
A Domain Specific Language for Performance
Evaluation of Medical Imaging Systems∗

Freek van den Berg, Anne Remke, and Boudewijn R. Haverkort

Design and Analysis of Communication Systems, University of Twente
P.O. Box 217, 7500 AE, Enschede, The Netherlands
{f.g.b.vandenberg,a.k.i.remke,b.r.h.m.haverkort}@utwente.nl

Abstract
We propose iDSL, a domain specific language and toolbox for performance evaluation of Medical
Imaging Systems. iDSL provides transformations to MoDeST models, which are in turn con-
verted into UPPAAL and discrete-event MODES models. This enables automated performance
evaluation by means of model checking and simulations. iDSL presents its results visually. We
have tested iDSL on two example image processing systems. iDSL has successfully returned
differentiated delays, resource utilizations and delay bounds. Hence, iDSL helps in evaluating
and choosing between design alternatives, such as the effects of merging subsystems onto one
platform or moving functionality from one platform to another.

1998 ACM Subject Classification B.8.2 Performance Analysis and Design Aids

Keywords and phrases Domain Specific Language, Performance Evaluation, Simulation, Model
Checking, Medical Systems

Digital Object Identifier 10.4230/OASIcs.MCPS.2014.80

1 Introduction

Medical imaging systems (MIS) are used to perform safety critical tasks. Their malfunctioning
can lead to serious injury [1]. The safety is, among others, significantly determined by
their performance, since imaging applications are time critical by nature. Predicting the
performance of MIS is a challenging task, which currently requires the physical availability
of such system in order to measure their performance. However, a model-based performance
approach would allow to predict the system’s performance already during early design and
can thereby shorten the design cycle considerably.

Interventional X-ray (iXR) systems are MIS that dynamically record high quality images
of a patient, based on X-ray beams. Design decisions in this domain are of various kinds,
such as the possibility of merging of subsystems onto one platform, moving functionality
from one to another platform, and assessing whether the system is robust against minor
hardware changes. This paper investigates the use of a model-based approach to obtain
insight in system performance.

We have decided to build iDSL, a domain specific language and toolbox for performance
evaluation of Medical Imaging Systems, on top of MoDeST [8], which recently has been
extended to support the modelling and analysis of Stochastic Timed Automata (STA) using
PRISM [17] and UPPAAL [18] as well as discrete-event simulation using MODES. This

∗ This research was supported as part of the Dutch national program COMMIT, and carried out as part
of the Allegio project under the responsibility of the Embedded Systems Innovation group of TNO, with
Philips Medical Systems B.V. as the carrying industrial partner.

© Freek van den Berg, Anne Remke, and Boudewijn R. Haverkort;
licensed under Creative Commons License CC-BY

Medical Cyber Physical Systems – Medical Device Interoperability, Safety, and Security Assurance (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer; pp. 80–93

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.80
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

F. van den Berg, A. Remke, and B. R. Haverkort 81

Total latency
and jitter

Service System

request

response

request

response

Service1

Process Resource

Service2

Process Resource

Measures of interest

Latency
breakdown
Process flow

Utilization
Queue size

Study

Scenario

Service
consumer

mapping

mapping

Figure 1 Conceptual model of a service system. Measures of interest are obtained using scenarios.

decision has been taken because of the expressiveness of STA and because MoDeST allows
to use both analytical and simulation techniques.

We have designed the Domain Specific Language iDSL tailored towards MIS. iDSL
adheres to the Y-chart philosophy [15], which separates the application from the underlying
computing platform. It further uses hierarchical structures like the performance evaluation
tool HIT [3]. And finally, iDSL can automatically generate design alternatives. We have
constructed automated transformations from iDSL to different MoDeST model variants,
each taking full advantage of the capabilities of the underlying evaluation tools, i.e., PRISM,
UPPAAL and MODES. While these tools have been used widely for performance evaluation
of embedded systems [13, 12, 16], to the best of our knowledge they have not been used
for evaluating the performance of MIS. Finally, we use GraphViz [7] and GNUplot [20] to
present performance outcomes graphically.

As for related work, [14, 19] apply model checking with UPPAAL on real-time medical
systems to address safety. A study in which PRISM is used, addresses quantitative verification
of Implantable Cardiac Pacemakers [5], which are time critical systems. [11, 21] evaluate the
performance of iXR systems based on the Analytical Software Design (ASD) method.

The Octopus Toolset [2] provides various tools for the modelling and analysis of software
systems in general, whereas iDSL is specifically designed for MIS. Earlier work [10, 22]
proposed a simulation-based approach using POOSL [6], leading to average values.

This paper is further organized as follows. Section 2 describes the conceptual model of
iDSL. Section 3 specifies the constructs and relations that constitute the iDSL language.
Section 4 covers the functionality and usage of the iDSL tool. Section 5 concludes the paper.

2 Conceptual model

This section describes the conceptual model that forms the basis of iDSL (see also Figure 1).
A service system, as depicted in the upper right block, provides services to service

consumers in its environment. A consumer can send a request for a specific service at a
certain time, after which the system responds with some delay.

MCPS’14

82 A DSL for Performance Evaluation of Medical Imaging Systems

image
processing

seq

image
pre
processing

 seq

image
processing

 seq

image
post
processing

 seq

motion
compensation

 seq

noise
reduction

 seq

contrast

 seq

image
processing
decomp

CPU

GPU

Figure 2 The IP ProcessModel (left) and IP ResourceModel (right) visualization are automatically
generated from the iDSL code.

A service is implemented using a process, resources and a mapping, in accordance with
the Y-chart philosophy [15]. A process decomposes high-level service requests into atomic
tasks, each assigned to resources through the mapping (from which we abstracted in the
figure). Hence, the mapping forms the connection between a process and the resources it uses.
Resources are capable of performing one atomic task at a time, in a certain amount of time.
When multiple services are invoked, their resource needs may overlap, causing concurrency
and making performance analysis more challenging.

A scenario consist of a number of invoked service requests over time to observe the
performance behaviour of the service system in specific circumstances. We assume service
requests to be functionally independent of each other. That is, service requests do not affect
each other’s functional outcomes, but may affect each other’s performance implicitly.

A study evaluates a selection of systematically chosen scenarios to derive the system’s
underlying characteristics. Finally, measures of interest define what performance metrics
are of interest, given a system in a scenario. Measures can either be external to the system,
e.g., throughput, latency and jitter, or internal, e.g., queue sizes and utilization.

3 Language constructs

We now demonstrate how to use iDSL by implementing an example Image Processing (IP)
system. We have included the grammar of the iDSL language as reference at the end of
the paper (see Figure 9). The iDSL language contains six sections, i.e., Process, Resource,
System, Scenario, Measure and Study. The former three sections specify the functioning of
the service system, whereas the latter three sections describe the way the system performance
is assessed. iDSL transforms automatically into MoDeST [8] models and we therefore define
its semantics in terms of MoDeST code. In what follows, we provide an iDSL instance per
section, and the belonging MoDeST code that serves as semantics. In some cases, iDSL also
provides an automatically generated visualization using GraphViz.

3.1 Process
A process decomposes a service into a number of atomic tasks, implemented in iDSL using a
recursive data structure with layers of sub-processes. At the lowest level of abstraction, the

F. van den Berg, A. Remke, and B. R. Haverkort 83

Table 1 Process: iDSL and MoDeST code.

iDSL Process code

Section Process
ProcessModel image_processing_application
seq image_processing_seq {

atom image_pre_processing load 50
seq image_processing {

atom motion_compensation load 44
atom noise_reduction load uniform(80 140)
atom contrast load 134 }

atom image_post_processing load 25 }

Generated MoDeST Process code

process image_processing(){
motion_compensation(44);
noise_reduction(Uniform(80,140));
contrast(134) }

process image_processing_seq(){
image_pre_processing(50);
image_processing();
image_post_processing(25) }

process image_processing_application_instance(){
generator_image_processing_application?;
image_processing_seq() }

Table 2 ResourceModel: iDSL and MoDeST
code.

iDSL ResourceModel code

Section Resource
ResourceModel image_processing_PC

decomp image_processing_decomp {
atom CPU rate 2
atom GPU rate 5 }

connections { (CPU , GPU) }

Generated MoDeST ResourceModel
code

process machine_call_GPU(real taskload){
machine_GPU_start! {= sync_buffer=taskload =};
machine_GPU_stop? }

process machine_GPU(){
real taskload;
machine_GPU_start? {= taskload=sync_buffer =};
delay (taskload / 5)
machine_GPU_stop!;
machine_GPU() }

atomic tasks each have a load, i.e., an amount of work, such as the number of CPU cycles.
The process for the example (Table 1 and Figure 2, left) combines seq and atom constructs.

At its highest level, it consists of a sequential task that decomposes into an atomic task “pre-
processing” with load 50, a sequential task “processing” and an atomic task “post-processing”
with load 25. At a lower level, the sequential task “processing” consists of three atomic tasks
named “motion compensation” with load 44, “noise reduction”, and ‘contrast” with load 134.
The load of “noise reduction” is drawn from a uniform distribution on [80,140], at execution
time.

In MoDeST, these hierarchies are implemented using layered processes, and the loads
as parameters that are used later. The process is triggered via a generator through binary
communications.

iDSL additionally supports the process algebraic constructs for parallelism (par), non-
deterministic choice (alt), probabilistic choice (palt) and abstraction, as well as a mutual
exclusion (mutex) to permit at most one process instance at a time on a certain process part.

3.2 Resource
In iDSL, a resource is defined as recursive hierarchical structure consisting of decomp and
atom constructs, and a binary relation that defines which resources are connected.

The decomp construct is used to create decomposable resources, whereas the atom
construct is used to specify atomic resources. They have a rate that specifies how much load
they can process per time unit, e.g., the number of CPU cycles per second. Resources that
are connected can perform operations in sequence for one process. The connections further
enhance the way resources are visualized and enable high-level input validations.

We model the resource in our example as a composite resource (Table 2 and Figure 2,
right). It consists of two atomic resources, i.e., a “CPU” with rate 2 and a “GPU” with rate 5.
Additionally, the “CPU” and “GPU” are connected. In the MoDeST code, two processes per
resource are created of which we have included the “GPU”. A resource is implemented using
binary communications to handle concurrency and a delay to represent the resource being in

MCPS’14

84 A DSL for Performance Evaluation of Medical Imaging Systems

Table 3 System: iDSL and MoDeST code.

iDSL System code

Section System
Service image_processing_service
Process image_processing_application
Resource image_processing_PC
Mapping assign { (image_pre_processing, CPU)

(motion_compensation, CPU)
(noise_reduction, CPU)
(contrast, CPU)
(image_post_processing, GPU) }

Generated MoDeST System code

process motion_compensation(real taskload){
machine_call_CPU(taskload) }

process image_post_processing(real taskload){
machine_call_GPU(taskload) }

Table 4 Scenario: iDSL and MoDeST code.

iDSL Scenario code

Section Scenario
Scenario image_processing_run
ServiceRequest image_processing_service

at time 0, 400, ...
ServiceRequest image_processing_service

at time dspace(offset), dspace(offset)+400,

Generated MoDeST Scenario code

process init_generator_image_processing_service
() { delay (0)

generator_image_processing_service() }
process generator_image_processing_service(){

clock c; tau {= c=0 =};
alt{
:: generator_image_processing_application!
:: delay(1) tau // time-out };

when urgent(c >= (400-0))
generator_image_processing_service() }

use, i.e., processing a process. The self-recursion ensures that the resource runs forever. The
delay is the quotient of the load and rate, e.g., CPU cycles divided by CPU cycles per second
leads to seconds. The second process (with prefix machine_call) abstracts communications
from the process layer. The MoDeST code reveals that concurrency is currently resolved
using non-deterministic choices, in a non-preemptive manner.

3.3 System
A system consists of one or more services. In our example (Table 3), we construct an overall
system with one service that combines the already defined process and resource (Figure 2). By
defining an additional mapping, we connect them to form a service (Figure 3). In MoDEST,
each mapping assignment results into a process that calls a resource.

3.4 Scenario
A scenario is defined as a bundle of services, on one system, that are individually requested
over time (Table 4). The times of the requests are defined in terms of the first and second
request, respectively 0 and 400 in the example here. Inter-request times are assumed to be
constant, 400 in the example. To illustrate the modelling flexibility, we have added another
set of service requests, including two dspace function calls that are constant within a design
instance (to be explained later). In MoDeST, two processes handle the timing. The first
(with prefix init) performs the initial delay once. The second then loops forever, with period
of the inter-request time, triggering the process once per loop. When the service system fails
to respond to a request immediately, a time-out occurs that drops the request.

3.5 Measure
Measures define what performance metric(s) one would like to obtain, given a system in a
certain scenario. Different measures might call for different techniques to obtain them, e.g.,
simulation, model checking or numerical analysis. To illustrate our approach, we specified
two measures (Table 5), based on two methods, i.e., MODES [8] based simulations and

F. van den Berg, A. Remke, and B. R. Haverkort 85

resources

image
processing

seq

image
pre
processing

 seq image
processing

 seq

image
post
processing

 seq

CPU

motion
compensation

 seq

noise
reduction

 seq

contrast

 seq

GPU

Figure 3 The IP Service visualization, which is automatically generated from the iDSL code.

UPPAAL [18] based model checking. The former uses Stochastic Timed Automata (STA)
as its underlying model, while the latter uses Timed Automata (TA). We create specific
MoDeST code (Table 5) for each case to combine the STA’s expressiveness and the TA’s
model checking capability.

First, simulations provide response times, for a given number of simulations of a certain
length. We use 1 run of length 280 in the example. Simulations additionally provide
insight in resource utilizations and latency breakdowns. To eliminate non-determinism,

Table 5 Measure: iDSL and MoDeST code.

iDSL Measure code

Section Measure
Measure ServiceResponse times

using 1 runs of 280 ServiceRequests
Measure ServiceResponse absolute times

for any ServiceRequest

Generated MoDeST Measure code for
MODES.

process image_processing(){
tau {= stopwatch_image_processing = 0,

image_processing_done = false =};
...
tau {= image_processing_done = true,

counter_image_processing++ =};
tau {= image_processing_done = false =} }

property property_latency_image_processing =
Xmax(stopwatch_image_processing |

stopwatch_image_processing_done &&
counter_image_processing==1);

process machine_GPU(){ ...
delay (taskload/ 5)
tau {= util_counter_GPU+= (taskload / 5) =};
.. }

property property_utilization_CPU =
Xmax (util_counter_CPU/10000 | time==10000);

we use an as soon as possible (ASAP) sched-
uler for time, and a uniform resolution for
choice [9], which are fixed parameters that
iDSL provides to MODES. The ASAP sched-
uler makes sure that whenever an action is
possible, it is performed immediately. The
uniform resolution selects one out of multiple
actions to perform when their underlying dis-
tribution is not specified, with equal probab-
ilities.

In MoDeST, we extend the already given
code with both measurement points and prop-
erties, for both the latencies and utilizations.
Each (sub)process is enclosed by a stopwatch
to register a latency value, whereas an ac-
tual property retrieves this value for a single
latency. Resources are augmented with a cu-
mulative delay counter, retrieved by means of
a property after some time, viz., an arbitrary
10000 in the example.

MCPS’14

86 A DSL for Performance Evaluation of Medical Imaging Systems

Transform

Eclipse
Xtexts/Xtend for DSLs

Create an iDSL
System model

MODES

GNUplot GraphViz

injection

Latency
bar chart

Latency
breakdown
chart

modeler

analyzer

Process+
resource+
mapping
chart

MCTAU

UPPAAL

Absolute
latency
bounds

Create an iDSL
Study model

analyzer

iDSL
grammar

Input validation

A B C
D

Figure 4 The iDSL tool chain overview. A modeller and analyser create an iDSL model based
on the iDSL grammar. The iDSL tool transforms this model into MoDeST and GraphViz models,
leading to performance measures to be evaluated by the analyser.

resources

image
processing
seq
306.7036

image
pre
processing

37.1696

 seq
image
processing

264.534

 seq

image
post
processing

5

 seq

CPU
0.836474

motion
compensation

45.884

 seq

noise
reduction
92.6735

 seq

contrast
125.976

 seq

GPU
0.025

Figure 5 The latency breakdown chart and utilization (offset=0), based on MODES simulation
results, which is automatically generated from the iDSL code.

F. van den Berg, A. Remke, and B. R. Haverkort 87

Table 6 Binary search for bounds, pseudo code.

LB: Compute lower bounds, pseudo
code

LB (lbound,ubound){
if (ubound==lbound) return lbound
check_value=(lbound+ubound)/2
UPPAAL (p = probability(latency<check_value))

if (p=0) LB (check_value,ubound)
else LB (lbound,check_value) }

Compute lower bounds, execution trace

LB(0,1024) -> LB(0,512) -> LB(0,256) ->
LB(128,256) -> LB(128,192) -> LB(128,160) ->
LB(144,160) -> LB(152,160) -> LB(156,160) ->
LB(158,160) -> LB(159,160) -> LB(159,159) -> 159

Table 7 Study: iDSL and MoDeST code.

iDSL Study DSL code

Section Study
Scenario image_processing_run

DesignSpace
(offset {0, 20, 40, 80, 120, 160, 200) }

Generated MoDeST Study code

real sync_buffer;
closed par{
:: do{image_processing_application_instance()}
:: do{image_processing_application_instance2()}
:: init_generator_image_processing_service()
:: init_generator_image_processing_service2()
:: machine_CPU()
:: machine_GPU() }

Second, model checking leads to the absolute minimum and maximum response times,
given a system and scenario. It does not require parameters in the iDSL language, because
its results are universal. The lower and upper bounds are valid when they are respectively
lower and higher than all possible outcomes. They are strict when additionally the distance
between them is minimal, i.e., the lower bound is the highest valid one and vice versa. iDSL
can return bounds that are both valid and strict.

For model checking, iDSL “downgrades” STAs to TAs [9] automatically, thereby, replacing
real numbers by integers, probabilistic choice and infinite distributions by non-deterministic
choice, and removing some performance measuring variables to reduce the state-space size.
For instance, the uniform function in the process (see Table 1), represented by a continuous
probability function in STAs, becomes a non-deterministic, finite choice.

While TAs only support properties with boolean expressions, the absolute values cannot
be retrieved using single properties. Therefore, we have equipped iDSL with a binary search
algorithm that leads to a solution in O(log(n)), with n the size of the search range. The
algorithm consists of two functions, i.e., a LB function to compute lower bound values and a
UB function for higher bound values.

LB is a recursive function (Table 6, top) with two parameters, the lower and upper bound
of the current range of values. The stop criterion, i.e., the lower and upper bound value are
the same, ends the recursion by returning the lower bound value. Otherwise, the range is
halved in two parts by taking the average value of the lower and upper bound. UPPAAL is
queried with this value to determine in which half of the range the lower bound is located.
A recursive call of LB then takes place using the right range half as parameter. The UB
function operates in a similar fashion.

To illustrate the functioning of LB, we apply it on the case with one image processing
system. We start by selecting the initial range of values. Since the algorithm is of O(log(n))
and the choice of n does therefore not affect the workload much, it is advised to overestimate
the size of the range. Based on simulation results, we choose [0:1024] to be our initial range.
The execution trace (Table 6, bottom) conveys 12 recursive calls before the final value 159
is finally obtained. This means that the one image processing system will never display a
service response time smaller than 159, in the given scenario.

MCPS’14

88 A DSL for Performance Evaluation of Medical Imaging Systems

3.6 Study
Finally, a study forms a collection of scenarios that one would like to analyse in an automated
manner. This is principally done by summing up one or more scenarios (Table 7). Individual
MoDeST models are created for each scenario, which each contain a main parallel process to
initiate all process model threads, generators and the resources involved.

We conclude with a design space, a shorthand way to specify a set of similar scenarios.
In our example, we vary the starting time offset of one of the service-request sequences to
be 0, 20, 40, 80, 120, 160 and 200. For this purpose, we create a design space in the study
and enumerate the desired values. After this, the dspace function can be used for the offset
parameter as done in the system section (Table 3). As a result, seven similar scenarios, one
corresponding to each offset value, are created that vary where and only where the dspace
function is used.

4 Tool and solution chain

This section covers the functioning of our iDSL tool (illustrated in Figure 4). iDSL requires
two user roles to be fulfilled, the modeller and the analyser. The modeller constructs a model
of a real system and the analyser specifies measures to perform. Execution of the model then
generates artefacts with performance metrics to be investigated by the analyser.

4.1 Modelling
A modeller and analyser interactively create an iDSL instance in the Eclipse IDE for DSL
Developers1, adhering to iDSL’s grammar. Input validation comprises syntax checking and
advanced checks, e.g., for unique naming and non-circular definitions. Additionally, warnings
and information boxes are displayed, e.g., when the design space is large. The modelling
ends with the creation of a valid iDSL model.

4.2 Execution
Created iDSL models are then automatically transformed into two kinds of GraphViz specific-
ations (Figure 4, A+B) and two kinds of MoDeST models (Figure 4, C+D). Transformations
are written in Xtend and generate text output, based on iDSL instance constructs.

Some GraphViz specifications are performance unrelated and provide a visual presentation
of the processes, resources and mappings of the system (as already shown in Figures 2 and
3). They are turned into a process+resource+mapping chart using the GraphViz tool.

The remaining GraphViz specifications have placeholders to contain performance numbers
and form one input of the injection step. Some MoDeST models are executed in the MODES
simulator and lead to latency and utilization numbers. The high-level latencies per instance
are transformed into a latency bar chart by GNUplot.

The latencies at different process levels and utilizations form the second input of the
injection. The remaining MoDeST models are executed in UPPAAL, via MCTAU [4], to
obtain absolute latency bounds.

The injection step takes a GraphViz specification with placeholders and MODES per-
formance numbers as input. By simply injecting the performance numbers at the right
placeholders, a new GraphViz specification results. It is forwarded to the GraphViz tool and
transformed into a latency breakdown chart (Figure 5). To illustrate the meaning of this

1 http://www.eclipse.org/downloads/packages/eclipse-ide-java-and-dsl-developers/junosr2

http://www.eclipse.org/downloads/packages/eclipse-ide-java-and-dsl-developers/junosr2

F. van den Berg, A. Remke, and B. R. Haverkort 89

chart, we show that the latency of a sequential process equals the sum of its sub-processes’
latencies, e.g. for “image processing”, the latency is (rounded off): 265 = 46 + 93 + 126.
Additionally, the utilization is the quotient of the busy time of a resource and the total
elapsed time. Take for instance the “GPU” resource, which is only used for “image processing”
and for 5 time units per service. Services are each invoked periodically every 400 time units.
Therefore, the “GPU” has a utilization of (5 + 5)/400 = 0.025.

4.3 Analysis
Using the presented tool chain, iDSL offers the possibility to compare several design altern-
atives from various perspectives, in an automated manner. We proceed with discussing the
results iDSL can generate. First, we discuss the results based on MODES simulations. After
that, we review results obtained from model checking using MCTAU and UPPAAL.

Simulation results. We have defined a study with seven design alternatives for which iDSL
automatically generates a latency breakdown chart and a latency bar graph. We present
the ones for the offset=0 case (Figures 5 and 6). As can be seen in Figure 6, the latency
varies highly. This is due to a high degree of concurrency, which forces the scheduler to
make many concurrency resolving decisions that each increase the variability. We further see
that the “noise reduction” and “contrast” processes contribute most to the latency, which
stems directly from their large loads. Additionally, we have included a CDF with the latency
times of the design alternatives altogether (Figure 7). It shows that when the offset is small
and the level of concurrency larger, latency times become higher. For the highest offsets, no
concurrency takes place.

Model checking results. We applied MCTAU on the case with one image processing system.
The computation of the lower (Table 6, bottom) and upper bound leads to values 159 and
189, respectively. The difference of 30 between them is caused by the uniform distribution
that is specified in the “noise reduction” process (Figure 8). As required by definition, all
simulation outcomes fall within the absolute bounds.

5 Conclusion and future work

In this paper we presented iDSL, a domain specific language and toolbox for the performance
evaluation of Medical Imaging Systems. iDSL automates performance analysis, for both
model checking and simulations, and displays results visually. We have demonstrated the
feasibility of our approach using a small example based on a real system, in which we
investigated MIS with two concurrent image processing applications.

iDSL has successfully returned differentiated delay, utilization and bound values for a
number of designs. In order to assess the scalability of iDSL, we will apply it on extensive
cases of our industrial partner Philips, in the Allegio project2. This will put the expressiveness
of the iDSL language to the proof and may lead to extensions to both the language and
toolbox.

We are currently investigating whether we can add a transformation for probabilistic
model checking. To support analysis further, we will extend iDSL to create graphs and
diagrams that display information of multiple scenarios, services and simulation runs, and
include GANTT charts.

2 http://redesign.esi.nl/research/applied-research/current-projects/allegio/

MCPS’14

http://redesign.esi.nl/research/applied-research/current-projects/allegio/

90 A DSL for Performance Evaluation of Medical Imaging Systems

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 0 50 100 150 200 250 300

ti
m

e

 request number

Latency

Figure 6 The MODES latency times bar graph (offset=0) for 280 service requests, which is
automatically generated from the iDSL code.

 0

 0.2

 0.4

 0.6

 0.8

 1

 150 200 250 300 350 400

C
u
m

u
la

ti
v
e
 p

ro
b

a
b

ili
ty

Time

offset 0
offset 20
offset 40
offset 80

offset 120
offset 160
offset 200

Figure 7 The cumulative distribution functions of latencies for seven design instances is auto-
matically generated from the iDSL code.

 0

 0.2

 0.4

 0.6

 0.8

 1

 155 160 165 170 175 180 185 190

C
u
m

u
la

ti
v
e
 p

ro
b

a
b
ili

ty

Time

Lo
w

e
r

b
o
u
n
d

U
p

p
e
r

b
o
u
n
d

Figure 8 The absolute minimum and maximum bounds, and a CDF of the simulation outcomes
is automatically generated from the iDSL code.

F. van den Berg, A. Remke, and B. R. Haverkort 91

Model
ProcessModel ResourceModel System Scenario Measure

Study

atom

seq

load

ProcessModel

AExp ProcessModel

uniform AExp AExp

ResourceTree
Resourcemodel Resource Resource

atom

decomp

rate

ResouceTree

AExp
ResourceTree

connections

ProcessModel ResourceModel Mapping
Service

Service AExp AExp time
Scenario

Measure
INT INT simulation

absolute bounds

runs

Study
Scenario DesignSpaceModel

Service
System

Mapping
Process Resource

Variable Value
DesignSpaceModel

dspace Variable

INT
AExp

AExp Op) (

Op x

-

+

/

AExp

Figure 9 The grammar of iDSL’s language as used in this paper. The grammar has the Model
concept as its top-level node. It decomposes into of one or more ProcessModels, ResourceModels, a
System (a set of Services), Scenarios, and a Measure and a Study.

MCPS’14

92 A DSL for Performance Evaluation of Medical Imaging Systems

Acknowledgements. We would like to thank Arnd Hartmanns of the MoDeST development
team for his help and efforts made during the development of iDSL.

We would like to thank Arjan Mooij of the Allegio project for informing us about the
binary search algorithm.

References
1 H. Alemzadeh, R. Iyer, Z. Kalbarczyk, and J. Raman. Analysis of safety-critical computer

failures in medical devices. IEEE Security & Privacy, 11(4):14–26, 2013.
2 T. Basten, E. Van Benthum, M. Geilen, M. Hendriks, F. Houben, G. Igna, F. Reckers,

S. De Smet, L. Somers, and E. Teeselink. Model-driven design-space exploration for em-
bedded systems: the Octopus toolset. In Leveraging Applications of Formal Methods, Veri-
fication, and Validation, volume 6415 of LCNS, pages 90–105. Springer, 2010.

3 H. Beilner, J. Mater, and N. Weissenberg. Towards a performance modelling environment:
News on HIT. In Modeling Techniques and Tools for Computer Performance Evaluation,
pages 57–75. Plenum Press, 1989.

4 J. Bogdoll, A. David, A. Hartmanns, and H. Hermanns. MCTAU: Bridging the gap between
modest and UPPAAL. In Proc. 19th International SPIN Workshop on Model Checking of
Software, volume 7385 of LNCS, pages 227–233. Springer, 2012.

5 Taolue Chen, Marco Diciolla, Marta Kwiatkowska, and Alexandru Mereacre. Quantitative
verification of implantable cardiac pacemakers. In Proc. 33rd Real-Time Systems Sym-
posium, pages 263–272. IEEE, 2012.

6 Eindhoven University of Technology. Software/Hardware Engineering - Parallel Object-
Oriented Specification Language (POOSL). http://www.es.ele.tue.nl/poosl/.

7 J. Ellson, E. Gansner, L. Koutsofios, S. North, and G. Woodhull. Graphviz—open source
graph drawing tools. In Graph Drawing, volume 2265 of LNCS, pages 483–484. Springer,
2002.

8 E. Hahn, A. Hartmanns, H. Hermanns, and J.-P. Katoen. A compositional modelling
and analysis framework for stochastic hybrid systems. Formal Methods in System Design,
43(2):191–232, 2012.

9 A. Hartmanns. Model-checking and simulation for stochastic timed systems. In Proc. 9th
International Symposium on Formal Methods for Components and Objects, volume 6957 of
LCNS, pages 372–391. Springer, 2010.

10 S. Haveman, G. Bonnema, and F. van den Berg. Early insight in systems design through
modeling and simulation. In Proc. 12th Annual Conference on Systems Engineering Re-
search, 2014. To appear.

11 S. Hettinga. Performance analysis for embedded software design. Master’s thesis, University
of Twente, 2010.

12 G. Igna, V. Kannan, Y. Yang, T. Basten, M. Geilen, F. Vaandrager, M. Voorhoeve,
S. de Smet, and L. Somers. Formal modeling and scheduling of datapaths of digital docu-
ment printers. In Formal Modeling and Analysis of Timed Systems, volume 5215 of LCNS,
pages 170–187. Springer, 2008.

13 G. Igna and F. Vaandrager. Verification of printer datapaths using timed automata. In
Leveraging Applications of Formal Methods, Verification, and Validation, volume 6416 of
LCNS, pages 412–423. Springer, 2010.

14 Z. Jiang, M. Pajic, and R. Mangharam. Cyber-physical modeling of implantable cardiac
medical devices. Proc. of the IEEE, 100(1):122–137, 2012.

15 B. Kienhuis, E. Deprettere, P. van der Wolf, and K. Vissers. A methodology to design
programmable embedded systems. In Embedded processor design challenges, volume 2268
of LCNS, pages 18–37. Springer, 2002.

F. van den Berg, A. Remke, and B. R. Haverkort 93

16 M. Kwiatkowska, G. Norman, and D. Parker. Controller dependability analysis by probab-
ilistic model checking. Control Engineering Practice, 15(11):1427–1434, 2007.

17 M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: verification of probabilistic
real-time systems. In Computer Aided Verification, volume 6806 of LNCS, pages 585–591.
Springer, 2011.

18 K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. International Journal on
Software Tools for Technology Transfer, 1(1):134–152, 1997.

19 M. Pajic, Z. Jiang, I. Lee, O. Sokolsky, and R. Mangharam. From verification to imple-
mentation: A model translation tool and a pacemaker case study. In Proc. 18th Real-Time
and Embedded Technology and Applications Symposium, pages 173–184. IEEE, 2012.

20 J. Racine. GNUplot 4.0: a portable interactive plotting utility. Journal of Applied Econo-
metrics, 21(1):133–141, 2006.

21 R. Sadre, A. Remke, S. Hettinga, and B.R. Haverkort. Simulative and analytical evaluation
for asd-based embedded software. In Measurement, Modelling, and Evaluation of Comput-
ing Systems and Dependability and Fault Tolerance, volume 7201 of LCNS, pages 166–181.
Springer, 2012.

22 F. van den Berg, A. Remke, A. Mooij, and B.R. Haverkort. Performance evaluation for
collision prevention based on a domain specific language. In Computer Performance En-
gineering, volume 8168 of LCNS, pages 276–287. Springer, 2013.

MCPS’14

	Introduction
	Conceptual model
	Language constructs
	Process
	Resource
	System
	Scenario
	Measure
	Study

	Tool and solution chain
	Modelling
	Execution
	Analysis

	Conclusion and future work

