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Abstract
In this paper we consider the location of stops along the edges of an already existing public
transportation network. This can be the introduction of bus stops along some given bus routes,
or of railway stations along the tracks in a railway network. The positive effect of new stops is
given by the better access of the customers to the public transport network, while the traveling
time increases due to the additional stopping activities of the trains which is a negative effect for
the customers.

Our goal is to locate new stops minimizing a realistic traveling time which takes acceleration
and deceleration of the vehicles into account. We distinguish two variants: in the first (academic)
version we locate p stops, in the second (real-world applicable) version the goal is to cover all
demand points with a minimal amount of realistic traveling time. As in other works on stop
location, covering may be defined with respect to an arbitrary norm. For the first version, we
present a polynomial approach while the latter version is NP-hard. We derive a finite candidate
set and an IP formulation. We discuss the differences to the model neglecting the realistic
traveling time and provide a case study showing that our procedures are applicable in practice
and do save in average more than 3% of traveling time for the passengers.
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1 Introduction

The acceptance of public transportation depends on various components such as convenience,
punctuality, reliability, etc. In this paper, we address the question of convenience for the
passengers. In particular, we investigate the problem of establishing additional stops (or
stations) which on the one hand guarantee a good accessibility to the transportation network,
but on the other hand do not increase the traveling time of passengers too much.

Due to their great potential for improving public transportation systems, several versions
of the stop location problem (also called station location problem) have been considered by
various authors in the last years, see [16] for a survey. In order to find “good” locations for
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new stops, several objective functions are possible. One of the most frequently discussed
goals is to minimize the number of stops such that each demand point is within a tolerable
distance from at least one stop. The maximal distance that a customer is willing to tolerate
is called covering radius, hence we call this type of stop location problem SL-Cov for short.
For bus stops a covering radius of 400 m is common. In rail transportation, the covering
radius is much larger (at least 2 km).

In the literature, stop location problems have been introduced in [1] and considered
in [12, 10, 11, 6, 18], see also references therein. In these papers, the problem is treated in a
discrete setting, i.e., a finite set is considered as potential new stops. [17] allow a continuous
set of possible locations for the stops, for instance, all points on the current bus routes or
railway tracks. An application of this continuous version is given in [2], where the authors
report on a project with the largest German rail company (Deutsche Bahn) and consider the
trade-off between the positive and negative effects of stops. The negative effect of longer
traveling times due to additional stops is compared with the positive effect of shorter access
times, the goal is to maximize the difference of the two effects.

Based on this application, variants of the continuous stop location problem have been
treated in [5, 16, 17]. The problem has been solved for the case of two intersecting lines, see
[7]. Algorithmic approaches for solving the underlying covering problem have been studied
in [15, 9]. Complexity and approximation issues have been presented in [8].

Another objective function is to minimize the sum of distances from the customers to the
public transportation system, i.e. the sum of the distances between the demand facilities and
their closest stops, see [13, 14]. Recently, covering a set of OD-pairs with a given number of
stops has been studied, see e.g., [4] and references therein.
Contribution. All the mentioned papers use a rough approximation of the traveling time by
adding a penalty for each stop. Since trains have a long acceleration and deceleration phase
this is unrealistic in practice. In this paper we consider stop location problems with realistic
traveling time.
Structure of the paper. We develop and analyze the realistic traveling time function in
Section 2. We then consider two variants of the stop location problem with realistic traveling
time. In Section 3 we want to locate p stops minimizing the traveling time, while in Section 4
we want to cover all demand points with a set of stops, again with minimal realistic traveling
time. While we present a polynomial algorithm for the former problem, the latter problem is
NP hard. Nevertheless we are able to develop a finite dominating set which is the basis for
an integer programming formulation. We compare our new model to the existing covering
models (without realistic traveling time) and present a case study with numerical results.
All proofs can be found in the appendix.

2 Stop location with realistic traveling time

In the stop location problems considered so far, the traveling time for passengers due to
new stops is estimated by adding a penalty timepen for every stop to be located. This is
an exact estimate if the distance between two stops is larger than the distance needed for
acceleration and deceleration, and if timepen gives the loss of traveling time resulting from
the additional stop. As an example, timepen is estimated as two minutes for German regional
trains. However, since trains accelerate slowly, this estimate is not realistic if the distance
between two stops is rather short.

In this section we hence first introduce a function describing the realistic traveling time
of a train between two consecutive stops. This function depends on the distance d between
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82 The Stop Location Problem with Realistic Traveling Time

those two consecutive stops. Being able to compute realistic traveling times, we then define
two variants of the stop location problem, both with realistic traveling time.

I Lemma 1. [see also [3]] Let a maximum cruising speed v0 > 0, an acceleration of a0 > 0
and a deceleration of b0 > 0 of a vehicle be given. Then the traveling time function depending
on d, where d is the distance between two consecutive stops, is given as

T (d) =


√

2(a0+b0)
a0b0

d if d ≤ dmax
v0,a0,b0

d
v0

+ v0
2a0

+ v0
2b0

if d ≥ dmax
v0,a0,b0

where dmax
v0,a0,b0

= v2
0

2a0
+ v2

0
2b0

The formula is a simple consequence from Newton’s laws of motion. E.g., in [3] the
traveling time function for the case a0 = b0 is introduced, and the practical relevance of this
better estimate is analyzed for fire engines in New York City.

Note that dmax
v0,a0,b0

is the point where the traveling time function turns from a square root
behavior to a linear behavior.

The shape and exact values of the function can be easily calculated; its main properties
can be verified straightforwardly.

I Lemma 2. T (d) is continuous, differentiable, concave and monotonically increasing.
Furthermore, for any d we have

√
2(a0+b0)

a0b0
d ≤ d

v0
+ v0

2a0
+ v0

2b0
.

The properties of T can be shown by easy calculations.
In the two variants of the stop location problem our objective is to minimize the (realistic)

traveling time which is determined as follows.

Let G = (V,E) be the given network in which the new stops should be located. Let
e = (i, j) ∈ E be an edge with length de. A point s = (e, x) ∈ e is defined as the point
on edge e with distance d(i, s) = x and distance d(s, j) = de − x, 0 ≤ x ≤ de. Note that
i = (e, 0) and j = (e, de). The set of points of G is denoted as S =

⋃
e∈E e. The set of

points between two points s1 = (e, x1) and s2 = (e, x2) on the same edge is denoted as
[s1, s2] = {(e, x) : x1 ≤ x ≤ x2}.

A new stop s in the network may be any point s = (e, x). We assume that all vertices V
are existing stops.

Given a set S ∈ S of points of G, every set Se = S ∩ e = {s1, . . . , sp} ⊆ e of points on
e = (i, j) can be naturally ordered along the edge e such that d(s1, i) ≤ . . . ≤ d(sp, i). Let ≤e

denote this ordering. Adding the points of S as new stops gives a subdivision of the network
G, i.e. a new network (V ∪ S,E(S)) (see Figure 2), where

E(S) = {(si, sj) : si = (e, xi) and sj = (e, xj) are consecutive on some e ∈ E w.r.t. ≤e}.

The length of an edge e′ = ((e, xi), (e, xj)) ∈ E(S) is given as de′ = |xj − xi|.
Finally, given a set S of points on the graph G, we can define the (realistic) traveling

time function as

g(S) :=
∑

e′∈E(S)

T (de′).

The stop location problem (SL) on G = (V,E) is to locate a set of stops S which are
points on G. Our objective is to minimize the (realistic) traveling time g(S). This function
can be seen as an intrinsical property of the network and an estimation for the traveling time
of passengers without having information of their real paths and demands.
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Figure 1 Locating p = 4 new stops on a
Network G = (V, E).
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Figure 2 The new network (V ∪ S, E(S))
with p = 4 new stops.

Without any constraints, S = ∅ would be the trivial optimal solution. We hence need to
ensure that enough new stops are located. We consider the following two possibilities:

(SL-TT-p) Here, the goal is to locate p new stops on G. It is further required that the
minimal distance between two stops is at least ε, i.e., de′ ≥ ε for all e′ ∈ E(S).

(SL-TT-Cov) This is an extension of the stop location problems considered in the
literature, in which it is assumed that the network is embedded in the plane R2, and that a
finite set of demand points P ⊆ R2 is given. Furthermore, to measure the access times from
the demand points to the railway network, a distance function dist : R2 × R2 → R is given
which has been derived from a norm, i.e. dist(x, y) = ‖y − x‖ for a given norm ‖ · ‖. For a
set S ∈ S we can now define the set of covered demand points as

I Definition 3. coverP(S) = {p ∈ P : dist(p, s) ≤ r for some s ∈ S}.

In (SL-TT-Cov) we look for a set S covering all demand points (i.e. coverP(S) = P).

3 (SL-TT-p) Locating p stops

We start with locating a fixed number of p stops on a single line segment. We hence have
G = (V,E) where V = {i, j} is the set of nodes and E = {e = (i, j)} is one edge. Locating
p new stops S on the edge e increases the traveling time for the passengers that want to
traveling from i to j. Our goal is to minimize this traveling time using the realistic traveling
time function g(S):

(Line-SL-TT-p) Let G = ({i, j}, {e}) be one single edge, v0 > 0, a0 > 0, and b0 > 0
and let a natural number p > 0, and 0 ≤ ε ≤ de

p+1 be given. Find a subset S∗ ⊆ S with
|S∗| = p and de′ ≥ ε for all e ∈ E(S∗) such that g(S∗) is minimized.

Note that (Line-SL-TT-p) is not feasible if de < (p+ 1)ε.
We start by discussing the case of locating only p = 1 stop without further restriction

(i.e. ε = 0) since this instance contains the main idea for the general case.
Let de be the length of edge e = (i, j). Let s = (e, x) be a new stop on e. We want to

determine x. Given any x ∈ [0, de], the traveling time for passengers from i to j is

g(S) = g(x) = T (x) + T (de − x),

i.e., we have to solve min{T (x) + T (de − x) : 0 ≤ x ≤ d}. Since T is a concave function, also
T (de − x) is concave, hence also g(x). A concave function over a compact interval takes its
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minimum at one of the endpoints of the interval, we hence evaluate g(0) = g(de) = T (0)+T (de)
and obtain

I Lemma 4. The only optima for (Line-SL-TT-p) for the case of locating p = 1 stop without
a minimal distance (i.e. ε = 0) are obtained at s1 = i and at s2 = j.

However, since i and j are already stops, this solution does not give any new stop and
consequently is not what we want. We hence require a minimal distance of ε > 0 between
any pair of stops. This means to solve min{T (x) + T (d − x) : ε ≤ x ≤ d − ε} and again
results in two optima on the boundary of the interval. We obtain:

I Lemma 5. The only optima for (Line-SL-TT-p) for the case of locating p = 1 stop on the
edge e = (i, j) are obtained at s1 = (e, ε) and s2 = (e, de − ε).

This result can be generalized for the case of locating p ≥ 2 stops s1 = (e, x1), . . . , sp =
(e, xp). We hence look for the values of x1, . . . , xp.

Fixing x0 = 0 and xp+1 = de, the respective optimization program is stated as

min
p+1∑
l=1

T (xl − xl−1)

s.t. xl − xl−1 ≥ ε ∀ l = 1, . . . , p+ 1
xl ∈ R ∀l = 1 . . . , p

First note, that for ε ≥ dmax
v0,a0,b0

there is not much to worry about.

I Lemma 6. If ε ≥ dmax
v0,a0,b0

, every feasible solution to (Line-SL-TT-p) has the same objective
value.

For ε < dmax
v0,a0,b0

we then find the following result.

I Lemma 7. If de

p+1 < ε < dmax
v0,a0,b0

, any solution where all but two stops are at ε-distance
to both of their neighbors, and the remaining two are at ε-distance to one of their neighbors,
is optimal.
If de

p+1 = ε < dmax
v0,a0,b0

, the unique solution where all stops are at ε-distance to both of
their neighbors is optimal.

We summarize that the p stops to be located are clustered together in an optimal solution
along one edge. As can be seen easily, this behavior still holds if a complete network is given
and p stops should be located there. Obviously such a solution is not realistic for practical
purposes. Thus, in the following a different model will be considered which is more related
to realistic needs.

4 (SL-TT-Cov) Covering all demand points

4.1 Feasibility and complexity of (SL-TT-Cov)
As seen in the previous section it does not make much sense just to add p new stops to
an existing network. The main objective function used for locating new stops is usually a
covering-type objective: With the new stops, one tries to cover as much demand as possible.
Given a set of demand points P in the plane, we say that p ∈ P is covered by a set of stops
S ∈ S if dist(p, s) ≤ r for some s ∈ S, where r is a fixed covering radius. The ’classic’ stop
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location problem (SL-Cov) asks for a set of stops of minimal cardinality covering all demand
points:

(SL-Cov) Let G = (V,E) be a graph and a finite set of points P ⊆ R2 be given. Find a
subset S∗ ∈ S, such that coverP(S∗) = P and |S∗| is minimized.

The goal of this section is is to cover all demand points with a set of stops S such that
the realistic traveling time function g(S) is minimal:

(SL-TT-Cov) Let G = (V,E) be a graph, P ⊆ R2 be a finite set of points, v0 > 0,
a0 > 0 and b0 > 0 be given. Find a subset S∗ ∈ S, such that coverP(S∗) = P and g(S∗)
is minimized.

(SL-TT-Cov) need not be feasible, but if it is it admits a finite solution whose objective
value can be bounded.

I Lemma 8. (SL-TT-Cov) has a solution if and only if coverP(S) = P.
If (SL-TT-Cov) has a feasible solution, then it also has a finite solution and g(S∗) ≤
(|E|+ |P|) ·

(
maxe∈E

de

v0
+ v0

2a0
+ v0

2b0

)
.

While feasibility is easy to check, solving (SL-TT-Cov) is NP-hard.

I Lemma 9. (SL-TT-Cov) is NP-hard.

4.2 A finite dominating set for (SL-TT-Cov)
In the following we show that (SL-TT-Cov) can be reduced to a discrete problem by identifying
a finite dominating set, i.e., a finite set of candidates Scand ⊆ S, for which we know that it
contains an optimal solution S∗, if the problem is feasible at all. Such a finite dominating set
will enable us to derive an IP formulation in Section 4.3. It turns out that we can use nearly
the same finite dominating set which has been used as candidate set for solving (SL-Cov)
(see [17]). Throughout this section, let us assume that (SL-TT-Cov) is feasible, which can be
tested (due to Lemma 8).

For an edge e = (i, j) ∈ E we define

T e(p) = {s ∈ e : dist(p, s) ≤ r}

as the set of all points on the edge e ⊆ S that can be used to cover demand point p.
Since T e(p) = e ∩ {x ∈ R2 : dist(p, x) ≤ r} is the intersection of two convex sets, and

contained in e, it turns out to be a line segment itself. This observation is due to [17].

I Lemma 10 ([17]). For each demand point p ∈ R2 the set T e(p) is either empty or an
interval contained in edge e.

Let fe
p , l

e
p denote the endpoints of the interval T e(p) (which may coincide with the endpoints

i, j of the edge e). We write [fe
p , l

e
p] = T e(p). For each edge e = (i, j) we define

Se
cand :=

⋃
p∈P
{fe

p , l
e
p},

which can be ordered along the edge e with respect to ≤e. Let the resulting set be given as
Se

cand = {s0, s1, . . . , sNe}. In the following we show that

Scand =
⋃

e∈E

Se
cand

is a finite dominating set for (SL-TT-Cov).
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From [17] we know that moving a point s ∈ S until it reaches an element of Scand does
not change coverP({s}).

I Lemma 11 ([17]). Let s ∈ e for an edge e of E, and let sj , sj+1 ∈ Scand be two consecutive
elements of the finite dominating set with sj <e s <e sj+1. Then

coverP({s}) ⊆ coverP({sj}) ∩ coverP({sj+1}),

in particular, the cover of s does not decrease when moving s between sj and sj+1.

Now we are able to prove that Scand =
⋃

e∈E Se
cand is, indeed, a finite dominating set.

I Theorem 12. Either (SL-TT-Cov) is infeasible, or there exists an optimal solution
S∗ ⊆ Scand.

The number of candidates |Scand| ≤ 2|E||P|. Thus iterating leads to a number of
O
(
22|E||P|) different solutions to be tested. In the following, this is done by integer program-

ming.

4.3 An integer programming formulation for (SL-TT-Cov)
Let Acov = (ap,s)p∈P,s∈Scand

denote the covering matrix, given by

aps =
{

1 if p ∈ coverP({s})
0 otherwise.

Furthermore, let Ecand = {(s, s′) : s, s′ ∈ Scand ∪ V and s, s′ ∈ e for some edge e ∈ E} be
the set of all possible edges obtained by building any set of stops S ⊆ Scand. For those edges
the distance de′ , e′ ∈ Ecand can be precalculated. The IP formulation of the discrete version
of (SL-TT-Cov) is then given by

min
∑

e∈Ecand

T (de)ye (1)

s.t.
∑

s∈Scand

apsxs ≥ 1 ∀p ∈ P (2)

xsi + xsj −
∑

s∈[si,sj ]∩Scand

s 6∈{si,sj}

xs ≤ ye′ + 1 ∀e′ = (si, sj) ∈ Ecand (3)

x ∈ {0, 1}|Scand| (4)

y ∈ {0, 1}|Ecand| (5)

The variables xi and ye have the following interpretation.

xsi
=
{

1 if stop si ∈ Scand is built.
0 otherwise.

ye =
{

1 if edge e ∈ Ecand is built.
0 otherwise.

Constraint (2) ensures that every demand point is covered by at least one stop. Constraints
of type (3) ensure that an edge is considered in the objective function if and only if it is built,
i.e. if and only if its two endpoints are stops and no candidate between the two endpoints is
also a stop. Finally, the objective function (1) then gives the realistic traveling time:

I Lemma 13. The above stated IP formulation is correct for (SL-TT-Cov).

Since the proof is straight forward it is spared.
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p1

p2

p1

p2

v1 s1 s2 s3 v2

Figure 3 Example for SL-TT-Cov with more stops built than for SL-Cov.

I Remark. Consider the case, where de ≥ dmax
v0,a0,b0

for all e ∈ Ecand. Then the objective
function can be rewritten as∑

e′∈Ecand

T (de′)ye =
∑
e∈E

T (de) +
(
v0

2a0
+ v0

2b0

) ∑
s∈Scand

xs,

thus the variables ye can be eliminated, i.e., the objective function is equivalent to minimizing
the number of new stops in this case. We conclude that (SL-Cov) and (SL-Cov-TT) are
equivalent if de ≥ dmax

v0,a0,b0
for all e ∈ Ecand.

The number of constraints given by the candidate edges is of order O(|Scand|2):

I Lemma 14. Suppose a network G=(V ,E) and Scand are given. Let |E| = m and |Scand| =
n =

∑m
i=1 ni, where ni for i = 1, . . . ,m is the number of candidate stops on edge ei. Then

the number of candidate edges is given by |Ecand| =
m∑

i=1

(
ni + 2

2

)
Note that if there exists an 1 ≤ i ≤ m such that ni = 0 then T (dei

) is a constant and
thus does not have to be considered. In fact, the number of variables and constraints can
then be reduced.

We close this section by a comparison between (SL-Cov) and (SL-Cov-TT). The following
example shows a situation in which the realistic traveling time can be reduced by building
two stops instead of only one.

I Example 15. In Figure 3 two demand points p1 and p2 have to be covered by stops on
e = (v1, v2). In order to minimize the number of stops it is sufficient to build only one stop,
namely s2, i.e., s = {s2} is an optimal solution. We compare S with the solution S̃ = {s1, s2},
where s1 and s3 are close enough to v1 and v2 respectively. Assuming dv1,s2 , ds2,v2 ≥ dmax

v0,a0,b0
,

the traveling times can be computed as

f(S) = T (dv1,s2) + T (ds2,v2) = de

v0
+ v0

a0
+ v0

b0

f(S̃) = T (dv1,s1) + T (ds1,s3) + T (ds3,v2)

=

√
2(a0 + b0)
a0b0

dv1,s1 + de − dv1,s1 − ds3,v2

v0
+ v0

2a0
+ v0

2b0
+

√
2(a0 + b0)
a0b0

ds3,v2

and by letting dv1,s1 and ds3,v2 tend to 0, we see that f(S̃) < f(S).

Other examples of the same pattern can be constructed which show that the number of
stops in an optimal solution to (SL-TT-Cov) can differ by more than one from the number
of stops in an optimal solution to (SL-Cov).
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5 Experiments

Environment. All experiments were conducted on a PC with 24 six-core Intel Xenon X5650
Processor running at 2.67 GHz with 12 MB cache and a main memory of 94 GB. IPs were
solved using Xpress Optimizer v23.01.05. The running time limit of the solver was set to 300
seconds.

Benchmark set. The southern part of the existing railway network of Lower Saxony, Germany,
is used as the existing network G = (V,E). From the same area the 34 largest cities are
considered as demand points if they are not already close enough to an existing stop. This is
the setting for the first benchmark set (LS=Lower Saxony). For our second benchmark set,
stops which have only two adjacent tracks are removed and thus a set (LSR=Lower Saxony
Reduced) with longer tracks and more uncovered demand points is obtained. This set has
higher complexity.

The values for the traveling time are chosen according to the real properties, which
are acceleration and deceleration of 0.7m/s2 and a cruising speed of 200km/h. For a set
of different radii (r ∈ {1750, 2100, 2450, . . . , 12950} (in meters)), we constructed instances
containing all demand points which can be covered by r, i.e. P increases with the radius.

Figure 4 Traveling time with respect to the number of built stops.

Setup. The quality of the IP formulations for (SL-TT-Cov) and for (SL-Cov) (see [17] for
the IP formulation of (SL-Cov)) are compared. To this end, for each of the benchmark sets
and every radius r ∈ {1750, 2100, 2450, . . . , 12950} both models have been solved by Xpress
Optimizer. Then for each run the quality of the solution is measured by evaluating the
traveling time and the number of stops built.

Hypotheses. The evaluations are designed to approve or disprove the below stated hypotheses.
1. (SL-TT-Cov) performs better than (SL-Cov) in terms of traveling time.
2. (SL-TT-Cov) performs worse than (SL-Cov) in terms of number of stops.
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Table 1 Average values of the objective functions for the solutions of (SL-Cov) and (SL-TT-Cov).

Set (LS) SL-Cov SL-TT-Cov Set (LSR) SL-Cov SL-TT-Cov
Traveling Time g(S) 6878.62 6863.34 Traveling Time g(S) 5201.62 5069.24
# Built stops |S| 35.09 35.09 # Built stops |S| 16.06 16.06

3. With increasing radius and a fixed set of demand points, the traveling time decreases.
4. The difference in performance between (SL-TT-Cov) and (SL-Cov) is more evident on

(LSR) than on (LS).
5. The running time of (SL-TT-Cov) is exponential in the number of candidates.
6. As the acceleration tends to infinity, the traveling time of the solutions of (SL-TT-Cov)

and (SL-Cov) tend to the traveling time with constant speed.

Results. Table 1 summarizes our results calculating the average values of the two objective
functions for all instances.

Hypotheses 1 and 2. Considering the benchmark sets (LS) and (LSR) the solutions of
(SL-Cov) and (SL-TT-Cov) in terms of the number of built stops do not vary at all. In terms
of the resulting traveling time on (LS) only small differences are recognizable. However, on
the benchmark set (LSR) the results show bigger differences. The average traveling time
of (SL-Cov) can be reduced by more than 3% by using (SL-TT-Cov). These messages can
clearly be confirmed by Figure 4. Hence, from the experiments we can approve hypotheses 1
and disprove 2.

Figure 5 Computing time with respect to the number of candidates.

Hypothesis 3. Figure 4 clearly shows that in both sets (LS) and (LSR) the traveling time
decreases with increasing radius r. This makes sense as for the same demand points but
increasing radius possibly more demand points can be covered by the same stop. In some
instances the number of stops or the traveling time increases with the radius, which is due
to the increased number of demand points which require more stops to be built. In general
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though, we can detect that the traveling time decreases with increasing radius. Thus, the
hypothesis 3 can be approved.

Hypothesis 4. Also hypothesis 4 can be approved by the results depicted in Figure 4.
Note that the vertices in the underlying network G are always stops. Thus, for (LS) already
35 stops are fixed to be built, which explains why there is no big difference between (SL-Cov)
and (SL-TT-Cov). For (LSR) though, the number of previously fixed stops is only 10, i.e.,
the models (SL-Cov) and (SL-TT-Cov) have more freedom to find a solution and hence the
difference in terms of the traveling time is bigger. Hypothesis 4 can hence be approved.

Figure 6 Relation between traveling time and accelera-
tion

Hypothesis 5. On the other
hand the more freedom is granted
to the models, the higher is the
complexity and subsequently the
higher is the running time. Fig-
ure 5 depicts the running time of
(SL-Cov) and (SL-TT-Cov) for (LS)
and (LSR). The maximal running
time for (SL-TT-Cov) is set to 300
seconds and the solution obtained if
the algorithm exceeds this limit is
usually not optimal. In the exper-
iments, all solution obtained were
at least feasible, and although not
necessarily optimal, the solutions
for (SL-TT-Cov) have lower trav-
eling times than the solutions for
(SL-Cov). Figure 5 hence approves
the hypothesis 5.

Hypothesis 6. Finally, Figure 6 depicts the behavior of the traveling time for increasing
acceleration and deceleration. To this end, we solved (SL-Cov) and (SL-TT-Cov) on (LS)
with a fixed radius of 3500 meters for different acceleration and deceleration values. It is
assumed that acceleration and deceleration are always equal. The traveling time is compared
to the function summing up all edge lengths and dividing by the cruising speed. This is the
traveling time function assuming a constant speed. For increasing acceleration we can detect
that the traveling time T tends to the value of the traveling time assuming constant speed.
Taking into account the shape of T (d) it means that for increasing a0 and b0 the acceleration
and deceleration phases become shorter. Thus, hypothesis 6 can be approved.

6 Conclusion and further research

In this paper we included a realistic traveling time function in stop location problems. We
derived a finite dominating set and an IP formulation and showed the applicability of the
model on two different benchmark sets. It turns out that the solutions of (SL-TT-Cov)
usually outperform the solutions of (SL-Cov) with a trade-off of having higher running times.

Further research on this topic goes into two directions. First, we assumed that all vertices
of the existing network are built as stops. However, it may be better to close or move some
of these. In order to model this appropriately, an integration with line planning is necessary.
Secondly, the traveling time for the passengers could be even more realistic if OD-pairs are
considered. Minimizing their traveling time leads to a different model and thus analysis.
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A Appendix

Proof. (Lemma 6) Let S = {(e, x1), . . . , (e, xp)} with x1 < . . . < xp be a feasible solution,
and let x0 = 0 and xp+1 = de. Then

g(S) =
p+1∑
l=1

T (xl − xl−1) =
p+1∑
l=1

(xl − xl−1)
v0

+ v0

2a0
+ v0

2b0
= de

v0
+ v0(p+ 1)

2

(
1
a0

+ 1
b0

)
,

which is independent of S. J

Proof. (Lemma 7) Note that T (x − y) is a concave function in (x, y) on {(x, y) : x ≥ y},
hence g(x1, . . . , xp) =

∑p+1
l=1 T (xl−xl−1) is also concave. The minimum of the above program

is hence taken at an extreme point of the feasible polyhedral set P = {(x1, . . . , xp) : xl + ε ≤
xl+1, l = 0, . . . , p}. P has exactly p+ 1 extreme points given by

xh = (x0 + ε, x0 + 2ε, . . . , x0 + (h− 1)ε, xp+1 − (p− (h− 1)) ε, . . . , xp+1 − 2ε, xp+1 − ε)

for h = 1, . . . , p+ 1. Evaluating the objective function at an extreme point xh yields

g(xh) =
p∑

i=0
T (xh

i+1 − xh
i )

= pT (ε) + T (xp+1 − pε+ (h− 1)ε− x0 − (h− 1)ε) = pT (ε) + T (de − pε)

which is independent of h. Hence, any of the extreme points is optimal. J

Proof. (Lemma 8) The first part of the lemma is obvious. For the second part, let (SL-TT-
Cov) be feasible. Then there exists some point sp ∈ S such that dist(p, s) ≤ r for every
demand point p ∈ P. Choose S := {sp : p ∈ P} as a feasible solution. Each stop s ∈ S adds
a new edge to E(S), hence |E(S)| = |E|+ |P|. Let e′ = (i, j) ∈ E(S) be a new edge with
i = (ē, xi), j = (ē, xj) for some ē ∈ E. Then we estimate de′ ≤ dē ≤ maxe∈E de, and since T
is monotone we obtain

T (de′) ≤ max
e∈E

T (de)
(I)
≤ max

e∈E

de

v0
+ v0

2a0
+ v0

2b0
, where (I) is a result from Lemma 2.

Hence, g(S∗) ≤ g(S) ≤ |E(S)|max
e∈E

T (de) ≤ (|E|+ |P|) max
e∈E

de

v0
+ v0

2a0
+ v0

2b0
.

J

Proof. (Lemma 9) To see that (SL-TT-Cov) is NP-hard, we reduce it to the discrete stop
location in a network: Given a network embedded in the plane, a set of demand points,
and a finite candidate set Scand, find a set S∗ ⊆ Scand with minimal cardinality covering
all demand points. This problem is NP-hard, also if V ⊆ Scand, see [17]. Let an instance
of the discrete stop location problem be given. Determine m := min{d(s, s′) : s, s′ ∈
Scand, and s, s′ ∈ e for some e ∈ E} as the closest distance between two candidate locations
on the same edge. Note that for a0, b0 → ∞ we obtain that dmax

a0,b0,v0
→ 0. Hence choose

a0, b0 large enough such that dmax
a0,b0,v0

≤ m. We claim that a solution to the discrete stop
location problem with |S| ≤ K exists if and only if a solution S∗ to (SL-TT-Cov) exists with
g(S∗) ≤

∑
e∈E)

de

v0
+ (|E|+K)

(
v0
2a0

+ v0
2b0

)
.

To see this, note that for de′ ≥ dmax
a0,b0,v0

for all e′ ∈ E(S) the objective function of
(SL-TT-Cov) reduces to

g(S) =
∑

e′∈E(S)

(
de′

v0
+ v0

2a0
+ v0

2b0

)
=
∑
e∈E

de

v0
+ |E(S)|

(
v0

2a0
+ v0

2b0

)
. (6)
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”⇒” Let S be a solution to (SL) with |S| ≤ K. Then there exists another optimal solution
S∗ ⊆ Scand. Then S∗ is feasible for (SL-TT-Cov) and de′ ≥ m ≥ dmax

a0,b0,v0
for all

e′ ∈ E(S∗). Hence g(S) ≤
∑

e∈E
de

v0
+ (|E|+K)

(
v0
2a0

+ v0
2b0

)
.

”⇐” Let S∗ be a solution to (SL-TT-Cov) with g(S∗) ≤
∑

e∈E
de

v0
+ (|E|+K)

(
v0
2a0

+ v0
2b0

)
.

Again, there exists S ⊆ Scand with g(S∗) = g(S). Since de′ ≥ m ≥ dmax
a0,b0,v0

for all
e′ ∈ E(S∗) we have∑

e∈E)

de

v0
+ (|E|+K)

(
v0

2a0
+ v0

2b0

)
≥ g(S) = g(S∗) =

∑
e∈E

de

v0
+ |E(S)|

(
v0

2a0
+ v0

2b0

)
,

from which we conclude |E(S)| ≤ |E|+K ⇔ |S| ≤ K.
J

Proof. (Theorem 12) Let S∗ ⊆
⋃

e∈E,p∈P T
e(p) be optimal, but S∗ 6⊆ Scand. The goal is to

replace each s̃ ∈ S∗ \ Scand by a point in Scand without loosing feasibility or optimality. To
this end, take some s̃ ∈ S∗ \ Scand. If s̃ ∈ V , then s̃ can be removed, since the vertices are
existing stops. Thus, we can assume that s̃ 6∈ V , i.e. s̃ = (e, x) ∈ E. Now find the following
points on edge e:

sj = (e, xj), sj+1 = (e, xj+1) ∈ Scand with sj <e s̃ <e sj+1 for two consecutive elements
of Se

cand (if they exist on e), and
sleft, sright ∈ (S∗ ∪ V )∩ e with sleft <e s̃ <e sright for the two direct neighbors of s̃ on e
(which always exist)

We now investigate the objective function if we move s̃. For all s with sleft = (e, xleft) <e

s = (e, x) <e sright = (e, xright) the objective function h(x) := g(S \ s̃ ∪ {(e, x)}) is given as

h(x) =
∑

e′∈E(S\s̃∪{(e,x)}

T (de′) = const+ T (x− xleft) + T (xright − x)

where the constant part is independent of the choice of s = (e, x). As in Lemma 4, h(x)
is concave in x on the segment between sleft and sright. Furthermore, from Lemma 11 we
know that coverP({s}) ⊇ cover{s̃} for all s = (e, x) between sj and sj+1. Now consider the
minimization problem

min{h(x) = T (x− xleft) + T (xright − x) : max{xleft, xj} ≤ x ≤ min{xright, xj+1}}.

Due to the concavity of h(x) we know that an optimal solution x∗ ∈ {xleft, xright, xj , xj+1}
exists.
1. In case that x∗ = xj or x∗ = xj+1 we may replace s̃ by s = (e, x∗) ∈ Scand and hence

obtain a feasible solution with the same objective value.
2. In case that x∗ = xleft or x∗ = xright we may delete s̃ since the new solution is still

feasible and has the same objective value.
In both cases, we have reduced the number of points in S∗ \Scand. Proceeding with remaining
points of S∗ which do not belong to Scand finishes the proof. J

Proof. (Lemma 14) The sum is obtained since the number of candidate edges on each edge

e of the original graph G can be calculated independently by
(
n+ 2

2

)
. J
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