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Abstract
Deep Boltzmann Machines (DBM) have been used as a computational cognitive model in various
AI-related research and applications, notably in computational vision and multimodal fusion.
Being regarded as a biological plausible model of the human brain, the DBM is also becoming
a popular instrument to investigate various cortical processes in neuroscience. In this paper,
we describe how a multimodal DBM is implemented as part of a Neural-Symbolic Cognitive
Agent (NSCA) for real-time multimodal fusion and inference of streaming audio and video data.
We describe how this agent can be used to simulate certain neurological mechanisms related to
hallucinations and dreaming and how these mechanisms are beneficial to the integrity of the
DBM. Finally, we will explain how the NSCA is used to extract multimodal information from
the DBM and provide a compact and practical iconographic temporal logic formula for complex
relations between visual and auditory patterns.
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1 Introduction

The human brain has always inspired many of us to investigate and try to understand its
complex processes. Ranging from neuroscientists that try to model the brain in terms of
neurons, synapses and pathologies, to psychologists and cognitive scientists that try to model
it in terms of human and social behaviour, to computer scientists that try to model it in
terms of computational models that can perform intelligent tasks. A common tool in all these
sciences is the use of abstract models of the human brain that help us to simulate, analyse
and understand how it works. From a computer science perspective, computational models
of the human brain are often based on models from neuroscience (e.g. neural networks)
or models from cognitive and social sciences (e.g. cognitive models). These models have
enabled computer scientists to build very complex systems that are able to perform tasks of
human intelligence (e.g. visual recognition, speech recognition and driving a car). On the
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other hand, these computational models have also been used in neural, cognitive and social
sciences to investigate the human brain itself. For example, computational models have
been used to investigate biological pathways in the visual cortex [5], neurological pathologies
that cause hallucinations [10], the role of long-term memory in perception [8], and social
dynamics of cognitive and affective processes [14]. Even in the investigation of more elusive
and abstract processes related to the brain, computational models have been used. For
example, to illustrate the role of mind and brain in cognitive psychology [12] and to explain
the function of dreaming [1].

In this paper we will describe the use of a Deep Boltzmann Machine (DBM) as computa-
tional model to simulate certain neurological processes related to hallucination and dreaming
and describe how these processes can be applied to multiple modalities, specifically streaming
audio and video. Furthermore we will describe and illustrate how a Neural-Symbolic Cognit-
ive Agent (NSCA) can be used to retrieve information from this model in a temporal logic
formula that incorporates iconographic representations of the visual and auditory patterns.

2 Multimodal Deep Learning

Similar to the approach described in [9] we apply a Deep Boltzmann Machine (DBM)
for multimodal fusion of visual and auditory information. A DBM can learn hierarchical
representations of data, using several layers of Restricted Boltzmann Machines (RBMs)
[11]. Each RBM represents a stochastic neural network with visible units v, that represent
input variables (or hidden-unit activations of lower-layer RBMs), and hidden units h, that
represent the likelihood of certain activation patterns in v. There are symmetric weighted
connections between the hidden and visible units with weights W , but no connections within
the hidden units or visible units. The weights can be trained to model a joint probability
distribution over h and v (Equation 1, where b and c denote the biases of the hidden and
visible units and σ(x) the logistic sigmoid function). This particular configuration makes it
easy to compute the conditional probability distributions, when v or h is fixed (Equation 2),
enabling the reconstruction of input data based on partial information in v. This is done by
sampling the conditional probability distribution in Equation 2, where h′j = 1 with p(hj |v)
(and h′j = 0 otherwise), and calculating the reconstructed data v’, where v′i = p(vi|h’).

− logP (v,h) ∝ E(v,h) = −cT v− bT h− hTWv (1)
p(hj |v) = σ(bj + wT

j v) (2)

To train a DBM, each RBM layer is trained separately using Contrastive Divergence
learning [5]. This learning algorithm tries to minimize the difference between v and v’ by
changing the weights using a Hebbian-like learning rule such that 4W ∼= v · h − v’ · h’,
with the network in the long run learning to approximate the joint probability distribution
P (v,h).

Figure 1 depicts the RBMs used to model the auditory and visual patterns (1a, b) and
two possible configurations for fusion of these patterns (1c, d). In this work we apply the
same architecture as the bimodal DBN1 (1d), to optimize the learning of relations across
modalities (see [9]). We do not apply the deep autoencoders as proposed in [9] as we assume
both modalities will be present during training and testing. Also, we will explain how

1 Deep Boltzmann Machine are also referred to as Deep Belief Networks (DBN).
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Figure 1 RBMs that model auditory (a) and visual patterns (b) and combine these patterns in
higher-order multimodal representations (c, d).

certain neurological mechanisms can be used to overcome the multimodal inference problem
addressed in [9]. To train the RBMs for audio (1a) and video (1b) we decode the audio stream
as a spectrogram of 10 frames x 1024 frequencies using Discrete Cosine Transformation
(DCT) on decoded audio samples, and the video stream as monochrome images that are
reduced in scale, resulting in 160x120 pixels. Both transformations are fast and reversible
allowing us to reconstruct video and audio from the DBM in real-time. As explained later,
this approach will also enable us to do multimodal information retrieval and demonstrate
the effect of neurological processes related to hallucinations and dreaming. As an extension
to the DBM we also investigated the use of Recurrent Temporal RBMs in the top layer to
model temporal sequences of audio and video patterns by taking into account the hidden
unit activations in the previous time step [13].

Figure 2 Adobe Flash based client that records from webcam and plays back reconstructed audio
and video from a DBM. The real-time activations of all hidden units in the DBM is visualized as
follows: on the left-side is depicted the hidden unit activations of the video, on the right-side the
hidden unit activations of the audio, and on the bottom the hidden unit activations after multimodal
fusion in the top layer of the DBM.

For demonstration purposes we implemented the DBM in a multi-agent platform, called
Trinity2, that supports real-time media streaming for Adobe Flash based clients that stream
audio and video from a webcam. We implemented the DBM as part of a NSCA that
enables the interpretation and reconstruction of audio and video information in a stream

2 Trinity is a successor of the SimSCORM platform that has been developed for automated training and
assessment [4].
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and supports automated video indexing or assessment of observed human behaviour. As
depicted in Figure 2, the client plays back the reconstructed audio and video and displays
the real-time activation of the hidden units residing in each hidden layer. The use of a NSCA
also allows to retrieve and investigate the contents of each visual, auditory and multimodal
pattern that has learned by the DBM (see section 4). These patterns can be visualized in
the tool by clicking on the bar of a related hidden unit in the activation graphs. We believe
that this tool can help in future work on both multimodal fusion as well as the investigation
of neurological processes.

3 Hallucinations and Dreaming

As described in [10], the DBM is a biologically plausible computational model for the
investigation of neurological processes related to cortical learning, perception and diseases. It
is able to simulate certain cortical processes that result in hallucinations due to loss of vision
(i.e. Charles Bonnet Syndrome). Reichert describes how homoeostatic mechanisms in the
cortex can stabilize neuronal activity to recover correct internal representations from degraded
input. After some period this process can lead to complex vivid visual hallucinations. This
mechanism can be implemented in the DBM as a regularization term for hidden unit biases
(Equation 3) that is similar to mechanisms employed in other DBM-like models to enforce
sparsity in the activations [9, 7].

4bi = η(pi − ai) (3)

Using this model and regularization term, we have conducted several experiments that
indeed demonstrate the forming of hallucinations when visual input is completely or partially
blanked (mimicking loss of vision). These experiments also showed that when random noise
is applied to the input, smaller overall bias shifts were necessary to restore original activity
levels and produce hallucinations. This effect resembles another cognitive process, called
reverse learning.

Reverse learning is a mechanism that is believed to be used in Rapid Eye Movement
(REM) sleep to remove certain undesirable modes of interaction in networks of cells in the
cerebral cortex. According to [1] the trace in the brain of the unconscious dream causes
these modes to be weakened by applying random stimulation of the forebrain generated by
the brain stem. This will tend to excite the inappropriate modes of brain activity, especially
those which are too prone to be set off by random noise rather than by highly structured
specific signals. Due to the random noise, overall neuron activity will drop, similar to the
overall bias shift described before, automatically weakening the connections that encode
these inappropriate modes.

Basically this means that reverse learning can also be regarded as a form of homoeostasis,
which is beneficial to the integrity of the human brain and can be implemented in a DBM
using the same stabilization mechanism as described before. We have implemented these
mechanisms in all hidden layers of our DBM, resulting in a form of multimodal hallucination
and dreaming. The effect of these mechanisms on the quality of the knowledge encoded in the
DBM is still under investigation, but preliminary results have shown that the DBM indeed
recovers from loss of audio or video input, producing hallucinations during stabilization of
neuron activity, and that sparsity has improved the overall quality of the temporal relations
encoded in the model.
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4 Multimodal Information Retrieval

As described in [9], DBMs can produce good models for multimodal inference. For example,
for the reconstruction of phonemes based on a visual representation of the mouth, and
vice versa. But this approach will not explain the complex temporal relations encoded in a
multimodal DBM. With a NSCA we are able to use an extraction mechanism that allows us to
describe these multimodal relations, for example in terms of logic-based rules. As described in
[3, 2], a NSCA uses the conditional probability distributions of a RBM to extract logic-based
rules that describe the temporal relations between beliefs B encoded by the visible units and
hypotheses H encoded by the hidden units. Typically, the temporal relations are represented
by clauses of the form H1 ↔ B1∧B3∧•H1 which denotes that hypothesis H1 holds at time t
if and only if beliefs B1 and B3 hold at time t and hypothesis H1 holds at time t−1, where we
use the previous time temporal logic operator • to denote t−1 [6]. If we extend this approach
to a DBM we get clauses that describe hierarchical relations between hypotheses H(l) and
lower-order hypotheses H(l−1). If we apply this notation to our multimodal DBM for audio
and video we get clauses that describe higher-order temporal relations between auditory and
visual patterns, such as Hfusion

1 ↔ Haudio
1 ∧Hvideo

4 ∧ •Hfusion
2 , and lower-order relations

describing the most likely auditory and visual patterns in terms of pixels and frequencies,
such as Hvideo

4 ↔ Bvideo
10 ∧Bvideo

443 ∧Bvideo
753 ∧ ....

Such textual descriptions would of course be very elaborate and impractical to under-
stand at the level of individual pixels or frequencies. Therefore, we have implemented an
iconographic representation for these visual and auditory patterns that enables us to present
more compact and meaningful descriptions of Hvideo and Haudio. Similar to the approach
suggested in [5], to investigate the weights of a RBM in terms of 2D images, we create icons
from the pixel and frequency patterns that are extracted for each hypothesis Hvideo

j and
Haudio

k and resample them in black and white to emphasize the most significant aspects
of the patterns. An example, extracted during one of the experiments, of an iconographic
temporal logic description of a multimodal relation is given in Equation 4. The first two
icons show a person on the left side of the camera with a hand under his head. The other
two icons visualize spectrograms of 10 frames x 1024 frequencies depicting the word “hel-lo”
in phonemes.

Hmind
42 ↔ ∧ ∧ ∧ ∧ •Hmind

7 (4)

5 Conclusions and Future Work

Computational models used in AI research, such as the RBM and DBM, are becoming popular
instruments in neural, cognitive and social sciences for the investigation of the human brain.
In this paper, we discussed how these instruments can be used to model and simulate certain
neurological processes, related to hallucinations and dreaming, such as homoeostasis and
reverse learning. We have explained how such processes are beneficial to the recovery of
appropriate and the reduction of inappropriate traces of the brain and implemented these
mechanisms in a multimodal DBM for streaming audio and video. Early experiments with
the DBM have shown similar effects as in homoeostasis and reverse learning (i.e. multimodal
hallucinations and dreaming) and we expect these mechanisms will improve the integrity of
the model, by stimulating sparsity, recovery of missing input, and unlearning inappropriate
relations.

ICCSW’13
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As part of future work we will investigate the actual improvements to the overall quality of
the model, using benchmarks for comparison with other models, but also using the knowledge
extracted from our model for expert analysis. In preparation of this, we already implemented
the multimodal DBM as part of a NSCA that is able to extract temporal relations between
auditory and visual patterns in the form of a iconographic temporal logic formula. Such
a representation makes it practical to describe the visual and auditory patterns in terms
of images and spectrograms. This will help us to understand and investigate the complex
temporal relations encoded in multimodal DBMs and explain why certain neurological
phenomenon occur, either in the DBM as a computational model or in the human brain that
it tries to simulate.
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