
Modelling and Reasoning about Dynamic
Networks as Concurrent Systems
Yanti Rusmawati1 and David Rydeheard2

1 PhD student, School of Computer Science, The University of Manchester
Oxford Road, Manchester M13 9PL, UK
rusmaway@cs.man.ac.uk

2 School of Computer Science, The University of Manchester
Oxford Road, Manchester M13 9PL, UK
david@cs.man.ac.uk

Abstract
We propose a new approach to modelling and reasoning about dynamic networks. Dynamic
networks consist of nodes and edges whose operating status may change over time (for example,
the edges may be unreliable and operate intermittently). Message-passing in such networks
is inherently difficult and reasoning about the behaviour of message-passing algorithms is also
difficult. We develop a series of abstract models which allow us to focus on the correctness of
routing methods. We model the dynamic network as a “demonic” process which runs concurrently
with routing updates and message-passing. This allows us to use temporal logic and fairness
constraints to reason about dynamic networks. The models are implemented as multi-threaded
programs and, to validate them, we use an experimental run-time verification tool called RuleR.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases dynamic networks, temporal logic, concurrent systems

Digital Object Identifier 10.4230/OASIcs.FSFMA.2013.80

1 Introduction

We are increasingly reliant on highly dynamic and complex computing systems. In communic-
ation, dynamic networks are widespread these include the: Internet, peer-to-peer networks,
mobile networks and wireless networks. Networks may have edges down, nodes may move,
or there may be routing instability due to the changing of networks. These systems are very
difficult to analyse, and their behaviour and correctness are hard to formulate and establish.
To undertake formal reasoning about such systems, abstract models are essential in order to
separate the general reasoning about message routing and updating of routing tables from
the details of how these are implemented in particular networks. We show we can establish
correctness of dynamic networks at suitable levels of abstraction.

At its simplest level, a network consists of a collection of nodes connecting to each other
through edges. In a message-passing network, each node communicates by exchanging mes-
sages in an attempt to deliver messages to their destinations. In a dynamic network, nodes
and/or edges may become inoperative or operative. This representation of the dynamics of a
network clearly models unreliable networks. It also models mobile and wireless networks by
considering edges as possible communication links and operative edges as the links established
at a particular time.

The two problems of message-passing in high-level models [2, 3, 4] and self-stabilising sys-
tems [5] in dynamic networks have been widely studied [1]. Numerous models and algorithms

© Yanti Rusmawati and David Rydeheard;
licensed under Creative Commons License CC-BY

1st French Singaporean Workshop on Formal Methods and Applications 2013 (FSFMA’13).
Editors: Christine Choppy and Jun Sun; pp. 80–85

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.FSFMA.2013.80
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


Y. Rusmawati and D. Rydeheard 81

have been proposed but proofs of correctness (especially liveness) have tended to need the
assumption that changes in networks eventually cease, i.e., they are no longer dynamic.

Here, the correctness of dynamic networks can be established without the termination
requirement. We develop the correctness of dynamic networks in terms of ensuring that: even
when routing tables do not reflect the actual network connections, the routing information
is correct sufficiently often; messages eventually get delivered; the network is sufficiently
connected for sufficiently often; and there is no persistent livelock. The main contributions
of this paper are: modelling dynamic networks using concurrent systems; factorisation of
proof; and run-time verification of the implementation of dynamic network models.

We introduce a new approach to proof techniques for dynamic networks in which using
ideas from concurrent systems [11] to analyse message-passing. To do so, we use Linear
Temporal Logic and formulate concepts of fairness which capture network properties. In order
to express dynamic networks as concurrent systems [6], we consider the dynamic changes
to be the result of a “demonic” process which runs concurrently with routing updates and
message-passing. By the correctness of dynamic networks, we mean that, under certain
conditions, all messages will eventually be delivered. By formulating networks as concurrent
systems, we can establish correctness for networks that never cease to change. By modelling
at this level of abstraction, we are able to prove the properties of networks independently
of the mechanisms in actual networks and therefore provide “a factorisation” of proofs of
correctness for actual dynamic networks. We have implemented two abstract models as
concurrent systems and then adapted a run-time verification systems RuleR [8], to analyse
execution traces to test whether model instances satisfy the modal correctness for message
delivery.

2 Abstract models

Consider a graph G = (N, E) where N is a set of nodes and E is a set of edges. This provides
the basic connectivity of a network. To introduce dynamics (for edges) we consider the edges
to be in an on or off state. Therefore we introduce edge status L, which changes value
whenever a disruption occurs for an edge. Routing update information is determined by L.
There is a set of messages M, where each message is at a node defining a function M → N.

We develop dynamic network models as concurrent systems. We introduce two models.
Firstly, Model 1, as shown in Figure 1, is a two-process model with instantaneous updates,
in which the routing tables are always correct. The two processes are a “demonic” Disrupter
(which disrupts the connectivity of dynamic networks) and an Organizer (which attempts to
deliver messages). In Model 2, we introduce a more realistic routing table update, adding a
third process called Updater, as shown in Figure 2. Here, the routing tables may not be correct
at any time but routing is still possible. The Disrupter process can disrupt the connection
of an edge (so it becomes ‘on’ or ‘off’). The Updater runs concurrently recalculating the

Figure 1 Two processes
dynamic network model.

Figure 2 Three processes
dynamic network model.

FSFMA’13



82 Modelling and Reasoning about Dynamic Networks as Concurrent Systems

routing update information to obtain actual available paths. If there is an available path,
the Organizer process runs concurrently can send a message to the next node along a path.

3 Proving correctness of message-passing in dynamic networks

We use discrete-time Linear Temporal Logic (LTL) [10] to describe the properties of execution
traces of this multi process systems. Some of the key properties which enable us to reason
about network correctness are expressed as fairness constraints [9] in concurrent process
models. We use strong fairness at the process level to express, for example, the relative
frequency of network change to message motion and of routing table updates to network
change.

Our aim is to formulate and prove the correctness of message-passing using the two
abstract models above. We need to prove that, under certain conditions, all messages
eventually reach their destination. We introduce a colouring of message according to their
states. This is inspired by Gries [13] and Dijkstra [12]’s reasoning about on-the-fly garbage
collection. Here Black means a message is at its destination; green means a message is
progressing along the route; and red means no route is allocated at present. Notation (with
φ being any formula): � φ means φ always holds in every state; ♦ φ means φ eventually
holds in some state; © φ means φ holds in the next state; pathX(n1, n2) means that there is
an available path between node n1 and node n2; P(n1, n2) being a set of paths between node
n1 and node n2; path(m, p) means that message m is allocated path p; rt(n1, n2, p) being
the routing table entry saying p is a path from n1 to n2; and moved(m, z) means that the
location of message m is changed to position z.

For Model 1, the modal properties we need are:
1. Paths exist infinitely often:

P1: ∀ n1, n2 ∈ N. �♦ pathX(n1, n2)

2. Red messages eventually become green (messages are looked at sufficiently often):

P2: ∀m ∈ M. � ((�♦ pathX(at(m), dest(m))) ∧ red(m)
⇒ ♦ (green(m) ∧ (∃p ∈ P(at(m), dest(m)). path(m, p))))

I Lemma 1.

∀m ∈ M. � ((P1 ∧ P2 ∧ red(m)) ⇒ ♦ green(m))

Proof. Trivial: by modus ponens using P1 and P2. J

Notice the formulation expressing the properties of dynamic networks as trace properties,
some in terms of fairness of process interaction, others as connectivity properties of graphs.

Now we prove that all messages reach their destination under suitable conditions. We
need to establish the following:
(A.) messages eventually move, which means that the Organizer should access each

message sufficiently often, and when it is accessed, it can be moved. Therefore, we modify
P2 to P2′′ as follows to include a fairness requirement.

P2′′: ∀m ∈ M. � ((�♦ pathX(at(m), dest(m)))⇒ ♦ (black(m) ∧
(red(m) ⇒ ©(green(m) ∧ (∃p ∈ P(at(m), dest(m)). path(m, p)))) ∧
(∃p ∈ P(at(m), dest(m)). (green(m) ∧ path(m, p) ∧ at(m) 6= dest(m) ⇒
(up(1st_elmt(p)) ∧ ©(green(m) ∧ path(m, tail_of_path(p)) ∧
at(m) = next_node(p))))) ∧ ((green(m) ∧ at(m) = dest(m)) ⇒ © black(m))))



Y. Rusmawati and D. Rydeheard 83

We also need:
(a) Finiteness of paths, which we define as:

FP: ∀m ∈ M. ((green(m) ∧ ¬♦ red(m)) ⇒ (♦ black(m)))

which means that if a message m is green and there is no potential to become
red eventually then message m will eventually become black. This can only hold if the
Organizer checks message m infinitely often (P2′′).

(b) No livelock. Here we define Livelock-free as:

LF: ∀m ∈ M. ¬ �♦ (green(m) ⇒ ©red(m)),

i.e a green message becomes red (without an assigned route) only finitely often.
(B.) each message eventually reaches its destination.

We show that for each m there is a point in the trace at which � (green(m) ∨ black(m))
hence ♦black(m).

I Lemma 2.

∀m ∈ M. � (∃p ∈ P(at(m), dest(m)). ((P1 ∧ P2′′ ∧ Lemma 1 ∧ green(m)
∧ path(m, p)) ⇒ ♦ moved(m, z)))

Proof. Suppose message m has not reached the destination. We then follow from the proof
of Lemma 1, and by modus ponens on P1 and P2′′, hence we have Lemma 2. J

I Lemma 3.

∀m ∈ M. � ((FP ∧ LF ∧ Lemma 1 ∧ Lemma 2
∧ P1 ∧ P2′′ ∧ green(m) ∧ ∃p ∈ P(at(m), dest(m)). path(m, p)) ⇒ ♦black(m))

Proof. By Lemma 1 and the definition of Livelock-free, and by modus ponens on P1 and
P2′′, as well as on Lemma 2 and finiteness of path definition, the message is ♦black(m).
Hence we have Lemma 3. J

By Lemma 1, 2, and 3, we have

I Theorem 1. ∀m ∈ M. � ((P1 ∧ P2 ∧ P2′′ ∧ FP ∧ LF ∧ red(m)) ⇒ ♦black(m)).

For Model 2, we need an additional property which expresses that the routing table is
populated sufficiently often. This is formulated as follows.

P3: ∀ n1, n2 ∈ N. � ((�♦ pathX(n1, n2)) ⇒ ♦ (∃p ∈ P(n1, n2). rt(n1, n2, p)))

We also need to modify P2 to P2′ since paths for messages are obtained from the routing table,
replacing pathX(n1, n2) with rt(n1, n2, p). We modify P2′ to P2′′′ to extend the fairness
requirement which includes the routing tables when the message m is at its position. The
model also needs routing tables which are correct sufficiently often. In Model 2, the condition
P2′′ is replaced by P2′′′, then finally we have a similar theorem. The proofs proceeds as for
Model 1.

FSFMA’13



84 Modelling and Reasoning about Dynamic Networks as Concurrent Systems

Figure 3 Run-time verification on the implementation of dynamic network models.

Figure 4 Dynamic network model,
property P2.

Figure 5 Dynamic network model
with possible livelock.

4 Experimental validation: Using run-time verification

We now consider the following question. Suppose a dynamic network is implemented as a
concurrent system using multiple Java threads. When do the network properties (expressed
as properties of execution traces of concurrent systems as above) hold and therefore, by the
proofs above, all messages are eventually delivered?

There are several approaches. We could prove the implementation manually or we could
use a verification technique such as model checking. Here we introduce a new approach
based on run-time verification (RV) [7], as pictured in Figure 3. Whether or not a system
satisfies the properties required for message delivery depends on interprocess interaction
and the parameters involved in this. Run-time verification is particularly suitable here
as it is the relationship of these parameters with the execution traces that determine the
correctness of the dynamically allocated interprocess interaction. We have implemented
Model 1 and Model 2, and use an experimental run-time verification tool RuleR, which
has been developed by Barringer et al. [8]. RuleR is a rule-based run-time verification
with dynamic rules. This is an experimental use of RV on concurrent models. Some trace
properties required are properties properly of infinite traces. We show how to use RV to
examine finite traces and relate this to the overall network behaviour.

Consider a result of Model 1, as Figure 4 shows, in which Disrupter process and Organizer
process running concurrently (denoted as “Disrupter ‖ Organizer”, for example, “4 ‖ 1” means
that the Disrupter process sleep four times longer than the Organizer process) for 60 msecs.
Property P2 (i.e messages are looked at sufficiently often) is depicted as a percentage of
Organizer actions within the traces (called “%AllOrg”), which is recorded by RuleR. The
percentage of messages reach their destination is depicted as “%Msg”. “%PathX” is the
percentage of path that exist. The result shows that: if path existence occurs infinitely often



Y. Rusmawati and D. Rydeheard 85

and the messages are looked at sufficiently often, then the number of messages eventually
reach their destinations are increased. This result supports the proof of Lemma 1, 2 and 3,
hence the Theorem 1. As Figure 5 shows, when the traces are longer (time = 180 msecs),
the relation between all conditions (fairness and properties) engenders more confidence and
the messages eventually get delivered.

5 Conclusion

We have shown that, by introducing models of message-passing dynamic networks as concur-
rent systems, we can use standard proof techniques for concurrent systems based on temporal
logic and properties such as fairness to establish correctness (i.e the eventual delivery of all
messages) of dynamic networks at an appropriate level of abstraction. Moreover, we have
employed techniques recently developed in run-time verification in order to check whether
implemented models of dynamic networks satisfy the required temporal properties for correct
message delivery.

References
1 Kuhn, F. and Oshman, R. Dynamic networks: models and algorithms. SIGACT News,

ACM, Vol. 42, pp. 82-96, 2011
2 Kuhn, F., Lynch, N. and Oshman, R. Distributed computation in dynamic networks. Pro-

ceedings of the 42nd ACM symposium on theory of computing ACM, 2010, pp. 513-522
3 O’Dell, R. and Wattenhofer, R. Information dissemination in highly dynamic graphs. Pro-

ceedings of the 2005 joint workshop on foundations of mobile computing. ACM, 2005, pp.
104-110

4 Clementi, A. and Pasquale, F. Information Spreading in Dynamic Networks: An Analyt-
ical Approach. Nikoletseas, S. and Rolim, J. D. (eds.) Theoretical Aspects of Distributed
Computing in Sensor Networks. Springer Berlin Heidelberg, 2010, pp. 591-619

5 Chen, Y. and Welch, J.L. Self-stabilizing mutual exclusion using tokens in mobile ad hoc
networks. Proceedings of the 6th international workshop on Discrete algorithms and meth-
ods for mobile computing and communications. ACM, 2002, pp. 34-42

6 Magee, J. and Kramer, J. Concurrency: State Models and Java Programs. Wiley, 2006
7 Leucker, M. and Schallhart, C. A brief account of runtime verification. The Journal of Logic

and Algebraic Programming, 2009, Vol. 78(5), pp. 293 - 303
8 Barringer, H., Havelund, K., Rydeheard, D. and Groce, A. Rule Systems for Runtime

Verification: A Short Tutorial. Bensalem, S. and Peled, D. (eds.), Runtime Verification.
Springer Berlin Heidelberg, Vol. 5779, pp. 1-24, 2009

9 Kwiatkowska, M. Survey of fairness notions. Information and Software Technology, 1989,
Vol. 31(7), pp. 371-386

10 Emerson, E.A. Temporal and Modal Logic. J. van Leeuwen, ed. Handbook of Theoretical
Computer Science. Elsevier, 1990, Volume B: Formal Models and Semantics, pp. 995-1072.

11 Owicki, S. and Gries, D. An axiomatic proof technique for parallel programs I. Acta Inform-
atica, Vol. 6(4). Springer-Verlag, 1976, pp. 319-340.

12 E.W. Dijkstra, Leslie Lamport, A.J. Martin, and E.F.M. Steffens. On-the-Fly Garbage Col-
lection: An Exercise in Cooperation. Communications of the ACM, Vol. 21(11), November
1978. pp. 966-975.

13 Gries, D. An exercise in proving parallel programs correct. Commun. ACM, 1977, Vol. 20,
pp. 921-930

FSFMA’13


	Introduction
	Abstract models
	Proving correctness of message-passing in dynamic networks
	Experimental validation: Using run-time verification
	Conclusion

