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Abstract
Current route planning algorithms for public transport networks are mostly based on timetable in-
formation only, i.e., they compute shortest routes under the assumption that all transit vehicles
(e.g., buses, subway trains) will incur in no delays throughout their trips. Unfortunately, un-
avoidable and unexpected delays often prevent transit vehicles to respect their originally planned
schedule. In this paper, we try to measure empirically the quality of the solutions offered by
timetabling routing in a real public transport network, where unpredictable delays may happen
with a certain frequency, such as the public transport network of the metropolitan area of Rome.
To accomplish this task, we take the time estimates required for trips provided by a timetabling-
based route planner (such as Google Transit) and compare them against the times taken by
the trips according to the actual tracking of transit vehicles in the transport network, measured
through the GPS data made available by the transit agency. In our experiments, the movement
of transit vehicles was only mildly correlated to the timetable, giving strong evidence that in
such a case timetabled routing may fail to deliver optimal or even high-quality solutions.
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1 Introduction

In the last years we have witnessed an explosion of exciting research on point-to-point shortest
path algorithms for road networks, motivated by the widespread use of navigation software.
Many new algorithmic techniques have been introduced, including hierarchical approaches
(e.g., contraction hierarchies) [15, 26], reach-based approaches [18, 19], transit node routing [6],
and hub-based labeling algorithms [1]. (Delling et al. [11] gives a more detailed overview
of the literature.) The algorithms proposed in the literature are of great practical value,
as on average they are several orders of magnitude faster than Dijkstra’s algorithm, which
is too slow for large-scale road networks: on very large road networks, such as the entire
Western Europe or North America, the fastest algorithms are able to compute point-to-point
distances in few microseconds on high-performance computing platforms and in hundred
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milliseconds on mobile devices (see e.g., [17]). Computing the actual shortest paths (not
only distances) requires slightly more time (i.e., few order of magnitudes), but it is still very
fast in practice. We remark that this algorithmic work had truly a big practical impact on
navigation systems: some of the ideas introduced in the scientific literature are currently used
by Apple, Bing and Google Maps. Furthermore, this research on point-to-point shortest path
algorithms generated not only results of practical value, but also deep theoretical questions
that gave rise to several exciting results: Abraham et al. [2] gave theoretical justifications of
the practical efficiency of some of those approaches under the assumption of low highway
dimension (HD) of the input graph, which is believed to be true for road networks, and even
showed some amazing relationships to VC dimension [1].

Although most algorithmic techniques designed for road networks can be immediately
transferred to public transport networks, unfortunately their adaptation to this case is harder
than expected, and they fail to yield comparable speed-ups [5, 14]. One of the reasons, as
explained in the excellent work of Bast [4], is that most public transportation networks,
like bus-only networks in big metropolitan areas, are far more complex than other types
of transportation networks, such as road networks: indeed, public transport networks are
known to be less hierarchically structured and are inherently event-based. Thus, it seems
that, in order to achieve significant speed-ups on public transport networks, one needs to
take into account more sophisticated and larger scale time-dependent models [9, 14, 24, 25]
or to develop completely different algorithmic techniques, such as either the transfer patterns
introduced by Bast et al. [5], the approach based on dynamic programming by Delling et
al. [10] or the connection scan by Dibbelt et al. [12].

Current route planning algorithms for public transport networks are mostly based on
timetable information, i.e., they compute shortest routes under the assumption that all
transit vehicles (e.g., buses, subway trains) will start their trip exactly at the planned time
and that they will incur in no delays throughout their journey. However, in our daily
experience buses often run behind schedule: unavoidable delays occur frequently and for
many unplanned reasons, including traffic jams, accidents, road closures, inclement weather,
increased ridership, vehicle breakdowns and sometimes even unrealistic scheduling. As a
consequence, widely used timetable routing algorithms may suffer from several inaccuracies:
the more buses run behind schedule, the more is likely that routing methods based on
timetabling will not be able to estimate correctly the waiting times at bus stops, thus failing
to deliver optimal solutions, i.e., the actual shortest routes. Indeed, in the recent past, a lot
of effort has been put in developing either robust models able to efficiently cope with delays
and cancellation events [8, 13, 16, 7], or dynamic delay propagation models for the design of
robust timetables and the evaluation of dispatching proposals [23]. These approaches yield
interesting insights into the robustness of the solutions offered against small fluctuations.

In this framework, it seems quite natural to ask how much timetabling-based routing
methods are effectively able to deliver optimal solutions on actual public transport networks.
To address this complex issue, in this paper we try to measure the quality of the solutions
offered by timetabling routing in the public transport network of the metropolitan area of a
big city, where unpredictable delays, unplanned disruptions or unexpected events seem to
happen with a certain frequency. As a first step, we consider the public transport network
of Rome: we believe that fluctuations on the transit schedule are not limited to this case,
but they happen often in many other urban areas worldwide. In more detail, we performed
the following experiment. On a given day, we submitted to Google Transit, the well known
public transport route planning tool integrated in Google Maps, many queries having origin
and destination in the metropolitan area of Rome: in this case, the journeys computed by
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Google Transit are based on the timetabling data provided by the transit agency of Rome1.
Besides its origin and destination, each query qi is characterized by the starting time τi
from the origin. For each query qi, on the same day we followed precisely the journeys
suggested by Google Transit, starting at time τi, by tracking in real time the movement
of transit vehicles in the transport network through the GPS data made available by the
very same transit agency. In order to do that efficiently, we collected the GPS data on the
geo-location of all vehicles on the very same day, by submitting queries every minute to the
transit agency of Rome [28]. With all the data obtained, we built a simulator capable of
following precisely each journey on that given day, according to the GPS tracking of transit
vehicles in the transport network. Finally, we computed the actual total time required by
each journey in our simulator and compared it against its original estimate given by Google
Transit. We believe that the simulator built for this experiment was not only instrumental
for its success, but it can also be of independent interest for other investigations in a public
transport network.

Our experimental analysis shows that in the public transport network considered the
movement of transit vehicles was only mildly correlated to the original timetable. In such a
scenario, timetabled-based routing methods suffer from many inaccuracies, as they are based
on incorrect estimations of the waiting/transfer times at transit stops, and thus they might
fail to deliver an optimal or even high-quality solution. In this case, in order to compute
the truly best possible routes (for instance, shortest time routes), it seems that we have to
overcome the inherent oversights of timetable routing: toward this end, we advocate the
need to design new route planning algorithms which are capable of exploiting the real-time
information about the geo-location of buses made available by many transit authorities.

2 Preliminaries

In the following we introduce some basic terminology which will be useful throughout the
paper. Our public transport networks consist of a set of stops, a set of hops and a set of
footpaths:

A stop corresponds to a location in the network where passengers may either enter or
exit a transit vehicle (such as a bus stop or a subway station).

A hop is a connection between two adjacent stops and models a vehicle departing from
stop u and arriving at stop v without intermediate stops in between.

A trip consists of a sequence of consecutive hops operated by the same transit vehicle.
Trips can be grouped into lines, serving the exact same sequence of consecutive hops.

A footpath enables walking transfers between nearby stops. Each footpath consists of two
stops and an associated (constant) walking time between the two stops.

A journey connects a source stop s and a target stop t, and consists of a sequence of
trips and footpaths in the order of travel. Each trip in the journey is associated with two
stops, corresponding to the pick-up and drop-off points.

1 Roma Servizi per la Mobilità [28].
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3 Experimental Setup

3.1 Experiments

In our experiments, we considered the public transport network of Rome, which consists of
309 bus lines and 3 subway lines, with a total of 7,092 stops (7,037 bus stops and 55 subway
stops). We generated random queries, where each query qi consisted of a triple 〈si, ti, τi〉:

si is the start stop;
ti is the target stop;
τi is the time of the departure from the start stop.

Our experiments were carried out as follows. Each start and target stop si and ti was
generated uniformly at random in the metropolitan area of Rome, while the departure time τi
was chosen uniformly at random between 7:00am and 9:00pm. We selected Thursday June 6,
2013 as a day for our experiments, and in this day we did not observe any particular deviation
form the typical delays in the trips. We submitted each query qi to Google Transit on the
very same day (June 6, 2013), and collected all the journeys suggested in return to the query
and their predicted traveling times. In the vast majority of cases, Google Transit returns 4
journeys, but there were queries that returned less than 4 public transit journeys; this might
happen, for instance, when one of the journeys returned is a footpath. This produced a total
of 4, 018 journeys. Note that, since Google Transit is based on the timetabled data provided
by the transit agency of Rome, the predicted traveling time of each journey is computed
according to the timetable.

We next tried to measure empirically the actual time required by each such journey in the
real public transport network. We performed this as follows. On June 6, 2013 we submitted
queries every minute to the transit agency of Rome [28], in order to obtain (from GPS data)
the instantaneous geo-location of all vehicles in the network. Given that stream of GPS
data, we built a simulation system capable of following precisely each journey from a given
starting time, according to the GPS tracking of transit vehicles in the transport network.
We describe this process in more detail in Section 3.2. Finally, we computed the actual total
time required by each route in our simulator and compared it against its original estimate
given by Google Transit.

3.2 Simulation system

Our system makes it possible to simulate closely the experience of a user traveling according
to each input journey, after leaving the origin at the corresponding time. For each trip in
the journey, the pick-up and drop-off times are computed according to the position of transit
vehicles in the public transport network. A user can be picked-up or dropped-off either
earlier or later than originally scheduled, and if a delayed transit vehicle misses a connection
then the next trip of the same line is chosen. To obtain the real-time position of ground
vehicles (such as buses, trains or trams) we used streamed GPS data, while for trips which
do not provide vehicle live positions (such as saubway train trips) we employed their original
estimate given by Google Transit. This allows us to follow input journey containing both
ground and underground trips as well. We remark that all of the journeys produced in our
experiments contained at least one trip operated by ground vehicles. Finally, we used Google
Maps to compute the times needed by footpaths.
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4 Experimental Results

In this section we report the results of our experiments. We compare the estimated time te(j)
required by each journey j according to the timetable (as reported by Google Transit), and
its actual time ta(j) computed from the vehicle real-time positions given by the stream of
GPS data (as contained in our simulation system). More specifically, we define the error
coefficient of journey j to be ta(j)/te(j). Note that the error coefficient measures the distance
between the time predicted by timetabling routing and the actual time that journey j will
incur in reality. It will be equal to 1 whenever the actual journey will be in perfect agreement
with the times predicted by timetabling routing. It will be larger than 1 whenever the actual
journey will be slower than what was predicted by timetabling routing (increased waiting
times at a bus stop for a delayed connection). It will be smaller than 1 whenever the actual
journey will be faster than what was predicted by timetabling routing (smaller waiting times
at a bus stop, which can happen in the case a previous connection, which was infeasible by
timetabling, was delayed and can become a viable option in the actual journey). Obviously,
the more the error coefficient will deviate substantially from 1 (especially in the case where
it is larger than 1), the less accurate will be the time estimations of timetabling routing and
the more likely is that timetabling routing will fail to compute the shortest journeys.

4.1 Measured error coefficients
To report the distribution of the error coefficients as a function of the journey time, we
proceed as follows. For each journey j, the journey time is taken as the estimated time te(j)
according to the timetable. Since there can be multiple journeys sharing the same value of
te(j), we group those journeys into time slots within a 3-minute resolution. More formally,
we measure te(j) in minutes and the k-th time slot σk contains all journeys j such that
te(j) ∈ [3k, 3(k + 1)]. For each time slot, we look at the proximity of the obtained error
coefficient distribution to the constant 1, which represents the ideal scenario where the times
of actual journeys are in perfect agreement with the times predicted by timetabling routing.
To this end, we compute the metrics below:

Average. We measure the average of the error coefficient in each time slot.
Percentiles. Analogously, for each time slot σ, we measure the 10th percentile and the
90th percentile of the error coefficients.
Minimum-Maximum. Finally, we measure minj∈σ{ ta(j)

te(j)} and maxj∈σ{ ta(j)
te(j)}

We define te(σk) = 3k + 1.5 and plot both the evolution of these statistics and the error
coefficient, as functions of te. This also enable us to distinguish between short distance
journeys, i.e., journeys j with te(j) smaller than 30 minutes, medium distance journeys,
i.e., journeys j with te(j) between and 30 and 60 minutes, and long distance journeys, i.e.,
journeys taking more than 60 minutes.

Figure 1 plots the error coefficient for each journey and illustrates the average of the error
coefficients for each time slot obtained in our experiments. Note that the error coefficients
fluctuate wildly, ranging from 0.15 to 4.44, and the reader may ask how actual trips with
extremely small or extremely high error coefficients look like. To this end, we provide more
details on two extreme cases, which are a short journey with minimum error coefficient and
a long journey with maximum error coefficient, denoted by jm and jM respectively:

jm consists of a single short distance trip, ta(jm) = 2 minutes, te(jm) = 13 minutes and
error coefficient ≈ 0.15;
jM consists of 3 short distance trips and 1 medium distance trip, ta(jM ) = 3 hours and
49 minutes, te(jM ) = 1 hour and 24 minutes and error coefficient ≈ 2.72.

ATMOS’13
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Figure 1 Distribution of the error coefficients as a function of the journey times (better viewed
in color).

The short journey connects two stops which are rather close to each other, and only require
a 1-minute bus trip: in this case, the discrepancy between the estimated and the actual
travel time is induced by the waiting time at the bus stop. The long journey connects two
stops which are rather far away: the journey itself consists of four trips (three short distance
and one long distance trip), operated by ground vehicles through intense traffic areas. This
results in moderate delays on the short distance trips and a much higher delay on the medium
distance trip due to intense traffic.

While high fluctuations are possible, the average error coefficient lies in the interval
[1.13, 1.73], which implies that on the average the actual journey times are between 13% and
73% slower than the times used by timetabling routing! In detail, the average error coefficient
falls between 1.27 and 1.73 for short journeys, and between 1.13 and 1.26 for long journeys.
The fact that the error coefficients appear to be substantially larger for short journeys is not
surprising, as short journeys are likely to be more affected (in relative terms) by fluctuations
on the schedule. On the other side, larger errors might be less tolerable on short journeys
from the users’ perspective.

Figure 2 shows the 10th and the 90th percentiles of the distribution of the error coefficients.
For the sake of comparison, for each time slot we report also the minimum and the maximum
error coefficient. This gives us an interesting insight on a typical user experience: in 80% of
the short journeys computed by a timetable-based method, the actual time required ranges
from 0.72 to 3.14 of the time estimated with timetabling. Analogously, the same percentage
of long journeys takes up to 2 times more than the estimated time. As for the first and last
deciles, we observe higher variability in the short journeys rather than in the long journeys.
Finally, we observe that 10% of the journeys taking from 15 to 45 minutes are distributed
over a long tail in the range [1.6, 3.8]. Roughly speaking, 1 such journey out of 10 will take
more than twice the scheduled time!
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Figure 2 The 10th and the 90th percentiles of the distribution of the error coefficients (better
viewed in color).

It is natural to ask in this scenario whether different discrepancies between the estimated
and the actual travel times could be observed under different traffic conditions. As illustrated
in Figures 3–5, the distribution of the error coefficients is slightly affected by the different
times of the day, which mainly differ for the traffic conditions. This is not surprising, as our
queries are generated at random and do not follow the traffic patterns. Since in the morning
rush hours there is more traffic towards the city center, while in the evening rush hours the
traffic flows out of the city center, only a small percentage of random queries are likely to
be affected by those traffic patterns. In the full paper, we will report the result of other
experiments that will highlight this phenomenon.

4.2 Correlations in ranking

In order to get deeper insights on the differences between the time estimates provided by
timetabling and the actual times obtained by tracking transit vehicles in the network, we
next investigate the relative rankings of journeys. Namely, for each query we take the four
journeys provided by Google Transit and compare their relative rankings in the lists produced
by two methods, according to the travel times. If the ranking of the four journeys agree
(say, the shortest journey for timetabled routing is also the shortest journey in our real-time
simulation with GPS data, the second shortest journey for timetabled routing is also the
shortest journey in our real-time simulation, etc...) then there is a strong correlation between
the two rankings, independently of the values of the journey times.

To assess the degree of similarity between the two rankings, we use the Kendall Tau
coefficient [22]. This is a rank distance metric that counts the number of pairwise disagree-
ments between two ranking lists: the larger the distance, the more dissimilar the two lists

ATMOS’13
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Figure 3 Distribution of the error coefficients in journeys with time of the departure from 7:30am
to 9:30am (better viewed in color).
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Figure 4 Distribution of the error coefficients in journeys with time of the departure from 11:30am
to 1:30pm (better viewed in color).
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Figure 5 Distribution of the error coefficients in journeys with time of the departure from 5:00pm
to 7:00pm (better viewed in color).
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Figure 6 Kendall Tau-b coefficients for the queries in our experiment (better viewed in color).

are. In particular, we use the Tau-b statistic, which is used when ties exist [3]. The Tau-b
coefficient ranges from −1 (100% negative association, or perfect inversion) to +1 (100%
positive association, or perfect agreement): a value of 0 indicates the absence of association
(i.e., independence of the two rankings).

Figure 6 shows values of the Kendall Tau-b coefficient for the queries considered in our
experiment, plotted against the journey times. As one could expect, in many cases there is a
positive correlation between the time estimates provided by timetabling and the actual times
obtained by tracking transit vehicles. However, there are also values close to 0, and even
worse, there are many negative Tau-b coefficients. The average Tau-b coefficient for each
time slot is close to 0.25, which implies only a mildly positive correlation between the two
rankings considered. In particular, the average Tau-b coefficient has smaller values for very
short journeys and for long journeys: those cases appear to be more vulnerable to fluctuations
in the schedule, and thus there seems to be a larger error on the time estimates provided
by timetabled routing. In general, the rank correlation analysis given by the Kendall Tau-b
statistics shows even more convincing arguments that, according to our experiments in the
public transport network considered, timetabled routing fails to deliver optimal or even
high-quality solutions.

5 Final Remarks

In this paper we measured empirically the quality of the solutions computed by timetabling
routing in a real public transport network: for many queries, we compared the time estimate
provided by Google Transit with the actual times, computed using the real-time GPS data of
the transit vehicles. Our analysis shows that widely used timetable routing algorithms suffer
from many inaccuracies, as they are based on incorrect estimations of the waiting/transfer
times at transit stops, and thus they might fail to deliver an optimal solution.

ATMOS’13
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The main question that arises naturally in this scenario is how to exploit the real-time
information about the geo-location of buses to overcome the inherent oversights of timetable
routing and to compute the truly best possible (under several optimization criteria) point-
to-point routes, such as shortest routes, routes with minimum number of transfers, etc. As
shown recently [20, 21, 27], geo-location data could in fact provide a more accurate and
realistic modeling of public transport networks, as they are able to provide better estimates
on many variables, such as bus arrival times, the times needed to make a transfer, or the
times needed to travel arcs in the transport network. In particular, we expect that this more
accurate modeling will make it possible to compute solutions of better quality overall.

Another important issue to investigate is how to compute robust routes, e.g., routes
with more backup options (again, based on the current geo-location of buses) and thus less
vulnerable to unexpected events. We remark that, whichever is the optimization criterion,
route planning with real-time updates on the location of buses appears to be a challenging
problem. This is because one has to deal with the sheer size of the input network, augmented
with the actual location of buses and combined with a huge bulk of real-time updates, and
the fact that such updates provide accurate information only about the past and the current
state of the network, while, in order to answer effectively routing queries, one still needs to
infer some realistic information about the future. Perhaps, this explains why a solution to
these problems has been elusive, despite the fact that geo-location data have been already
available for many years.
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