are created and how they interact with
each other. Thus simplifying the translation into arbitrary languages. PinaVM roughly
works in several phases:
Phase 1: Use LLVM to create an LLVM BC of the model.
Phase 2: Analyse the created functions in Phase 1 and find out where each SystemC construct

is used.
Phase 3: Execute the models initialisation code generated in Phase 1 detecting the instanti-

ated SystemC classes.
Phase 4: In this instant it is known what the SystemC model looks like (instantiated modules;

Phase 2), how the interact (instantiated ports; Phase 2) and which code parts
manipulate the structures (Phase 1). This information is passed to a back-end,
which transforms the model to the desired format usable by existing model checker
infrastructure.

PinaVM also provides a back-end for Promela including efficient encodings [9] for SystemC
constructs like wait, notify, ... The Promela back-end translates every instruction of the
LLVM BC into a corresponding Promela construct. We, on the other hand, only transform
the SystemC constructs to Promela, and in-line the rest of the code directly into the SPIN
verifier.

3 Our Approach

Our verification process is based on the given infrastructure described in Section 2. We plan
to use PinaVM for analysing SystemC code, to add our own transformation technique, and
to use SPIN for verifying the resulting Promela model. The difference to PinaVM using the



M. Elshuber, S. Kandl, and P. Puschner 77

Promela back-end, is that we do not translate the whole model to Promela. We only model
the SystemC constructs in Promela and include calls to the compiled SystemC model. These
calls also modify the verifier’s state vector.

SystemC Model (Represented in LLVM BC)

PinaVM

Analyse
Architecture

Identify
SystemC Constructs

Create
Transition Functions

Identify
Global- & Local States

Compile
Transition Functions

Create
Promela Companion

Create
Verifier C-Code

Compile & Link Verifier

Figure 1 From SystemC to the SPIN verifier executable.

Figure 1 depicts the steps ex-
ecuted to create a verifier bin-
ary with our approach. The gray
blocks denote the steps that can
be done by existing tools. These
are SPIN, PinaVM or LLVM. Im-
plementations for the white boxes
are currently missing and are sub-
ject for the work to be done during
the thesis. Most steps (except Cre-
ate Verifier C-Code and Compile &
Link Verifier) are done by PinaVM
or an extension of it. PinaVM itself
is based LLVM BC and uses LLVM libraries to handle the code.

The output of PinaVM to the back-end is the LLVM BC, enriched with information on
SystemC constructs, as well as the system architecture instantiated during model initialisation.
The text below describes the actions taken within each block:

During Analyse Architecture the initialisation code of the model is analysed by
PinaVM in order to detect the kind, number, and interaction channels and the SystemC
modules.
During Identify SystemC Constructs all functions are analysed by PinaVM to detect
and mark SystemC constructs such as wait and notify, but also write and read.
Create Transition Function: The SystemC model is split into transition functions
callable by the verifier. These functions are compiled separately and finally linked to the
verifiers binary.
The original functions are divided into code regions, such that each code region either
contains no SystemC construct at all, or it consists solely of a single SystemC construct.
Each code region that contains no SystemC construct is converted into a separate function.
This function returns a reference to the next code region to be executed, and it receives
parameters according to the values read or modified during execution.
The resulting functions have the same semantics as the original functions when called in
a proper order. Furthermore each function returns at each point the SystemC scheduler
might preempt the execution of the original thread.
Identify Global- & Local States: Depending on the model the states of the system
have to be identified. Promela distinguishes three kinds of state variables. Global state
variables are instantiated only once, Local state variables are instantiated per process
and thus can be stored multiple times in the state vector, and finally hidden states are
never stored in the state vector, thus they cannot be restored on backtracking.
In our approach variables that are read and written solely within a code region, can be
totally hidden from the verifier and are stored on the function’s stack or optimised into
a processor register. Variables that are written in a code region, but possibly read by
another code region have to be instantiated somewhere in the verifier. To decide which
type of variable has to be used, control flow analysis has to be done.
A variable can be declared hidden, if and only if all statements between (and including)
writing and reading are executable in an atomic manner. Because SystemC processes

FSFMA’13



78 Improving System-Level Verification of SystemC Models with SPIN

are non-preemptive, this is the case if no blocking SystemC construct can be executed
between writing and reading.
The rest of the variables have to be stored in the state vector, and are global or local.
Variables are declared local if they are declared locally in the SystemC process parenting
the code region. They are declared globally otherwise. Member variables of SystemC
classes can also be declared globally, because from the architecture analysis phase it is
known how many objects are instantiated.
Create Promela Companion: The Promela Companion is the actual input file to
SPIN. It encodes

SystemC constructs similar to [10, 9],
definitions of all hidden, local and global state variables accessible by other Promela
constructs like LTL formulas, and
calls to the transition functions as well as the control flow among them (goto statements,
and C in-lining).

Finally the verifier executable can be generated by using SPIN to create the verifier
C-Code and LLVM to compile the transition functions, the verifier, and link all together.

4 Discussion

The main aim is to create a source-code driven verification system, allowing us to verify
properties on system level while disregarding details within functional blocks. A requirement
of the implementation of each functional block is that it is free of memory bugs such as buffer
under- and overflow, access violations, and so on.

Furthermore, the structure of the model architecture has to be static. This means that
no dynamic SystemC constructs must be created, except during the initialisation code. This
requirement stems from they way PinaVM works.

SystemC verification is often driven by translating the model into plain C or similar
languages and by adding a scheduler to the translated model. This has the disadvantage of
introducing additional states and thus adding complexity to the verification process. With
our approach we reuse at least parts of the process scheduler of SPIN, thus aiming at an
improvement of the verification process.

We also expect improvements in the memory requirements, by reducing the size of the
state vector. The expected effect is mainly caused by hiding states from the verifier, thus
disallowing it to backtrack to system states that are irrelevant for system-level verification.
Assume a model does some computation inside a loop, whereas the result is passed to other
functional blocks solely after the loop. The intermediate results (e.g., temporary variables)
do not have to be included in the system states. Thus we expect an improvement in both
the state vector size and the number of states that have to be investigated. The effect of the
latter one is expected to be smaller as partial order reduction also can be done by SPIN.

By avoiding the complete transformation of the model from C++ to Promela and then
back to C again, we think that we can improve the search speed of the verifier, and thus
increase the number of states investigated per second. This is because each transition in a
Promela model is selected by a switch statement. The size of the switch statement and the
number of entries within it is expected to be reduced.

So far we implemented a prototype that automatically extracts the transition functions
of simple SystemC models. First experiments showed that the size of the state vector is
reduced and the number of explored states is kept at a similar amount compared to the
Promela backend of PinaVM.



M. Elshuber, S. Kandl, and P. Puschner 79

5 Conclusion

In this paper we presented an idea for a novel approach to improve the formal verification
process on system-level of a SystemC model. The SystemC model is transformed into
a formal automaton model by interpreting the SystemC constructs and assigning precise
semantics to them. By a straight-forward transformation the whole functionality of the
SystemC model is represented in the resulting formal model with the consequence that all the
complexity of the system description is part of the verification process. In our approach the
model transformation is realized in such a way that functional details within a block of the
system model are hidden and only the aspects of the model that are relevant for system-level
verification are considered for the verification process. This principle should enhance the
verification process by saving time and memory within the model checking process by SPIN.

References
1 Aws Albarghouthi, Yi Li, Arie Gurfinkel, and Marsha Chechik. Ufo: A Framework for

Abstraction- and Interpolation-Based Software Verification. In CAV, pages 672–678, 2012.
2 Dirk Beyer. Second Competition on Software Verification - (Summary of SV-COMP 2013).

In TACAS, pages 594–609, 2013.
3 Dirk Beyer and M.Erkan Keremoglu. CPAchecker: A Tool for Configurable Software Verific-

ation. In Computer Aided Verification, volume 6806 of Lecture Notes in Computer Science,
pages 184–190. Springer Berlin Heidelberg, 2011.

4 Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu.
Bounded Model Checking, 2003.

5 Nicolas Blanc, Daniel Kroening, and Natasha Sharygina. Scoot: A Tool for the Analysis
of SystemC Models. In Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 4963 of Lecture Notes in Computer Science, pages 467–470. Springer Berlin
Heidelberg, 2008.

6 A. Cimatti, A. Micheli, I. Narasamdya, and M. Roveri. Verifying SystemC: A software
model checking approach. In Formal Methods in Computer-Aided Design (FMCAD), 2010,
pages 51–59, 2010.

7 Edmund Clarke, Daniel Kroening, and Flavio Lerda. A Tool for Checking ANSI-C Pro-
grams. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2004), volume 2988 of Lecture Notes in Computer Science, pages 168–176. Springer, 2004.

8 Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineer-
ing, 23:279–295, 1997.

9 Kevin Marquet, Jeannet Bertrand, and Matthieu Moy. Efficient Encoding of System-
C/TLM in Promela. In Proceedings of the International MultiConference of Engineers
and Computer Scientists 2011, pages 1039–1044, 2011.

10 Kevin Marquet and Matthieu Moy. PinaVM: A SystemC front-end based on an executable
intermediate representation. In Proceedings of the tenth ACM international conference on
Embedded software, EMSOFT ’10, pages 79–88. ACM, 2010.

11 Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz. Pinapa: an extraction
tool for SystemC descriptions of systems-on-a-chip. In Proceedings of the 5th ACM inter-
national conference on Embedded software, EMSOFT ’05, pages 317–324. ACM, 2005.

12 Jun Sun, Yang Liu, JinSong Dong, and Jun Pang. PAT: Towards Flexible Verification
under Fairness. In Computer Aided Verification, volume 5643 of Lecture Notes in Computer
Science, pages 709–714. Springer Berlin Heidelberg, 2009.

13 Anna Zaks and Rajeev Joshi. Verifying Multi-threaded C Programs with SPIN. In Pro-
ceedings of the 15th international workshop on Model Checking Software, SPIN ’08, pages
325–342. Springer-Verlag, 2008.

FSFMA’13


	Introduction
	Prerequisites
	Our Approach
	Discussion
	Conclusion

