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—— Abstract

This paper discusses the Compressive Sampling framework as an application for sparse representa-
tion (factorization) and recovery of images over an over-complete basis (dictionary). Compressive
Sampling is a novel new area which asserts that one can recover images of interest, with much
fewer measurements than were originally thought necessary, by searching for the sparsest repres-
entation of an image over an over-complete dictionary. This task is achieved by optimizing an
objective function that includes two terms: one that measures the image reconstruction error and
another that measures the sparsity level. We present and discuss a new swarm based heuristic for
sparse image approximation using the Discrete Fourier Transform to enhance its level of sparsity.
Our experimental results on reference images demonstrate the good performance of the proposed
heuristic over other standard sparse recovery methods (L1-Magic and FOCUSS packages), in a
noiseless environment using much fewer measurements. Finally, we discuss possible extensions
of the heuristic in noisy environments and weakly sparse images as a realistic improvement with
much higher applicability.
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1 Introduction

The famous sampling theorem of Shannon-Nyquist has been very important in engineering.
Straightforward and precise, it sets forth the number of measurements required to reconstruct
any type of signal or image data. However, many real world applications, such as sound,
images and video are represented, stored and processed in computers as big files or collections
of bits, which has many disadvantages in comparison with small files; they require more
storage space, they take longer to transmit and they demand an overwhelming computational
cost for processing. For this purpose many signal/image compression techniques have been
introduced including the emerging field of Compressed Sensing (CS). Compressive Sampling
or Compressed Sensing (CS) is a fairly new area which was previously introduced empirically
in the sciences (e.g. by Claerbout-Muir in Seismology) [3, 4, 5, 9]. CS as a cheap and
fast sampling and recovery process has attracted considerable research with several new
application areas over the past few years. By exploiting the image (sparsity) and the
measurements (random samples) structure we are able to recover an image from what was
previously considered as highly incomplete and inaccurate (under-sampled) measurements.
Following the pioneer theoretical and practical works by Donoho [6], Candes, Romberg and
Tao [4, 5, 9, 22] we are able to recover an under-sampled image, with high probability, by
solving an ill-posed inverse problem, as a combinatorial optimization problem. Towards this
direction, many variants and extensions of CS have been introduced in the literature recently
(1000+ papers in the last 8 years) [21]. This paper proposes a new swarm based heuristic
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for sparse image approximation and representation based on the key mathematical aspects
of the CS method. We have already discussed and suggested the basics of this approach
in signals [1, 17]. In this paper we aim to preset and extend the heuristic in images which
introduces a more complete and realistic application. The heuristic is also compared with
other well-known alternative methods in terms of recovery error, samples size and average
computation time. The rest of this paper is organised as follows: The next Section presents
the sparse image recovery problem. Then, we briefly discuss two well-known methods used
for sparse image recovery (Section 3), while the proposed swarm-based iterative method is
described in Section 4. Section 5 presents some experimental results of the proposed heuristic
and its comparison with the other methods, while the Section 6 provides some conclusions
and extensions of the proposed method.

2 Images as sparse representations

In computers, a image can be represented as a two dimensional array of points of the same
size as the image. Each of these points is called pixel. Every pixel as a sample from the image
and an element of its corresponding matrix represents the spatial irradiance distribution at
the corresponding position. In other words, a pixel can be seen as a continuous function f of
two variables m,n which correspond to its position of the array/grid (coordinates), while
the function’s value represents the type of light/color intensity. This light intensity value
depends on the standard followed; it can be one value representing the tone of gray (gray
level images) or multiple values for colour images, such as RGB and HSI pallets. For example,
the corresponding array for a digital 512 x 512 gray level 2D image with 8 bit representation
standard (256 colour intensity values) can be defined as [12, 18, 19, 22]:

f={flmn)=2zmmn=0:511,2=0:255} (1)

Sometimes to further enhance the processing steps or operations in an image (and thus its
sparsity) we need to apply a so-called Unitary Transform [4, 12, 19, 22]. By this way we
change the domain of representation (i.e. image function) from spatial (pixels) to frequency
(spectra). In this case the image is represented as a linear combination of basis functions
of a linear integral transform. This operation converts an image into one having relatively
fewer values significantly different from zero. Obviously, the pursue of the best Transform
domain which leads to the sparsest representation highly depends on the trade-off between
the computation time and the size of the dictionary basis [12, 18, 19]. In this paper, we will
apply the Discrete Fourier Transform (DFT), which uses cosines and sines as basis functions
(i.e. e = cos(w) + isin(w)), to gray level images. The 2D DFT (spectrum) of an image
f(m,n) can be defined as [12, 18, 19, 22]:

M-1N-1

X (u, Z > f(m.n)exp| 2m(ﬁ+ﬁ)] (2)

m=0 n=0
foru=0,1,....M —1land v=0,1,..., N — 1. The inverse DFT is given by:

M—-1N-1

X( =27i(— + —

Z Z (u,v) exp| m(M + N)] (3)
u=0 v=0

form=0,1,..., M—1and n=0,1,..., N — 1. Usually in images M = N, which is also the

case for the test images discussed in this paper. Note also that there is one-to-one mapping

between the spatial and frequency domain. The 2D DFT maps an M x N real-valued matrix
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f(m,n) on M x N complex-value matrix X (u,v), while the inverse DF'T maps the X (u,v)
on f(m,n) [12, 18, 19]. In practice, the DFT is computed using the Fast Fourier Transform
(FFT) algorithm, which is nothing but a computationally efficient way of obtaining the DFT
coefficients based on the symmetries of the basis (matrix ¥) [12, 18, 19, 22]. Many natural
images have concise representations when expressed in a convenient basis. In CS we use
DFT to enhance the sparsity of an image before down-sampling it. In image processing, for
simplicity reasons (eg. Histogram of an image), it is very common to treat an N x N image
as a N := N2 vector and samples as a vector on the M frequencies (M < N); principle we
will also adopt here. Let’s assume we have a noiseless image f € RY which we expand in an
orthonormal basis (such as a Fourier basis) ¥ = [¢1,2,...,¥N] as X = vazl fitv;. Then
the image can be represented as a sparse linear combination of atoms in ®. In vector format,
we have [3, 4, 5, 6, 12, 22]:

Xnx1 = VUnenfnx, (4)

where U is a unitary N x N matrix (basis) with ¢1,...,9%y as columns and X is the
vector of frequency coefficients with respect to W. So, the N-point DFT is expressed as an
N-by-N matrix multiplication, where f is the original input image and X is the DFT of
the image. Then we can sense or collect partial information about X (measurements) as
yr =< X, ¢ >,k =1,2,..., M or in vector format as [3, 4, 5, 6, 12, 22]:

Yyusxi = CuxnXnx1 = PuxnvYNxn[xi (5)

That is, we simply correlate the object we wish to acquire with the waveforms ®, which is
the measurement or sampling operator and ¥ is the sparcifying operator (Fourier transform)
[3, 4, 5, 6, 8]. In fact, there is no formal difference between ® and ¥. In theory, the former
refers to the dictionary of physical spectra and the later refers to the dictionary of image

waveforms. In practice, ¥ is a partial Fourier matrix obtained by selecting M rows (i.e.

measurements) uniformly at random, using Gaussian distribution, and then re-normalising
the columns so that they are unit-normed (See [5, 6, 8, 12, 19, 22]). Note that the random
Fourier ensemble is only used as a more realistic application and thus efficient recovery of
the original image f still requires a unique sparsest solution. In a nutshell, the key steps of
CS are: take the DFT of the desired image to enhance its sparsity, under-sample it (lossy
compression) randomly, transmit/store it and then decompress (recover) it by solving an
optimisation problem. As we will see in the next section, different recovery methods solve
slightly different optimisation problems, though all these approaches serve the same purpose:
the sparse recovery of a (compressed) image as a solution to an optimisation problem.

3 Methods for sparse recovery in images

CS is very advantageous in images which are sparse (have only a few non-zero entries)
in a known basis provided that the measurements collected are incoherent (i.e. random)
[3, 4, 5, 8, 12, 19, 22]. Since we are interested in sparsely representing highly under-sampled
images, the linear system describing the measurements in (5) is under-determined and
therefore has infinitely many solutions [3, 4, 5, 6]. This instance of an under-determined
system of linear equations constitutes a linear inverse problem (LIP) [4, 5, 6, 8]. In this
paper we will consider C as a random Fourier ensemble (rows are randomly chosen DFT
vectors), in a noiseless environment. Note that randomness of sampling guarantees that we
have a linearly independent system of equations and hence a unique solution. We will also
restrict our approach to image restoration experiments applied to this problem and not to
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general applicability LIPs [4, 5, 8]. We discuss two well-known optimisation principles which
are implemented in Matlab packages and have been extensively studied mathematically.

3.1 The L1 Magic

L1 MAGIC is a collection of MATLAB routines, based on standard interior-point methods,
for solving optimization programs relevant to Compressive Sampling [5, 7]. In the case of the
sparse image (noiseless) recovery problem the L1 Magic solves the TV minimisation problem
with equality constraints which is a Second Order Cone Programming (SOCP) [4, 5, 7, 22]:

min TV(X) st. CX =Y, (6)

where C' is the Sampling/Sensing matrix (the under-sampling Fourier operator F,), Y is the
measurements vector, while TV stands for the Total Variation, which is the sum of magnitudes
of the discrete gradient D;; X at every point/pixel z;; of a FFT image X with i representing
the rows and j representing the columns (assume sparsity in gradients) [4, 5, 7, 22]:

N-1
TV(X) = 3 ([ (wisny = 209)? + (@501 — 202 = > [ Dy X[l (7)
ij ij
The L1 Magic uses a log-barrier method to solve the SOCP in (6). It initially transforms it
into a series of linearly constrained problems and then solves them by forming a a series of

quadratic approximations (i.e. a Newtonian iteration step which proceeds by minimizing
each of these systems of equations) [7].

3.2 The FOCUSS

FOCUSS package, which stands for FOCal Under-determined System Solver, is an algorithm
designed to obtain sub-optimally sparse solutions to linear inverse problems in relatively noise-
free environments [14, 20]. Tt is an affine-scaling transformation interior point optimisation
algorithm which is based on conjugate gradient factorisation for finding sparse solutions of
the following concave function [14, 20]:

A 1
X = args n}}niHY—C’XHQ—F/\dp(X), (8)

where C' is the Sampling/Sensing matrix, Y is the measurements vector, 0 < A < 1 is a
regularisation parameter. This reflects the trade-off between the sparse residual ||Y — CX]||
and the sparse source vector estimate X and depends on the compression rate of the sampled
FFT image X. The quantity d,(X) corresponds to the following norm [14, 20]:

dp(X) = 1 Xl = Y llsIP, 9)
i,J
for 0 < p <1 which enforces sparse solutions to the problem.

4 Research Approach

A simple technique for recovering an image of interest X from partial measurements Y is to
find a solution from an infinite set with the minimum sparsest norm [3, 4, 5, 6, 8, 9, 12, 19]:

min || X||;, st. Y =CX (10)
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where, the norm ||.||;, counts the non-zero elements of the vector X and thus || X||;, = S for
a S-sparse image (S non-zero entries). As X represents the partial Fourier measurements
the image can be reconstructed as f = WX. A common approach to overcome the difficulties
of the combinatorial search required for solving (10) would be to replace it by its convex
relaxation and particularly by substituting the {; norm for the Iy pseudo-norm (For details
see [3, 4, 5, 6, 9]). In this paper, we will follow a different approach which introduces an
efficient way to approximate the [y by the following smoother, continuous and easier to
differentiate Laplace function [1, 10, 13, 15, 16, 17):

N

11k, = JX1,0) = 31 = F(ihr) = N - Zexp "“‘ (1)

where z; is the i-th element of vector X of length IV and ¢ is a sequence index parameter.

Among the advantages of this approach are the robustness of the lo norm to noisy samples,
the number of measurements required, which is much smaller than the ones required by
its convex analog (I; norm), and less restrictions in the design of Sensing matrices C. The
problem in (10) is now reformed as an unconstrained optimisation problem:

— G 2
min  f(|X|,0) = (M — Zexp yi — i) ) (12)

202

where z; and y; are the i-th elements of vectors X € C and Y € C¥ respectively, while
¢; represents the i-th row of Sensing matrix C € CM*N with M < N. The purpose is
to minimise both the objective function in (12) and the parameter o. The value of this

parameter represents the tradeoff between accuracy and smoothness of the approximation.

The smaller the o, the better the approximation, while the larger the o, the smoother the
approximation. In fact, the functional in (11) interpolates the function space between Iy
and [y across o € [0,00) in the same manner as does [, norm for p € [0,1] (i.e. f(1,0) =1
and o — oo admits f(|X],0) — || X||). This approach has been successfully used for similar
recovery problems and proven to yield a unique and sparse solution similar to the approach
yielded by the Iy quasi-norm (See [10, 13, 15, 16] for details and extensive results).

4.1 The Heuristic

The heuristic is an iterative stochastic swarm-based method for finding the global minimum
of a non-convex, unconstrained continuous function in (12). The steps of the heuristic are:
Proposed lp-norm based Heuristic:
Problem: Determine X eCV s.t. CX =Y.
Inputs: o, C, Y, Iterations, Agents, Sparsity S, f(|X|,0), Basis V.
Outputs: best value f.(|X«|,0), best sparse vector X,, image f..
Main steps of the swarm based Heuristic:
Initial solution for every swarm i:Xi(o):((C’TC)_lCTY)—|—R(O)><||C’TY||<>O
Set a(o)—HY—Xi(O)Hoo for every swarm 3
While (t < Iterations)
For i:= Agents/Swarms to 25 Do
Evaluate f(|X|,0) for every Xi(t)
Find current best X.” so as min f(|X|, o)
Set X,Et)in(,t) (keep the best i’th solution)
Check X" entries for feasibility
Set all but S largest entries of X" to zero

ICCSW’'13



A swarm based heuristic for sparse image recovery

Generate new solutions for all the other agents using (14)
End For 1loop;
Set oD =5 % 0.6
End While loop;
Reconstruct image f.=VU 'X, (IFFT of X.ecCN to derive f.eRY).
Display the recovered image fi,Calculate the time and error recovery.

Initially the heuristic is initialised with a population of 25 agents each of which carrying a
slightly different solution and o parameter. A variation of pseudo-inverse (((CTC)~1CTY) +
RO x ||CTY||) is chosen as an estimate of the initial sparse solution in (10), which will be
further improved through the iterations of the heuristic. Xi(t) is the current solution vector
for agent i at time ¢, while R is a vector of randomly generated values between 0 and 1,
using the Normal distribution. Note that ||| is the infinity or Chebychev norm, which is
defined as ||L||ococ = max ||l1]],..., ||lx]|| for a vector L = [l1,...,Ix] in a finite dimensional
coordinate space. Note that, at each iteration the current best solution Xﬁt) is chosen after
being corrected for sparsity and feasibility (be within the ranges of the original transformed
image). Then a new solution is created for each remaining particle which is updated based
on the following rule:

XM =2x RO x XY 4 (1- RW) x o%F x L, (13)

where, R is a vector of small random numbers, different for every swarm 4, (¢) is the current
iteration, Xi(t) and Xi(tfl) is the current and the previously generated solution vector of
swarm ¢ and L is the infinity norm ||CT(CXZ-(t_1) —Y)|/s. The o value is initially assigned
to the maximum value between the samples vector and the sampled pseudo-inverse and then
it is gradually decreased at each iteration. This assignment was chosen experimentally based
on the nature of the initial vector. Note that due to the randomness in each step of the
heuristic, there is no mathematical guarantee of achieving a global minimum as does its
convex [ analogue. However, the local minimum found by solving the non-convex problem in
(12) typically allows for accurate and successful recovery even at much higher under-sampling

rates where linear optimisation fails (See Section (5) for details).

5 Simulations and Results

All the numerical experiments were performed on an Intel Core i5 CPU (3.20 GHz) with 3 GB
RAM, using Matlab R2012b under MS Windows XP Pro. We have tested the performance of
the heuristic as a sparse recovery method in two 256 x 256 images which have been extensively
used for testing purposes, namely Shepp-Logan Phantom and Circles (See [2, 9, 13, 19, 21]).
The result of the experiments is shown in Figure (1) which presents the original images, the
Sampling pattern (i.e. number of lines through origin), the Back-projection (CTY’), which
represents direct recovery from partial measurements, and the recovered image (estimate)
using the methods L1 Magic, FOCUSS and the Heuristic. The performance of the heuristic is
compared with the other methods in terms of recovery error (RE) as a metric to evaluate the
recovered image quality. The recovery error was calculated as RE = (|| X — X||1,)/(1 X |l1,),
where X and X is the recovered and original image respectively, while the CPU cycles were
used as a rough estimation of execution time for all the methods. The average time for the
phantom image recovery was 468.27 (~ 10 mins) for L1 Magic with 15 Log-barier iterations,
322.85 (~ 6 mins) for FOCUSS with 15 iterations, A = 2.0e¢ — 3 and p = 0.5, and 120 (~ 3
mins) for the heuristic with 23 iterations and 25 agents. The average time for the circle
image recovery was 448 (~ 7 mins) for L1 Magic, 290 (~ 5 mins) for FOCUSS and 86 (~ 2
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Original Image FFT Magnitude Back Projection L1 Magic FOCUSS Heuristic
(22 Radial Lines) (RE: 8.0e-03) (RE: 5.0e-02) (RE: 2.0e-02)

FFT Magnitude Back Projection L1 Magic FOCUsS Heuristic
(RE: 4.42+05) (RE: 5.8e406) (RE: 1.26401)

Original Image FFT Magnitude Back Prajection L1 Magic FOCUSS Heuristic
(15 Radial Lines) (RE: 1.4e+03) {RE: 2.0e+02) (RE: 1.3e401)

FFT Magnitude Back Projection L1 Magic FOCUSS Heuristic
(12 Radial Lines) (RE: 2.1e+03) (RE: 2.8e+02) (RE: 1.9e+01)

Figure 1 Image recovery experiments for L1 Magic, FOCUSS and Heuristic.

mins) for the heuristic, using the same parameters as previously. Notice that a few frequency
coefficients (magnitudes) can capture most of the image energy, as most of such images are
highly compressible. Notice also that the performance of the heuristic (in accordance with all
the other methods) is increasing as the number of measurements increases and deteriorates
as the sparsity of images decreases, which is expected as fewer measurements cause loss of

image quality and thus loss of substantial information (i.e. aliasing in the reconstruction).

However, the heuristic is found to have significantly better performance with smaller run
times than the other recovery methods, particularly for much under-sampled data (less than
15 radial lines), while the difference between the recovered and the original image is hardly
noticeable in some cases (particularly for more than 15 radial lines).

6 Conclusions

In this paper the performance of the proposed method for sparse image recovery was studied
and compared with other methods. The heuristic essentially helps in faster and quicker sparse
recovery of the test images by solving a non-convex unconstrained optimization problem
with complex values, resulting in decreasing the requirement of the number of measurements
needed by other alternative sparse recovery algorithms. It is expected that the performance
of the heuristic, especially in noisy environments, can be improved by assigning weights to
the objective function as an efficient way to improve the search direction. This approach
has been proven to be useful and helps in better recovery for similar recovery problems
and methods using the Iy, I3 and Iy norms (See [9, 11, 13]). Another possible direction is
to investigate if we could design Sensing matrices which do not follow the Gaussian and
Bernoulli distributions, or the random Fourier ensemble. These are the only distributions
used to efficiently recover strictly sparse images from corrupted measurements (using the Iy
norm) as they satisfy the properties of UUP and RIP (i.e. mutual coherence between the
Basis ¥ and the Sensing ® matrices, for details See [4, 5, 8]). However, images of practical
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interest are generally weakly sparse or compressive, in essence that their sorted magnitudes
in a known basis usually decay exponentially, and thus further experimentation may yield to
reveal an even better recovery for weakly sparse images and signals (See [12, 19]).
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