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Abstract
Modern programs depend on apis to implement a significant part of their functionality. Apart
from the way developers use apis to build their software, the stability of these programs relies
on the apis design and implementation. In this work, we evaluate the reliability of apis, by
examining software telemetry data, in the form of stack traces, coming from Android application
crashes. We got 4.9 GB worth of crash data that thousands of applications send to a centralized
crash report management service. We processed that data to extract approximately a million
stack traces, stitching together parts of chained exceptions, and established heuristic rules to
draw the border between applications and api calls. We examined 80% of the stack traces to
map the space of the most common application failure reasons. Our findings show that the
top ones can be attributed to memory exhaustion, race conditions or deadlocks, and missing or
corrupt resources. At the same time, a significant number of our stack traces (over 10%) remains
unclassified due to generic unchecked exceptions, which do not highlight the problems that lead
to crashes. Finally, given the classes of crash causes we found, we argue that api design and
implementation improvements, such as specific exceptions, non-blocking algorithms, and default
resources, can eliminate common failures.
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1 Introduction

Many modern applications use Application Programming Interfaces (apis) to build their
basic functionalities. The stability of these applications depends not only on the use of the
apis by developers, but, also, on the api design and implementation itself.

Even though the software engineering literature encounters works related to software
development practices [7], metrics [6], and bug report analysis [10], there are limited studies
regarding apis. We have mainly found sources regarding the usability of apis [8], [9] and
general design practices [4], [2]. Therefore, there is a demand for studies on the assessment
of apis.

In this work, we report how we used software telemetry data, in the form of stack traces,
coming from Android application crashes, to analyze their causes and evaluate the reliability
of the used apis. First, we got a 4.9 GB data dump of crash reports from several mobile
applications. Then, we processed that data to get an amount of a million Java stack traces
in an appropriate form for our analysis. Finally, we applied heuristic rules to draw the
border between applications and api calls. This helped us to locate problematic calls to api
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methods and investigate the reasons that these api deficiencies lead to applications crashes.
In addition, knowing the crash causes map of our sample’s applications, we were able to
argue about related api design and implementation recommendations.

We chose to focus on the study of api crashes for a number of reasons. First, crashes
that could have been avoided through a better api land on the hands of application builders.
These builders can fix their applications on a case-by-case basis. Thus, locating weaknesses
in the apis and improving their design or implementation can ensure the stability of the
thousands of applications that use them. Finally, the fact that most apis are available as
open source software makes them a valuable ground for research.

In addition, we chose the Android platform as the subject of our study because of its
popularity, diversity, and availability. Specifically, more than 800 million devices use the
Android platform and 700,000 applications are written for Android. In addition, the Android
api is quite large (3,000 classes and 300 packages) for examination and its interfaces are
open source.

In the rest of this work, we first outline the methods we used (Section 2). In Section 3,
we discuss the crash categories we found, and make api recommendations. In Section 4, we
present the threats to validity of our study, and we end up with our conclusions and future
work in Section 5.

2 Methodology

Our methodology involves data collection, cleaning, processing, and analysis. First, we got our
data set and we conformed the stack traces to a certain format for analysis. Then, we applied
heuristic rules to the stack traces to extract from each a representative triplet—signature
hereafter, related to the crash cause. We sorted the signatures based on the times they
appear in the stack traces, and we examined the top 600 ones (80% of the total population)
to investigate the reasons behind the application failures. Finally, we categorized the crash
causes we found into main classes and we made related api recommendations.

2.1 Data Origin
The subject of our empirical study consists of Java stack traces, coming from Android
application crashes, collected through a centralized crash report management service.

Android mobile phones are embedded devices that use the Linux operating system and
host applications. Here, we briefly discuss an overview of the Android framework. In
the bottom layer, there is the Linux kernel, which is the border between the device and
the software. It provides services such as memory management, networking, and power
management. In the middle layer, there is the Dalvik process virtual machine (VM) for
the running of several applications on the system and the Java Native Interface (JNI) that
is used to perform calls from Java code into native code. Finally, on the top layer, there
are several Java classes coming from: 1) basic applications (contacts, browser, phone), 2)
third-party applications, and 3) the Java Platform (J2SE). The methods of these classes are
used for the development of Android applications and consist subject of our study.

The provider of our data set is the BugSense Inc., a privately held company, founded
in 2011, and based in San Francisco. The aim of BugSense is to provide error reports and
analytics regarding the performance and quality of mobile applications. Our sample comes
to 2,042,700 crash reports, collected in real time from the 13th of January of 2012 to the
11th of April of 2012, from 4,618 distinct applications. The examined Android api refers to
versions from 1.0.0 to 4.1.1.
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2.2 Data Cleaning

In order to conduct our analysis, we first needed to clean our data. From our initial sample,
we only kept Java stack traces from Android applications. For this, we wrote a program
in Python and parsed our data set. Specifically, by using regular expressions, we checked
the format validity of the stack traces, based on the printStackTrace() method, from
the Throwable1 Java class. Thus, from our initial sample, we concluded on 901,274 well-
formed Java stack traces. Listing 1 shows a representative example from the Throwable
documentation. In addition, we transformed each stack trace for further analysis. We
reversed each exception level sequence of call methods and joined the levels at the common
methods. Then, the final chain of Listing 1 would be .main.a.b.c.

Listing 1 Throwable stack trace.
HighLevelException : MidLevelException :

at Junk.a(Junk.java :13)
at Junk.main(Junk.java :4)

Caused by: MidLevelException :
at Junk.c(Junk.java :23)
at Junk.b(Junk.java :17)
at Junk.a(Junk.java :11)
... 1 more

2.3 Identification of Risky API calls

Isolating calls to arbitrary apis within stack traces of unknown application code called in
diverse ways from a larger framework is not trivial. In general, a stack trace of method calls
from the Android framework F leading to an exception E, possibly through an application
A and an api I. This can be expressed by the following regular expression.

((F + (A + I∗)∗)|(F ∗ (A + I∗)+))E

This expression reflects several cases in which an exception can occur. For instance consider:

Within the Android framework: F + E

Within the application: F ∗A + E

When the application calls an api: F ∗A + I + E

Within an api-registered application callback: F ∗ (A + I + A+) + E

When an api-registered application callback calls an api: F ∗ (A + I+) + E

To locate the api calls that lead to application crashes we had to locate the last instance
of an AI pair. We had however no a priori knowledge of the methods that belong to the
sets F , A, and I. Thus, we used heuristics to determine them. In particular, we constructed
from the stack traces n-tuples of length 1–15 anchored to the left hand side of the stack trace
and determined their times of occurrence. Looking at the most common ones, we manually
established the name space of the Android framework’s methods. The sixth most common
n-tuple we found was the following:

1 http://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html
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dalvik . system . NativeStart .main
com. android . internal .os. ZygoteInit .main
com. android . internal .os. ZygoteInit$ \

MethodAndArgsCaller .run
java.lang. reflect . Method . invoke
java.lang. reflect . Method . invokeNative
android .app. ActivityThread .main

From this 6-tuple we deduced that the framework calls applications through methods that
belong to the packages dalvik.*, com.android.*, java.*, and android.*. In addition,
we searched for other common n-tuples from third parties to fill the framework’s name
space. For instance, these are the top ones: com.badlogic.gdx.backends.android.* and
org.cocos2d.*.

Knowing the application’s name space, we searched the stack traces backwards (from the
rhs to the lhs) to locate the first place where an application’s method called a method that
did not belong to its name space (an AI sequence). This was, by definition, a call to an api
method. In Listing 2, the interesting api call is that to the setContentView method.

Listing 2 Exceptional sequence.
com. example . Serialize$Looper .run
android .os. Looper .loop
android .os. Handler . dispatchMessage
com. example . SerializeHandler . onMessage
com. example .app. Activity$1 .work
android .app. Activity . setContentView

Finally, from the stack traces we extracted for further analysis signatures representing
the api method (e.g. android.app.Activity.setContentView), the exception reported
by the api method (e.g. android.view.inflateException), and the root exception that
triggered the application crash—the exception at the bottom of the stack (e.g. java.lang.-
NullPointerException). Each signature represents a way in which an api call can fail.
Thus, one signature can be associated with many different stack traces and reflects the main
cause of a crash. We used the signatures in order to group our data and as a guide for
studying the reason of an application failure behind the thrown exceptions.

3 Crash Categories and API Recommendations

Further analyzing our data set, we wanted to see why application crashes occur and what
api deficiencies are responsible for them. To achieve this, we examined the signatures
we extracted from the stack traces and we identified major classes of crash causes. In
particular, we sorted the signatures according to their number of occurrence and we got
the top 600 ones (80% of the stack traces) for analysis. For each signature, we identified
the reason of its application failure, and allocated the signature to a broad crash cause
category (Figure 1). For the signatures with specific exceptions (e.g. OutOfMemoryError
and OutOfBoundsException) it was easy for us to understand the problems. However, for
these with generic unchecked exceptions (e.g. RuntimeException, NullPointerException
and IllegalArgumentException) the reason of the execution failure was not clear. Thus,
we needed to search in the Android api reference and consulting sites (stackoverflow)2 to

2 http://stackoverflow.com. All sites were accessed on the 20th of July, 2013.

http://stackoverflow.com
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Figure 1 Causes of api-related crashes from top 600 stack traces (80% of total crashes).

reveal the real crash causes. Table 1 presents each crash cause category giving examples
of signatures allocated to them and illustrates related api recommendations. Following we
discuss each crash category and provide indicative api design and implementation choices.

Memory exhaustion is the most common application crash cause. This was a result
we expected, as mobile devices can have constrained memory and developers are seldom
aware of the amount of the available memory. Table 1 shows a characteristic example of this
category related to a failed import operation for a bitmap. In order to decrease the number
of this category’s crashes, the api can include an interface for the adaptation of memory
consuming resources, so that they can fit in the memory. For instance, if an image cannot be
loaded, the developer could sample it first. Moreover, the api can restrict the use of cache
structures that trigger memory leaks. Finally, the api can permit the use of file formats that
can consume less memory (vector graphics).

Race condition or deadlock is another significant cause of application crashes. This
category contains signatures related to: a. database deadlocks, b. race conditions in
asynchronous tasks (see Table 1), c. abnormal execution of the lifecycle of an activity,
and d. synchronization issues with iterators. To eliminate these crashes, the api should
provide non-blocking primitives. Also, developers can catch these problems by using profiling
(Traceview3 and Jinsight4) and testing tools [1].

Missing or corrupt resource cause refers, also, to a great number of crashes. In this
category, we have added signatures that imply the absence of a resource or inability of the
system to decode a resource (see Table 1). We refer to external resources, such as an image
or an audio file, and not application components (activities, services, broadcast receivers,
and content providers). Crashes because of missing resources can be avoided if the api
includes default resources (e.g. layouts). In addition, we found that some exceptions related
to this category are unclear (NullPointerException). Thus, it is not easy for the developers

3 http://developer.android.com/tools/debugging/debugging-tracing.html
4 http://www-03.ibm.com/systems/z/os/zos/features/unix/tools/jinsightlive.html
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Table 1 Categories and Recommendations.
Categories Signatures Recommendations

Memory
Exhaustion

android.app.Activity.setContentView Resource auto-resize
android.view.InflateException interface

java.lang.OutOfMemoryError Restricted use of cache
structures (e.g. LruCache)
Use of cheap file formats

(vector graphics)
Race
Condition or
Deadlock

android.os.AsyncTask.execute Non-blocking algorithms
java.util.concurrent.RejectedExecutionException Specific exceptions
java.util.concurrent.RejectedExecutionException

Missing or
Corrupt
Resource

android.app.Activity.setContentView Default resources
android.view.InflateException Specific exceptions
java.io.FileNotFoundException

Improper
Component
Identification

android.app.Activity.startActivity Useful ids
android.content.ActivityNotFoundException Type Checking
android.content.ActivityNotFoundException

Insufficient
Permission

android.app.Activity.startActivity Clear documentation
java.lang.SecurityException Specific exceptions
java.lang.SecurityException

Invalid Format
or Syntax

android.database.sqlite.SQLiteDatabase.execSQL Interface for queries
android.database.sqlite.SQLiteException on collections (e.g. JQL)
android.database.sqlite.SQLiteException

Indexing
Problem

java.util.ArrayList.get Error-free arguments
java.lang.IndexOutOfBoundsException (iterators)
java.lang.IndexOutOfBoundsException Error ignorance

(in loop conditions)
Connectivity
Problems

org.apache.http.impl.client.AbstractHttpClient.execute User menu
org.apache.http.NoHttpResponseException (1. wait, 2. new provider,
org.apache.http.NoHttpResponseException 3. pause, 4. terminate)

Unclassified
android.hardware.Camera.open Clear documentation

java.lang.RuntimeException Specific exceptions
java.lang.RuntimeException

to understand where a crash comes from. This means that the api should offer specific
exceptions regarding problematic resources.

Improper component identification category includes signatures that indicate crashes
due to either undeclared components or system’s failure to locate a suitable component
for a specific task. Crashes of this category can occur because of wrong declaration of the
application components (activity, service, broadcast receiver, and content provider). To
prevent such crashes, the api can use more meaningful component codes (easy remembered)
and appropriate type checks.

Insufficient permission category covers signatures related to crashes because of missing
or incorrect activity permissions. Table 1 shows a representative example. The activity
cannot start, as the Intent object, which should be passed to the system, has not got the
right permissions (for another device to be eligible to receive a message). Specific exceptions
and clear documentation provided by the api can eliminate such problems. Static checking
tools, also, can help in the early location of permission issues [3].

Invalid format or syntax category refers to crashes due to erroneous method inputs.
Specifically, the signatures that belong here imply format problems and invalid syntax of
sql queries. For instance, the corresponding exception in Table 1 reflects that the signature
is related to a wrong sql query syntax. In order to avoid such problems, the api can include
an interface for queries on collections (e.g. jql)5. Static checking tools can, also, eliminate

5 http://homepages.ecs.vuw.ac.nz/~djp/jql/

http://homepages.ecs.vuw.ac.nz/~djp/jql/
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these crashes (consider the lint6 tool).
An Indexing problem can be caused by invalid loop conditions and inappropriate

structures (see Table 1). Crashes due to these problems can be avoided with the use of
error-free arguments (e.g. implicit loops and integer indices), as well as error ignorance (in
case a threshold is greater than the size of a list). Also, static checking can solve such issues
(consider FindBugs [5]).

Connectivity problems cover signatures associated with networking exceptions (see
Table 1). To prevent such cases, the system instead of throwing exceptions can provide the
user with a user menu for next actions, such as: 1) wait, 2) choose a new network provider,
3) pause the application, 4) terminate the application. Then, the user has to choose one
of these options, and the system can proceed accordingly. Other possible solutions include
stress tests and notifications from the system (via monitoring of the network activity).

Unclassified signatures do not give clear information about the real causes of their
crashes. For instance, consider a representative example in Table 1 that reflects a crash where
the camera cannot be opened. This occurs either because another application is using the
camera or because the application has not got the permission to use the camera. However,
the RuntimeException is generic for one to understand whether the crash cause is a race
condition or an insufficient permission. We argue that such exceptions consist an api design
problem, and there is a demand for more specific exceptions.

4 Threats to validity

In this section, we discuss the limitations of our study. Internal validity refers to the
implications of the method used for the analysis of the stack traces. While, external validity
aims to ensure that the findings of our empirical study can be generalized for other samples,
too.

4.1 Internal validity
As we had no a priori knowledge of the methods that belong to the Android framework,
we used heuristics to determine them. We sorted the n-tuples, by their frequency, and
looked at the six most common ones to manually establish the name space of the Android
framework’s methods. In addition, we manually examined other common n-tuples to find
application-specific methods. Therefore, although we identified the Android framework’s
methods that are used to call applications, we may have missed the less common ones,
especially from third-party applications.

4.2 External validity
We argue that our findings can be representative of a large population for a number of
reasons. First, we believe that for another Android sample we will possibly get the same
results. To support this, we examined 600 signatures (rest 20% of the stack traces) through
a random sample from our data set, and we validated our crash cause categories against
our original data set. Second, we argue that our categories could be the same for another
platform because of: 1) the amount of the crashes and applications we examined, 2) the fact
that Android runs on a diversity of devices, 3) the size of Android’s api, and 4) the generic
nature of our categories. We have, however, to validate our results by examining data from
platforms, such as ios and Windows mobile.

6 http://developer.android.com/tools/help/lint.html
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5 Conclusions and Future Work

In this work, we presented an analysis of Java stack traces from Android application crashes
and an investigation of the causes behind execution failures. As future work, we aim to
analyze crash reports from other operating systems such as the ios and Windows for mobile
devices. In addition, we aim to combine the crash reports with other metadata related to
specific devices and demographic data. Finally, we work toward to the examination of more
stack traces from our sample and the validation of our categories, as well as the automation
of our classification method.
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