
Recoverable Robust Timetable Information ∗

Marc Goerigk†1, Sascha Heße2, Matthias Müller-Hannemann2,
Marie Schmidt3, and Anita Schöbel3

1 Fachbereich Mathematik
Technische Universität Kaiserslautern, Germany
goerigk@mathematik.uni-kl.de

2 Institut für Informatik
Martin-Luther-Universität Halle-Wittenberg, Germany
sascha.hesse@student.uni-halle.de, muellerh@informatik.uni-halle.de

3 Institut für Numerische und Angewandte Mathematik
Georg-August Universität Göttingen, Germany
{m.schmidt,schoebel}@math.uni-goettingen.de

Abstract
Timetable information is the process of determining a suitable travel route for a passenger. Due
to delays in the original timetable, in practice it often happens that the travel route cannot be
used as originally planned. For a passenger being already en route, it would hence be useful to
know about alternatives that ensure that his/her destination can be reached.

In this work we propose a recoverable robust approach to timetable information; i.e., we aim
at finding travel routes that can easily be updated when delays occur during the journey. We
present polynomial-time algorithms for this problem and evaluate the performance of the routes
obtained this way on schedule data of the German train network of 2013 and simulated delay
scenarios.
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1 Introduction

In timetable information, the following problem is typically considered: Given a timetable,
an origin and destination, and an earliest departure time, find the “best” route leading from
origin to destination; see [21] for a survey. An obvious criterion to evaluate the quality of
a route is its duration (or travel time); however, many other criteria have been suggested,
as, e.g., the number of changes or the ticket costs [22, 14, 4]. Also the reliability of a
path has been considered as a means to account for delays [14, 20, 22]. In [13], decision
trees for passengers’ travels under uncertainty are constructed. In a recent work [17, 18],
approaches from the field of robust optimization were considered. Robust optimization is
an approach to handle uncertainty in optimization problems that dates back to the 70s [24].
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2 Recoverable Robust Timetable Information

During the late 90s, it received new attention through the work of Ben-Tal, Nemirovski
and co-authors [2, 3], that sparked a manifold of concepts and algorithms; among them the
Γ-approach of [5], adjustable robustness [1], light robustness [16], or recoverable robustness
[19, 25]. In our work we focus on recoverable robustness. This is a two-stage concept: Given
a set of recovery algorithms, a solution is considered as being robust when for every scenario
it can be “repaired” using an recovery algorithm to become feasible. An application to
the uncertain shortest path problem has been considered in [6], where the set of recovery
algorithms is given by exchanging up to a constant K arcs of the path. Related work can be
found in [23], where a given path is updated to a new solution by either using or removing
k arcs. Further applications of recoverable robustness include shunting [10], timetabling
[11, 25, 19], platforming [9, 25, 19], the empty repositioning problem [15], railway rolling
stock planning [8] and the knapsack problem [7]. In some previous work [17, 18], robust
passenger information has been considered. It was shown that finding a strictly robust
travel route which hedges against any possible delay scenario is an NP-hard problem and for
practical application much too conservative. As an alternative, a robustness concept based
on light robustness has been proposed. However, it is assumed that a passengers stays on
the planned route whatever happens. In contrast to this, we allow that a passengers changes
his/her route even if he/she already started the journey.

Contributions. In timetable information, as in many other problems, the passenger does
not know the scenarios from the beginning of his/her trip, but learns the current scenario
en route. This aspect has been neglected in previous work. In this paper, we describe
a recoverable robustness approach to the timetable information problem which takes into
account that the actual scenario is learned at some time point en route, and that the travel
route may be updated from this point on. For such a recovery, all possible alternative routes
may be chosen. The goal is to include this recovery step in the planning phase, i.e. to find
a travel route which may be recovered for every delay scenario from a given uncertainty set.

Furthermore, our approach can deal with complicated delay scenarios, as they occur in
public transportation where source delays cause the dropping of transfers and changes in
the durations of driving and waiting activities. We develop polynomial-time algorithms that
can handle any finite set of scenarios and test them on delay scenarios that are generated
by propagating delay in transportation systems.

Using large-scale data modeling the train network of Germany, we show the effectiveness
of our approach.

Overview. The remainder of this work is structured as follows: We shortly recapture the
nominal timetable information problem, and introduce our recoverable robust model in Sec-
tion 2. We present a polynomial-time label-setting algorithm in Section 3, and demonstrate
its applicability to German railway data provided by Deutsche Bahn AG in Section 4. We
conclude the paper and discuss further research directions in Section 5.

2 Model and Notation

2.1 Timetable information
In the following we refer to train timetables for the sake of simplicity; however, all results can
be transferred to any other type of public transport. The starting point for our considerations
is a directed acyclic graph, the so-called event-activity network (EAN) N = (E ,A) which is
regarded over a finite time horizon. Nodes E represent events in the train schedule: They
can either be
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arrival events Earr (modeling the arrival of a certain train at a certain station), or
departure events Edep (modeling the departure of a certain train from a certain station).

Events are connected by directed arcs, the activities, which can be either
driving activities Adrive (modeling the trip of a train from a departure event to an arrival
event),
waiting activities Await (modeling the time a train spends between an arrival and a
departure event for passengers to embark and disembark),
or transfer activities Atrans (modeling passenger movements from one arrival event to
another departure event within the same station).

Each event i ∈ E has a schedule time πi ∈ IN; furthermore, to compute how delays spread
within this network (see Section 4.2), we may assume that for each activity (i, j) ∈ A a
minimal duration lij is known, and thus a buffer time bij := πj−πi−lij . We assume that the
initial timetable π is feasible, i.e., πj − πi ≥ lij , hence all buffer times are nonnegative. The
timetable information problem consists of finding a path within the event-activity network
from one station to another, given an earliest departure time s. More precisely, we introduce
two virtual events, namely one origin event u and one destination event v, corresponding to a
given origin station su and a destination station sv. The origin event u is connected by origin
activities Aorg with all departure events at station su taking place not earlier than s, while
all arrival events at station sv are connected with v by destination activities Adest. We need
to find a path P from u to v in N such that the nominal travel time tnom(P ) := πlast(P )− s
on P is minimal, where last(P ) denotes the last arrival event on P .

2.2 Delays
Paths with minimal travel time in the EANmay be vulnerable to delays, i.e., in case of delays,
the originally planned path may take much longer than planned, or planned transfers may
even become infeasible if the connecting train does not wait for a delayed feeder train.

The aim of this paper is to give robust timetable information, i.e., to find paths in the
EAN which are less vulnerable to delays. The delays observed in a public transportation
system originate from source delays da which can occur on the driving and waiting activities
a of the train. These delays are partially absorbed by buffer times on the activities, however,
they propagate through the network to subsequent events along driving and waiting activities
and – if a transfer is maintained – along the corresponding transfer activity. We assume
that each transfer is assigned a waiting time which specifies how long the connecting train
will wait for the feeder train. If the delay of the feeder train exceeds the waiting time, the
connecting train will depart on time. See Section 4.2 for details on our delay propagation
method. We denote by Atransfer(d) the set of maintained transfer activities in scenario d and
denote the delay network N (d) := (E ,A(d)) with A(d) := Adrive ∪Await ∪Atransfer(d). The
updated timetable is denoted by π(d). In this paper, we make the (simplifying) assumption
that at some point in time, the passenger learns about all delays and can adapt (’recover’)
his/her travel route accordingly. We partition the events of the networks in a set Uξ of
events where no delay has occurred so far and the passenger has not learned about future
delays and a set V ξ where he/she knows all delays. We require the following properties of an
information scenario ξ = (N ξ, πξ, Uξ, V ξ) consisting of a delay network N ξ, a disposition
timetable πξ on this network, and a partition (Uξ, V ξ) of the events E :

u ∈ Uξ, v ∈ V ξ,
if πξj > πj , j is in V ξ,
all i with (i, v) ∈ Adest are contained in V ξ,
if i is in V ξ, all successors of i are in V ξ.

ATMOS’13



4 Recoverable Robust Timetable Information

A way to define the partition (Uξ, V ξ) between nodes Uξ where no delay information is
available and nodes V ξ with full delay information is to set Uξ := {j : πj < tξ}, V ξ :=
{j : πj ≥ tξ}, where tξ denotes a revealing time tξ ≤ minj∈E:πξ

j
−πj>0 πj for every scenario

ξ. For our computational experiments, we obtain N (ξ) := N (dξ) and πξ := π(dξ) by
delay propagation, see Section 4.2. However, our methods work for any set of scenarios
ξ = (N ξ, πξ, Uξ, V ξ) as described above; it is not necessary to know the source delays to
apply them. We define the set of activities where scenario ξ is revealed as Aξ := {(i, j) ∈
A : i ∈ Uξ, j ∈ V ξ}. A set of information scenarios will be called an uncertainty set and
denoted by U . In this paper, we consider only finite uncertainty sets.

2.3 Recoverable Robust Timetable Information
Intuitively, we will call a path P recoverable robust if, when an information scenario ξ occurs
while a passenger is traveling on P , this passenger can take a recovery path P ξ, to his/her
destination. To formally define recoverable robust paths, we make use of the following
observation: Let U be an uncertainty set and let P be a path from u to v in N .

I Lemma 1. For every ξ ∈ U , P contains exactly one arc from Aξ.

We denote this arc by (iξ(P ), jξ(P )). We denote by Qξ(j) the set of recovery paths, i.e., all
paths from a node j to v in N ξ, and set Qξ(P ) := Qξ(jξ(P )).

I Definition 2. A path P is called recoverable robust (with respect to uncertainty set U) if
for any ξ ∈ U the set of recovery paths Qξ(P ) is not empty.

We assume that the passenger travels on the chosen path P until he/she learns about
the information scenario he/she is in, i.e., until node jξ(P ). Since at this node, the full
information of ξ, i.e., N ξ, πξ, Uξ and V ξ is revealed to the passenger, he/she can take the
best path for this scenario. Thus, we assume that he/she reroutes from his/her current
position according to scenario ξ.

The goal of this paper is to find “good” recoverable robust paths. However, there are
different ideas on how to measure the quality of a recoverable robust path. We can evaluate

the nominal quality: which recoverable robust path has shortest travel time if no delays
occur?
the worst-case quality: which recoverable robust path has the earliest guaranteed arrival
time?

Hence, we consider the following bicriteria problem:

I Problem 1. Bicriteria recoverable robust paths
Input: EAN N = (E ,A) with timetable π, origin u and destination v, starting time s, and
uncertainty set U .
Task: Find a path P from u to v in N which is recoverable robust and minimizes
1. the nominal travel time tnom(P ) = πlast(P ) − s where last(P ) is the last arrival node on

P (the nominal objective function)
2. the worst-case travel time twc(P ) = maxξ∈U minQ∈Qξ(P ) π

ξ
last(Q)− s where last(Q) is the

last arrival event on Q (the worst-case objective function).

Note that for simplicity, we call twc(P ) the worst-case travel time of P , although the path
P is only taken in the nominal case and an alternative path P ξ := argminQ∈Qξ(P )π

ξ
last(Q)−s

is taken in case of delay scenario ξ.
In other words, the bicriteria recoverable robust shortest path problem aims at finding

paths which, on the one hand, are good in the nominal case, i. e., if no delays occur, and
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on the other hand hedge against the scenarios from the uncertainty set U by minimizing
worst-case travel time on the corresponding recovery paths.

3 Algorithms for Recoverable Robust Paths

3.1 A Recovery-Label Setting Algorithm
In this section we show that in case of finite uncertainty sets solutions to the bicriteria
recoverable robust path problem can be found as solutions to a bicriteria minimax bottleneck
shortest path problem in the EAN with recovery labels L(a) := (Lnom(a), Lwc(a))T at all arcs
a ∈

⋃
ξ∈U A

ξ. The minimax bottleneck shortest path problem is the problem of finding a path
between two nodes in a network which minimizes maxa∈P c(a) in a graph with edge labels
c(a). In the bicriteria version of this problem, every arc a is assigned two different labels c1(a)
and c2(a). We now state the preprocessing Algorithm 1 which calculates the recovery labels
L(a) := (Lnom(a), Lwc(a))T needed to apply solution methods for the bicriteria minimax
bottleneck shortest path problem. In Algorithm 1, for every a = (i, j) ∈ Aξ, Lξ(a) denotes
the minimal travel time on a path which uses node j in scenario ξ. If no such path exists
in scenario ξ, Lξ(a) is set to ∞. The algorithm returns the labels L = (Lnom, Lwc)T which
are 0 for all a /∈

⋃
ξ∈U A

ξ. For a ∈
⋃
ξ∈U A

ξ, Lnom(a) denotes the minimum nominal travel
time when using a path containing node j, (and is ∞, if no such path exists) while Lwc(a)
represents the worst-case travel time for scenarios revealed at node j.

After initialization of all required labels to the value 0 (lines 1-6), we compute the shortest
path distance from every event to the destination in the nominal scenario (line 7). This can
be done by a single invocation of a standard shortest path tree computation in the reversed
digraph from the destination v. Then, in the for-loop of lines 8-15, we iterate over all delay
scenarios. With respect to the revealing time of scenario ξ, we now determine the set V ξ.
Using again a backward shortest path tree computation with respect to N ξ, we determine
for every event j ∈ E the length of a shortest path towards the destination v. Using these
values, we can set the nominal and worst-case labels for paths which go through arcs in Aξ
(lines 11-13). For ease of notation, we use ∞+ k =∞ for all values k. Note that the label
Lnom(a) is only set if the corresponding edge a can be used in some scenario ξ ∈ U . We
finally obtain the worst-case labels by taking the maximum over all scenarios. Note that
lines 16-19 could be easily integrated into the main loop, but in the way presented here, the
main loop can be run in parallel.

Given the recovery labels, the worst-case minimal travel time twc(P ) on a path P can
be calculated as the maximum over the labels Lwc on P , as stated in the following lemma.

I Lemma 3. Let P be a path from u to v in N . Then for the labels calculated in Algorithm 1
it holds that

if maxa∈P Lwc(a) <∞, P is recoverable robust, and
twc(P ) = maxa∈P Lwc(a).

Proof. Consider an arbitrary scenario ξ := (N ξ, πξ, Uξ, V ξ). The passenger travels on path
P until node jξ(P ). Then, he/she can take the path calculated in step 10 of the algorithm
until node v with total length Lξ(iξ(P ), jξ(P )) and this path has minimal length in N ξ

among all paths containing node j. We conclude that (1) P is recoverable robust, and (2)
twc(P ) = maxa∈P Lwc(a). J

For any path P , the labels Lnom constitute lower bounds on the nominal travel time on P .
However, for an arbitrary path P , the nominal traveling time can exceed maxa∈P Lnom(a).
This can be avoided for paths which do not make detours after the scenarios are revealed.

ATMOS’13



6 Recoverable Robust Timetable Information

Algorithm 1 Construction of recovery labels
Require: EAN N = (E ,A) with timetable π, origin node u, destination node v, starting

time s, and finite uncertainty set U .
Ensure: Label L(a) ∈ R2

+ for every a ∈ A.
1: for (i, j) ∈ A do . Initialization
2: Set Lnom(i, j) := 0.
3: for ξ ∈ U do
4: Set Lξ(i, j) := 0.
5: end for
6: end for
7: Find length Knom(j) of shortest path from every j ∈ E to v in N . Set Knom(j) :=∞ if

no such path exists.
8: for ξ ∈ U do
9: Determine Aξ.

10: Find length Kξ
wc(j) of shortest path from every j ∈ E to v in N ξ. Set Kξ

wc(j) :=∞
if no such path exists.

11: for (i, j) ∈ Aξ do
12: Set Lnom(i, j) := πj − s+Knom(j). . Setting nominal labels.
13: Set Lξ(i, j) := πξj − s+Kξ

wc(j). . Setting worst-case labels.
14: end for
15: end for
16: for (i, j) ∈ A do
17: Set Lwc(i, j) := maxξ∈U Lξ(i, j)
18: Set L(i, j) := (Lnom(i, j), Lwc(i, j))T .
19: end for
20: return L

I Lemma 4. Let P be a path from u to v in N such that the path P 2 defined as the subpath
of path P starting in the last arc (i, j) in P ∩

(⋃
ξ∈U Aξ

)
is a shortest path from j to v.

Then for the labels calculated in Algorithm 1 it holds that
if maxa∈P Lwc(a) <∞, P is recoverable robust,
tnom(P ) = maxa∈P Lnom(a), and
twc(P ) = maxa∈P Lwc(a).

Proof. This follows from Lemma 3 and from the construction of the labels Lnom in Algo-
rithm 1 as the sum of the travel time πj − s until node j and the shortest path travel time
Knom(j) from j to v. J

As a conclusion, we obtain the following theorem.

I Theorem 5. The bicriteria recoverable robust path problem corresponds to a bicriteria
bottleneck shortest path problem in the EAN with labels L.

It is folklore that the single-criteria bottleneck shortest path problem can be solved in
linear time on directed acyclic graphs. The Pareto front of bicriteria bottleneck shortest
path problems can be found in O(|A|2) by a simple ε-constraint method which enumerates
all possible values of the first objective function, deletes edges whose labels exceed the
given value, and finds a bottleneck shortest path with respect to the second criterion in the
remaining graph (compare [12]).
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I Lemma 6. Algorithm 1 determines the labels L in time O(|A| · |U|).

Proof. The initialization takes time O(|A|·|U|). Since we can assume that N is topologically
sorted, shortest paths from a node to all other nodes can be found in time O(|A|). Hence,
step 7 takes time O(|A|). For every ξ ∈ U , determining Aξ is in O(|A|). Since step 10
again is a shortest path calculation in a topologically sorted network and the operations in
the loop over all (i, j) ∈

⋃
ξ∈U A

ξ take constant time, steps 8-15 can be executed in time
O(|A| · |U|). J

3.2 Single-Criteria Versions of Recoverable Robustness
To calculate the Pareto front of the bicriteria recoverable robust path problem with finite
uncertainty set, we can use the approach as sketched in the previous section. However, we
are also interested in two single-criteria versions of the problem. In particular, results of
versions with single objective values can be much easier compared for sets of instances.

I Problem 2. Worst-case optimal recoverable robust paths
Find a recoverable robust path P from u to v in N such that

the nominal quality of P is smaller or equal than a given nominal quality bound Tnom,
P minimizes twc(P ).

I Problem 3. Nominally optimal recoverable robust paths
Find a recoverable robust path P from u to v in N such that

the worst-case quality of P is smaller or equal than a given worst-case quality bound Twc
P minimizes tnom(P ).

Algorithm 2 describes how to compute worst-case optimal recoverable robust paths. The
pseudo-code for an analogous algorithm to compute nominally optimal recoverable robust
path, Algorithm 3, is provided in the Appendix.

Algorithm 2 Worst-case optimal recoverable robust path
Require: Network N = (E ,A), labels L, nominal quality bound Tnom, origin event u,

destination event v.
Ensure: Path P which is optimal for Problem 2 (if existing).
1: for a ∈ A do
2: if Lnom(a) > Tnom then
3: Remove a from A.
4: end if
5: end for
6: Find a bottleneck shortest path Pwc in N according to labels Lwc.
7: if there is no such path with length <∞ then
8: return There is no recoverable robust path.
9: else
10: Let (i, j) be the last arc on Pwc ∩

⋃
ξ∈U Aξ.

11: Denote by P 1(j) the path Pwc until node j.
12: Find a shortest path P 2(j) in N from j to v.
13: return P := P 1(j)∪P 2(j), tnom(P ) := maxa∈P Lnom(a), twc(P ) := maxa∈P Lwc(a)

14: end if

ATMOS’13



8 Recoverable Robust Timetable Information

Table 1 Characteristics of the used event activity network and test queries.

characteristic event activity network
# trains 38,495
# events 2,015,664
# stations 8,857
# transfer activities 19,869,867
aver. nominal travel time 398 min
aver. # transfers per query 3.3

I Lemma 7. Algorithm 2 and Algorithm 3 are correct.

Proof. Let P be the path returned by Algorithm 2 or Algorithm 3. Then, due to the
construction of P in step 13 of each algorithm, the assumptions of Lemma 4 are fulfilled,
i.e.,

since maxa∈P Lwc(a) <∞, P is recoverable robust,
tnom(P ) = maxa∈P Lnom(a), and
twc(P ) = maxa∈P Lwc(a).

Since there is no arc a with Lnom > Tnom (or Lwc > Twc, respectively) we have that
tnom(P ) ≤ Tnom (or ( twc(P ) ≤ Twc, respectively). Furthermore, for any other path P ′ we
have that

twc(P ′) = max
a∈P ′

Lwc(a) ≥ max
a∈P

Lwc(a) = twc(P )

(or tnom(P ′) = maxa∈P ′ Lnom(a) ≥ maxa∈P Lnom(a) = tnom(P ), respectively). J

4 Experimental Results

4.1 Test Instances

The basis for our computational study is the German train schedule of February 1, 2013
from which we created an event-activity network. We generated transfer activities between
pairs of trains at the same station provided that the departing train is scheduled to depart
not later than 60 minutes after the planned arrival time of the feeding train. In addition,
since some train lines operate only every two hours or irregularly, we add further transfer
arcs. Namely, for each arrival event at some station s, we also create a transfer arc to
those departure events which exceed the time bound of 60 minutes but provide the very
next opportunity to get to a neighboring station. The main characteristics of the resulting
network are shown in Table 1. To study the robustness of passenger paths, queries should
not be too easy. For example, we are not interested in paths which do not require any
transfer. Therefore, we decided to generate 1000 relatively difficult queries as follows. For
each query, origin and destination are chosen uniformly at random from a set of the 3549
most important stations in Germany (this choice of stations has been provided by Deutsche
Bahn AG). Such a pair of origin and destination stations is only accepted if the air distance
between them is at least 200km and if the shortest travel route between them requires at
least one transfer. The desired start time is uniquely set to 8:00am. The resulting set of
queries has an average nominal travel time of 398 minutes and 3.3 transfers per query.
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4.2 Generating Information Scenarios

A delay scenario d ∈ INAdrive∪Await0 specifies a delay on each driving and waiting activity.
To generate a delay scenario, we first choose the revealing time of the scenario. Afterwards,
we decide for each driving and waiting activity whether it shall receive a source delay or
not. We use a parameter p ∈ (0, 1) specifying the probability that a train receives a source
delay. This parameter p can be chosen depending on the level of robustness one wants to
achieve.

If a train shall be source-delayed, we select one of its driving or waiting activities uni-
formly at random from those which are scheduled after the revealing time of the scenario
and choose the source delay for this activity uniformly at random among 10, 15, 20, 25, and
30 minutes. The source delays on all other activities are set to 0. For simplicity, we assume
that trains receive source delays independently from each other.

We use the following basic delay propagation rule in order to compute how delays spread
along driving, waiting and maintained transfer activities: π(d) denotes the timetable adapted
to delay scenario d. If the start event of an activity a = (i, j) is delayed, also its end event
j will be delayed, where the delay can be reduced by the slack time ba. I.e. we require
π(d) ≥ π and

πj(d) ≥ πi(d) + la + da (1)

for all activities a = (i, j) ∈ Await ∪ Adrive. For transfer activities equation (1) does not
necessarily hold. Motivated by real-world decision systems of rail operators, we assume
that the decision whether a transfer is actively maintained or not is specified by a fixed
waiting time rule: Given a number wta ∈ IN for every transfer activity, the transfer is
actively maintained if the departing train has to wait at most wta minutes compared to
its original schedule. If transfer a is actively maintained, we require that (1) holds for it.
However, if for a transfer activity a = (i, j) (1) holds due to some earlier delay on the train
corresponding to j, a is maintained, even if πj(d)− πj > wta. Hence, every delay d induces
a new set of transfer activities which is denoted as Atransfer(d). Given these waiting time
rules for a given delay scenario d we can propagate the delay through the network along
the activities in Adrive ∪ Await ∪ Atrans(d) and, thus, calculate the corresponding adapted
timetable according to the following propagation rule:

πj(d) = max
{
πj , max

i:(i,j)∈A; πi(d)+lij≤πj+wtij
{πi(d) + lij + dij}

}
(2)

where we set wta = ∞ ∀a ∈ Await ∪ Adrive and da = 0 ∀a ∈ Atrans. The concrete waiting
time rule used in our experiments is that high speed trains (like Intercity Express ICE,
Intercity IC, and Eurocity EC) wait for each other at most three minutes, whereas trains of
other train categories do not wait. Note that delay propagation can be done in time O(|A|).
The uncertainty sets used in our experiments contain a number k of independent scenarios
generated as described above.

4.3 Environment

All experiments were run on a PC (Intel(R) Xeon(R), 2.93GHz, 4MB cache, 47GB main
memory under Ubuntu Linux version 12.04 LTS). Only one core has been used by our
program. Our code is written in C++ and has been compiled with g++ 4.6.3 and compile
option -O3.

ATMOS’13



10 Recoverable Robust Timetable Information

4.4 Experiments

The purpose of this study is to evaluate the potential of recoverable robust paths as an
alternative timetable information method in pretrip planning. A standard way of doing
timetable information is to search for a path with minimum travel time as primary objective
and with minimum transfers as a secondary one. We take this kind of standard search as
the baseline of our comparisons.

Experiment 1: What is the effect of delays on the paths of the standard search?
We perform the following evaluation. Suppose that P is a given path. For each delay
scenario, we determine the first event after the scenario’s revealing time. We assume that
the passenger can adjust his/her path to the delay scenario at this point and therefore
compute the earliest arrival time at the destination under these conditions. The worst-case
arrival time over all scenarios is the value we are interested in. To each of our 1000 test
queries we applied the same set of 100 delay scenarios with parameter p = 0.20. We observe
that on average the worst-case travel time is 450 minutes, i.e., 13% larger than the planned
one. The absolute difference is 52 minutes on average.

Experiment 2: What is the price of a worst-case optimal recoverable robust
path in comparison with a standard path? Using the same 100 delay scenarios as
for Experiment 1, we are interested in two quantities, namely the nominal travel time and
the worst-case travel time of a worst-case recoverable robust path. We upper bounded the
nominal arrival time of a recoverable robust path by 150% of the fastest nominal path.
Among all paths satisfying this bound we minimized the worst-case arrival time over all
scenarios. Our computational results show that for all 1000 queries but two cases there
exists a recoverable robust path. An interesting observation is that 34.2% of all standard
paths are already the worst-case optimal recoverable robust paths. However, in 27% of the
queries the worst-case arrival time is improved in comparison with the standard path. If
there is an improvement, the reduction is 29 minutes on average, but the maximum observed
difference is 220 minutes. The histogram in Figure 1 gives a more detailed picture. It shows
how often a saving of x minutes in the worst-case scenario can be achieved by choosing a
recoverable robust path. The price a passenger has to pay if he/she chooses a recoverable
robust path is a slight average increase in nominal travel time to 407 minutes, i.e., about
just 9 minutes more than for the standard search.

In Figure 2, we show box-and-whisker plots for the distributions of travel times for five
algorithmic variants. The data is based on our test set of 1000 queries, each evaluated for
100 delay scenarios generated with parameter p = 0.2 for the probability that a train will
be delayed by a source delay.

Recall that StNom and StWC stand for the nominal and worst-case travel time in minutes
of the standard search, while RRNom and RRWC denote the nominal and worst-case travel
time for worst-case optimal recoverable robust paths, respectively. Finally, SRNom gives
the nominal travel time for strictly robust paths.

Experiment 3: What is the influence of parameter p, initially chosen as p = 0.2?
Recall that parameter p specifies the probability that a train will be delayed by a source
delay. To quantify the sensitivity of the different solution methods on the chosen uncertainty
set, we redo the previous two experiments with p = 0.1 and p = 0.15. Figure 3 (left) and
Table 2 summarize our findings and show the average nominal (StNom) and worst case travel
time (StWC) in minutes for the standard search and the nominal (RRNom) and worst-case
time (RRWC) for the optimal recoverable robust paths, respectively. If the probability
parameter p increases, we observe a slight increase of average worst case travel times (what
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Figure 3 Additional travel time over the baseline of the standard path in minutes for different
values of probability paramter p (left) and different number of scenarios (right). The average
nominal travel time for standard paths is 498 minutes.

should be expected), whereas the nominal travel time of recoverable robust paths is almost
unchanged. We conclude that p = 0.2 might be preferable since it provides recoverability
for the more severe scenarios at no price with respect to nominal travel time.

Table 2 shows the raw data from which Figure 3 (left) has been derived.
Experiment 4: Comparison with strictly robust paths. Using the same uncertainty
set as in the previous experiments, we computed the set of transfer activities which break
at least once. We marked these arcs as forbidden, and rerun shortest path queries on the
resulting even-activity network. Paths in this network are considered as strictly robust since
no transfer will ever break. The average nominal travel time if we look for the fastest strictly
robust path (SRNom) is 451 minutes for the uncertainty set with p = 0.2 (see also Figure 3
(left) and the last row of Table 2. Hence, the average nominal travel time of these paths
is not better than the average worst-case time for standard paths. In full agreement with
previous studies [17, 18], strictly robust paths turn out to be too conservative.

ATMOS’13
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Table 2 Comparison of standard and ro-
bust solutions: Average travel time in min-
utes for k = |U | = 100 scenarios.

p = 0.10 p = 0.15 p = 0.20
StNom 398 398 398
StWC 441 447 450

RRNom 407 406 407
RRWC 433 438 442
SRNom 440 446 451

Table 3 Comparison of standard and ro-
bust solutions for different sizes k of the un-
certainty set: Average travel time in minutes
for p = 0.20.

k = 75 k = 100 k = 125
StNom 398 398 398
StWC 447 450 451

RRNom 410 407 407
RRWC 438 442 443

Experiment 5: To which extent do our observations depend on the size of the
scenario set? All previous experiments have been run with 100 different delay scenarios.
The parameter k = |U| has been chosen as a pragmatic compromise between efficiency (the
computational effort scales linearly with k) and the degree of robustness we want to guar-
antee. Obviously, the more different scenarios we use, the higher the level of robustness
we can achieve. Therefore, we fixed the parameter p = 0.20 but varied k ∈ {75, 100, 125}.
Table 3 shows the average travel times in minutes for these variants, and Figure 3 (right)
displays the additional travel time over the baseline of the standard path in minutes. It is
interesting to observe that the average worst-case travel times depend only marginally on
the parameter k in the chosen range. As expected, there is a slight increase of a few minutes
on worst-case travel time when we increase k. At the same time, the average nominal travel
time for recoverable robust paths does not increase. Further experiments will be needed to
see whether this trend will be confirmed if k is chosen in an even wider range.

Practicality of our approach. For the purpose of this study, we have merely imple-
mented a first prototype without much emphasis on performance issues. Our running times
are several minutes per query which is clearly impractical. The main bottleneck is the com-
putation of labels which grows linearly with the number of used scenarios. However, the
most expensive part, namely the loop of lines 8-15, could be run in parallel. Thus, using
massive parallelization and further speed-up techniques, we see a clear perspective that the
computation time for a recoverable robust path can be brought down to a few seconds.

5 Conclusion and Further Research

In this work we introduced the concept of time-dependent recoverable-robust paths within
the framework of timetable information. We showed that the resulting bicriteria problem can
be solved in polynomial time using a label-setting algorithm, and a subsequent bottleneck
shortest path calculation. The proposed concept and algorithm was experimentally evalu-
ated on timetable information instances covering the whole German train network (schedule
of 2013). While computation times are still too high for practical applications in the current
implementation, we may assume that a parallelized algorithm will be sufficiently fast; more-
over, as our experiments show that the proposed model has a valuable trade-off between
nominal and worst-case travel times, such an algorithm will provide a customer-friendly al-
ternative in practice. Further research includes the comparison of recoverable robust paths
to lightly robust paths (see [17, 18]), and the extension of the proposed model to multi-stage
robustness where only partial information on the scenario is given at discrete points in time.
Also, the evaluation of the computed paths with respect to a set of real delay scenarios is
currently being analyzed.
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A Algorithmic Approach

Algorithm 3 describes how to find nominally optimal recoverable robust paths subject to an
upper worst-case quality bound.

Algorithm 3 Nominally optimal recoverable robust path
Require: Network N = (E ,A), labels L, worst-case quality bound Twc, origin event u,

destination event v.
Ensure: Path P which is optimal for Problem 3 (if existing).
1: for a ∈ A do
2: if Lwc(a) > Twc then
3: Remove a from A.
4: end if
5: end for
6: Find a bottleneck shortest path Pnom in N according to labels Lnom.
7: if there is no such path with length <∞ then
8: return There is no recoverable robust path.
9: else

10: Let (i, j) be the last arc on Pnom ∩
⋃
ξ∈U Aξ.

11: Denote by P 1(j) the path Pnom until node j.
12: Find a shortest path P 2(j) in N from j to v.
13: return P := P 1(j)∪P 2(j), tnom(P ) := maxa∈P Lnom(a), twc(P ) := maxa∈P Lwc(a)
14: end if
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