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Abstract
Conformal predictors are usually defined and studied under the exchangeability assumption.
However, their definition can be extended to a wide class of statistical models, called online
compression models, while retaining their property of automatic validity. This paper is devoted
to conformal prediction under hypergraphical models that are more specific than the exchange-
ability model. We define conformity measures for such hypergraphical models and study the
corresponding conformal predictors empirically on benchmark LED data sets. Our experiments
show that they are more efficient than conformal predictors that use only the exchangeability
assumption.
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1 Introduction

The method of conformal prediction was introduced and is usually used for producing valid
prediction sets under the exchangeability assumption; the validity of the method means that
the probability of making a mistake is equal to (or at least does not exceed) a prespecified
significance level ([5], Chapter 2). However, the definition of conformal predictors can be
easily extended to a wide class of statistical models, called online compression models (OCMs;
[5], Chapter 8). OCMs compress data into a more or less compact summary, which is
interpreted as the useful information in the data. With each “conformity measure”, which,
intuitively, estimates how well a new piece of data fits the summary, one can associate a
conformal predictor, which still enjoys the property of automatic validity.

This paper studies conformal prediction under the OCMs known as hypergraphical models
([5], Section 9.2). Such models describe relationships between data features. In the case where
every feature is allowed to depend in any way on the rest of the features, the hypergraphical
model becomes the exchangeability model. More specific hypergraphical models restrict
the dependence in some way. Such restrictions are typical of many real-world problems:
for example, different symptoms can be conditionally independent given the disease. A
popular approach to such problems is to use Bayesian networks (see, e.g., [2]). The definition
of Bayesian networks requires a specification of both the pattern of dependence between
features and the distribution of the features. Usual methods guarantee a valid probabilistic
outcome if the used distributions of features are correct. Several algorithms (see, e.g., [2],
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Chapter 9) are known for estimating the distribution of features; however, the accuracy of such
approximations is a major concern in applying Bayesian networks. The conformal predictors
constructed from hypergraphical OCMs use only the pattern of dependence between the
features but do not involve their distribution. This makes conformal prediction based on
hypergraphical models more robust and realistic than Bayesian networks.

As far as we know, conformal prediction has been studied, apart from the exchangeability
model and its variations, only for the Gauss linear model and Markov model (see [5],
Chapter 8, and [3]). Hypergraphical OCMs have been used only in the context of Venn
rather than conformal prediction (see [5], Chapter 9).

The rest of the paper is organised as follows. Section 2 formally defines hypergraphical
OCMs and briefly reviews their basic properties. Section 3 describes the method of conformal
prediction in the context of hypergraphical models and introduces a class of conformity
measures for hypergraphical OCMs. Section 4 reports the performance of the corresponding
conformal predictors on benchmark LED data sets. Section 5 concludes.

2 Background

Consider two measurable spaces X and Y; elements of X are called objects and elements
of Y are called labels. Elements of the Cartesian product X ×Y are called examples. A
training set is a sequence of examples (z1, . . . , zl), where each example zi = (xi, yi) consists
of an object xi and its label yi. The general prediction problem considered in this paper is
to predict the label for a new object given a training set. We focus on the case where X and
Y are finite.

2.1 Hypergraphical Structures

In this paper we assume that examples are structured, consisting of variables. Hypergraphical
structures describe relationships between the variables. Formally a hypergraphical structure1
consists of three elements (V, E ,Ξ):
1. V is a finite set; its elements are called variables.
2. E is a finite collection of subsets of V whose union covers all variables:

⋃
E∈E E = V .

Elements of E are called clusters.
3. Ξ is a function that maps each variable v ∈ V into a finite set (of the values that v can

take).
A configuration on a set E ⊆ V (we are usually interested in the case where E is a cluster) is
an assignment of values to the variables from E; let Ξ(E) be the set of all configurations on
E. A table2 on a set E is an assignment of natural numbers to the configurations on E. The
size of the table is the sum of values that it assigns to different configurations. A table set is
a collection of tables on the clusters E , one for each cluster E ∈ E . The number assigned by
a table set σ to a configuration on E is called its σ-count.

1 The name reflects the fact that the components (V, E) form a hypergraph, where a hyperedge E ∈ E
can connect more than two vertices.

2 Generally, a table assigns real numbers to configurations. In this paper we only consider natural tables,
which assign natural numbers to configurations, and omit “natural” for brevity.
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2.2 Hypergraphical Online Compression Models
The example space Z associated with the hypergraphical structure is the set of all con-
figurations on V . One of the variables in V is singled out as the label variable, and the
configurations on the label variable are denoted Y. All other variables are object variables,
and the configurations on the object variables are denoted X. Since Z = X×Y, this is a
special case of the prediction setting described at the beginning of this section.

An example z ∈ Z agrees with a configuration on a set E ⊆ V (or the configuration
agrees with the example) if the restriction z|E of z to the variables in E coincides with the
configuration. A table set σ generated by a sequence of examples (z1, . . . , zn) assigns to each
configuration on each cluster the number of examples in the sequence that agree with the
configuration; the size of each table in σ will be equal to the number of examples in the
sequence, and this number is called the size of the table set. Different sequences of examples
can generate the same table set σ, and we denote #σ the number of different sequences
generating σ.

The hypergraphical online compression model (HOCM) associated with the hypergraphical
structure (V, E ,Ξ) consists of five elements (Σ,2,Z, F,B), where:
1. The empty table set 2 is the table set assigning 0 to each configuration.
2. The set Σ is defined by the conditions that 2 ∈ Σ and Σ \ {2} is the set of all table sets

σ with #σ > 0. The elements σ ∈ Σ are called summaries.
3. The forward function F (σ, z), where σ ranges over Σ and z over Z, updates σ by adding

1 to the σ-count of each configuration which agrees with z.
4. The backward kernel B maps each σ ∈ Σ \ {2} to a probability distribution B(σ) on

Σ× Z assigning the weight #(σ ↓ z)/#σ to each pair (σ ↓ z, z), where z is an example
such that, for all configurations which agree with z, the corresponding σ-counts are
positive, and σ ↓ z is the table set obtained by subtracting 1 from the σ-counts of the
configurations that agree with z. Notice that B(σ) is indeed a probability distribution,
and it is concentrated on the pairs (σ ↓ z, z) such that F (σ ↓ z, z) = σ.

We will use “hypergraphical models” as a general term for hypergraphical structures and
HOCMs when no precision is required. When discussing hypergraphical models we will
always assume that the examples z1, z2, . . . are produced independently from a probability
distribution Q on Z that has a decomposition

Q({z}) =
∏
E∈E

fE(z|E) (1)

for some functions fE : Ξ(E)→ [0, 1], E ∈ E , where z is an example and z|E its restriction
to the variables in E.

2.3 Junction Tree Structures
An important type of hypergraphical structures is where clusters can be arranged into a
“junction tree”. For the corresponding HOCMs we will be able to describe efficient calculations
of the backward kernels. If one wants to use the calculations for a structure that cannot be
arranged into a junction tree it can be replaced by a more general junction tree structure
before defining the HOCM.

Let (U, S) denote an undirected tree with U the set of vertices and S the set of edges.
Then (U, S) is a junction tree for a hypergraphical structure (V, E ,Ξ) if there exists a bijective
mapping C from the set of vertices U of the tree to the set E of clusters of the hypergraphical
structure that has the following property: Cu ∩ Cw ⊆ Cv whenever a vertex v lies on the
path from a vertex u to a vertex w in the tree (we let Cx stand for C(x)).

ICCSW’13
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If s = {u, v} ∈ S is an edge of the junction tree connecting vertices u and v then Cs
stands for Cu ∩ Cv. It is convenient to identify vertices u and edges s of the junction tree
with the corresponding clusters Cu and sets Cs, respectively.

If E1 ⊆ E2 ⊆ V and f is a table on E2, the marginalisation of f to E1 is the table f∗
on E1 assigning to each a ∈ Ξ(E1) the number f∗(a) =

∑
b f(b), where b ranges over the

configurations on E2 such that b|E1 = a. If σ is a summary then for u ∈ U denote σu the
table that σ assigns to Cu, and for s = {u, v} ∈ S denote σs the marginalisation of σu (or
σv) to Cs. We will use the shorthand σu(z) for the number assigned to the restriction z|Cu

by the table for the vertex u and σs(z) for the number assigned to z|Cs by the marginal
table for the edge s. Consider the HOCM corresponding to the junction tree (U, S). We use
the notation Pσ(z) for the weight assigned by B(σ) to (σ ↓ z, z). It has been proved ([5],
Lemma 9.5) that

Pσ(z) =
∏
u∈U σu(z)

n
∏
s∈S σs(z)

, (2)

where n is the size of σ. If any of the factors in (2) is zero then the whole ratio is set to zero.

3 Conformal Prediction for HOCM

Consider a training set (z1, . . . , zl) and an HOCM (Σ,2,Z, F,B). The goal is to predict the
label for a new object x.

A conformity measure for the HOCM is a measurable function A : Σ × Z → R. The
function assigns a conformity score A (σ, z) to an example z w.r. to a summary σ. Intuitively,
the score reflects how typical it is to observe z having the summary σ.

For each y ∈ Y denote σ∗ ∈ Σ the table set generated by the sequence (z1, . . . , zl, (x, y))
(the dependence of σ∗ on y is important although not reflected in our notation). For z ∈ Z
such that σ∗ ↓ z is defined denote the conformity scores as αz := A (σ∗ ↓ z, z) (notice that
α(x,y) is always defined). The p-value for y, denoted p(y), is defined by

p(y) :=
∑

z:αz<α(x,y)

Pσ∗(z) + θ ·
∑

z:αz=α(x,y)

Pσ∗(z) (3)

(cf. (8.4) in [5]), where θ ∼ U[0, 1] is a random number from the uniform distribution on
[0, 1], Pσ∗(z) is the backward kernel, as defined above, and the sums involve only those z ∈ Z
for which αz is defined. Then for a significance level ε the conformal predictor Γ based on A
outputs the prediction set

Γε(z1, . . . , zl, x) := {y ∈ Y : p(y) > ε}.

The following section 3.1 defines one class of conformity measures for HOCMs and section 3.2
describes the criteria for the quality of conformal predictions which we use in the paper; for
other conformity measures and more criteria see sections 3.1 and 3.2 in [4].

3.1 Conformity Measures for HOCM
Consider a summary σ and an example (x, y). The conditional probability Pσ∗(y | x) of y
given x under Pσ∗ can be computed using (2) as follows

Pσ∗(y | x) = Pσ∗ ((x, y))∑
y′∈Y Pσ∗ ((x, y′)) ,
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where σ∗ := F (σ, (x, y)) and Pσ∗ ((x, y)) is the backward kernel. Define the predictability of
an object x ∈ X as

f(x) := max
y∈Y

Pσ∗(y | x), (4)

the maximum of conditional probabilities. If the predictability of an object is close to 1 then
the object is “easily predictable”. Fix a choice function ŷ : X→ Y such that

∀x ∈ X : f(x) = Pσ∗(ŷ(x) | x).

The function maps each object x to one of the labels at which the maximum in (4) is attained.
The signed predictability conformity measure is defined by

A(σ, (x, y)) :=
{
f(x) if y = ŷ(x)
−f(x) otherwise.

(5)

3.2 Criteria for the Quality of Conformal Prediction

In this paper we study the performance of conformal predictors in the online prediction
protocol (Protocol 1). Reality generates examples (xn, yn) from a probability distribution Q
satisfying (1) for some hypergraphical structure. Predictor uses a conformal predictor Γ to
output the prediction set Γεn := Γε(x1, y1, . . . , xn−1, yn−1, xn) at each significance level ε.

Protocol 1 Online prediction protocol
for n = 1, 2, . . . do
Reality outputs xn ∈ X
Predictor outputs Γεn ⊆ Y for all ε ∈ (0, 1)
Reality outputs yn ∈ Y

end for

Two important properties of conformal predictors are their validity and efficiency; the
first is achieved automatically and the second is enjoyed by different conformal predictors
to a different degree. Predictor makes an error at step n if yn is not in Γεn. The validity of
conformal predictors means that, for any significance level ε, the probability of error yn /∈ Γεn
is equal to ε. It has been proved that conformal predictors are automatically valid under
their models ([5], Theorem 8.1). In this paper we study problems where the hypergraphical
model used for computing the p-values is known to be correct; therefore, the predictions will
always be valid, and there is no need to test validity experimentally. One possible way to
measure efficiency is to count the number of multiple predictions Multεn over the first n steps
defined by

multεn :=
{

1 if |Γεn| > 1
0 otherwise

and Multεn :=
n∑
i=1

multεi

at each significance level ε ∈ (0, 1) (cf. [5], Chapter 3). In our experiments we will look at
the percentage of multiple predictions Multεn/n; we would like it to be close to 0 for small
significance levels.

ICCSW’13
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Figure 1 LED images for digits 7, 8, and 9 in the seven-segment display.

4 Experimental Results

4.1 LED Data Set
For our experiments we use benchmark LED data sets generated by a program from the
UCI repository [1]. The problem is to predict a digit from an image in the seven-segment
display. Figure 1 shows several objects in the data set (these are “ideal images” of digits;
there are also digits corrupted by noise). The seven LEDs (light emitting diodes) can be lit
in different combinations to represent a digit from 0 to 9. The program generates examples
with noise. There is an ideal image for each digit. An example has seven binary attributes
s0, . . . , s6 (si is 1 if the ith LED is lit) and a label c, which is a decimal digit. The program
randomly chooses a label (0 to 9 with equal probabilities), inverts each of the attributes of
its ideal image with probability pnoise = 1% independently, and adds the noisy image and
the label to the data set.

4.2 Hypergraphical Assumptions for LED Data Sets
We consider two hypergraphical models that agree with the generating mechanism. These
models make different assumptions about the pattern of dependence between the attributes
and the label; they do not depend on a particular probability of noise pnoise or the fact that
the same value of pnoise is used for all LEDs. For both hypergraphical structures the set of
variables is V := {s0, . . . , s6, c}.
Nontrivial Hypergraphical Model. Consider the hypergraphical structure with the
clusters E := {{si, c} : i = 0, . . . , 6}. A junction tree for this hypergraphical structure can be
defined as a chain with vertices U := {ui : i = 0, . . . , 6} and the bijection Cui

:= {si, c}.
Exchangeability Model. The hypergraphical model with no information about the pattern
of dependence between the attributes and the label is the exchangeability model. The
corresponding hypergraphical structure has one cluster, E := {V }. The junction tree is the
one vertex associated with V .

4.3 Experiments
For our experiments we create a LED data set with 10000 examples. The data are generated
by the program described in section 4.1 with the probability of noise pnoise = 1%.

We consider predictors based on the signed predictability conformity measure (5). The
graph with no characters on it corresponds to the idealized predictor and represents an
unachievable ideal goal. In the idealized case we know the true distribution for data and use
it instead of the backward kernel Pσ∗ in both (3) and (5). The pure hypergraphical conformal
predictor (the graph with circles) is obtained using the nontrivial hypergraphical model both
when computing p-values (3) and when computing the conformity measure (5). Analogously
we use the exchangeability model to obtain the pure exchangeability conformal predictor (the



V. Fedorova, A. Gammerman, I. Nouretdinov, and V. Vovk 33

significance level

p
er

ce
n
ta

g
e 

o
f 

m
u
lt

ip
le

 p
re

d
ic

ti
o
n
s

0% 0.5% 1% 1.5% 2% 2.5% 3%

0
%

2
0
%

4
0
%

6
0
%

8
0
%

1
0
0
%

pv: exch;  CM: exch

pv: exch;  CM: hgr

pv: hgr;   CM: exch

pv: hgr;   CM: hgr

pv: ideal; CM: ideal

Figure 2 The final percentage of multiple predictions for significance levels between 0% and 3%.
The results are for the LED data set with 1% of noise and 10000 examples.

Table 1 The final percentage of multiple predictions in Figure 2 for the significance level 1% and
for the graphs with squares and circles.

Seed (104) 0 1 . . . 99 Average St. dev.

pv: exch; CM: hgr 0.197 0.243 . . . 0.248 0.192 0.052
pv: hgr; CM: hgr 0.203 0.244 . . . 0.250 0.196 0.049

graph with triangles point up). The two mixed conformal predictors (the graphs with squares
and triangles point down) are obtained when we use different models to compute the p-values
and the conformity scores. The intuition behind the pure and mixed conformal predictors can
be explained using the distinction between hard and soft models made in [6]. The model used
when computing the p-values (3) is the hard model; the validity of the conformal predictor
depends on it. The model used when computing conformity scores (5) is the soft model; when
it is violated, validity is not affected, although efficiency can suffer. The true probability
distribution for our generated data conforms to both the exchangeability model and the
nontrivial hypergraphical model; so all four conformal predictors are automatically valid,
and we study only their efficiency. Figure 2 shows the percentage of multiple predictions
Multε10000/10000 as function of the significance level ε ∈ [0, 0.03]. In the legend, the hard
model used is indicated after “pv” (the way of computing the p-values), and the soft model
used is indicated after “CM” (the conformity measure); “exch” refers to the exchangeability
model, and “hgr” refers to the nontrivial hypergraphical model. The most interesting graph
is the one with squares, corresponding to the exchangeability model as the hard model and
the nontrivial hypergraphical model as the soft model. The performance of the corresponding
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conformal predictor is typically better than, or at least close to, the performance of any of
the remaining realistic predictors. The fact that the validity of the conformal predictor only
depends on the exchangeability assumption makes it particularly valuable. The graph with
triangles point down corresponds to the nontrivial hypergraphical model as the hard model
and the exchangeability model as the soft model; the performance of the corresponding
conformal predictor is very poor in our experiments.

Table 1 shows the percentage of the multiple prediction at the significance level 1% for
two graphs (with squares and with circles) for several seeds of the pseudorandom number
generator. The values of the seed are given in the units of 10,000 (so that 0 stands for 0, 1
for 10,000, 2 for 20,000, etc.). The column “Average” gives the average of all the 100 values,
and column “St. dev.” gives the standard estimate of the standard deviation computed from
those 100 values. The table confirms that the graphs are very close on average (see the
penultimate column), but the accuracy of our experiments is insufficient to say which tends
to be lower (see the last column).

5 Conclusion

The main finding of this paper is that nontrivial hypergraphical models can be useful for
conformal prediction when they are true. More surprisingly, in our experiments they only
need to be used as soft models; the performance does not suffer much if the exchangeability
model continues to be used as the hard model. This interesting phenomenon deserves a
further empirical study.
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