
Modeling of Reconfigurable Medical Ultrasonic
Applications in BIP
Stefanos Skalistis and Alena Simalatsar

Rigorous System Design (RiSD) Laboratory
École Polytechnique Féréral de Lausanne (EPFL), 1015 Lausanne, Switzerland
{stefanos.skalistis,alena.simalatsar}@epfl.ch

Abstract
Medical ultrasonic imaging applications require high quality of images produced in real-time often
with limited resources available. Deadlock-freedom and confluency must be guaranteed to ensure
the correctness of the applications, while feasibility and optimality properties are required to
provide the best Quality of Service (QoS) within available resources. In this paper we introduce
BIP (Behavior-Interaction-Priority) framework components as main building blocks to model
such applications in a correct-by-construction manner. Based on those components we model a
reconfigurable multi-mode processing pipeline for ultrasonic imaging that supports QoS manage-
ment by topology reconfiguration. Finally, as a proof of concept, we present a simple quality
controller as a well-triggered component, which when combined with the processing pipeline can
manipulate the quality of image processing.

1998 ACM Subject Classification D.1.3 Concurrent Programming, D.2.11 Software Architec-
tures, F.1.1 Models of Computation, F.3.1 Specifying and Verifying and Reasoning about Pro-
grams

Keywords and phrases Reconfigurable Pipelines, Quality of Service, Medical Ultrasonic Applic-
ations, Component-based System Design, Behavior-Interaction-Priority Modal Flow Graphs

Digital Object Identifier 10.4230/OASIcs.MCPS.2014.66

1 Introduction

Ultrasonic imaging is widely used in medicine [7] as a diagnostic technique to provide static
images (e.g., B-mode) and dynamic changes (e.g., based on Doppler effect). Static imaging
provides visualization of muscles and internal organs, to capture their size, structure and
any pathological lesions. Ultrasonic imaging based on Doppler effect [6] is widely used to
visualize motion, in particular blood flow for diagnosis, such as blood clots, heart valve defects,
aneurysms and many others. All these applications require high quality of images produced
in real-time. Often ultrasonic devices are used in trauma and first aid cases as well as for
remote diagnosis. This drastically limits the available resources for ultrasound computation
algorithms, which requires Quality of Service (QoS) management. Moreover, deadlock-
freedom and confluency must be guaranteed to ensure correctness of the computational and
controlling algorithms.

B-mode ultrasonic imaging, chosen as a case-study in this paper, can be performed in
different ways, also called modes or processing pipelines, which may achieve the output
image with different quality characteristics and resource requirements. Thus, quality of final
images depends first of all on the chosen processing mode. Moreover, the components of
a chosen processing pipeline may perform the computation with different quality outcome.
Components processing quality levels can be controlled by certain parameters set, e.g. the
cutoff quality of a low-pass filter by adjusting the order of the filter. Based on that, we

© Stefanos Skalistis and Alena Simalatsar;
licensed under Creative Commons License CC-BY

Medical Cyber Physical Systems – Medical Device Interoperability, Safety, and Security Assurance (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer; pp. 66–79

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.66
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


S. Skalistis and A. Simalatsar 67

distinguish two approaches for QoS management driven by i) topology, and ii) components
quality levels.

BIP (Behavior-Interaction-Priority) framework [1] provides essential means for rigorous
system design. We employ a particular branch of BIP framework, namely well-triggered
modal flows [3], which ensures correctness by construction and encompasses a synchronous
computation model. Well-triggered modal flows requires no additional coordination with the
BIP engine compared to the classical BIP. This is an important advantage, since additional
coordination implies potential computational overhead, which may be critical for a system
with limited resources. A well-triggered modal flow is composed of synchronized components,
which successively perform computation steps. It defines the behavior of the system. Well-
triggered modal flows are considered to be most fitting to model real-time multimedia
systems.

In the frame of development of a scalable low-power, high-performance and trusted
ultrasonic platform, feasibility, optimality and quality control become of utmost importance.
In terms of timing, feasibility implies that no processing task must miss its deadline. While
operating under this constraint, the system must make optimal use of its resources and
time budget and at the same time provide the maximum possible quality for the produced
images. Existing work [5] formulates and addresses the problem of QoS control of real-time
multimedia systems in a feasible and optimal manner.

In this paper we present the model of a reconfigurable multi-mode ultrasonic application.
The application is modeled as a modal flow graph composed of well-triggered components, that
guarantees deadlock-freedom and confluence by construction, with basic QoS management.
We define four essential types of the components required to build a reconfigurable multimedia
application, namely processing, buffer, accumulator and mode-selection components. We also
reason about the composition of such components showing that it results in a well-triggered
composite component, which is essential for overall deadlock-freedom and confluence. Each
component of this modal-flow comprises a configuration port that allows external component
reconfiguration by a specific set of parameters sent from a separate controller component. The
configuration ports are used for both structure reconfiguration by managing mode-selection
components and buffer sizes as well as specific quality level control of processing elements.

The rest of the paper is structured as follows; Section 2 provides background information
regarding BIP, modal flow graphs, and QoS. In Section 3 the problem is presented through
our case study of a real-life ultrasonic application. Following, Section 4 describes our generic
approach for modeling image processing applications, with the use of modal flow graphs,
that provides QoS management and guarantees deadlock-freedom and confluence. Section 5
illustrates our approach on a case study, emphasizing the QoS management by application
structure. Finally, in Section 6 we conclude and present ideas for future work.

2 Background

In this section we first present the essential background information, which starts with a
general description of the BIP (Behavior-Interaction-Priority) framework. Then we talk
about a specific part of this framework, namely modal flow components and graphs. We
conclude the section with the description of QoS management technique for multimedia
systems.

MCPS’14



68 Modeling of Reconfigurable Medical Ultrasonic Applications in BIP

Figure 1 Example of Modal flow component.

2.1 BIP Framework
BIP [1] is a framework that provides essential means for rigorous design and modeling of
heterogeneous systems. The BIP framework allows the modeling of systems as composition
of atomic components by encompassing three layers: Behavior, Interaction and Priority. The
behavior of each atomic component is described as 1-safe priority Petri-net extended with
data and ports. The composition of these components is supported by the Interaction and
Priority layers. Interactions between components, which are specified by connectors [2], are
used to define the way systems are composed of components. Priorities are used to eliminate
conflicts between interactions and thus restrict non-determinism.

In BIP the execution is driven by the BIP engine which has all the necessary information
about the components, their connectors and the associated priorities. At every execution
cycle, the engine receives information about the set of active ports for each of the atomic
components. It then computes the set of interactions that have maximal progress and if
there are more than one, picks one of them non-deterministically. The engine notifies the
components of the chosen interaction and computes the associated data transfers. Each of
the notified components then performs the associated transition and updates its state.

2.2 Modal Flow Graphs and Well-triggered Components
Modal flow components and modal flow graphs [3] are part of synchronous BIP and are used
to model systems that are composed of synchronous components. Modal flow components
are a particular class of 1-safe priority Petri-nets, extended with data and ports. As a
result, modal flow components can directly be translated into 1-safe Petri-nets, following the
semantics defined in [3]. These Petri-nets define the behavior of each component.

In modal flow components the dependency relations between events/actions are expressed
using three kind of causal dependencies [3]:

Strong: An event q strongly depends on p if the occurrence of p must always be followed
by q. That is p and q can not happen independently.
Weak: An event q weakly depends on p if the occurrence of p may be followed by q.
That is either p happens or the sequence pq happens.
Conditional: An event q conditionally depends on p if both p and q occur, then p must
be followed by q. Otherwise p and q can occur independently.

In Figure 1, an example of a modal flow component is depicted. In the figure, solid arrows
with filled arrowheads depict strong dependencies, solid arrows with normal arrowheads
depict weak dependencies and dashed arrows depict causal dependencies. The rectangles
represent ports and their associated data. This notation will be used in the rest of the paper.



S. Skalistis and A. Simalatsar 69

In this example, a component is presented that can receive an input, process it and
depending on the size decide to compress it, or not, before delivering the output. In Figure 1,
it is depicted that Output strongly depends on Process, which, in turn, strongly depends
on Input. This means that the component provides an output after processing, which, in
turn, may occurs only after the component has received an input. It must be noted that
this implies that the component, once the input is received, will obligatory process it and
consequently produce the output.

Furthermore, Compress weakly depends on Process, which means that compression may
occur after the processing. This depends whether the associated guard of that port, enclosed
in square brackets, validates to true. Also, Output conditionally depends on Compress, that is
if both occur then compression must happen before delivering the output. Finally, underneath
each port the update functions are placed, which describe the associated computations.

Well-triggered components are modal flow components for which deadlock-freedom and
confluence are guaranteed by construction iff the following constraints are met [3]:

The causal dependency graph has no cycles.
Each port has either strong or weak causes, but not both.
Each port has at most a minimal strong cause.
Each port that has strong causes, must have its guard true.

The example presented in Figure 1 is a well-triggered modal flow component. Interestingly,
these constraints, e.g. graph acyclicity, are easy to check, either manually or automatically.

Well-triggered components can be composed based on interactions among their ports.
The result of the composition is the modal flow graph that defines the behavior of the whole
system. It must be noted that composition is a partial operation. This means that the
composition of well-triggered components does not guarantee that the resulting modal flow
graph will be well-triggered as well. Thus, in order to guarantee deadlock-freedom and
confluence the constraints must be validated on the final modal flow graph.

As a result of confuency of well-triggered modal flow graphs, the existence of the BIP
engine, that is present in classic BIP, is redundant and unnecessary. The engine is considered
redundant since the confluent behavior of synchronous systems results in a deterministic
execution of interactions. The engine is unnecessary as it introduces an extra processing
overhead. This overhead originates from the fact that the BIP engine at each execution cycle
computes the set of maximal interactions. Based on the confluent behavior of synchronous
systems, this can be replaced by a single predefined scheduling of interactions out of all the
possible ones. Finally, as a consequence of confluency in BIP components, code generation is
possible.

2.3 QoS

There exist different approaches to systems design that address different levels of systems
criticality. Currently, these systems are classified as safety-critical or best-effort systems.
Safety-critical systems require high level of correctness, meaning no violation of critical
constraints, e.g. timing constrains, when all the deadlines must be met. Engineering of such
systems uses a conservative approach based on the worst-case execution time, which is often
largely over-estimated and, therefore, implies not optimal or even redundant use of available
resources. The best-effort systems are more relaxed in terms of critical constrains, where
occasional miss of deadlines will not cause any hazardous outcomes. The design of such
systems is mainly targeting efficient and optimal use of available resources.

MCPS’14



70 Modeling of Reconfigurable Medical Ultrasonic Applications in BIP

Design of medical ultrasonic systems require meeting both critical and best effort proper-
ties. Such engineering approach is addressed in [5]. The authors proposed a method for fine
grain QoS management of real-time applications, which allows the run-time adaptation of
overall system behavior. The proposed approach provides control over three main properties:

Feasibility, that is no deadline is missed;
Optimality, that maximizes the use of available resources, e.g. provide the best QoS
within specified resource constraints;
Smoothness of quality levels, that is of particular importance to the multimedia applica-
tions.

Such QoS management considers a single-threaded process network application, which
cyclically performs data transformation. Possible QoS levels and platform-dependent timing
information of processing components must be provided as an input. The coordination of
components execution is then controlled by a controller that monitors the progress of the
computation within each cycle.

3 Reconfigurable Multimedia Systems

Generally, image processing and its applications follow the input-process-output paradigm.
More specifically, an image processing application can be analyzed in several stages of
computation, each of which receives the result of the previous computation stage as input,
processes the input and delivers the output to the next computation stage.

This paradigm inherently enforces the components of an application to form processing
pipelines. It is important to note that different pipelines may achieve their outputs with
different quality characteristics, resource requirements and/or implementation. For example,
in Section 3.1, different ultrasound imaging pipelines for B-mode are presented. Another
typical example of that are pipelines that perform the required processing on raw images and
then compress them, compared to pipelines that first compress the images and then perform
the required processing [9]. The former, usually requires more resources but achieves better
quality, while the latter requires less resources but results in degraded quality.

It is apparent that even if both pipelines deliver same outputs, their implementation
may differ substantially since required processing actions performed on images have different
nature.

To this end, we distinguish two different approaches for quality management:
QoS by structure: In this approach, different quality outcomes are achieved based on
the mode of processing pipeline (i.e. processing first, compression first, etc).
QoS by precision: In this approach, having a concrete pipeline, different quality outcomes
are achieved based on the parameters of the processing components (i.e. low compression-
rate).

In this work we focus on providing a framework to model image processing pipelines that
can be reconfigured by combining different modes in order to encompass QoS by structure.

3.1 Case Study
There exist several types of imaging applications that are based on ultrasound waves, including
A-mode, B-mode (or 2D-mode), Doppler mode, Harmonic mode, and many others [4]. B-
mode (brightness mode) ultrasound application is the most-known imaging technique due to
its vast applicability in several diagnostic domains.



S. Skalistis and A. Simalatsar 71

Figure 2 Baseline B-mode Processing.

Figure 3 Frequency compounding.

In B-mode an array of transducers, called the probe, emits a beam of ultrasound waves
and scans a plane through the body, which is then transformed into a two-dimensional image
on a screen. There are variations of this technique that affect not only the way the retrieved
signal is processed, but also the quality of the output image. Such variations include, but
are not limited to:

the mode of processing (baseline, in-phase and quadrature, frequency compounding,
spatial compounding);
the shape of the probe (linear, convex, phased array, etc);
the type of the beam wave (planar, curved, etc);
the angle of steering of the beam.

In this paper we focus on the algorithmic part of the variations of ultrasonic techniques,
namely modes of processing. Generally, B-mode imaging consist of four processing stages; i)
RF processing, ii) Beamforming, iii) Demodulation, iv) Baseband processing. These stages
are comprised of several components, the ordering of which may slightly vary depending on
the processing mode. More specifically, we consider the following modes:
1. Baseline B-mode Processing: This is the typical processing pipeline as depicted in Figure 2.
2. Frequency Compounding: In this mode multiple bands are separately demodulated and

then summed. As a result, the output image has less high-frequency noise but also
lower resolution. This mode differs from the Baseline B-mode Processing only in the
Demodulation stage. The modified Demodulation is depicted in Figure 3.

3. Spatial Compounding: In this mode, instead of a single beam, several beams are emitted
with different types (e.g. steered, curved, etc). Since multiple firings are used to
reconstruct a single image, this procedure increases resolution. This mode differs from
the Baseline B-mode Processing only in the Baseband stage. The modified Baseband
processing is depicted in Figure 4.

MCPS’14



72 Modeling of Reconfigurable Medical Ultrasonic Applications in BIP

Figure 4 Spatial compounding.

Figure 5 I/Q B-mode compounding.

4. I/Q mode: In this mode, in contrast with the aforementioned modes, the Demodulation
stage occurs before Beamforming. The output quality depends on the subject under
study (e.g. normal tissue, abdomen, etc.) as well as the configuration parameters of the
components. The whole pipeline for this mode is depicted in Figure 5.

The quality of the resulting image depends on various aspects. It may depend on
parameters set of each component. For example, a low-pass filter with higher filter order, i.e.
cut-off quality, will result in a signal less contaminated with frequencies higher than cut-off
frequency. Alternatively, the quality of the final image is also determined by the choice of
the B-mode pipeline.

In this paper we exploiting the possibility to achieve optimal quality outcomes by
reconfiguring the mode of operation. In this case study, we also focus on minimizing the
program memory, that is to avoid redundant components where possible. The reason is that
such over-provisioning may have a direct impact on implementation cost (i.e. in a FPGA
implementation).

4 Components framework

In this section we present the framework of the classified components required to model
ultrasound image processing that allow to provide QoS not only by structure, but also
support QoS by precision.

We also show that their composition results in well-triggered components. This formal
specification guarantees that the final pipeline, which is composed of these components, is
deadlock-free and confluent.



S. Skalistis and A. Simalatsar 73

Figure 6 Processing Component. Figure 7 N -read Buffer Component of size s.

In order to model reconfigurable multimedia systems, we consider the following compon-
ents:

Processing Components: These components are the building blocks that follow the input-
process-output. They are responsible for applying the necessary transformation to the
input in order to get the desired output. They may have multiple inputs and/or outputs
but to simplify we will refer them as input and output, respectively.
Memory Components: These components are necessary for storing images between stages
that produce multiple outputs which have to be processed separately. For this reason
they must support multiple reads of the same value. They may have multiple inputs, but
only a single output. There are several possible different types of memory components
that can be modeled, such as FIFO, LIFO, etc. Following in this section, an N-read buffer
is formally defined.
Accumulating Components: These components are necessary for combining multiple
images into a single one (e.g. different color channels). They may have multiple inputs,
but only a single output. Following in this section, an N-write accumulator with a single
input and a single-output is defined.
Mode-selection Components: These components allow the reconfiguration of the pipeline.
It has a single input and multiple outputs, one of which is active at any time, based on
the mode.

Based on this components, it is possible to model complex pipelines that can be recon-
figured and provide QoS by structure. In order to support QoS by precision, each of the
aforementioned components must have a configuration port that will allow modification of
the processing parameters.

4.1 Processing Component
In Figure 6, the main building block of a pipeline, the processing component, is presented as
a well-triggered component. This component is responsible to receive an input, process it
and finally output the result in one computation step. At the beginning of each computation
step the component can receive new configuration parameters from the Conf port. It is
assumed that the component is initialized with default parameters.

In ultrasound applications the processing component, receives at the Input port a 2-
dimensional array that represents the image. Similarly, the component exposes the image at
the Output port. The Process port is needed to signal that the processing has been performed.
Finally, the Conf port is used to configure the component with appropriate parameters.

The strong dependencies between these ports enforce the input-process-output paradigm.
The conditional dependency between the Conf port and the Input port implies that if both

MCPS’14



74 Modeling of Reconfigurable Medical Ultrasonic Applications in BIP

Figure 8 N -write Accumulator. Figure 9 Mode-selector Component.

happen at same computation step, the configuration of the component must occur before
the component receives the input. That means that a) the component can receive new
configuration if there is no input to process; b) the component can receive the input and
process it if there are no new configuration parameters; c) the component will receive first
the new configuration parameters and then process the input based on these new parameters.

4.2 N-read Buffer Component
Figure 7 presents a buffering element, of size s as a well-triggered component. Following
the standard notation, this component receives an image from the Input port and stores it
internally, by copying the image to the memory and adjusting the front pointer f and the
element counter c. The Output port exposes the oldest image stored internally, and when
the image is read N times, the rear pointer r and the element counter c are adjusted. To
achieve that behavior the output counter o and the next index n are used. The Output port
is active, i.e. can be executed, only when the element counter is greater than zero, that is
there is at least one image stored. Similarly, the Conf port is active only when there is no
image in the buffer.

Storing and retrieving an element from a buffer can occur in arbitrary orderings. It
is assumed that the buffer can execute both in a single computation step. Based on this
assumption, Input and Output can occur independently, but if they occur in the same
computation step Output precedes Input.

Finally, based on this well-triggered component, an unbounded buffer can be modeled
as well by simplifying the update functions for the position pointers f and r, f:=f+1 and
r:=r+1 respectively. A typical 1-read buffer can also be modeled by eliminating the update
functions for o, n and replace them with the value of 1.

4.3 N-write Accumulator Component
Similar in logic to the buffer component is the accumulator component presented in Figure 8.
This component when it receives a new input, it accumulates (e.g sum, average, select
min/max, etc.) the new input with all the previously received inputs. When it has received
N inputs, it outputs the result and empties the data in order to receive new inputs.

4.4 Mode-selector Component
Another important component required to model multi-mode processing pipelines is that of
the mode-selector. The role of this component is to direct the received input to the correct
output and thus change the processing pipeline.



S. Skalistis and A. Simalatsar 75

In Figure 9, a selector component that supports two modes is presented. In this component
the Output1 and Output2 ports weakly depend on the Input port. This means that the
input can be received without producing any output, in the case when the selected mode is
not valid. As in all previous cases the Conf precedes the Input port for the aforementioned
reasons.

As with the processing component, the mode-selector component can be extended in
multiple outputs, in a similar manner.

4.5 Composition of components

The framework components presented earlier, namely processing, buffer, accumulator and
mode-selector components, are well-triggered. In order to construct deadlock-free processing
pipelines from such components we have to reason if their composition results in well-triggered
components as well. Composition is performed by merging the interacting ports and inheriting
the dependencies from all the interacting ports. To check that the result is still well-triggered
the constraints presented in Section 2.2 should hold.

Following, a descriptive reasoning is presented, regarding that the result of the composition
of the framework components is well-triggered. A more formal proof can be found in [8].

Processing – Processing: Combining two processing components results in a well-
triggered component if these are connected in series, that is the output of the former becomes
the input of the latter. The resulting component actually performs the two processing steps
sequentially, and is well-triggered.

Processing – Mode-Selector: Combining a processing component with a mode-selector
component, in terms of connecting the respective output and input, results in a well-triggered
component, since the mode-selector has no strong causes and no cycle is created.

Processing – Buffer: The same holds for combining the output port of the processing
component with the input port of a buffer. Their composition is well-triggered, as the
processing component has only strong causes and the input port of the component has only
one strong cause and no weak causes.

Processing – Accumulator: Similarly, combining the output of a processing component
with the input of an accumulator produces a well-triggered component. The resulting graph
has no cycles and the accumulator component has only one strong cause and no weak causes.

Accumulator – Mode-Selector: The composition of an accumulator component with a
mode-selector component, by connecting their respective output and input ports, results in a
well-triggered component. Although, the output port of the accumulator has a guard, the
mode-selector has no strong causes and the resulting graph has no cycles.

Accumulator – Processing: Combining, on the other hand, the output port of the
accumulator component with the input port of a processing component is not straightforward.
The output port of the accumulator has a guard, but this does not violates the constraints,
since when the two ports are merged, the resulting port has no strong causes. Thus, the
resulting component is a well-triggered component.

Buffer – Processing: Similarly, combining the output port of the buffer component with
the input port of a processing component results in well-triggered component, as after the
combination the resulting port has no strong causes.

Mode-Selector – Processing: In the same manner, combining the output port of a mode-
selector component with the input port of a processing component results in a well-triggered
component despite the guards.

MCPS’14



76 Modeling of Reconfigurable Medical Ultrasonic Applications in BIP

Time Gain 
Compensation

DownMix Buffer

Delay 
Apodization 

Sum

Mode
Selector

RF Processing

I/Q Demodulation

Beamforming

B-modes:
- Baseline
- Frequency compounding
- Spatial compounding
- I/Q mode

Figure 10 RF Processing, Demodulation(I/Q mode), Beamforming.

Mode-Selector – Buffer: Finally, the same holds for combining the output port of a
mode-selector component with the input port of a buffer. Their composition is well triggered,
as no cycles are created and the guards belong to ports with no strong causes.

It must be noted that there are several possible ways to combine these framework
components. Nevertheless, the most interesting combinations, that can be used in processing
pipelines, are those presented above.

5 QoS by Topology Reconfiguration

QoS by topology reconfiguration concerns the management of quality solely through the
reconfiguration of the pipeline structure and not the configuration of its components. Fig-
ures 10-12 depict three consecutive parts of the reconfigurable pipline that consolidates the
B-mode pipelines presented in Section 3.1.

This consolidated pipline enables quality management by merely altering only the topology
of the pipeline based on the mode of operation, that is without changing the parameters of
the processing components.

Every component of this pipeline is represented by one of the framework components,
namely mode-selector, buffer, accumulator and processing component, that were defined in
Section 4.

Each component has an In (resp. Out) port that corresponds to Input port (resp. Output)
as defined for the processing components. Interactions between components are depicted with
solid lines connecting participating ports. Each component has a Conf port that can be used
for QoS managment by precision by altering the processing parameters of the components.
Apparently, parameters adjusted through the Conf port for the mode-selector, accumulator
and buffering components do not affect the quality per-se, as they do not perform any kind
of processing.

In Figure 10, the first two components perform the RF processing, which is the same for
all modes. After that, for all modes except from I/Q, the Beamforming is computed (by the
delay-apodization-sum component). As stated in Section 3.1, in I/Q mode the Demodulation
occurs before Beamforming. This is depicted in the lower branch (green line) in Figure 10
where the mode-selector component is used to switch among the modes. Further, that branch
rejoins the normal pipeline in order for Beamforming to be performed.

Figure 11 depicts the Demodulation for Baseline, Frequency and Spatial compounding
modes. In Baseline (blue line) and Spatial compounding (red line) the demodulation is
performed through a hilbert-transformation followed by a low-pass filter. On the other hand,



S. Skalistis and A. Simalatsar 77

Mode
Selector

Buffer

Hilbert
Transformation

Demodulation

B-modes:
- Baseline
- Frequency compounding
- Spatial compounding
- I/Q mode

Figure 11 Demodulation (for all modes except I/Q).

Mode
Selector

Sum

Scan 
Conversion

Averaging
Log 

Compression

Log 
Compression

Scan 
Conversion

Power 
Envelope

Rescale

Baseband Processing

B-modes:
- Baseline
- Frequency compounding
- Spatial compounding
- I/Q mode

Figure 12 Baseband Processing (for all modes).

in Frequency compounding (black line) the image is passed multiple times through different
band-pass filters, i.e spliting the image into several new images of different frequency-bands.
The splitting is performed by using a buffer and reconfiguring the cut-off frequencies of the
band-pass filter, rather than using multiple fixed filters, in order to reduce the number of
components and thus reduce program memory. These images are then demodulated in the
same manner as Baseline and Spatial compounding modes.

Figure 12 depicts the Baseband processing for all modes. In Spatial compounding, which
is depicted on the top branch (red line), the multiple firings, which are required in this
mode, are averaged after the scan-conversion. After averaging several images, the processing
continues with log-compression followed by the rescaling so as to produce the final output.
Similarly, in Frequency compounding (black line), the different images produced previously,
by the band-pass filter, have to be summed-up. Then the same processing as with Baseline
B-mode (blue line) is following. Finally, in the bottom branch, the I/Q signals are combined
in the power-envelope and in the similar manner with the Baseline B-mode produces the
final output.

It must be noted that the components Sum, Averaging and Power Envelope can not be
modeled as processing components. Instead, they are modeled as accumulators. Similarly,
the buffers present in this pipeline should be unbounded N-read buffers, where each them
has an appropriate value of N.

MCPS’14



78 Modeling of Reconfigurable Medical Ultrasonic Applications in BIP

Figure 13 Simple QoS controller as well-triggered component.

This consolidated pipeline supports both QoS by structure based on the choice of a
particular pipeline mode, and QoS by precision, where each component can be reconfigured
separately. It also consists of well-triggered components, which can ensure deadlock-freedom
and confluence. In Figures 10-12 there are some components with input ports belonging
to more than one interaction, which is not allowed in modal flows in general. This can be
resolved by manually implementing that part of the system. Of course, this may result in a
non deadlock-free system and need to be further studied.

Finally, in Figure 13, a simple QoS controller is presented as a proof of concept that such
a controller can be designed following the well-triggered paradigm. As such, the controller
can be combined with the aforementioned pipeline and thus have a fully deadlock-free and
confluent system that supports QoS management. This controller has two input ports,
through which it receives the values qr (quality with respect to resolution) and qn (quality
with respect to noise). The controller chooses the appropriate mode by comparing these values
with the thresholds QR, QN. To make this more clear, the thresholds QR, QN distinguish
the “high” and “low” quality for noise and resolution, respectively, while the input values
are the desired quality levels. For example, if the requirements for quality with respect to
resolution is “high” and the requirements for quality with respect to noise is “low”, then the
controller chooses mode m=1, which is then trasmitted to the mode-selector components
that perform the choice of the porcessing mode.

6 Conclusion & Future Work

Ultrasonic imaging applications require high quality of images produced in real-time with
limited resources available. In this context, feasibility, optimality and quality control are of
significant importance, but the safety-critical nature of such applications requires guarantees
that the system will be deadlock-free and confluent. We present an approach to model such
applications using a synchronous computation model. Our approach is based on Modal
Flow Graphs, which is a formalism that encompasses a synchronous computation model and
guarantees by-construction deadlock-freedom and confluence provided the system satisfies
some easy-to-check structural constraints.

There are two aspects of QoS management; QoS by precision is based on adjusting the
parameters of some components of the computation chain, whereas QoS by structure is based



S. Skalistis and A. Simalatsar 79

on changing the topology of the computation chain. We have presented a model of the
pipeline that consolidates four modes of ultrasound B-mode processing and provides quality
control by structure through pipeline reconfiguration, as well as supports quality control by
precision through the adjustment of computational parameters at the component level.

We have introduced framework components, which are well-triggered modal-flow compon-
ents, that can be used to build reconfigurable multimedia pipelines. We have identified the
conditions that must be satisfied by the interconnection structure among the components in
order to preserve deadlock-freedom and confluence. With the case study we have demon-
strated how the processing pipline of the ultrasoic application can be composed out of these
framework components.

Finally, we have presented a simple QoS controller as a well-triggered component which
when combined with a reconfigurable pipeline results in a fully deadlock-free and confluent
system that supports QoS management by topology reconfiguration.

As part of on-going and future work, in the context of our case study, we are investigating
parameters (e.g. variable cut-off frequencies of the filters, levels of saprcity of the computation
matrixes, etc.) and constraints (power, time) that affect the QoS management. Based on
that, we are planning to extend the quality controller to take into account parameters and
constraints of the underlying platform and provide optimal use of resources.

Acknowledgements. The work described in this paper is part of the UltrasoundToGo
project. The aim of this project is to develop a scalable low-power, high-performance, trusted
platform for 3D portable ultrasound imaging systems.

References
1 Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mohamad Jaber, Thanh-

Hung Nguyen, Joseph Sifakis, et al. Rigorous component-based system design using the
BIP framework. IEEE Software, 28(3):41–48, 2011.

2 Simon Bliudze and Joseph Sifakis. The algebra of connectors: Structuring interaction in
BIP. In Proceedings of the 7th ACM/IEEE International Conference on Embedded Software,
EMSOFT’07, pages 11–20, New York, NY, USA, 2007. ACM.

3 Marius Dorel Bozga, Vassiliki Sfyrla, and Joseph Sifakis. Modeling synchronous systems in
BIP. In Proceedings of the Seventh ACM International Conference on Embedded Software,
EMSOFT’09, pages 77–86, New York, NY, USA, 2009. ACM.

4 Richard SC Cobbold. Foundations of biomedical ultrasound. Oxford University Press, USA,
2007.

5 Jacques Combaz, Jean-Claude Fernandez, Thierry Lepley, and Joseph Sifakis. Qos control
for optimality and safety. In Proceedings of the 5th ACM International Conference on
Embedded software, pages 90–99. ACM, 2005.

6 Zahra Keshavarz-Motamed, Julio Garcia, Emmanuel Gaillard, Romain Capoulade, Florent
Le Ven, Guy Cloutier, Lyes Kadem, and Philippe Pibarot. Non-invasive determination of
left ventricular workload in patients with aortic stenosis using magnetic resonance imaging
and doppler echocardiography. PLoS One, 9(1), 2014.

7 Sonia H. Contreras Ortiz, Tsuicheng Chiu, and Martin D. Fox. Ultrasound image enhance-
ment: A review. Biomedical Signal Processing and Control, 7(5):419 – 428, 2012.

8 Stefanos Skalistis and Alena Simalatsar. Modeling of Reconfigurable Medical Ultrasonic
Applications in BIP. Technical report, EPFL IC IIF RiSD, 2014.

9 Xiang Xie, GuoLin Li, ZhiHua Wang, Chun Zhang, DongMei Li, and XiaoWen Li. A novel
method of lossy image compression for digital image sensors with bayer color filter arrays.
In Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on, pages
4995–4998. IEEE, 2005.

MCPS’14


	Introduction
	Background
	BIP Framework
	Modal Flow Graphs and Well-triggered Components
	QoS

	Reconfigurable Multimedia Systems
	Case Study

	Components framework
	Processing Component
	N-read Buffer Component
	N-write Accumulator Component
	Mode-selector Component
	Composition of components

	QoS by Topology Reconfiguration
	Conclusion & Future Work

