
5th Workshop on Medical
Cyber-Physical Systems

MCPS’14, April 14th, 2014, Berlin, Germany

Edited by

Volker Turau
Marta Kwiatkowska
Rahul Mangharam
Christoph Weyer

OASIcs – Vo l . 36 – MCPS’14 www.dagstuh l .de/oas i c s

Editors
Volker Turau Marta Kwiatkowska
Institut of Telematics Department of Computer Science
Hamburg University of Technology University of Oxford
turau@tuhh.de marta.kwiatkowska@cs.ox.ac.uk

Rahul Mangharam Christoph Weyer
Department of Electrical Systems Engineering Institut of Telematics
University of Pennsylvania Hamburg University of Technology
rahulm@seas.upenn.edu c.weyer@tuhh.de

ACM Classification 1998
A.0 Conference proceedings

ISBN 978-3-939897-66-8

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-939897-66-8.

Publication date
April, 2014

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.MCPS.2014.i

ISBN 978-3-939897-66-8 ISSN 2190-6807 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-939897-66-8
http://www.dagstuhl.de/dagpub/978-3-939897-66-8
http://dnb.d-nb.de
http://dx.doi.org/10.4230/OASIcs.MCPS.2014.i
http://www.dagstuhl.de/dagpub/978-3-939897-66-8
http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 2190-6807

www.dagstuhl.de/oasics

MCPS 2014

http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

Contents

Preface
Marta Kwiatkowska, Volker Turau, and Rahul Mangharam . i

First Session

A Generic User Interface Architecture for Analyzing Use Hazards in Infusion Pump
Software

Paolo Masci, Yi Zhang, Paul Jones, Harold Thimbleby, and Paul Curzon 1

An Approach to Integrate Distributed Systems of Medical Devices in High Acuity
Environments

David Gregorczyk, Stefan Fischer, Timm Busshaus, Stefan Schlichting, and
Stephan Pöhlsen . 15

Simulations of the Cardiovascular System Using the Cardiovascular Simulation Toolbox
Gabriela Ortiz-León, Marta Vílchez-Monge, and Juan J. Montero-Rodríguez 28

Adaptive Failure Detection and Correction in Dynamic Patient-Networks
Martin Ringwelski, Andreas Timm-Giel, and Volker Turau . 38

Second Session

Challenges and Opportunities in Design of Control Algorithm for Artificial Pancreas
Mahboobeh Ghorbani and Paul Bogdan . 49

Automatic Resource Scaling for Medical Cyber-Physical Systems Running in Private
Cloud Computing Architecture

Yong woon Ahn and Albert Mo Kim Cheng . 58

Third Session

Modeling of Reconfigurable Medical Ultrasonic Applications in BIP
Stefanos Skalistis and Alena Simalatsar . 66

A Domain Specific Language for Performance Evaluation of Medical Imaging Systems
Freek van den Berg, Anne Remke, and Boudewijn R. Haverkort 80

A Safety Argument Strategy for PCA Closed-Loop Systems: A Preliminary Proposal
Lu Feng, Andrew L. King, Sanjian Chen, Anaheed Ayoub, Junkil Park,
Nicola Bezzo, Oleg Sokolsky, and Insup Lee . 94

5th Workshop on Medical Cyber-Physical Systems (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

vi Contents

Fourth Session

Evaluating On-line Model Checking in UPPAAL-SMC using a Laser Tracheotomy Case
Study

Xintao Ma, Jonas Rinast, Sibylle Schupp, and Dieter Gollmann 100

Integrating Safety Assessment into the Design of Healthcare Service-Oriented
Architectures

Ibrahim Habli, Abdulaziz Al-Humam, Tim Kelly, and Leila Fahel 113

Design Pillars for Medical Cyber-Physical System Middleware
David Arney, Jeff Plourde, Rick Schrenker, Pratyusha Mattegunta,
Susan F. Whitehead, and Julian M. Goldman . 124

Poster Session

OR.NET – Approaches for Risk Analysis and Measures of Dynamically Interconnected
Medical Devices

Franziska Kühn, Martin Leucker, and Alexander Mildner . 133

Automated Verification of Quantitative Properties of Cardiac Pacemaker Software
Marta Kwiatkowska and Alexandru Mereacre . 137

Potential Advantages of Applying Assurance Case Modeling to Requirements Engineering
for Interoperable Medical Device Systems

Rick Schrenker, Jeff Plourde, Diego Alonso, David Arney, and Julian M. Goldman 141

Process-Oriented Analysis for Medical Devices
Vasiliki Sfyrla, Josep Carmona, and Pascal Henck . 143

Preface

This volume contains the proceedings of the 5th Medical Cyber-Physical Systems Workshop:
Medical Device Interoperability, Safety, and Security Assurance held as part of CPSWeek’14
in Berlin, Germany, on April 14, 2014.

As co-chairs of this year’s workshop, we are delighted to introduce the exciting programme
of scientific papers the interested reader. Programmable medical devices, for example
infusion pumps, glucose monitors, cardiac pacemakers and defibrillators, must be safe, secure
and dependable, as otherwise human lives are put at risk. There is a growing need for
methodologies, standards and regulatory procedures that necessarily have to involve all the
stakeholders across academia and industry.

The workshop series was motivated by the idea to bring together the HCMDSS (High
Confidence Medical Devices, Software, and Systems) and MD PnP (Medical Device Plug-
and-Play Interoperability) communities of medical device specialists (researchers, developers,
clinicians, regulators and policy makers) from clinical environments, industry, research
laboratories, academia and government. The hope was that joint meetings would accelerate
the development of science, technology and practice to overcome crucial challenges facing the
design, manufacture, certification and use of medical devices. The workshop series provides
a regular forum for the presentation of research and development covering all aspects of high
integrity medical devices, software and systems, which is essential to support innovative,
networked medical device systems to improve safety and efficiency in health care.

The first three workshops in the series were called the Joint Workshop on HCMDSS/M-
DPnP. Since 2013, the workshop title was changed to Medical CPS to broaden its scope.
The previous four workshops were as follows:

The first Joint Workshop on HCMDSS/MDPnP: Improving Patient Safety through
Medical Device Interoperability and High Confidence Software, Cambridge, MA, June
25–27, 2007.
The second Joint Workshop on HCMDSS/MDPnP, CPSWeek 2009, San Francisco, April
16, 2009.
The third Joint Workshop on HCMDSS/MDPnP, CPSWeek 2011, Chicago, April 11,
2011.
The fourth Medical Cyber-Physical Systems Workshop: Medical Device Interoperability,
Safety, and Security Assurance, CPSWeek 2013, Philadelphia, April 8, 2013.

The programme of this year’s workshop is covers a broad range of themes relevant for the
development, verification and practical application of medical devices, and includes a topical
keynote lecture by Prof. Dr. Thomas Stieglitz, Laboratory for Biomedical Microtechnology,
University of Freiburg, Germany, entitled “Neural Implants – about science and fiction”.
The remainder of the programme is composed of 8 full and 5 short papers selected from
20 submissions, as well as 5 poster presentations. Among the themes covered, we would
like to highlight aspects of novel methodology that is being put forward, and specifically
user interface design for hazard analysis, application of runtime verification to ensure safety
and modelling of reconfigurability of ultrasonic medical devices. The medical applications
featuring in the programme include the cardiovascular system, laser tracheotomy and artificial
pancreas.

This workshop would not have been possible without the support of the Steering Com-
mittee, and particularly Prof. Insup Lee who offered valuable advice. We are very grateful to
5th Workshop on Medical Cyber-Physical Systems (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

viii Preface

the Programme Committee members and additional reviewers for their timely and rigorous
reviewing.

As a final note, we hope that the participants of the workshop and readers of the
proceedings volume will find the programme exciting, and that the meeting stimulates closer
collaboration between the stakeholders in this important and fast moving field, and eventual
progress towards safe, secure and dependable medical devices.

March 2014 Marta Kwiatkowska
Volker Turau

Rahul Mangharam

Workshop Organization

Programme Committee
Arvind Easwaran (Nanyang Technological University, Singapore)
José Maria Fernandes (IEETA, University of Aveiro, Portugal)
Stefan Fischer (University of Lübeck, Germany)
Radu Grosu (Vienna University of Technology, Austria)
Martin Leucker (University of Lübeck, Germany)
Sören Lewis (Otto Bock Healthcare, Germany)
Maria Lindén (Maladalen University, Sweden)
Jane W. S. Liu (Institute of Information Science, Academia Sinica, Taiwan)
Wendy MacCaull (St. Francis Xavier University, Canada)
Dominique Méry (LORIA, France)
Christain Renner (University of Lübeck, Germany)
Sibylle Schupp (Hamburg University of Technology, Germany)
Vasiliki Sfyria (Viseo Research and Development, France)
Alena Simalatsar (EPFL, Switzerland)
Scott A. Smolka (Stony Brook University, USA)
Andreas Timm-Giel (Hamburg University of Technology, Germany)
Hoc Khiem Trieu (Hamburg University of Technology, Germany)
Alan Wassyng (McMaster University, Canada)

Additional Reviewers
Ezio Bartocci
Timm B. Busshaus
Milan Ceska
David Gregorczyk
Alexandru Mereacre
Nicola Paoletti
Neeraj Singh
Annette Stümpel
Anton Tarasyuk
Daniel Thoma

5th Workshop on Medical Cyber-Physical Systems (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

A Generic User Interface Architecture for
Analyzing Use Hazards in Infusion Pump Software
Paolo Masci1, Yi Zhang2, Paul Jones2, Harold Thimbleby3, and
Paul Curzon1

1 Queen Mary University of London
London, United Kingdom
{p.m.masci,p.curzon}@qmul.ac.uk

2 Center for Devices and Radiological Health
U.S. Food and Drug Administration, Silver Spring, MD, USA
{yi.zhang2,paul.jones}@fda.hhs.gov

3 College of Science, Swansea University
Swansea, Wales, United Kingdom
h.thimbleby@swansea.ac.uk

Abstract
This paper presents a generic infusion pump user interface (GIP-UI) architecture that intends
to capture the common characteristics and functionalities of interactive software incorporated in
broad classes of infusion pumps. It is designed to facilitate the identification of use hazards and
their causes in infusion pump designs. This architecture constitutes our first effort at establishing
a model-based risk analysis methodology that helps manufacturers identify and mitigate use
hazards in their products at early stages of the development life-cycle.

The applicability of the GIP-UI architecture has been confirmed in a hazard analysis focusing
on the number entry software of existing infusion pumps, in which the GIP-UI architecture is
used to identify a substantial set of user interface design errors that may contribute to use hazards
found in infusion pump incidents.

1998 ACM Subject Classification K.6.1 Systems Analysis and Design, H.5.2 User Interfaces,
D.2.11 Software Architectures

Keywords and phrases Infusion Pump, Hazard Analysis, Use Hazards, User Interface, Interact-
ive Software, Design Errors

Digital Object Identifier 10.4230/OASIcs.MCPS.2014.1

1 Introduction

Infusion pumps are a class of medical devices widely used in various clinical settings to deliver
fluids (including medication and nutrients) into a patient’s body in a controlled (prescribed)
manner. The safety of infusion pumps, however, has been one of the top concerns in health
care for a number of years [7]. For example, during the period from 2005 to 2009, 87 recalls
associated with infusion pumps were reported in US due to defective design or manufacturing
problems [8]. Through the analysis of incidents involving infusion pumps, medical device
regulators such as the US Food and Drug Administration (FDA) concluded that two of the
major factors contributing to infusion pump failures were software defects and user interface
issues [33].

Many user interface issues can be associated with software problems. For instance,
a key bounce may be caused by a defect in the interrupt-handling code, and problems

© Paolo Masci, Yi Zhang, Paul Jones, Harold Thimbleby, and Paul Curzon;
licensed under Creative Commons License CC-BY

Medical Cyber Physical Systems – Medical Device Interoperability, Safety, and Security Assurance (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer; pp. 1–14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 User Interface Architecture for Analyzing Use Hazards in Infusion Pump Software

related to configuring the pump may be caused by inappropriate user-device interaction
logic. However, there are also user interface issues that have roots in the software engineering
process. For example, user interface problems may arise if the device’s interaction behavior
is inconsistent with its user manual or labeling. Either type of user interface issues can affect
the device operation and hence affect patient safety. To help reduce or eliminate these issues,
a systematic risk management process should be carried out.

ISO14971:2007 is a standard that provides a systematic risk management process for
medical devices. In brief, it consists of five distinct activities. First, a hazard analysis is
performed to identify all known and foreseeable hazards and their causes, where a hazard is
defined as a potential source of physical injury or damage to people or environment. Second,
risk estimation is performed to assess the probability of occurrence and severity of harm of
each hazard, the combination of which is defined as risk. Third, risk evaluation is conducted
to decide if every identified risk is acceptable based on pre-defined acceptability criteria.
Fourth, if a risk is decided as unacceptable, control measures are designed and implemented
to eliminate it or to mitigate it to an acceptable level. Finally, verification and validation
activities are conducted to ensure that the designed control measures are effective. These
five activities iterate and interleave until the device’s overall residual risk after mitigation is
acceptable.

In the ISO14971 risk management process, the identification of hazards constitutes the
first step and provides the basis for subsequent activities. In our previous work [10, 36], we
illustrated the benefits of using a Generic Infusion Pump (GIP) architecture to support a
systematic hazard analysis early in the design process. The GIP architecture, which captures
common characteristics and functionalities of broad classes of infusion pumps, serves as a
reference ’standard’ for reasoning about hazards and potential causal factors in infusion
pump designs.

In this paper, we present an effort that extends our previous work focusing on the user
interface design and its associated use hazards. In particular, we extend the GIP architecture
with more details that reflect common user-device interaction designs in existing infusion
pumps. This serves to establish a foundation for reasoning about use hazards in infusion
pumps and their contributing factors rooted in defective interaction (software) design.

Contributions. The contributions of this paper are as follows: (i) a Generic Infusion Pump
User Interface (GIP-UI) architecture is presented that can be used to reason about design
defects in infusion pump user interface software that may potentially cause use hazards; (ii)
an analysis of infusion pump incident reports and other information sources is presented that
summarizes the common use hazards in infusion pumps on the market related to number
entry tasks; and (iii) a preliminary hazard analysis that uses the GIP-UI to identify and
reason about design errors commonly present in infusion pump number entry software and
their relation to use hazards.

It is worth noting that the use hazards considered in this work, as well as software design
defects that cause these hazards, are common in other interactive medical devices (e.g.,
ventilators) that have similar number entry systems. Therefore, we believe that the GIP-UI
architecture may also be useful to the hazard analysis on these devices.

Organization. Section 2 presents background information about the GIP reference model.
Section 3 elaborates the details of the GIP-UI architecture. Section 4 demonstrates how
the GIP-UI architecture can be used to facilitate the analysis of use hazards related to user
interface (in particular, the number entry software of a user interface). Section 5 compares
our work with other related work. Finally, Section 6 concludes the paper.

P. Masci, Y. Zhang, P. Jones, H. Thimbleby, and P. Curzon 3

2 Background: the Generic Infusion Pump model

The GIP model is a safety reference model for infusion pumps that captures the common
functionalities of modern infusion pumps. Figure 2 illustrates an abstract architecture of the
GIP model, and the functionalities of each of its components are follows:

The GIP controller represents an abstraction of the pump software that manages the
overall infusion process and supervises interaction among all GIP components. It is responsible
for instructing the pumping mechanism to deliver fluid as prescribed, as well as detecting
and reporting alarm and warning conditions.

The GIP user interface (GIP-UI) represents an abstraction of the device elements
(hardware and software) that enable interaction with the user. That is, the user can
enter data (e.g., infusion parameters and pump settings) and control pump operation (e.g.,
start/stop infusion). The user can also receive from the user interface feedback on the pump
and infusion status.

The device data recorder represents an abstraction of the logging mechanism used to
record the pump’s operational history (such as critical data and important events) to facilitate
problem diagnosis.

The fluid pathway represents an abstraction of the following elements: fluid reservoir,
which stores the fluid to be delivered; infusion set, which is usually an IV needle; and delivery
interface, which is a tube that connects the fluid reservoir to the infusion set.

A more detailed description of the GIP model can be found in [10, 36].

3 GIP User Interface (GIP-UI)

The GIP model was originally designed to provide a basis for analyzing the safety and
correctness of the software control logic in infusion pumps. It had a simple means for
input/output, and therefore lacks any design or engineering details on user interface design.
The GIP-UI architecture, depicted in Figure 1, replaces this user interface part with new
architectural details, in order to establish a basis for reasoning about use hazards and interface
design errors in infusion pumps.

One important principle in the GIP-UI architecture is to enforce a clear separation
between high-level functionalities of user interactions and low-level functionalities that
enable communication among its components (e.g., user interface elements that translate
electrical signals into logical events). Moreover, issues associated with user manuals and use
environment are also considered to enable a more comprehensive (hazard) analysis of user
interface design.

The role of each component in the GIP-UI architecture is defined as follows.

GIP-UI widgets. This component represents an abstraction of the mechanical and hardware
elements of user interface that enable pump-user interaction. Widgets can be either input
or output widgets. Examples of input widgets include buttons, switches, and knobs, while
examples of output widgets are displays, alarms, LED lights.

GIP-UI Software. This component represents an abstraction of the software regulating all
functionalities of the user interface. It translates the user input received from the input
widgets to commands understandable by the pump control software, manages interactive
tasks such as number entry, and manages the output widgets to provide feedback (such as
alarms and infusion status) to the user.

MCPS’14

4 User Interface Architecture for Analyzing Use Hazards in Infusion Pump Software

Figure 1 Logic architecture of the GIP user interface (GIP-UI). Labeled boxes represent an
abstraction of functional components of the system. Arrows between components represent flows of
information, user actions, or mechanical force between components. Dashed lines represent optional
components and information flows.

The GIP-UI Software includes the following logic modules:
Core Modules. These software modules define the interactive behavior of the device, i.e.,
how the pump responds to input events and how the device’s operational state is updated
as a consequence of input events. Input events are either from the user (labeled as ’user
actions’ in Figure 1) or from the pump control software (as abstracted as GIP Controller
in Figure 2). The events from the GIP Controller are labeled as ’mission events’ and
’status data’ in Figure 1).
The internal structure of the Core Modules is an instantiation of the well-known Model-
View-Controller (MVC) [16] architectural pattern. The MVC pattern is chosen because it
promotes a clear separation among different aspects of a user interface’s core functionalities:
defines the logic of interactions, decides what output information to be sent to the user,
and decides how the output information is presented to the user. The Core Modules
consist of:

The Interaction Logic , which represents an abstraction of the routines for handling
user input events and forwarding them to the pump control software. These routines
define: (i) input key sequences needed to interact with the device, and corresponding
algorithms for processing input key sequences, and (ii) the communication protocol
with the pump control software.
The Output Status Manager , an abstraction of the routines that specify feedback
information, i.e., what feedback is presented to the user.
The Renderer , an abstraction of the routines for rendering feedback information on
output widgets, i.e., how feedback is presented to the user.
The Non-standard Input Interpreter , which represents an abstraction of the routines
for managing input widgets that are more complex than keypads or mechanical
buttons. Examples of the non-standard input widgets include touchscreens or gesture
recognition systems. For these input widgets, additional computation is needed to
correctly interpret the user inputs. For example, in touchscreens, user gestures identify

P. Masci, Y. Zhang, P. Jones, H. Thimbleby, and P. Curzon 5

Figure 2 Logic architecture of the GIP. Labeled boxes represent an abstraction of functional
components of the system, and arrows represent flows of information (e.g., software commands,
hardware signals), user actions, or mechanical force between components. Note: Patient may overlap
with User for some types of infusion pumps.

just coordinates on the screen, and further processing is needed to associate the screen
coordinates to the user action (on the input widgets rendered on the screen)1.

Drivers. These software modules translate digital signals received from Input Widgets
into events that can be processed by the GIP-UI Core Modules, or translate output events
instructed by the Core Modules into output signals that Output Widgets can understand
and produce output accordingly. The input events from the Drivers can be divided into
two types: standard or non-standard. Standard events are generated during interactions
with classical mechanical input devices such as mechanical buttons. An example of a
standard event is a button click. Non-standard events, on the other hand, are generated
during interactions with input elements such as soft buttons or voice recognition systems.

GIP-UI Manuals. This component represents an abstraction of the reference material
accompanying the pump, e.g., user manual and training material. Such material is part of
the user knowledge and is therefore useful for identifying potential use hazards.

User. This models the characteristics of the intended user population. Examples of user
characteristics include: user training level, cognitive and physical abilities, attitudes and
behaviors. Note that the user can be the patient or her family members for certain devices,
and hence may not be trained nor be an experienced operator.

Use Environment. This component abstracts the physical environment in which the pump
is used. Environmental factors such as ambient light conditions can affect the device’s
interaction with the user and thus should be included into considerations during user
interface design. In Figure 1, arrows between the use environment and other components
indicate what part of the system can be affected by the use environment. For example,
inappropriate temperature levels may affect the physical abilities of patients and users, or go
beyond the operating temperature of the device itself.

1 See [6] for a detailed illustration of the function of this module.

MCPS’14

6 User Interface Architecture for Analyzing Use Hazards in Infusion Pump Software

4 Validation of the GIP-UI architecture

The GIP-UI architecture explicitly defines how the device interacts with the user. Thus,
it can be used as a basis to examine where and how the device incorrectly interacts with
the user, which may affect the device’s expected operation and ultimately create potential
hazards. This makes it easier to identify potential use hazards, or to cross-check the identified
use hazards to ensure that no important hazards be missed.

More importantly, we believe:

Having a generic GIP-UI architecture facilitates the identification of common design
defects in user interface designs and provides insight into the cause-effect relationship
between these defects and infusion pump use hazards.

To prove the above hypothesis, we conducted a preliminary hazard analysis (PHA) using
the GIP-UI architecture to 1) identify a set of common use hazards in infusion pumps related
to number entry tasks and 2) to reason about the common design errors in user interface
software that may contribute to these use hazards.

4.1 Hazard analysis based on the GIP-UI
Our PHA focuses on the number entry part of the infusion pump interface. The number
entry software in an infusion pump is responsible for managing interaction with the user
when infusion parameters or pump settings need to be configured. This is chosen as the
focus of our PHA because it is critical to infusion pump safety, in the sense that design
errors in it can cause use errors (e.g., mis-programming of the pump) with potentially severe
consequences to the patient (typically, overinfusion or underinfusion).

Our PHA of the number entry part follows a top-down approach: it starts from postulated
undesired system outcomes, and then works out the causes of the postulated outcomes at
the system design level. In the analysis, undesired system outcomes are given by use hazards
documented in infusion pump incident reports, including FDA Adverse Event reports.

4.1.1 Scope of the analysis
Number entry software is designed to support a number entry task, which identifies the
sequence of actions carried out by the user when entering infusion parameters or pump
settings. In the current generation of infusion pumps, the typical number entry task is carried
out through the following three main actions:
1. An infusion parameter or pump setting is selected by the user
2. The selected item is edited by the user
3. The value is submitted by the user

The actions described above generally involve pressing buttons and keys on the pump
user interface. Whenever the pump registers a button press or a key press, the number entry
software performs a computation. The computation may modify the device state (e.g., a new
infusion rate may be configured in the pump), and generate feedback on the user interface to
present the new device state to the user.

Buttons and keys currently used for number entry can be described using two broad
classes of widgets: serial number entry widgets, which allow the user to enter the digits of
the values serially from the most significant to the least significant digit, and incremental
number entry widgets, which allow the user to modify an initial value by incrementing
or decrementing it. Serial interfaces require a full numeric keypad, whereas incremental

P. Masci, Y. Zhang, P. Jones, H. Thimbleby, and P. Curzon 7

interfaces typically have two or four arrow keys (depending on the exact style of interaction).
A detailed description of these number entry widgets is in [3]. Notable for hazard analysis is
how entry errors can be corrected. In a serial interface, either numbers have to be re-entered
or there must be a delete key. In contrast, in incremental interfaces, the whole point of the
user interface is to adjust numbers, so correcting errors does not require a separate delete
key, as correction is just a special case of adjustment.

4.2 Sources of information
The analysis is informed by the following sources of information:

Domain knowledge developed within the CHI+MED project (www.chi-med.ac.uk). This
knowledge results from the analysis of commercial infusion pumps [11, 12, 19, 22, 23, 24,
27], infusion pump logs [17], incidents involving infusion pumps [13, 20, 21, 31], current
and best clinical practice in hospitals and home care [29], and workshops with pump
manufacturers, users and clinicians [4, 5];
Adverse event reports collected through the FDA’s Manufacturer and User Facility Device
Experience (MAUDE) database [34];
Recommendations on infusion pump design [25];
Previous hazard analysis on other components of the GIP [10, 36];
International standards ANSI/AAMI HE75:2009 on human factors, and ISO 14971:2007
on risk management.

4.3 Hazard analysis results
Using the GIP-UI our PHA identified 60 potential design errors in number entry software
that may cause use hazards. From the GIP-UI perspective, these design errors arise from
individual components in the architecture, from a combination of these components, or from
the communication (i.e., information flow) between these components. The full table is in
the technical report [28].

Table 1 is a sample of this hazard analysis table. The table shows the considered
hazards at the top: over-infusion (or under-infusion) where the patient receives more (or less)
drug/nutrients than prescribed. Each row in the table identifies a use error that can lead
to the over-/under-infusion hazards, as well as an underlying design error in infusion pump
software that can cause this use error. A concrete example (as found in incident reports or
our previous study) is also presented for each identified issue, to help understand the nature
of the corresponding issue.

For illustrative purposes, we present design errors found to be commonly present in
number entry software of infusion pumps currently on the market. These design errors were
found in real marketed devices and may lead to severe clinical consequences, as they can
potentially lead to situations where the pump is erroneously programmed with incorrect
infusion parameters or pump settings without the user’s awareness.

4.3.1 Potential design errors in Output Status Manager
Design errors in the Output Status Manager generally lead to inappropriate, inaccurate, or
incorrect feedback to the user. As a result, the user may not be able to receive adequate
information on the system’s status, what user action has actually been registered, and what
result has been accomplished. Common instances of this type of design errors are as follows:

MCPS’14

http://www.chi-med.ac.uk

8 User Interface Architecture for Analyzing Use Hazards in Infusion Pump Software

Table 1 Sample of the developed hazard analysis table. The full table is in the technical
report [28].

Hazards: overinfusion or underinfusion

Use error Underlying design error Example

The user fails to edit the
value

The pump displays incorrect
values without the user’s
awareness

The device shows the last
programmed value instead of
the current value

The user fails to select the
intended input field

The pump displays
instructions to the user
prematurely due to incorrect
assumption on user action

The device requires a rate
value but the display shows a
notification message “Enter
VTBI”

The user fails to read values
or units correctly

The pump uses inappropriate
fonts or formats to render
values or units

The device renders fractional
values without a leading zero
(e.g., .9 instead of 0.9), or
integer values with leading
zeros (e.g., 09 instead of 9)

The user fails to enter the
correct digits

The pump erroneously
discards key presses without
the user’s awareness

The device registers the key
sequence

� �
0� � � �

.� � � �
0� � � �

1� �
without any warning or
notification if the minimum
legal rate is 0.1

...

Incorrect values are displayed without the user’s awareness. Pumps affected by this design
error have an ambiguous display, i.e., the user is not able to tell the current system state
from the observable information on the pump display. Consider the following error found
in a marketed infusion pump. This pump displays the last programmed value or the last
valid input value, instead of the current number entry value that the user enters. For
example, it displays a value of 90 when the user starts the number entry task, since the
last value programmed in the pump is 90. However, given that the user has not pressed
any key yet, the current display value should be 0. This incorrect display value misleads
the user in carrying out the rest of number entry. For instance, the user may press key� �

1� � in order to entering the number 901, while the actual value registered and displayed
by the pump is 1. If not noticed, this can cause the user to incorrectly program the
pump, and result in unexpected treatment to the patient. Our forensic analysis on this
pump accredited the root cause of this error to initialization routines of the number entry
system and routines for handling illegal input key sequences.
Instructions are displayed to the user prematurely due to incorrect assumption on user
action. Infusion pumps affected by this type of error usually display instructions that
conflict with the ongoing actions taken by the user. A common cause of such errors
is that the infusion pump incorporates routines that automatically validate the value
entered by the user, even before the user actually finishes entering and confirms the
value. Consider an instance of such errors found in a marketed infusion pump. The pump
shows a notification message ’Enter Rate’ when the user is expected to enter the rate
value, and ’Enter VTBI’ to instruct the user to enter the value of drug volume to be
infused. However, if the user plans to enter a rate value of 109 ml/h but pauses for a

P. Masci, Y. Zhang, P. Jones, H. Thimbleby, and P. Curzon 9

second after entering
� �

1� � � �
0� �, the pump erroneously makes an assumption that the user

has finished entering the rate, registers the entered value as 10, and displays the message
’Enter VTBI’ to prompt the user to enter the drug volume to be infused. In other words,
design errors of this kind may cause mode confusion to the user: the users thinks the
pump is in mode x (in this case, x is entering the rate) while it is actually in mode y (in
this case, y is entering the volume to be infused). In fact, this type of error (’right data,
wrong field’) appears to be the most common use errors documented in infusion pump
incident reports [8].

4.3.2 Potential design errors in Renderer

Design errors in the Renderer module typically introduce visualization issues in the device.
For example, the device renders information erroneously or inconsistently, or fails to make
appropriate display elements perceptible.

Inappropriate fonts or inappropriate formats are used to render numbers or units. Example
problems found in marketed devices include: fractional values are displayed without a
leading zero (e.g., displaying .9 instead of 0.9); integer values are rendered with leading
zeros (e.g., 09 instead of 9); and small decimal point (e.g., the decimal point is rendered as
· instead of •). Another example is with seven-segments displays [32]. Rendering values
in seven-segment displays can easily cause the user to misread the values, as integer and
fractional digits are hard to distinguish, and can result in out-by-ten errors.

Soft keys are incorrectly labeled without the user’s awareness. Soft keys are buttons that
can be programmed to perform different functions during the pump’s operation. Modern
infusion pump usually implement soft keys as hard buttons placed on the sides of the
screen, while soft button labels are displayed on the screen next to these hard buttons.
We found it common for infusion pumps to display textual messages not intended to
be soft button labels next to hard buttons, creating the illusion that they were. It is
also common that infusion pumps erroneously render labels next to unused soft keys.
Consider a pump with a soft key on the right of the screen, and another soft key on the
left. Assume that these soft keys are aligned. If the pump renders ’Rate’ aligned to the
soft key on the left, and “2 ml/h” aligned to the soft key on the right, which soft key
should be used to select the rate? The reasonable affordance2 is that both soft keys be
used for this purpose, as the two pieces of text are logically a single piece of information.
The pump that we studied, however, disables one of these two keys, without providing
any feedback when the user presses the disabled key. The likely clinical consequence of
such errors is delay of treatment.

4.3.3 Potential design errors in Interaction Logic

Design errors in the Interaction Logic module generally result in incorrect human-computer
interaction with buttons, keys, and displays. Typical causes of such errors include inappropri-
ate or over-complicated procedures (i.e., sequence of actions) to interact with these widgets
or the failure of implementing mechanisms for preventing or detecting user errors during
interaction. Common instances of design errors in Interaction Logic include:

2 Affordance is a property of objects that determines how the object can possibly be used [26].

MCPS’14

10 User Interface Architecture for Analyzing Use Hazards in Infusion Pump Software

Key presses by the user is erroneously discarded without the user’s awareness. Pumps
affected may unexpectedly discard key presses and commit an out-by-ten error, which can
potentially result in severe clinical consequences. For example, an infusion pump studied
by us 3 enforces the constraint that all infusion rate values must be greater than or equal
to 0.1. Thus, its number entry routines discards the third key press in the key sequence� �

0� � � �
.� � � �

0� � � �
1� �, as the value violates the constraint, and automatically sets the input rate

as the minimum valuate 0.1. Moreover, the pump enforces that no fractional numbers
are allowed for value above or equal to 100. Thus, the decimal point key press in the
input sequence

� �
1� � � �

0� � � �
0� � � �

.� � � �
1� � is discarded, and the erroneous value 1001 is registered.

No warning or notification is provided to the user in either of these two cases. The root
cause of this design error typically resides in the number entry routines for handling
illegal input values (e.g., out-of-range or ill-formed values).
Values entered by the user are erroneously discarded without the user’s awareness. Pumps
affected by this design error unexpectedly discard the value entered by the user if the
input field is de-selected (e.g., the user selects another input field without confirming this
entered value). The following is an example detected in a marketed infusion pump: the
user first changes the infusion rate from its current value 91 mL per hour to 0.9 mL per
hour, and then selects the VTBI field to edit without confirming the new infusion rate.
As a result, the pump automatically discarded the new rate value and maintained the
previous value, without any notification or warning. Design errors like this can cause the
user to mistakenly configure the treatment to the patient, and result in serious clinical
consequences.

4.3.4 Potential design errors in Non-standard Input Interpreter
Design errors in the Non-standard Input Interpreter generally result in human-machine
interaction issues with touch-screen displays. A device with such errors typically requires
the user to take an inappropriate or over-complicated sequence of actions to interact with
the non-standard input widgets. It may also fail to implement necessary mechanisms to
prevent user errors during the interaction. Common design errors in the Non-standard Input
Interpreter include:

Legal gestures on touchscreens are erroneously discarded without the user’s awareness.
Devices with this erroneous design may ignore legal gestures on input widgets. For
example, slide gestures on scroll bars are erroneously ignored; press and hold gestures
on virtual buttons and tap gestures on input fields are erroneously ignored. This design
error can be associated with number entry routines that activate or select touchscreen
input widgets. The likely consequence of this kind of errors is the delay of number entry.
Similar gestures on touchscreens are erroneously associated with logically different func-
tions. Pumps affected by this design error erroneously execute functions not intended by
the user. This design error may be associated with number entry routines that activate or
select touchscreen input widgets, such as virtual buttons and input areas. The following
is an example error detected in a marketed pump. The user selected the infusion rate
field and plans to enter a value. However, the pump’s touchscreen registers a tap gesture
outside the area of the selected rate input field or outside the virtual buttons for number
entry, probably because the user accidentally taps outside the widgets or the touchscreen

3 More information about this study can be found in [24].

P. Masci, Y. Zhang, P. Jones, H. Thimbleby, and P. Curzon 11

is mis-calibrated. Thus, the input field is automatically de-selected, without any warning
or notification for the user. Notably, this design error may aggravate other design errors
such as those in the Interaction Logic, as values may be mistakenly confirmed or discarded
because of accidental touch on the touchscreen.

4.4 Discussion

As shown in the PHA results, the GIP-UI architecture provides a basis for us to enumerate
common errors in user interface design associated with number entry. It also facilitates the
establishment of the cause-effect relationship between these errors and the use hazards. As
demonstrated in our PHA, this cause-effect relationship can help device developers make
their hypotheses and assumptions explicit when reasoning about user interface behaviors, and
thus enable clear thinking about possible causal factors. Ultimately, it can assist developers
in designing effective mitigation measures to address use hazards and design errors causing
them.

The GIP-UI architecture and hazard analysis results presented in this paper can be
used by manufacturers as an independent reference to challenge the safety of their own user
interface design. Alternatively, manufacturers can use our work as the starting point to
perform more comprehensive hazard analysis on their products (in this case, manufacturers
should populate the GIP-UI architecture with design details specific to their products).

It is worth pointing out that, even though our PHA identified a substantial set of use
hazards and their root causes 4, it is by no means exhaustive. In fact, a PHA is only
the first round of hazard analysis applied to a design, and its results constitute an initial
yet informative inventory for subsequent detailed hazard analysis or the initial design of
risk mitigation measures. In order to identify all potential hazards (and related causes) in
complex systems, the best practice is to employ a combination of systematic hazard analysis
techniques, such as Failure Mode and Effect Analysis (FMEA) [9] or Systems-Theoretic
Accident Modeling and Processes (STPA) [18], in a complementary manner [14].

5 Related work

Although there are many examples of conceptual/abstract architectures that can be used for
hazard analysis, few of them are designed to support the identification of use hazards and
their potential causal causes in medical devices.

In [2, 1], an architecture is developed for a STPA-based hazard analysis for a radiotherapy
system. The architecture describes the functions of five sub-systems of the Paul Scherrer
Institute’s experimental ProScan proton therapy system. Usability issues were considered in
the study. However, this architecture was not designed to explore potential causal factors of
use hazards, and some information on usability issues were obtained through workshops with
domain experts. Similarly, in [30], a system architecture is developed for a STPA hazard
analysis of pacemakers. Even though pacemakers do not have a user interface, the analysis
considered a wider, system-level perspective that included users and patients. Users are
modeled as ’human controllers’ guided by mental models. Use hazards, however, were not in
the scope of the analysis. The architecture presented in this paper can be used together with
analysis techniques such as STPA. It provides information that can be used as a basis to

4 The full hazard tables are in [28].

MCPS’14

12 User Interface Architecture for Analyzing Use Hazards in Infusion Pump Software

populate the controller and controlled process components of the system architecture with
details necessary to analyze the potential causes of use hazards.

In [15], design errors related to barcoded medication administration systems are explored.
These systems are commonly used together with infusion pumps and other medical devices to
identify patients, clinicians, and drugs. The analysis in [15] revealed how defective barcoding
systems encouraged workarounds that could potentially lead to severe clinical consequences.
These results complement the results of our hazard analysis, in that they explore issues in
the design of an alternative number entry system that can be installed on infusion pumps.

Other works studying use hazards in medical devices usually overlook design issues. For
instance, in [35], training and clinical procedures are identified as potential causes of use
hazards. Consider a use hazard where an incorrect patient profile is selected. The established
causal relationship identifies nurses being unclear about the available profiles, and therefore
better training is suggested as a mitigating measure. Even though training and clinical
procedures may be contributing factors of use hazards, this approach to hazard analysis
provides little or no insights about how an infusion pump can be (re-)designed to assure
safety under existing training and clinical procedures.

6 Conclusions

A generic user interface architecture, GIP-UI, has been presented to facilitate the identification
and reasoning of use hazards in infusion pumps. Its applicability to this end has been
confirmed through a hazard analysis that involved known use hazards in marketed infusion
pumps. The architecture was successfully used to reason about the cause-effect relations
between these hazards and their causes (i.e., software design errors) commonly present in
user interface designs.

The GIP-UI architecture can potentially be used as the basis for hazard analysis on
use hazards, and for the establishment of safety requirements that ensure reasonable safety
regarding device-user interaction. It is also worth noting that, even though the GIP-UI is
designed for infusion pumps, the general idea behind it can be applied to other medical
devices that rely on the same mechanism as defined in GIP-UI to interact with the users,
and thus facilitate the assessment and assurance of their safety in device-user interaction.

Acknowledgment. This work is support by CHI+MED (Computer-Human Interaction for
Medical Devices, EPSRC research grant [EP/G059063/1]). We thank Michael Harrison
(Newcastle University) and Chris Vincent (University College London) for their valuable
comments that helped us to improve our manuscript.

References

1 B. Antoine. Systems Theoretic Hazard Analysis (STPA) applied to the risk review of com-
plex systems: an example from the medical device industry. PhD thesis, Massachusetts
Institute of Technology, 2013.

2 A. Blandine, M. Rejzek, and C. Hilbes. Evaluation of stpa in the safety analysis of the
gantry 2 proton radiation therapy system, 2012.

3 A. Cauchi, P. Curzon, P. Eslambolchilar, A. Gimblett, H. Huang, P. Lee, Y. Li, P. Masci,
P. Oladimeji, R. Rukšėnas, and H. Thimbleby. Towards dependable number entry for
medical devices. In EICS4Med, 1st International Workshop on Engineering Interactive
Computing Systems for Medicine and Health Care. ACM Digital Library, 2011.

P. Masci, Y. Zhang, P. Jones, H. Thimbleby, and P. Curzon 13

4 CHI+MED. Guidelines for number entry interface design (infusion devices). http://www.
chi-med.ac.uk/researchers/bibdetail.php?docID=684, 2013.

5 CHI+MED. Personas and scenarios (infusion devices). http://www.chi-med.ac.uk/
researchers/bibdetail.php?docID=685, 2013.

6 S. Conversy, E. Barboni, D. Navarre, and P. Palanque. Improving modularity of interactive
software with the MDPC architecture. In EICS2007. ACM Digital Library, 2007.

7 ECRI Institute 2014 top 10 health technology hazards, 2014.
8 Association for the Advancement of Medical Instrumentation. Infusing patients safely:

priority issues from the AAMI/FDA infusion device summit. http://www.aami.org/
publications/summits/AAMI_FDA_Summit_Report.pdf, 2010.

9 P. L. Goddard. Software fmea techniques. In Reliability and Maintainability Symposium,
2000. Proceedings. Annual, pages 118–123. IEEE, 2000.

10 The Generic Patient Controlled Analgesia Pump Hazard Analysis. http://rtg.cis.upenn.
edu/gip-docs/Hazard_Analysis_GPCA.doc.

11 M.D. Harrison, J. Campos, and P. Masci. Reusing models and properties in the analysis
of similar interactive devices. Innovations in Systems and Software Engineering, Springer-
Verlag London, 2013.

12 M.D. Harrison, P. Masci, J. C. Campos, and P. Curzon. Automated theorem proving for
the systematic analysis of interactive systems. In 5th International Workshop on Formal
Methods for Interactive Systems (FMIS2013), 2013.

13 ISMP Canada. Fluorouracil incident root cause analysis report. http://www.ismp-canada.
org/download/reports/FluorouracilIncidentMay2007.pdf.

14 P. Jones, J. Jorgens III, A.R. Taylor Jr., and M. Weber. Risk management in the design of
medical device software systems. Journal of Biomedical Instrumentation and Technology,
36(4):237–266, 2002.

15 R. Koppel, T. Wetterneck, J. L. Telles, and B. Karsh. Workarounds to barcode medication
administration systems: their occurrences, causes, and threats to patient safety. Journal
of the American Medical Informatics Association, 15(4):408–423, 2008.

16 G.E. Krasner and S.T. Pope. A description of the Model-View-Controller user interface
paradigm in the Smalltalk-80 system. Journal of object oriented programming, 1(3):26–49,
1988.

17 P. Lee, F. Thompson, and H. Thimbleby. Analysis of infusion pump error logs and their
significance for health care. British Journal of Nursing, 21(8):S12–S22, 2012.

18 N.G. Leveson. Software challenges in achieving space safety. Journal of the British Inter-
planetary Society, 2009.

19 P. Masci, A. Ayoub, P. Curzon, M.D. Harrison, I. Lee, and H. Thimbleby. Verification of
interactive software for medical devices: Pca infusion pumps and fda regulation as an ex-
ample. In EICS2013, 5th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems. ACM Digital Library, 2013.

20 P. Masci and P. Curzon. Checking user-centred design principles in distributed cognition
models: a case study in the healthcare domain. In Proceedings of the 7th conference on
Workgroup Human-Computer Interaction and Usability Engineering of the Austrian Com-
puter Society: information Quality in e-Health, USAB’11, pages 95–108, Berlin, Heidelberg,
2011. Springer-Verlag.

21 P. Masci, H. Huang, P. Curzon, and M.D. Harrison. Using pvs to investigate incidents
through the lens of distributed cognition. In Alwyn E. Goodloe and Suzette Person, editors,
Proceedings of the 4th NASA Formal Methods Symposium (NFM 2012), volume 7226, pages
273–278, Berlin, Heidelberg, April 2012. Springer-Verlag.

MCPS’14

http://www.chi-med.ac.uk/researchers/bibdetail.php?docID=684
http://www.chi-med.ac.uk/researchers/bibdetail.php?docID=684
http://www.chi-med.ac.uk/researchers/bibdetail.php?docID=685
http://www.chi-med.ac.uk/researchers/bibdetail.php?docID=685
http://www.aami.org/publications/summits/AAMI_FDA_Summit_Report.pdf
http://www.aami.org/publications/summits/AAMI_FDA_Summit_Report.pdf
http://rtg.cis.upenn.edu/gip-docs/Hazard_Analysis_GPCA.doc
http://rtg.cis.upenn.edu/gip-docs/Hazard_Analysis_GPCA.doc
http://www.ismp-canada.org/download/reports/FluorouracilIncidentMay2007.pdf
http://www.ismp-canada.org/download/reports/FluorouracilIncidentMay2007.pdf

14 User Interface Architecture for Analyzing Use Hazards in Infusion Pump Software

22 P. Masci, R. Rukšėnas, P. Oladimeji, A. Cauchi, A. Gimblett, Y. Li, P. Curzon, and
H. Thimbleby. On formalising interactive number entry on infusion pumps. ECEASST, 45,
2011.

23 P. Masci, R. Rukšėnas, P. Oladimeji, A. Cauchi, A. Gimblett, Y. Li, P. Curzon, and
H. Thimbleby. The benefits of formalising design guidelines: A case study on the pre-
dictability of drug infusion pumps. Innovations in Systems and Software Engineering,
Springer-Verlag London, 2013.

24 P. Masci, Y. Zhang, P. Jones, P. Curzon, and H. Thimbleby. Formal verification of medical
device user interfaces using PVS. In ETAPS/FASE2014, 17th International Conference on
Fundamental Approaches to Software Engineering. Springer Berlin Heidelberg, 2014.

25 National Patient Safety Agency (NHS/NPSA). Design for patient safety: A guide to
the design of electronic infusion devices. http://www.nrls.npsa.nhs.uk/resources/
?EntryId45=68534, March 2010.

26 D.A. Norman. The design of everyday things. Basic books, 2002.
27 P. Oladimeji, H. Thimbleby, and A. Cox. Number entry interfaces and their effects on error

detection. In Human-Computer Interaction – INTERACT 2011, volume 6949 of Lecture
Notes in Computer Science, pages 178–185. Springer Berlin Heidelberg, 2011.

28 P. Masci et al. A preliminary hazard analysis for the GIP number entry software. http:
//www.eecs.qmul.ac.uk/~masci/works/GIP-UI-PHA.pdf, 2014.

29 R. Rukšėnas, P. Curzon, A. Blandford, and J. Back. Combining human error verification
and timing analysis: a case study on an infusion pump. Formal Aspects of Computing,
pages 1–44, 2013.

30 Q. S.M. Song. A system theoretic approach to design safety into medical device. PhD thesis,
Massachusetts Institute of Technology, 2012.

31 H. Thimbleby. Is it a dangerous prescription? BCS Interfaces, 84, 2010.
32 H. Thimbleby. Reasons to question seven segment displays. In Proceedings ACM Conference

on Computer-Human Interaction — CHI 2013, pages 1431–1440. ACM, 2013.
33 US Food and Drug Administration, Center for Devices and Radiological Health

(FDA/CRDH). White Paper: Infusion Pump Improvement Initiative, 2010.
34 US Food and Drug Administration (FDA). Manufacturer and User Facility

Device Experience Database (MAUDE). http://www.fda.gov/MedicalDevices/
DeviceRegulationandGuidance/PostmarketRequirements/ReportingAdverseEvents/
ucm127891.htm.

35 T.B. Wetterneck, K.A. Skibinski, T. L. Roberts, S.M. Kleppin, M.E. Schroeder, M. Enloe,
S. S. Rough, A. S. Hundt, and P. Carayon. Using failure mode and effects analysis to
plan implementation of smart IV pump technology. American Journal of Health-System
Pharmacy, 63(16):1528–1538, 2006.

36 Y. Zhang, P. Jones, and R. Jetley. A hazard analysis for a generic insulin infusion pump.
Journal of diabetes science and technology, 4(2):263, 2010.

http://www.nrls.npsa.nhs.uk/resources/?EntryId45=68534
http://www.nrls.npsa.nhs.uk/resources/?EntryId45=68534
http://www.eecs.qmul.ac.uk/~masci/works/GIP-UI-PHA.pdf
http://www.eecs.qmul.ac.uk/~masci/works/GIP-UI-PHA.pdf
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/PostmarketRequirements/ReportingAdverseEvents/ucm127891.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/PostmarketRequirements/ReportingAdverseEvents/ucm127891.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/PostmarketRequirements/ReportingAdverseEvents/ucm127891.htm

An Approach to Integrate Distributed Systems of
Medical Devices in High Acuity Environments
David Gregorczyk1, Stefan Fischer1, Timm Busshaus1,
Stefan Schlichting2, and Stephan Pöhlsen3

1 University of Lübeck
Institute of Telematics
Ratzeburger Allee 160
23562 Lübeck
{gregorczyk,fischer,busshaus}@itm.uni-luebeck.de

2 Drägerwerk AG & Co. KGaA
Smart Software Solutions
Research Unit
Moislinger Allee 53-55
23558 Lübeck, Germany
textttstefan.schlichting@draeger.com

2 Dräger Medical GmbH
Research & Development
Moislinger Allee 53-55
23558 Lübeck, Germany
textttstephan.poehlsen@draeger.com

Abstract
This paper presents a comprehensive solution to build a distributed system of medical devices
in high acuity environments. It is based on the concept of a Service Oriented Medical Device
Architecture. It uses the Devices Profile for Web Services as a transport layer protocol and en-
hances it to the Medical Devices Profile for Web Service (MDPWS) to meet medical requirements.
By applying the ISO/IEEE 11073 Domain Information Model, device data can be semantically
described and exchanged by means of a generic service interface. Data model and service in-
terface are subsumed under the Basic Integrated Clinical Environment Specification (BICEPS).
MDPWS and BICEPS are implemented as part of the publically available openSDC stack. Per-
formance measurements and a real world setup prove that openSDC is feasible to be deployed in
distributed systems of medical devices.

1998 ACM Subject Classification J.3 Life and Medical Sciences, C.2.2 Computer-Communi-
cation Networks

Keywords and phrases Integrated Clinical Environment, Devices Profile for Web Services, ISO/
IEEE 11073

Digital Object Identifier 10.4230/OASIcs.MCPS.2014.15

1 Introduction

Modern operating rooms (ORs) and intensive care units (ICUs) are equipped with numerous
medical devices delivered by different manufacturers. While the amount of devices contin-
uously increased over time, interoperability has not been adapted in the same way [14].
However, interconnecting interoperable medical devices can improve patient safety and op-
timize clinical workflows by providing the right information at the right time, in the right

© David Gregorczyk, Stefan Fischer, Timm Busshaus, Stefan Schlichting, and Stephan Pöhlsen;
licensed under Creative Commons License CC-BY

Medical Cyber Physical Systems – Medical Device Interoperability, Safety, and Security Assurance (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer; pp. 15–27

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

16 An Approach to Integrate Medical Devices in High Acuity Environments

amount, at the right location and in the necessary quality [21]. As a result it makes the
clinical work much easier and saves money.

Typical use cases are characterized by medical device safety-interlocks, remote control or
data exchange with clinical information systems (CISs). Safety-interlocked devices perform
a reciprocal monitoring to increase patient safety. For example, stopping an infusion at a
predetermined blood pressure value or to prevent intra-abdominal CO2 insufflation if the
heart rate and blood pressure are unmonitored [7]. Remote control means that designated
device parameters can be controlled by remote devices. For example, muting a monitoring
device’s alert system or regulating the power of an ultrasound cutting device from a central
OR cockpit. CIS communication comprises on the one hand a medical device providing data
for, and on the other hand a medical device consuming data from a CIS or any electronic
medical record system. Here, the most prominent example is the aquisition of patient
demographics and other patient related data to be used during surgery.

The IEEE refers to interoperability as the ability of two or more IT systems to exchange
information and to utilize the information that has been exchanged [9]. As a consequence,
to achieve interoperability it is both important to assure error resistent data transmission
and correct data interpretation. Assurance of data interpretation is twofold. Syntactic inter-
pretation offers consistent data exchange according to an underlying specification, whereby
semantic interoperability is the ability to interpret information exchanged with other sys-
tems, and to make effective use of it [8].

Unfortunately, in current distributed systems of medical devices interoperability is com-
monly achieved by using proprietary, vendor-dependent communication protocols and mid-
dleware. Products like Storz OR1 [12] or Olympus ENDOALPHA [17] provide fully inte-
grated ORs. However, these systems are restricted to specific vendors and product mod-
els. Furthermore, integration after deployment at the Point-of-care (PoC) is a cumbersome
task since in medical applications there is typically no system integrator with expert-level
technical knowledge available [13]. In summary, realizing the aforementioned use cases is
cost-intensive and will lead to isolated applications.

To enable heterogeneous interoperability, we introduce a future-proof, open and efficient
architecture, protocol stack and middleware which is designed to satisfy functional and
non-functional requirements on distributed systems of medical devices. The remainder of
this paper is structered as follows. The second section illustrates related technologies and
research projects. Section 3 describes the underlying conceptual model, requirements and a
brief protocol overview. The overall conceptual model is described in Section 4. Sections 5
and 6 introduce the implementation and evaluation of the system. Our work is concluded
in Section 7 which also gives an outlook on future work.

2 Related Work

In the past substantial standardization effort and several research projects have been car-
ried out on medical device interoperability. The most popular standard is the ISO/IEEE
11073 (x73) [10]. It is separated into series 11073-1xxxx to 11073-7xxxx, of which the first
three are the most important ones. The first part defines fundamentals for all subsequent
parts, containing language elements, a nomenclature and an object-oriented Domain In-
formation Model (DIM). The second part describes message exchange patterns between
medical devices referring to the upper application layers of the ISO/OSI model. Physical
interfaces are described as part of the third serie. However, most often only the DIM and
nomenclature part are referenced due to the fact that underlying transport protocols do not

D. Gregorczyk, S. Fischer, T. Busshaus, S. Schlichting, and S. Pöhlsen 17

Table 1 Functional requirements (left) and non-functional requirements (right).

Plug & Play Risk Management
Discovery & binding Safe communication
Device capability description at runtime Access control
Standardized protocols and open data access Trust establishment between participants

Communication (1-1, 1-n, n-m) Privacy of patient-related data
Event notification Latency in milliseconds
Data reporting
Remote control

support the needs of current distributed systems of medical devices. As of today, x73 is
rarely implemented by medical device manufacturers.

Another important work was done by Goldman et al. from the United States as part
of the Medical Device “Plug-and-Play” Interoperability Program (MDPnP). They have
published the ASTM F2761-1:200 Integrated Clinical Environment (ICE) standard [3]. It
defines functional elements for PoC related IT systems, especially focusing on communication
of patient data and on equipment command and control. Though the ICE standard gives
sophisticated information on conceptual system design, no concrete technical specifications
and implementations have been created yet.

There is also much research done in Germany. All roads run together in the OR.NET
project [19] that began in September 2012. It combines and consolidates the concepts of
predecessor projects to develop a proposal for a new standard called Open Surgical Com-
munication Protocol (OSCP). Foundational predecessor projects are SOMIT FUSION [23],
SOMIT OrthoMIT [24], Smart.OR [22], TiCoLi [26], TeKoMed [25] and DOOP [5]. All
of these projects propose an architecture based on the idea of a Service-oriented Medical
Device Architecture which is described in Section 3. The OASIS standard Devices Profile
for Web Services serves as the fundamental transport protocol providing TCP/IP and UDP
transport bindings, decentralized service discovery and eventing capabilities.

3 SOA for Medical Devices

The middleware presented in this paper follows the principles of the well-known Service-
oriented Architecture (SOA) paradigm [15]. Service providers offer their capabilities by
means of machine-readable service descriptions and publish them to a service directory.
Service consumers can discover these services by using the service directory. Afterwards,
they dynamically bind to suitable service providers and invoke their operations.

If SOA principles are applicated on device communication, it is called a Service-oriented
Device Architecture (SODA) [4]. In a SODA, services encapsulate both a device’s func-
tionality and physical user interface. They are then called device services. In addition to
the regular SOA request-response model, publish-subscribe systems are used to transmit
information between service providers and consumers. In publish-subscribe systems the
communication direction is reversed such that service providers start communicating with
service consumers.

If a SODA is applied to a distributed system of medical devices, it is defined as a Service-
oriented Medical Device Architecture (SOMDA). Device services are then called medical
device services. Middleware systems which implement a SOMDA have certain functional
and non-functional requirements to satisfy. Requirements have been acquired by Dräger and
are listed in Table 1. Since SOMDA is an abstract concept, implementation directives are

MCPS’14

18 An Approach to Integrate Medical Devices in High Acuity Environments

Application protocols

BICEPSICE Prot. X ICE Prot. Y

MDPWS

Streaming WS-SafetyInformation Compression

DPWS

WS-Discovery WS-Eventing WS-MetadataExchange

WS-Addressing WS-Security

SOAP-over-UDPHTTP

IP / UDP / TCP

Figure 1 The openSDC protocol stack.

required to get a corresponding middleware up and running. The middleware introduced in
this paper is based on Web Services and is called openSDC [18]. Figure 1 shows the protocol
stack that is implemented in openSDC.

The most general protocol is the Devices Profile for Web Services (DPWS) [6]. A Web
Services profile contains a certain set of specifications and defines appropriate constraints
to eliminate protocol ambiguities. DPWS was first invented by Microsoft to interconnect
network devices and PCs in a plug-and-play-like fashion. In particular, it was proposed to
automatically detect network printers and download suitable drivers. DPWS comes with
decentralized service discovery, eventing capabilities and is based on open standards. Hence,
it meets the features of a SODA and commonly fulfills the requirements Plug & Play and
Communiction (1-1,1-n,n-m) listed in Table 1.

DPWS is not sufficient to meet the complete set of requirements for a SOMDA. There-
fore, openSDC implements a special DPWS dedicated to medical software: the Medical De-
vices Profile for Web Services (MDPWS). It provides streaming capabilities, error-resistent
data transmission and compression options. Besides MDPWS, the Basic Integrated Clinical
Environment Protocol Specification (BICEPS) provides a domain-specific protocol to offer
generic and extensible device access and modeling. MDPWS and BICEPS are described in
detail in the next section.

4 Conceptual Design

A central aspect of the work presented in this paper is the capability to be extensible for
future communication needs. For this purpose a layered protocol stack has been developed.
As shown in Figure 1, it is separated into three different layers. In conjunction with DPWS,
MDPWS builds the transport layer to securely transmit messages. BICEPS introduces an
extensible message information model (MIM) and access services to facilitate medical device
interoperability. With changing network conditions, MDPWS can be replaced by upcoming,
improved or redundant transport protocols, without altering the domain and message model.

D. Gregorczyk, S. Fischer, T. Busshaus, S. Schlichting, and S. Pöhlsen 19

4.1 MDPWS
MDPWS is based on DPWS version 1.1 [6]. DPWS became an OASIS standard in June
2009 is used by openSDC to provide Web Services-based features like:

Service-oriented interaction
Service discovery using WS-Discovery [16]
Service description using WSDL [2]
Publish-Subscribe using WS-Eventing [1]

One major requirement of openSDC is to be extensible for future communication needs.
DPWS (and the underlying Web Services technology) is designed for extensibility. But it is
an enabling technology rather than a comprehensive communication specification. Hence,
DPWS only provides basic features which are constrained and enhanced by MDPWS to
enable safe communication in distributed systems of medical devices in high acuity environ-
ments. The extended features of MDPWS are explained in the following subsections. In
some cases, fundamental knowledge of DPWS may be beneficial.

4.1.1 Liveliness
To assure that a medical device is still active, MDPWS defines to send a directed Probe
message as specified in DPWS.

4.1.2 Streaming
A typical use-case in PoC scenarios is the transmission of vital parameters by using wave-
forms. To enable efficient waveform transmission using Web Services, MDPWS includes
SOAP-over-UDP and WS-Streaming. WS-Streaming is part of the MDPWS specification
and has not been published yet. It defines a policy to embed descriptive information on
streams provided by a Web Service. WS-Streaming does not explicitly define stream man-
agement and transport, but provides the capability to announce the existence and type of
a stream.

4.1.3 Safety and Security
Any communication protocol dealing with distributed systems of medical devices has to
avoid impairment of patient safety. Therefore, remote control mechanisms have to be at
least single fault safe. Moreover, another risk control measure is the exchange of a remote
invocation context.

Single fault safety can typically be met by providing dual channel transmission. To
remotely modify device parameters, invocation information is sent redundantly over two
independent channels. The second channel might be separated in time or representation.
In time means that the second channel is established temporally after the first channel has
been transmitted. The drawback of separation in time is that it requires stateful services
and double transmission costs. Separation in representation is achieved by providing both
channels in a single message. The service provider detects failures, for example, by means
of an invalid checksum. Figure 2 illustrates the dual channel transmission in accordance
to separation in representation. Data is given to the middleware of the service consumer
by means of two input objects. The middleware serializes and deserializes one input object
and compares the result to the second object. This implicates that parser end serializer
are working correctly. The serialized object is transmitted to the service provider. On the

MCPS’14

20 An Approach to Integrate Medical Devices in High Acuity Environments

Figure 2 Dual channel transmission using separation in presentation.

provider side, the parsing process and the data duplication generating the second channel
are controlled. In summary, this guarantees that data is not compromised when being
transmitted from one process to another. More information on dual channel transmission is
given in [20].

A remote invocation context is also called a safety context. The service consumer needs to
know which information is required by the service provider to transmit a remote invocation
context. If this knowledge is available to the service consumer, it can append context
information to the service invocation message. An example for a safety context is the
value of a setting an operation is applied to. To enable dual channel transmission and
safety contexts, WS-SafetyInformation has been specified as part of MDPWS. It is not
standardized yet.

4.1.4 Security
Besides patient safety, access control, integrity and confidentiality are major security goals.
Only authorized service consumers should have remote access to devices. Patient data should
be secured by using encryption. MDPWS provides capabilities to meet the aforementioned
requirements. It includes a Public Key Infrastructure (PKI) to gain authorization capabilites
using X.509 certificates. If access control is needed, it is handled on the level of individual
security principles using the PKI. MDPWS specifies that a service provider may control
access to a service by HTTPS with mutual authentication. This also applies to WS-Eventing
services.

MDPWS specifies that a X.509 certificate is issued to a service provider’s Universally
Unique Identifier (UUID) [11]. The same is prescribed to service consumers. Authorization
is enabled by using a Device Access Control List (DACL) which contains subject identities
of security principals and associated granted access rights. In order to be able to handle
groups of security principals, DACL provides group subject identities which are used to grant
access to, for example, device types or devices of certain manufacturers. In order to ensure
decentralization, devices have to maintain root certificates of the manufacturers for every

D. Gregorczyk, S. Fischer, T. Busshaus, S. Schlichting, and S. Pöhlsen 21

device they are communicating with. Another solution is to get a separated DACL which is
signed by the clinical operators to verify digital signatures of communication partners. So
far, devices of a dedicated manufacturer trust every other decvice of the same manufacturer.

To ensure confidentiality and integrity of messages, MDPWS states that HTTPS should
be applied. SOAP-over-HTTPS may also be used. Since SOAP-over-UDP is used to trans-
mit anonymous streaming data, no security mechanism has been defined by MDPWS.

4.2 BICEPS
BICEPS specifies a MIM and access services for the domain of distributed medical devices.
It is based in large parts on the x73 DIM as described in Section 2 and forms a minimal
set of generic functionality and messages to facilitate interoperability and extensibility. A
core component of x73 and even BICEPS is the Medical Device Information Base (MDIB).
It represents an object-oriented model to encapsulate managed medical objects. Managed
medical objects are best known as physiological patient data, device configuration data, or
remote invocation operations.

4.2.1 MIM
Communication messages exchanged in distributed systems of medical devices contain state
data about clinical measurements of a patient or the device associated with a patient. More-
over, remote invocation commands might also be transmitted. To enable interoperability,
medical devices have to exchange meta-information about state data as well as contextual
information that describes in which context state data has been acquired. Such information
is described in the BICEPS MIM. It provides two parts: communication message defini-
tions and the MDIB component. For the sake of brevity the communiction messages are
not described in this paper. Basically, for every service request and response, and even for
every notification, BICEPS-MIM defines a dedicated message payload.

The MDIB in turn is divided into a descriptive part and a state part. The descriptive
part holds information on a device’s structure, services and metrics, and provides coded
values. Coded values allow to characterize object types by referencing a coding system
with a version and code identifier. By means of coded values communication partners are
able to interpret transmitted data, for example, the unit of a measurement value. Since
every managed medical object is equipped with a coded value, they can be semantically
interpreted. On the other side, the state part holds the content data that a medical device
can deliver. It should be noted that both parts of the MDIB can change during runtime.

A top level overview of the BICEPS-MIM MDIB descriptive part is given in Figure 3.
A Medical Device System (MDS) is an abstract representation of a physical device that
exposes its capabilities as a medical device service. In accordance to x73 it is depicted as
an HydraMDS and may contain multiple Virtual Medical Devices (VMDs). A VMD is a
representation of a sub-system of a MDS. It may in turn contain multiple channels. Channels
refer to a group of metrics, whereby metrics are abstract representations of measurement
values, settings or status items. BICEPS-MIM specifies by default numeric values, textual
values and sample arrays of numeric values. Nevertheless, it can be extended to any type of
value. MDSs, VMDs and channels can be assigned with an optional alert system. It detects
alert conditions and may signal them by means of alert signals. Alert signals are in most
cased displayed visually or acousticly.

Another part of the model in Figure 3 is the Service Control Object (SCO). It comprises
remote invocation capabilities. This includes affected objects and Quality of Service (QoS)

MCPS’14

22 An Approach to Integrate Medical Devices in High Acuity Environments

HydraMDS

SCO Operation

VMD

Channel

Metric

AlertSystem

Context

LocationContext PatientContext

0..10..1

0..1

0..1

0..1

0..1

0..*

0..*

0..*

0..*

1

AlertSignal

AlertCondition

0..*

0..*

Figure 3 Top level overview of the BICEPS-MIM MDIB descriptive part.

parameters. There are different operation types to offer several set methods, non-generic
method calls or remote control calls. The Context element represents the context the un-
derlying MDS is currently working in. This context is designated by patient or location
information.

4.2.2 Service interface
To get remote access to managed medical objects, x73 specifies a generic service interface
called CMDISE. In a slightly different way this interface is also provided by BICEPS. It
contains a generic get service to request data, a generic set service to manipulate data, a
dedicated waveform service to transmit, for example, vital signs, a protected health infor-
mation (PHI) service to request or set patient related information in a secured manner, and
an event report service to enable publish-subscribe data retrieval. Figure 4 depicts the dif-
ferences between CMDISE and BICEPS services. While x73 separates SET and ACTION,
BICEPS merges them to a single service. BICEPS omits CREATE and DELETE since they
provide extended functionality in terms of allowing to manipulate device memory. If CRE-
ATE and DELETE are required in sophisticated scenarios, they can later be implemented
by BICEPS’ extensibility mechanism. Waveform and PHI are extra services provided by
BICEPS. Finally, EVENT REPORT is mapped from x73.

Figure 4 illustrates a coarse-grained service interface. BICEPS uses numerous operations
grouped together to build GET, SET, Waveform, PHI and EVENT REPORT. GET is
separated into:

GetMDIB: retrieval of the full MDIB including descriptive and state part
GetMDDescription: retrieval of the MDIB descriptive part
GetMDState: retrieval of the MDIB state part

D. Gregorczyk, S. Fischer, T. Busshaus, S. Schlichting, and S. Pöhlsen 23

x
7
3
 C

M
D

IS
E

B
IC

E
P

S
 s

e
r
v
ic

e
sGET

SET

ACTION

CREATE

DELETE

EVENT REPORT EVENT REPORT

Waveform

PHI

GET

SET/ACTION

Figure 4 Coarse-grained mapping of Common Medical Device Information Service Element
(CMDISE) and BICEPS service interfaces.

SET is characterized by:
SetValue: sets a numeric metric
SetString: sets a string metric
SetRange: sets the range of a numeric metric
Activate: executes remote control

EVENT REPORT is the capability to retrieve notifications about either changes of the
descriptive part or the state part. The EVENT REPORT service is divided into

MetricReports: notification of metric changes
AlertReports: provides alert events
ContextReport: notifies when context changes
OperationInvokedReport: since operation calls are queued, this notification provides
operation progress information
MDSCreatedReport: notifies if a MDS appears to be available for access
MDSDeletedReport: notifies if a MDS disappears and is no longer active
ObjectCreatedReport: notifies on any object creation events
ObjectDeletedReport: notifies on any object deletion events

There is no definition on how to subscribe to notifications. BICEPS states that the
underlying transport protocol has to support subscription management.

Waveform is an optional service that defines an interface to retrieve a stream for real-
time sample array metrics. There is only a waveform stream manifested in BICEPS even
without specifying means to subscribe to it. BICEPS states that the underlying transport
protocol has to support subscription management.

Like Waveform, PHI is also an optional service. It allows retrieval and modification of
patient data. Due to privacy reasons this service is separated from other BICEPS services.
Hence, it can separately be protected.

Besides the generic service interface medical devices might offer remotely invokable oper-
ations that are not defined as part of the BICEPS-MIM / BICEPS services. For this purpose
a non-generic operation descriptor can be defined in the descriptive part of the MDIB. It
facilitates non-generic, proprietary service calls to be represented by a coded value. By using
the non-generic operation descriptor, service calls are made accessible through the MDIB.

Finally, BICEPS does not define any QoS requirements, but provides extensibility points
to embed QoS requirements for a transport protocol.

MCPS’14

24 An Approach to Integrate Medical Devices in High Acuity Environments

0

50

100

150

RTT (ms)

Alert 103 35

Metric 96 27

Java Java Opt.

Figure 5 Maximum round trip time performance measurements for openSDC using JRE6’s
default (Java) and optimized (Java Opt.) environment.

5 Implementation

BICEPS and MDPWS have been released as part of openSDC [18] and can be downloaded
and used for free. OpenSDC serves as a reference implementation for vendors of medical
devices, but is not intended to be used in clinical trials, clinical studies or in clinical routine.

The openSDC project uses a modified version of the WS4D JMEDS stack [27] to gain
DPWS functionality. The modified JMEDS stack is called JDPWS. The remaining com-
ponents of the openSDC stack implement the BICEPS and MDPWS protocols. It allows
either a contract-first approrach by defining the MDIB in a XML file and load it into the
framework, or a code-first approach by building the MDIB in Java code.

6 Evaluation

To get an impression on how stable and powerful openSDC is, performance measurements
have been made using a Java JRE6. A client (2x2 GHz) requests metric values and alerts
twice a second. The device (1x1.1 GHz) responds with 276 metric values and 80 alerts.
Additionally, 10 waveform frames containing at least 20 values are sent out at 200 ms
intervals.

The first measurement is the maximum round trip time (RTT) to deliver an alert and
a numeric metric. It is depicted in Figure 5. When using Java with its default settings,
openSDC causes a maximum RTT of 103 ms to post an alert and 96 ms to post a metric. By
optimizing the JRE using Java’s environment properties, open SDC is on average 69 percent
faster. Figure 6 shows the average and maximum framerate when transmitting a waveform.
In this scenario, only optimized Java has been tested. With an average framerate of 199
frames per second, openSDC’s Web Service Streaming is fast enough to build continuous
1-dimensional signals.

In addition to the previously mentioned simple performance measurements, openSDC has
been tested with real world medical devices as part of a public project workshop in December
2013. Figure 7 gives an idea of the demonstration setup. Participating devices were a Möller-
Wedel operating microscope, a Localite navigation system, a Dräger monitoring device, a
Söring ultra sound surgery device and an Olympus documentation system.

D. Gregorczyk, S. Fischer, T. Busshaus, S. Schlichting, and S. Pöhlsen 25

0

50

100

150

200

250

Time between Frames (ms)

Java Opt. 199 4 190 210

Avg StdDev Min Max

Figure 6 Maximum waveform framerate for openSDC using JRE6’s optimized (Java Opt.) en-
vironment.

Different use cases have been introduced to prove the practical effect of openSDC. First,
patient data arrived at the documentation system by fetching HL7 ADT messages. After-
wards, this data was automatically stored at the microscope and navigation system side
using DPWS. Next, BICEPS was used to transmit vital signs from the patient monitor
to the operating microscope to display health information. Moreover, it was applied to re-
motely control the ultrasound surgery device. By sending activation requests, the operating
microscope was able to control cutting. The navigation system retrieved zoom and focus
information from the operating microscope. Thereby, the navigation system was able to
select proper views of the area currently navigated in.

In all scenarios openSDC provides immediate network responses confirming the mea-
surements in Figure 5. Especially, there was no remarkable delay when remotely controlling
the ultra sound activation. Therefore, the system is fast enough to remotely control devices
where controlling actions have to be initiated and recognized by a human.

7 Conclusion and Future Work

In this paper, we have presented openSDC, a protocol stack which enables heterogeneous
interoperability of medical devices. Based on a set of standards, most prominently including
the Device Profile for Web Services (DPWS), we presented in detail the MDPWS protocols
for message transport in medical environments and BICEPS which is used as an application
protocol for service access. An openly available implementation of openSDC exists, and first
evaluations show promising results.

We see future work mostly in three directions: First, BICEPS will be enhanced by
extending its functionality through providing more plugins. Second, more clinical use cases
will be described and show-cased. Finally, we are working on a seamless integration of
openSDC with clinical IT systems. Especially authentication and authorization will be a
major issue the solution of which will make the system much easier and more secure to use.

References

1 Don Box, Luis Felipe Cabrera, Craig Critchley, Francisco Curbera, Donald Ferguson, Steve
Graham, David Hull, Gopal Kakivaya, Amelia Lewis, Brad Lovering, Peter Niblett, David
Orchard, Shivajee Samdarshi, Jeffrey Schlimmer, Igor Sedukhin, John Shewchuk, Sanjiva

MCPS’14

26 An Approach to Integrate Medical Devices in High Acuity Environments

Figure 7 Image of an openSDC powered distributed system of medical devices at a project
workshop in December 2013. F.l.t.r.: operating microscope, navigation system, patient monitor,
ultrasound surgery device and documentation system.

Weerawarana, and David Wortendyke, editors. W3C Member Submission: Web Services
Eventing (WS-Eventing). World Wide Web Consortium (W3C), July 2006.

2 Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana, editors.
Note: Web Services Description Language (WSDL) 1.1. World Wide Web Consortium
(W3C), March 2001.

3 Committee F29.21 on Devices in the Integrated Clinical Environment. ASTM F2761 –
09 Medical Devices and Medical Systems – Essential safety requirements for equipment
comprising the patient-centric integrated clinical environment (ICE) – Part 1: General
requirements and conceptual model. ASTM International, 2009.

4 Scott de Deugd, Randy Carroll, Kevin Kelly, Bill Millett, and Jeffrey Ricker. SODA:
Service Oriented Device Architecture. IEEE Pervasive Computing, 5(3):94–96, c3, 2006.

5 DOOP project. http://www.doop-projekt.de/.
6 Dan Driscoll and Antoine Mensch, editors. OASIS Standard: Devices Profile for Web

Services Version 1.1. OASIS, July 2009.
7 Julian M. Goldman. Medical Devices and Medical Systems – Essential safety requirements

for equipment comprising the patient-centric integrated clinical environment (ICE) – Part
1: General requirements and conceptual model. ASTM International, http://www.mdpnp.
org/uploads/F2761_completed_committee_draft.pdf, 2008.

8 Healthcare Information and Management Systems Society – HIMSS. What is Interoperabil-
ity? http://www.himss.org/library/interoperability-standards/what-is, April
2013.

http://www.doop-projekt.de/
http://www.mdpnp.org/uploads/F2761_completed_committee_draft.pdf
http://www.mdpnp.org/uploads/F2761_completed_committee_draft.pdf
http://www.himss.org/library/interoperability-standards/what-is

D. Gregorczyk, S. Fischer, T. Busshaus, S. Schlichting, and S. Pöhlsen 27

9 IEEE Standard Computer Dictionary. A Compilation of IEEE Standard Computer Glos-
saries, January 1991.

10 ISO/IEEE. ISO/IEEE 11073: Health informatics – Point-of-care medical device commu-
nication, June 2004.

11 ITU International Telecommunication Union. Information technology – Open Systems
Interconnection – Procedures for the operation of OSI Registration Authorities: Generation
and registration of Universally Unique Identifiers (UUIDs) and their use as ASN.1 object
identifier components, September 2004.

12 Karl Storz. OR1. https://www.karlstorz.com/cps/rde/xchg/SID-949FE9D0-512F111A/
karlstorz-en/hs.xsl/522.htm.

13 B. Larson, J. Hatcliff, S. Procter, and P. Chalin. Requirements specification for apps in
medical application platforms. In Software Engineering in Health Care (SEHC), 2012 4th
International Workshop on, pages 26–32, June 2012.

14 Kathy Lesh, Sandy Weininger, Julian M. Goldman, Bob Wilson, and Glenn Himes. Med-
ical Device Interoperability-Assessing the Environment. In Proceedings of the 2007 Joint
Workshop on High Confidence Medical Devices, Software, and Systems and Medical Device
Plug-and-Play Interoperability (HCMDSSMDPnP), pages 3–12, Cambridge, Massachusetts,
USA, June 2007. IEEE Computer Society.

15 C. Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F Brown, and Rebekah Metz,
editors. OASIS Standard: Reference Model for Service Oriented Architecture 1.0. OASIS,
October 2006.

16 OASIS. Web Services Dynamic Discovery (WS-Discovery) Version 1.1, 2009.
17 Olympus. ENDOALPHA. http://www.olympus-europa.com/medical/en/medical_

systems/products_services/systems_integration/productselector_service_
solutions_8.jsp.

18 openSDC Website. https://sourceforge.net/projects/opensdc/.
19 OR.NET. OR.NET | Projektwebsite. http://www.ornet.org.
20 Stephan Pöhlsen, Winfried Schöch, and Stefan Schlichting. A Protocol for Dual Channel

Transmission in Service-Oriented Medical Device Architectures based on Web Services. In
3rd Joint Workshop on High Confidence Medical Devices, Software, and Systems & Medical
Device Plug-and-Play Interoperability, 2011.

21 Andreas Schweiger, Ali Sunyaev, Jan Marco Leimeister, and Helmut Krcmar. Toward
Seamless Healthcare with Software Agents. Communications of the Association for Infor-
mation Systems (CAIS), pages 692–709, 2007.

22 smartOR project. http://www.smartor.de/.
23 SOMIT FUSION project. http://www.somit-fusion.de/SF/.
24 SOMIT orthoMIT. https://www.vde.com/de/fg/DGBMT/Arbeitsgebiete/Projekte/

Seiten/SOMIT-orthoMIT.aspx.
25 TeKoMed project. http://kosse-sh.de/projekte/tekomed/.
26 TiCoLi. http://www.iccas.de/ticoli/.
27 Web Services for Devices (WS4D). JMEDS (Java Multi Edition DPWS Stack). https:

//sourceforge.net/projects/ws4d-javame/.

MCPS’14

https://www.karlstorz.com/cps/rde/xchg/SID-949FE9D0-512F111A/karlstorz-en/hs.xsl/522.htm
https://www.karlstorz.com/cps/rde/xchg/SID-949FE9D0-512F111A/karlstorz-en/hs.xsl/522.htm
http://www.olympus-europa.com/medical/en/medical_systems/products_services/systems_integration/productselector_service_solutions_8.jsp
http://www.olympus-europa.com/medical/en/medical_systems/products_services/systems_integration/productselector_service_solutions_8.jsp
http://www.olympus-europa.com/medical/en/medical_systems/products_services/systems_integration/productselector_service_solutions_8.jsp
https://sourceforge.net/projects/opensdc/
http://www.ornet.org
http://www.smartor.de/
http://www.somit-fusion.de/SF/
https://www.vde.com/de/fg/DGBMT/Arbeitsgebiete/Projekte/Seiten/SOMIT-orthoMIT.aspx
https://www.vde.com/de/fg/DGBMT/Arbeitsgebiete/Projekte/Seiten/SOMIT-orthoMIT.aspx
http://kosse-sh.de/projekte/tekomed/
http://www.iccas.de/ticoli/
https://sourceforge.net/projects/ws4d-javame/
https://sourceforge.net/projects/ws4d-javame/

Simulations of the Cardiovascular System Using
the Cardiovascular Simulation Toolbox
Gabriela Ortiz-León1, Marta Vílchez-Monge2, and
Juan J. Montero-Rodríguez3

1 Escuela de Ingeniería Electrónica, Instituto Tecnológico de Costa Rica
Cartago, Costa Rica
gaby@itcr.ac.cr

2 Escuela de Física, Instituto Tecnológico de Costa Rica
Cartago, Costa Rica
mvilchez@itcr.ac.cr

3 Escuela de Ingeniería Electrónica, Instituto Tecnológico de Costa Rica
Cartago, Costa Rica
jjmontero@itcr.ac.cr

Abstract
In the present document, six mathematical models of the cardiovascular system are studied and
implemented in MATLAB® R2013a using an updated version of the Cardiovascular Simulation
Toolbox proposed by O. Barnea at the Tel-Aviv University. All the mathematical models are
based on electrical lumped-parameter analogies. The results of the simulations are compared
with a list of expected hemodynamic parameters and contrasted with laboratory values.

1998 ACM Subject Classification I.6.4. Model Validation and Analysis

Keywords and phrases Biomedic, Cardiovascular, MATLAB, Simulation

Digital Object Identifier 10.4230/OASIcs.MCPS.2014.28

1 Introduction

Simulation with lumped-parameter models is one of the traditional approaches to model the
cardiac system. After the development of the Windkessel models by O. Frank in 1899 [6],
several mathematical models based on equivalent circuits have been proposed. One of the
efforts to build a complete set of equivalent models for cardiovascular simulations has been
made by O. Barnea et al. [1] at the Tel-Aviv University. His team developed a Cardiovascular
Simulation Toolbox for MATLAB® R14. This open-source tool is conformed by a set of 21
individual lumped-parameter electrical models. Complex models of the circulatory system
can be achieved by interconnecting blocks and signals.

Barnea’s library of models was no longer supported by the recent releases of MATLAB®

because the original toolbox was built using the Power Systems BlocksetTM, and it was
replaced by the SimPowerSystemsTM module for Simulink®. In a previous publication [11]
we showed our efforts to update Barnea’s toolbox to the newer releases of MATLAB®, and
published an updated version currently working in MATLAB® R2013a.

In this document, we implement six mathematical models in MATLAB® R2013a using
this updated version of the Cardiovascular Simulation Toolbox, in order to obtain the
hemodynamic parameters of healthy persons. The numerical results of this work are compared
with reference hemodynamic parameters obtained at specialized laboratories [10] [7] [4]. The
most important parameters used to compare simulations in this work are the cardiac output
(CO), the blood flow or aortic flow (AQ) and the arterial pressure (AP).

© Gabriela Ortiz-León, Marta Vílchez-Monge, and Juan J. Montero-Rodríguez;
licensed under Creative Commons License CC-BY

Medical Cyber Physical Systems – Medical Device Interoperability, Safety, and Security Assurance (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer; pp. 28–37

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

G. Ortiz-León, M. Vílchez-Monge, and J. J. Montero-Rodríguez 29

ra4

L4

R4 C4C3R3

ra3

R2 C2

Figure 1 The Windkessel models of second, third and fourth order.

Figure 2 Windkessel model of fourth order, implemented in Simulink® using blocks from the
Cardiovascular Simulation Toolbox [15].

1.1 Windkessel models (WK)

The first Windkessel model model was proposed by O. Frank in 1899 [6]. The simplest model
is the second order Windkessel model (WK2) and includes a single resistor R and a single
capacitor C that are the equivalent lumped parameters of the systemic circulatory system.
On 1930 Ph. Broemser and O. Ranke [2] added a third circuit element r used to describe the
input impedance of the aorta. This model is called the third order Windkessel model (WK3).
The final model of four elements (WK4) was proposed to improve the dynamic response
of the circuit and it includes an inductance L, describing the inertia of blood. The circuit
representations of the Windkessel models are shown in Figure 1.

To simulate this model, the input flow of the left ventricle is required. We assumed
a sinusoidal pulsing function, as described in [8]. The model calculates the mean arterial
pressure (MAP), to calculate the cardiac output.

The models of Figure 1 are implemented in Simulink® using different blocks from the
Cardiovascular Simulation Toolbox [15] and some extra blocks from the SimPowerSystemsTM
library. The block diagram of the fourth-order Windkessel model using Barnea’s toolbox is
presented in Figure 2.

The simulation results of the three Windkessel models are presented in Figure 3, which is
a graphic describing the arterial pressure as a function of time. Constants required for the
parameters of the elements are from M. Hlaváč [8].

Based on the results from Figur 3 the mean arterial pressure is calculated, and then
divided by the total peripheral resistance (TPR) in order to obtain the mean aortic flow
(MAQ). The cardiac output is calculated multiplying by 60. Results of these calculations are
presented on Table 1 with the results of the other models.

MCPS’14

30 Simulations of Cardiovascular System With the Cardiovascular Simulation Toolbox

8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10

60

80

100

120

140

160

180

Time (s)

P
re

s
s
u
re

 (
m

m
H

g
)

WK2

WK3

WK4

Figure 3 Arterial pressure as a function of time for the Windkessel models.

R1

R2 D1 R3 D2 R4 L

C3C1C2

Figure 4 Circuit diagram for A. Ferreira model [5].

1.2 Lumped-parameter model of A. Ferreira

The model of A. Ferreira [5] is shown in Figure 4. The left ventricle C1 is described with a
variable capacitor, because the walls of the heart chambers are elastics, and the elastance
changes over time across the cardiac cycle. The left atria is described by the capacitance
C2. The peripheral circulatory system is described by R1 and C3. Also the model includes
the mitral valve, described by D1 and R2, and the aortic valve formed by D2 and R3. The
resistor R4 models the input impedance of the aorta, and the inductance L describes the
inertia of blood. Mitral valve and aortic valve are described with thyristors, switched with
control signals to enable or block the blood flow in one direction.

To implement this model in Simulink® a new block was designed for the Cardiovascular
Simulation Toolbox. The block is a variable non-linear capacitor, where the capacitance can
be adjusted using an external elastance function. This elastance function is described by
A. Ferreira et al. [5] and it is composed of exponential functions. The new block is based
on the existent polynomial capacitor, but a multiplier was added and the polynomial block
removed, in order to include the external signal that modulates the compliance of the block.

The model of A. Ferreira calculates the instantaneous arterial pressure in the same way
as the Windkessel models, and then calculates the mean arterial pressure and the cardiac
output. In this simulation, cardiac output has a value of 4.64 L/min. This value is included
in Table 1 with the other results of this simulation.

The Simulink® implementation of the electrical model of A. Ferreira is presented in
Figure 5. Simulation results for the model of A. Ferreira can be appreciated in Figure 6.

G. Ortiz-León, M. Vílchez-Monge, and J. J. Montero-Rodríguez 31

powergui

Continuous

Ideal Switch

o Snubber, Vf=

Scope

R4

R1

Mitral

g

a

k

MVControl

LVV

LVPm

P

LVPin

LVP

LAV

LAPm

P

LAP

Flow Meter

flow

E(t)

Controlled

Voltage

Source s �

+
C3

v
m

o
n

C2

v
m

o
n

C1(t)

C
(t

)
v
m

o
n

in
g
n
d

Aortica

g

a

k

Aortic

Flow
AVControl

AV

APm

P

AP

1/E(t)

Figure 5 Simulink® implementation of the electrical model of A. Ferreira.

0

0.5

1

1.5

2

Elastance function E(t)

Time (s)

E
la

s
ta

n
c
e
 (

m
m

H
g
/m

l)

18 18.5 19 19.5 20 18 18.5 19 19.5 20
0

20

40

60

80

100

120

Left ventricular pressure (LVP)

Time (s)

P
re

s
s
u

re
 (

m
m

H
g

)

18 18.5 19 19.5 20
40

60

80

100

Arterial pressure (AP)

Time (s)

P
re

s
s
u

re
 (

m
m

H
g

)

18 18.5 19 19.5 20
0

200

400

600

800
Aortic flow (AQ)

Time (s)

F
lo

w
 (

m
l/
s
)

Figure 6 Simulation results of A. Ferreira model.

MCPS’14

32 Simulations of Cardiovascular System With the Cardiovascular Simulation Toolbox

Mitral

Valve

Left

Vent

Aortic

Valve

Windkessel

Model

Figure 7 Block diagram of the Windkessel model with the left ventricle [15].

1.3 Windkessel model coupled to left ventricle (WK+V)
The main problem with the Windkessel models is that they require information about the
flow generated by the left ventricle. In many simulations this flow is approximated by a
sinusoidal representation that does not reproduce exactly the waveform of real blood flow,
and this represents an error source. In order to improve the accuracy, this model simulates
the left ventricle using the varying elastance model, and couples the generated flow to a
third-order Windkessel model to obtain the final results of mean arterial pressure and cardiac
output. The block diagram of this model is shown in Figure 7.

The Windkessel model coupled to the left ventricle (WK+V) is similar to A. Ferreira’s
model because it uses an elastance function to describe the left ventricle, and connects it to
a third order Windkessel model. The difference is that the left ventricle is characterized by a
third order polynomial elastance function instead of the exponential function of Ferreira’s
model. This simulation is included as an example of the Cardiovascular Simulation Toolbox
and here is implemented in MATLAB® R2013a. The implementation of this model is shown
in Figure 8. Simulation results for this mathematical model are shown in Figure 9.

1.4 Systemic and pulmonary circulation model (2A2V)
This model proposed by O. Barnea et al. [15] in the Cardiovascular Simulation Toolbox
includes the systemic and pulmonary circulation, both atria, ventricles and the four cardiac
valves. This model also simulates the oxygen saturation in blood across the sections of the
cardiovascular system. The model calculates the pressure and volume at multiple points and
the pressure-volume loop can be obtained by plotting the pressure and the volume of the left
ventricle.

We used this model to obtain the hemodynamic parameters of a healthy person, conside-
ring a left-ventricular ejection fraction of 58.7% as suggested by Schlosser [14]. Adjusting
the physical parameters of the atria and ventricles, we were also able to simulate the
behavior of the cardiovascular system for a person suffering from systolic heart failure, with
a left-ventricular ejection fraction of 24.6% [3].

Lumped-parameter models of the cardiovascular system in MATLAB® can be coupled
with three-dimensional models, described in COMSOL® and simulated with finite element
methods (FEM). Some examples of this coupling can be found in [12,13].

The block diagram of the systemic-pulmonary model can be appreciated in Figure 10.
This model enables to obtain the pressure-volume loops for a healthy person, and also

for a person suffering from systolic heart failure, as can be appreciated in Figure 11. The
graphic from the left is obtained by running the default simulation of the model provided by
O. Barnea, and it shows the cardiac cycle with the typical values expected for the subject.
The complete set of parameters resulting from this simulation of the healthy system has been
published in [11].

G. Ortiz-León, M. Vílchez-Monge, and J. J. Montero-Rodríguez 33

Arterial Pressure

Windkessel Model

powergui

Continuous

Ideal Switch

WK

vmon

Vmon

To Workspace6

pressure

To Workspace2

vmon

To Workspace1

flow

Pmon

Mitral

Valve

SO2SO2

Left Ventricle

vmonHR

SO2SO2

LV

PMon

P

HR Regulatory

HR

Pressure Source

s

¡

+

Flow Meter

flow

Flow

End1

End

Constant

8

Const

1

Aortic

Valve

SO2SO2

Ao

PMon

P
Figure 8 Simulation of the left ventricle coupled to a third order Windkessel model [1].

0 50 100
0

20

40

60

80

100

120

140
Pressure−volume loop

Volume (ml)

P
re

s
s
u

re
 (

m
m

H
g

)

18 18.5 19 19.5 20
0

100

200

300

400

500

600

700
Aortic flow (AQ)

Time (s)

F
lo

w
 (

m
l/
s
)

18 18.5 19 19.5 20
0

20

40

60

80

100

120

140
Left ventricular pressure (LVP)

Time (s)

P
re

s
s
u

re
 (

m
m

H
g

)

18 18.5 19 19.5 20

60

80

100

120

Left ventricular volume (LVV)

Time (s)

V
o

lu
m

e
 (

m
l)

Figure 9 Simulation results of the WK+V model.

MCPS’14

34 Simulations of Cardiovascular System With the Cardiovascular Simulation Toolbox

Table 1 Results of the simulation of six mathematical models of the cardiovascular system,
implemented with blocks from the Cardiovascular Simulation Toolbox and the SimPowerSystemsTM

toolbox.

Variable WK2 WK3 WK4 WK+V Ferreira 2V2A Reference value
HR 75,00 75,00 75,00 70,00 75,00 75,00 48 – 105 [16]
CO 7,49 5,91 4,71 4,89 4,64 6,71 4.0 – 8.0 [4]
SV 99,87 78,80 62,80 69,81 61,87 89,45 60 – 100 [4]
MAP 124,83 98,54 78,49 - - 116,83 70 – 105 [10]
SBP 161,49 119,25 92,76 119,86 108,39 143,89 90 – 140 [10]
DBP 92,50 79,60 65,23 76,87 46,24 68,35 60 – 90 [10]
LVEDV - - - 121,00 - 152,47 65 – 239 [14]
LVESV - - - 51,20 - 63,012 16 – 143 [14]
LVP - - - 121,30 120,00 147,19 140 [9]
LVEf - - - 57,69 - 58,67 59,2 ± 13,7 [14]
RVEDV - - - - - 152,85 100 – 160 [10]
RVESV - - - - - 78,92 50 – 100 [10]
RVEDP - - - - - 40,12 15 – 25 [10]
RVESP - - - - - 2,17 0 – 8 [10]
RVEf - - - - - 48,37 40 – 60 [10]

In order to simulate the cardiovascular system of a person suffering from systolic heart
failure, we proceeded to decrease the elastances of the heart chambers, and increase the
effective resistance of the cardiac valves, to describe a heart that cannot eject blood with the
same effectiveness as a regular heart. This hardening of the heart was done by adjusting the
model parameters in Simulink. The complete set of output parameters has been published
also in [11].

Comparing the two diagrams shown in Figure 11, it can be observed that, when the
person has a medical condition, the volume of blood in the left ventricle tends to increase,
because the heart cannot eject the same volume per beat (the stroke volume is reduced). The
stroke volume can be calculated from the plots by subtracting the maximum and minimum
volumes. It can be appreciated that the stroke volume for the healthy simulation is higher
than the stroke volume for the systolic heart failure.

The models also enable the verification of medical devices such as a intra-aortic balloon or
a ventricular assist device. Any device model can be developed and coupled to this simulation,
to study and observe the changes of the hemodynamic parameters as the response of the
body after the medical device implantation. We have developed a dummy VAD block, as
seen in Figure 10, but further development is required.

Table 1 includes the simulation results for the six mathematical models studied in
this document. The list of output parameters consists of the following: Heart Rate
(HR, bpm), Cardiac Output (CO, ml), Stroke Volume (SV, ml), Mean Arterial Pressure
(MAP, mmHg), Systolic Blood Pressure (SBP, mmHg), Diastolic Blood Pressure (DBP,
mmHg), Left Ventricular End-Diastolic Volume (LVEDV, ml), Left Ventricular End-Systolic
Volume (LVESV, ml), Left Ventricular Pressure (LVP, mmHg), Left Ventricular Ejection
Fraction (LVEf, %), Right Ventricular End-Diastolic Volume (RVEDV, ml), Right Ventricular
End-Systolic Volume (RVESV, ml), Right Ventricular End-Diastolic Pressure (RVEDP,
mmHg), Right Ventricular End-Systolic Pressure (RVESP, mmHg) and Right Ventricular
Ejection Fraction (RVEf, %).

G. Ortiz-León, M. Vílchez-Monge, and J. J. Montero-Rodríguez 35

Figure 10 Block diagram of the complete circulatory system using the Cardiovascular Simulation
Toolbox [15]. This model considers systemic and pulmonary circulation, coupled to the four chambers
of the heart.

0 50 100 150 200
0

50

100

150

Pressure volume loop (PV)

Volume [ml]

P
re

s
s
u

re
 [

m
m

H
g

]

120 140 160 180 200 220 240
0

20

40

60

80

100

120
Pressure volume loop (PV)

Volume [ml]

P
re

s
s
u

re
 [

m
m

H
g

]

Figure 11 Pressure-volume loops for the left ventricle in the 2A2V circulatory model, in normal
health conditions (left, LVEf=58.7%) and with systolic heart failure (right, LVEf=24.6%).

MCPS’14

36 Simulations of Cardiovascular System With the Cardiovascular Simulation Toolbox

2 Analysis

Lumped-parameter electrical models of the cardiovascular system are an appropriate method
to obtain several hemodynamic parameters of the circulation, and are a commonly used
approach in many simulations.

Windkessel models of order 2, 3 and 4 are faster to produce results that the other models,
and they require less computational power. These models are a good approximation to obtain
the most general values and understand the basic behavior of the peripheral circulatory
system, but they provide only the cardiac output and the arterial pressure.

The most versatile models are implemented with the Cardiovascular Simulation Toolbox
because it presents excellent modularity and it is expandable with custom blocks. This
characteristic permits to modify existent models in order to describe and simulate cardiac
and circulatory diseases. The toolbox also can simulate existent lumped-parameter electrical
models, such as the Windkessel models, the Ferreira model and many others.

We added a new block to the Cardiovascular Simulation Toolbox, describing a variable
capacitor with an external compliance function C(t). This block was necessary to simulate
Ferreira’s model. The block enabled the use of the elastance function E(t) proposed on
Ferreira’s work.

Based on the results from Table 1 it can be observed that the 2A2V model calculates a
higher number of parameters and it can obtain results for both ventricles. The other models
have less precision and describe only the response of the systemic circulatory system to the
input flow from the ventricle. The 2A2V model calculates the ejection fractions for both
ventricles, and the results are compliant with the theoretical data.

3 Conclusions

We have implemented several models found in the literature using the Cardiovascular
Simulation Toolbox from O. Barnea, in MATLAB® R2013a. The two models reviewed that
can produce a pressure-volume loop are the WK+V and the 2A2V models. The other models
do not generate sufficient information to calculate these diagrams.

In the Windkessel models, the comparison parameter is the cardiac output, and it can
be appreciated how this value is close to the expected value when the order of the model
is increased. These models are exact but they do not calculate any information about the
behavior of the ventricles.

The numerical comparison of the models showed that the 2A2V simulation calculates
the higher number of output parameters and has an adequate accuracy comparing with
the expected laboratory values. The parameters of this model can be adjusted further to
simulate illnesses and defects in the cardiovascular system, and several blocks can be added
to the Cardiovascular Simulation Toolbox as they are required.

The models implemented in MATLAB® can be further improved by coupling the system
with COMSOL® to increase numerical precision and produce realistic results.

We have used the 2A2V model to simulate the cardiovascular system of a healthy person,
and also of a patient suffering from systolic heart failure, achieving a LVEf of 58.7% for
the healthy cardiovascular system, and a LVEf of 24.6% for systolic heart failure, showing
agreement with the expected parameters from Chatterjee et al. [3].

Acknowledgements. We want to thank the Vicepresidency of Research and Outreach (VIE,
Vicerrectoría de Investigación y Extensión) from the Instituto Tecnológico de Costa Rica, for
supporting and providing funding for this research, project number 5402-1360-3401.

G. Ortiz-León, M. Vílchez-Monge, and J. J. Montero-Rodríguez 37

References
1 Ofer Barnea. Open-source programming of cardiovascular pressure-flow dynamics using

SimPower toolbox in MATLAB and Simulink. Open Pacing Electrophysiol Ther J, 3(1):6,
2010.

2 Ph. Broemser and O. Ranke. Ueber die Messung des Schlagvolumens des Herzens auf
unblutigem Weg. Zeitung für Biologie, 90:467–507, 1930.

3 K. Chatterjee and B. Massie. Systolic and diastolic heart failure: differences and similarities.
Journal of cardiac failure, 13(7):569–576, 2007.

4 Edwards Lifesciences. Normal hemodynamic parameters and laboratory values. Retrieved
on April 9, 2014 from the webpage http://www.edwards.com/, 2011.

5 A Ferreira, M.A. Simaan, J.R. Boston, and J.F. Antaki. A Nonlinear State-Space Model of
a Combined Cardiovascular System and a Rotary Pump. In Proceedings of the 44th IEEE
Conference on Decision and Control, pages 897–902. IEEE, 2005.

6 Otto Frank. Die Grundform des arteriellen Pulses. Erste Abhandlung. Mathematische
Analyse. Zeitschrift für Biologie, 37:485–526, 1899.

7 Harrison’s Practice. Normal Hemodynamic Parameters. Retrieved on April 9, 2014 from
the webpage http://www.harrisonspractice.com/, 2010.

8 Martin Hlaváč. Windkessel model analysis in MATLAB. Proc 2004 Student Electrical
Engineering, Information and Communication Technologies, Brno 2004, pages 1–5, 2004.

9 Lancashire & South Cumbria Cardiac Network. Normal & Abnormal Intracardiac Pressures.
Retrieved on April 9, 2014 from the webpage http://lane.stanford.edu/.

10 LiDCO. Normal hemodynamic parameters. Retrieved on April 9, 2014 from the webpage
http://www.lidco.com/clinical/hemodynamic.php, 2011.

11 Gabriela Ortiz-Leon, Marta Vilchez-Monge, and Juan J. Montero-Rodriguez. An Updated
Cardiovascular Simulation Toolbox. In 2013 IEEE International Symposium on Circuits
and Systems (ISCAS2013), pages 1901–1904. IEEE, May 2013.

12 A. Quarteroni. Modeling the cardiovascular system—A mathematical adventure: Part I.
SIAM News, 34(5):1–3, 2001.

13 A Quarteroni. Modeling the cardiovascular system—A mathematical adventure: Part II.
SIAM News, 34(6):1–3, 2001.

14 Thomas Schlosser, Konstantin Pagonidis, Christoph U Herborn, Peter Hunold, Kai-Uwe
Waltering, Thomas C Lauenstein, and Jörg Barkhausen. Assessment of left ventricular
parameters using 16-MDCT and new software for endocardial and epicardial border
delineation. AJR. American journal of roentgenology, 184(3):765–73, March 2005.

15 Liron Sheffer, William P Santamore, and Ofer Barnea. Cardiovascular simulation toolbox.
Cardiovascular engineering Dordrecht Netherlands, 7(2):81–88, 2007.

16 K. Umetani, D.H. Singer, R. McCraty, and M. Atkinson. Twenty-four hour time domain
heart rate variability and heart rate: relations to age and gender over nine decades. Journal
of the American College of Cardiology, 31(3):593–601, 1998.

MCPS’14

http://www.edwards.com/
http://www.harrisonspractice.com/
http://lane.stanford.edu/
http://www.lidco.com/clinical/hemodynamic.php

Adaptive Failure Detection and Correction in
Dynamic Patient-Networks
Martin Ringwelski1, Andreas Timm-Giel1, and Volker Turau2

1 Institute of Communication Networks
2 Institute of Telematics

Hamburg University of Technology
Hamburg, Germany
{martin.ringwelski,timm-giel,turau}@tuhh.de

Abstract
Wireless sensors have been studied over recent years for different promising applications with
high value for individuals and society. A good example are wireless sensor networks for patients
allowing for better and more efficient monitoring of patients in hospitals or even early discharge
form hospital and monitoring at home. These visions have hardly led research as reliability is and
issue with wireless networks to be known error-prone. In life critical applications like health care
this is not an aspect to be handled carelessly. Fail-safety is an important property for patient
monitoring systems.

The Ambient Assistance for Recovery (AA4R) project of the Hamburg University of Techno-
logy researches on a fail-safe patient monitoring system. Our vision is a dynamically distributed
system using suitable devices in the area of a patient. The data in the network is stored with
redundancy on several nodes. Patient data is analyzed in the network and uploaded to a medical
server.

As devices appear, disappear and fail, so do the services being executed on those devices.
This article focuses on a Reincarnation Service (RS) to track the functionality of the processes.
The RS takes suitable actions when a failure is detected to correct or isolate the failure. Checking
of the nodes is done adaptively to achieve a good response time to failures and reduce the power
consumption.

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases Wireless Sensor Networks, Fail-Safety, Health Monitoring, Failure Mask-
ing, Distributed Systems

Digital Object Identifier 10.4230/OASIcs.MCPS.2014.38

1 Introduction

Until today, patients need to stay in the hospital after their treatment for monitoring their
recovery or even for diagnosing. With wireless sensor networks (WSNs) these doctors would
be able to monitor the health signals of the patients remotely, while they can be at their
familiar environment. This would not only help reduce costs by reducing the occupied beds
in the hospitals, but might also help people recover. People tend to recover better in their
families and many infections happen in hospitals1.

1 See http://www.bmg.bund.de/praevention/krankenhausinfektionen/fragen-und-antworten.html
(2014-02-10)

© Martin Ringwelski, Andreas Timm-Giel, and Volker Turau;
licensed under Creative Commons License CC-BY

Medical Cyber Physical Systems – Medical Device Interoperability, Safety, and Security Assurance (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer; pp. 38–48

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.38
http://www.bmg.bund.de/praevention/krankenhausinfektionen/fragen-und-antworten.html
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

M. Ringwelski, A. Timm-Giel, and V. Turau 39

Using a WSN for patient monitoring rises several problems regarding the fail-safety of
the system. Wireless links are volatile and nodes can fail. While those problems also affect
other kinds of WSNs, in patient monitoring they can be life critical.

This work is part of the Ambient Assistance for Recovery (AA4R)2 project of eight
institutes at the Hamburg University of Technology. The project aims at building a patient
monitoring system to support recovery of patients and relieve of hospital personal. This will
be achieved by an uninterrupted use of technology from the ward of a hospital over a rehab
center to the patients home. By this, we are closing the gaps between ambient assisted
living in home care, telemonitoring and telediagnosis. Fail-safety is addressed at different
subsystems such as the communication infrastructure or the sensors themselves. Further,
the fail-safety is addressed at system-level. In this paper we primarily focus on fail-safety in
the communication infrastructure.

The system is distributed using resources available in the area. We point out and model
different sources of failure and discuss strategies to reduce them and the risk of a total
failure of the system. To achieve that, we build a monitoring service for the system, called
Reincarnation Service (RS). The RS discovers faults and takes actions to solve them.

In the next chapter, we review related work and show the differences to our approach.
The vision of our scenario is introduced in the third chapter, followed by possible failures and
failure rates. We discuss our approach and the expected improvements in the fifth chapter.
In chapter six, we give a conclusion and discuss the future work.

2 Related Work

Chipara et al. [4] built and tested an IEEE 802.15.4 based wireless monitoring system for
patient data. In contrast to our idea of monitoring the patient at home for longer periods,
they only measured for up to three days during the patients stay at the hospital. The sensor
data was limited to the pulse rate and the oxygen level of the blood. Data rates were only
in the range of several bytes per minute. As the patients only moved inside the hospital
and several relay points where installed to forward the data, the network reliability was
not problematic in this study. The system was centralized and the nodes preconfigured.
Problems of reliability in a distributed system were not investigated. The work of Ko et
al. [7] invested a similar system.

Chen et al. [3] investigated a routing protocol for patient monitoring and fall detection
at home. In case of emergency the system transmits the ECG and in-door position of the
patient to first responders. Their protocol ensures a fast and reliable delivery of the data.
The system is closed and no ambient sensors or other devices are used.

Preventing or avoiding faults is not possible in complex distributed systems. We plan
to detect and correct or isolate faults in the system. To achieve high reliability, Herder
et al. [5] described a Reincarnation Server in the Minix 3 operating system. This server
periodically checks the state of the other services in the system and restarts them when
they are broken. The described method is used on one machine and the checking time is
constant. Nevertheless, we can use that idea of failure detection and correction and thereby
increase the overall reliability of the system.

This approach can also be read out of the white paper of IBM [6] about self-healing,
self-configuring and self-optimizing. They identified a four state healing loop consisting of

2 http://www.aa4r.org/

MCPS’14

http://www.aa4r.org/

40 Adaptive Failure Detection and Correction in Dynamic Patient-Networks

Smartphone

Smartwatch

Ambient
Sensor

Internet

BAN

Can become unavailable

Connection
Optional Connection

PAN-C

NAS

Bluetooth / 802.15.4

WiFi /
Cellular

Sensor

Sensor

Sensor

802.15.4

Bluetooth /
802.15.4

WiFi /
Bluetooth

Figure 1 Network Architecture.

monitoring the state, detecting errors, analyzing the failure to plan the repair and executing
the repair.

Our implementation will use the CometOS framework [12]. CometOS allows us to write
code that can be simulated in Omnet++ and compiled for testbed hardware. This reduces
the risk of failures during the migration of the software.

3 Scenario

The AA4R project aims at people recovering from different kinds of incidents. From a broken
leg over to heart attack. These people need to stay in hospitals to monitor their recovery
and ensure they are not suffering a fall-back. Another scenario are people coming to the
hospital without knowing what is wrong. They also need to stay in the hospital to monitor
their health values and be able to make a diagnosis. We want those people to be able to
go home and continue with their lives. Our monitoring system will assist patients in their
recovery and the physicians in their diagnosis. It will help prevent dangerous situations and
call help in emergency situations.

The system we envision consists of a Body-Area-Network (BAN) of sensors, collecting
vital information, ambient sensors and other External Devices (EDs), building a Personal-
Area-Network (PAN). EDs, like smartphones, smartwatches or laptops, are used for the
PAN-Controller (PAN-C). Figure 1 shows the network architecture of the Patient-Network
(PN) including the BAN, EDs building the PAN-C and an ambient sensor. The sensors in
the BAN might have direct connections to several EDs, but only only one connection will
be preferred, depending on the stability of the connection and the resources of the device.
On the other end of the Internet will be a medical server, which stores the information of
the patients under pseudonyms for diagnosis by physicians.

The PAN-C is a distributed system consisting of different services in the network. A

M. Ringwelski, A. Timm-Giel, and V. Turau 41

service will be delegated to the most suitable device, determined by their available resources
and connections. Those services are:

Forwarding: We want to send the data to a medical server. The server can automatically
analyze the data and prepare relevant graphs for physicians or present raw data for
doctors to monitor the values or figures remotely. This service needs to be done by a
device having a reliable Internet connection.
Storing: Storing the data that is collected in the BAN and other ambient sensors needs
to be done redundantly by several devices. The data is needed for analyzing the health
status in the network and to maintain the state and integrity of the system. Not only
the current, but also the past data of the medical sensors is important to understand
the situation of the patient. This service becomes critical when lacking an Internet
connection.
Plausibility: This service looks for anomalies in the sensor data to detect drifts or other
failures of sensors. To achieve that, we need to have past data available.
Inclusion: This service can be described as the coordination service. New devices for
services of the PAN-C need to be found and included in the network. Also, ambient
sensors that might be helpful to analyze the patient data, e.g. room temperature and
humidity, need to be included. This service can be compared to the Membership Service
in the work of Rodrigues et al. [11].
Control: The control service allows medical applications to use possible actuators in the
BAN. A patient with diabetes can get his insulin automatically or a patient with strong
pain can get his analgesics. This service also needs to eliminate the risk of overdosing
the patient.

Services on the EDs run as virtual machines to be separated from the rest of the devices
system. This also enables us to simply copy the service to a different device and switching
the responsibility to the new device.

Having several devices responsible for the services in the network reduces the risk, that
all devices fail at once, but it increases the risk that devices running important services fail.
Also consistency of data and decision are critical points in the network. Failures of services
need to be detected to take measures to isolate and try to repair the failures. For that, a
Reincarnation Service (RS) will run on every device to monitor the state of the connected
devices.

The overlying application should not be concerned with failures of devices in the network.
Only if a service can not be fulfilled by any other device or compensated by another service,
the application should be informed to take actions.

4 Failures

As this system is responsible for a human being, a failure of one single component could
lead to an undiscovered critical situation of the patient and thereby to death. That is why
we need to analyze the possible faults in the system. We identified seven fault categories:

No Internet connection: The data needs to be transmitted to a medical server for
remote monitoring by a doctor. If the connection fails, the data needs to be temporarily
stored locally and transmitted when a connection comes up again. For diagnosis, this
will be a sufficient solution. In emergency situations, this problem can be life critical.
Depending on the previous condition of the patient, a timeout might be used to trigger
an emergency call on the server.

MCPS’14

42 Adaptive Failure Detection and Correction in Dynamic Patient-Networks

No
Internet

Low
Storage

Device
Failure

Software
Failure

Battery
Low

AND

OR

Data Loss

Task Loss

OR

Migration
Failure

Retry
Failed

AND

Sensor
Failure Invalid Data

No other
Device

AND

Figure 2 Fault Tree.

Low Storage: The last data should always be held on nodes in the network for a better
analysis of the current patient state. In case of a lost Internet connection the data needs
to be kept even longer, so that the storage may get sparse.
Migration failure: The state of the network needs to be known by every device. Dur-
ing transfer of a service from one device to another, inconsistencies in the distributed
information might arise.
Sensor failure: Sensors might drift, have an offset or even stop working. Those errors are
not further considered in this work, as they are part of the analysis that other members
of the AA4R project are working on.
Device failure: Any device can randomly fail because of bad production or wear-out.
Software failure: We can not guarantee an error-free program. An error may also be
caused by a memory shortage. In this case it might work again after a restart.
Battery low: As we are using wireless devices running on battery, any device can run
low on battery. This failure can be easily foreseen.

The fault tree in Figure 2 shows the impact of the given failures. Only if one of the three
subsystems fails and we encounter data loss, service loss or a sensor failure, the application
must be informed. Otherwise the faults can be masked for the application, be it through a
state-machine or a primary-backup approach [8]. Invalid data will be handled by the analysis
service, which might just discover a drift or switch to a redundant sensor, if available.

Masking failures allows the application to concentrate on its service rather than having
to deal with error handling. It is still possible for faults to occur, thus fault handling can
not completely left out.

4.1 Expected Failure Rates

Failure rates, hazard rates or hazard functions are names for the expected failures at a
given time. In contrast to the probability density function f(t), which depicts the overall
probability of failures per time, the hazard function h(t) depicts this probability under the
assumption, that no error happened before. It is the fraction of the probability density
function by the survival rate, whereas the latter is S(t) = 1− F(t).

M. Ringwelski, A. Timm-Giel, and V. Turau 43

For electronic devices Nowlan and Heap [10] proposed a hazard function with an infant
mortality and a constant failure rate. The infant mortality is caused by incapable devices,
program or migration errors. Those errors are more likely to happen at the beginning of
the lifetime of a device. Devices that survive the infant mortality phase are not likely to
suffer from those errors. The constant failure probability is due to battery drain, interfering
failures or devices moving out of reach. Those errors can happen at any time. A wear-out
mortality is not included, as the system is not expected to run tens of years. We can also
expect that the patient is taking care of his or her smart phone battery.

The infant mortality can be described with the Weibull distribution (equation 1), with a
0 < k < 1 [13]. k is the shaping factor, where k < 1 results in a decreasing failure rate over
time. λ is the scaling parameter. fim(t) describes the error probability at a certain time, (2)
is the cumulative error probability and (3) shows the hazard function:

fim(t) = kλkimtk−1e−(λimt)k
(1)

Fim(t) = 1− e−(λimt)k
(2)

him(t) = kλkimtk−1 (3)

Failures by interfering signals or devices moving out of range can occur at any time.
Those failures are not more likely to happen at the beginning or after some time. The
constant failure rate can be described by an exponential distribution. Equations (4), (5)
and (6) show the probability density function, the cumulative distribution and the hazard
function of the exponential distribution:

fc(t) = λce
−λct (4)

Fc(t) = 1− e−λct (5)

hc(t) = λc (6)

The hazard functions can be easily combined by addition to get the system hazard
function in equation (7). For any given interval [ta; tb] we can calculate the probability of a
failure, under the assumption that no failure occurred before time ta, with the equation (8):

h(t) = kλkimtk−1 + λc (7)

Pfail(ta, tb) = F(tb)− F(ta)
1− F(ta) = 1− e−λctb−(λimtb)k

e−λcta−(λimta)k (8)

Figure 3 depicts sample hazard functions for equations (3), (6) and (7). The used example
values are later discussed in section 5.1.1.

5 Counter-measures

To achieve fail-safety, the system needs to be in a stable state, although inevitable faults
may occur. For that, we need to detect the failures as fast as possible and take measures to

MCPS’14

44 Adaptive Failure Detection and Correction in Dynamic Patient-Networks

0

0.01

0.02

0.03

0.04

0.05

0 100 200 300 400 500 600

ha
za

rd
ra

te
[fa

ilu
re

s/
s]

time [s]

h(t)

infant mortality

constant failure rate

Figure 3 Sample of hazard functions for equations (3), (6) and (7) with k = 0.2, λim = 0.9335 1
s

and λc = 0.0046 1
s .

solve them. The system must not rely on one single node. Also, even if a service or data
is lost, the system needs to be aware of the situation and keep on working with its limited
capabilities.

There are no metrics for fail-safety, but we can use the Mean-Time-To-Failure (MTTF),
Mean-Time-To-Recovery (MTTR) and the fraction of components allowed to fail, before the
system becomes unstable. Those figures are used to describe the reliability.

For the different kind of failures, we have to take specially assembled counter-measures:
Link Quality Prediction: By predicting the quality of a link, we can take measures to
switch a service from a node to another one, before it is disappearing. This would extent
a Link-Quality-Estimator (LQE) to a Link Quality Predictor.
Redundant storage: As nodes with important information can disappear without warn-
ing, we need to have redundant data in the network. Acedaǹski et al. [1], Nguyen et al. [9]
and Rodrigues et al. [11] have analyzed distributed network storage with random linear
network coding. Nevertheless they can not assure that data is available after some time.
Depending on the sensors data-rate and the number of devices and their capacities, data
needs to be deleted eventually. We want to use an approach that assure data availability
and prioritizes the data by importance, so only dispensable data gets lost.
Reincarnation Service: For detecting failures in software and loss of connection, a Rein-
carnation Service (RS) checks the state of the devices and processes. In case of failure,
the process can be restarted or a substitute can be found.

The RS itself also needs to be distributed. Every device running a service has a RS
responsible for the services on that device. This ensures reliability of services on the devices.
Figure 4 shows the layered software architecture on two connected devices. Services that
are not present on a device, due to limited resources, can be used from another device.
The medical application itself does not know, where the services are hosted. The RS is
responsible for the services and the application to be running and available.

As devices can also fail or disappear, the device that has include another device, that
means it has delegated a service to that device, is responsible for that. The Reincarnations
Service has to check the Reincarnation Service on the other device.

5.1 Detecting Failures
To detect failures, processes and devices need to be checked periodically. The question
remains how often a check should be performed. Too frequent checks will drain the battery
and cause congestion, too few lead to long unrecognized failures which can cause other
failures.

M. Ringwelski, A. Timm-Giel, and V. Turau 45

Medical Application

Storing Inclusion

Network Stack

R
ei

nc
ar

na
tio

n
 S

er
vi

ce

Forwarding Control Plausibility

Service Interface

Medical Application

Storing Inclusion

Network Stack

R
ei

nc
ar

na
tio

n
 S

er
vi

ce

Service Interface

Figure 4 Software Architecture, showing two devices offering different services

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80

de
lta

t[
s]

Time [s]

(a) Adaption of ∆t

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60 70 80

P
ro

ba
bi

lit
y

of
Fa

ilu
re

Time [s]

delta tmax

delta tmin

adaptive delta t

(b) Expected failures per Interval

Figure 5 Influences of ∆t.

Setting the probability of failures in an interval to a fixed value failmax, we can calculate
the next time we need to check if the service is still alive. By that, we achieve an adaptive
testing of the process, depending on the expected failure rate. But solving that equation is
not trivial. We use the Newton method to approximate the next time to check (equation 9):

0 = λc∆t + λim
k
(

(t + ∆t)k − tk
)

+ ln(1− Pfailmax)

∆tnext = ∆tmin +
λc∆tmin + λim

k
(

(t + ∆tmin)k − tk
)

+ ln(1− Pfailmax)

−λc − kλimk (t + ∆tmin)k−1 (9)

If that equation results in a ∆tnext less than ∆tmin, ∆tnext is set to ∆tmin. To make sure
that a failure does not stick undetected for a long time, it is best to also set ∆tnext < ∆tmax.
Figure 5a shows a sample curve for an adaptive ∆t, whereas Figure 5b depicts the failure
probability during the different intervals for fixed ∆ts and the adaptive one from Figure 5a.

After detecting a failure, other processes must be tested again, regardless of their next
checking time. This way, we can check if the failure affected other processes or was introduced
by the failure of another process.

5.1.1 Calculating the parameters
To create a fitting curve, we need to know the parameters k, λc and λim. k and λim will be
set to fixed values. They can be estimated in advance by empirical values of failures.

MCPS’14

46 Adaptive Failure Detection and Correction in Dynamic Patient-Networks

For every device that was already used for the PAN-C, we can adaptively compute λc
with an exponentially weighted moving average (EWMA) filter. As for a constant failure
rate, the MTTF is the inverse value of λc. We can use the last time to failure to update our
estimation. Devices that are known to stay in the network for longer times will be checked
less frequently than devices that disappear after short times.

5.1.1.1 Example

Assume we have a smartphone with a MTTF of two years, the battery holds for 24 hours
and we expect the device to stay in the network for 8 hours. If we experience a migration
failure, it is expected to occur in the first second. If the software has a failure we expect it
to occur in the first minute. The MTTF of the whole system can be calculated by [2]:

1
MTTF =

∑ 1
MTTFsubsystem

.

We do that separately for the infant mortality failure and for the failures with constant
failure rate. The migration failure and the software failure are part of the infant mortality,
with an MTTF of about 0.9836 s. The MTTF for this is the expected value of the Weibull
distribution, which is calculated by:

E(X) = 1
λim

Γ (1 + k) =⇒ λim = Γ (1 + k)
MTTF .

Assuming k = 0.2, we calculate λim = 0.9334 1
s . The lower we set k, the more we decrease

the influence of infant mortality failures to the long term failure rate.
λc is simply the inverse of the MTTF for the device, the battery and the device availabil-

ity. By that we get λc = 4.63 · 10−5 1
s . The Round-Trip-Time (RTT) between two neighbor

nodes in IEEE 802.15.4 can be estimated with 20 ms (including MAC retries and Back-offs),
so ∆tmin should not have a lower value. To also allow other packets in the network to freely
flow, we set ∆tmin = 80 ms. ∆tmax is set to one second, so we are still able to catch failures
after at least that time.

Those calculated values were used in the example Figures 5a and 5b. The maximum
failure probability per interval was set to failmax = 0, 62%.

When the smartphone disappears from the network after two hours, λc will be recal-
culated for the next time. The experienced time to failure would result in a λc,exp =
1.39 · 10−4 1

s . A new λc will then be calculated by:

λc,new = αλc,old + (1− α)λc,exp .

5.2 Defeating Failures
When failures occur, it is important to understand their cause. When the device failed, the
service needs to be switched to another device, but if it was a random failure it might be
sufficient to restart the process. On the other hand, if the service program for that device
is error-prone, the service needs to be updated.

Of cause, switching the service to another device is not an option if no other is available.
If the device is still available and no other is capable of fulfilling it, the service needs to be
restarted. Otherwise, if the device is not available anymore, the service must be set on hold.

The checking of devices and services by the RS must not only rely on a simple echo ping,
but must ask for the devices and services state. Services might need to do a simple job, to

M. Ringwelski, A. Timm-Giel, and V. Turau 47

see, if the service is still working properly. Answers by devices need to inherit the battery
status, link quality, RAM usage and a version of the information used on that device. With
this information, we can derive a probable cause for the failure. We can see if the information
is out of date, the processes ran out of ram, the link went weak or if the device went out of
energy.

The gathered information about the device can also influence the next checking time. A
device responsible for the Internet connection with a bad link quality to the WiFi should be
tested more often, than with a good link quality.

Another way to defeat failures is to have redundancy. We already mentioned to store
data redundantly on the devices of the network, but we can also have several devices fulfilling
the same service, as it is done on aircrafts. But in contrast to aircrafts, we have a dynamic
system with changing devices and can only do that, when spare resources are available. The
up-lying applications have to make their requests through the RS, unknowing where the
services are fulfilled. That way failures can be masked from the applications and only get
an error, when a service is not able to run anymore.

5.3 Expected Improvements

By implementing this adaptive checking behavior, we expect to keep the probability of
undetected failures below a set maximum failure probability Pfailmax , while also not keeping
the network occupied with checking packets and having a low energy consumption. Network
capacities force us not to stick to that optimum, when the failure rate would expect a
checking time below the round-trip-time. The adaption by an EWMA filter will make sure,
that the assumed hazard rate will reflect the experienced disappearing of a device.

With the RS we also mask failures of devices from applications. Only when service can
not be fulfilled anymore, the applications will be informed and can take actions on their own.

6 Conclusion and Future Work

In this work we presented our vision of a fail-safe dynamic Patient-Network for health
monitoring. To achieve fail-safety, among other counter-measures we propose an adaptive
checking of the functionality of the components by a Reincarnation Service (RS). Instead of
a fixed interval to check the components, we use an interval corresponding to the expected
failure-rate. By that, we hope to keep the probability of undiscovered failures below a set
threshold, while not flooding the network with checking packets and also keeping the energy
consumption low.

Those measures for a fail-safe distributed health monitoring system, have not been im-
plemented and tested yet. We want to build an Omnet++ simulation to validate our as-
sumptions. We also need to further investigate the possible steps to be taken, when a failure
is discovered.

In this paper we only focused on an the adaptive checking of processes and devices. We
have not discussed how to check the functionality of a process. It is also our aim to investigate
in a fail-safe distributed storage and the prediction of disappearing nodes with LQE.

Other works of the AA4R project will focus on the security of the system, analysis of
the data and validation of the model.

MCPS’14

48 Adaptive Failure Detection and Correction in Dynamic Patient-Networks

References
1 Szymon Acedański, Supratim Deb, Muriel Médard, and Ralf Koetter. How good is ran-

dom linear coding based distributed networked storage. In Proceedings of the WINMEE,
RAWNET and NETCOD 2005 Workshops, Riva del Garda, Italy, April 2005.

2 A. Birolini. Quality and reliability of technical systems: theory, practice, management.
Springer, 1997.

3 Shyr-Kuen Chen, Tsair Kao, Chia-Tai Chan, Chih-Ning Huang, Chih-Yen Chiang, Chin-Yu
Lai, Tse-Hua Tung, and Pi-Chung Wang. A reliable transmission protocol for zigbee-based
wireless patient monitoring. Information Technology in Biomedicine, IEEE Transactions
on, 16(1):6–16, Jan 2012.

4 Octav Chipara, Chenyang Lu, Thomas C. Bailey, and Gruia-Catalin Roma. Reliable clinical
monitoring using wireless sensor networks: Experiences in a step-down hospital unit. In
The 8th ACM Conference on Embedded Networked Sensor Systems (SenSys 2010), pages
155–168, Zurich, Switzerland, November 2010. ACM.

5 Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S. Tanenbaum.
Minix 3: A highly reliable, self-repairing operating system. SIGOPS Oper. Syst. Rev.,
40(3):80–89, July 2006.

6 IBM Corp. An architectural blueprint for autonomic computing. IBM Corp., USA, October
2004.

7 JeongGil Ko, Tia Gao, R. Rothman, and A. Terzis. Wireless sensing systems in clinical
environments: Improving the efficiency of the patient monitoring process. Engineering in
Medicine and Biology Magazine, IEEE, 29(2):103–109, March 2010.

8 Sape Mullender, editor. Distributed Systems. ACM, New York, NY, USA, 1989.
9 Kien Nguyen, Thinh Nguyen, Y. Kovchegov, and Viet Le. Distributed data replenishment.

Parallel and Distributed Systems, IEEE Transactions on, 24(2):275–287, 2013.
10 F. Stanley Nowlan and Howard F. Heap. Reliability-centered maintenance. Technical Re-

port AD-A066-579, United Airlines and Office of Assistant Secretary of Defense, December
1978.

11 Rodrigo Rodrigues, Barbara Liskov, Kathryn Chen, Moses Liskov, and David Schultz.
Automatic reconfiguration for large-scale reliable storage systems. IEEE Transactions on
Dependable and Secure Computing, 9(2):146–158, March 2012.

12 Stefan Unterschütz, Andreas Weigel, and Volker Turau. Cross-platform protocol develop-
ment based on omnet++. In Proceedings of the 5th International ICST Conference on Sim-
ulation Tools and Techniques, SIMUTOOLS ’12, pages 278–282, ICST, Brussels, Belgium,
2012. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering).

13 M. Xie and C.D. Lai. Reliability analysis using an additive weibull model with bathtub-
shaped failure rate function. Reliability Engineering & System Safety, 52(1):87 – 93, 1996.

Challenges and Opportunities in Design of Control
Algorithm for Artificial Pancreas
Mahboobeh Ghorbani and Paul Bogdan

University of Southern California
Electrical Engineering Department
{mahboobg,pbogdan}@usc.edu

Abstract
With discovery of the insulin, Type-1 diabetes converted from a fatal and acute to a chronic
disease which includes micro-vascular complications which range from Kidney disease to stroke
and micro-vascular complications such as retinopathy, nephropathy and neuropathy. Artificial
pancreas is a solution to improve the quality of life for people with this very fast growing disease
in the world and to reduce the costs. Despite technological advances e.g., in subcutaneous sensors
and actuators for insulin injection, modeling of blood glucose dynamics and control algorithms
still need significant improvement. In this paper, we investigate challenges and opportunities for
development of efficient algorithm for designing robust artificial pancreas. We discuss the state of
the art and summarize clinical and in silico assessment results. We contrast conventional integer
order system approach with a newly proposed fractal control and summarize its benefits.

1998 ACM Subject Classification G.1 [Mathematics of Computing]: Numerical Analysus,
J.3 [Computer Application]: Life and Medical Science-Health

Keywords and phrases Cyber-Physical Systems, Artificial Pancreas, Optimal and Model Pre-
dictive Control, Fractal Model Predictive

Digital Object Identifier 10.4230/OASIcs.MCPS.2014.49

1 Introduction

In healthy individuals, the alpha and beta cells of the pancreas regulate the blood glucose
concentration to around 80 mg/dl. For people suffering from Type-1 diabetes mellitus
(T1DM), which is one of the fastest growing diseases globally, there is little or no endogenous
insulin production, leaving the body unable to lower blood glucose without exogenous insulin.
The impact of the intensive insulin therapy was not revealed up until the publication of results
of Diabetes Control and Complication Trial (DCCT) in 1993 [26]. The CDDT involved a
comparison of conventional therapy (one or two daily insulin injections and a daily monitoring
of blood glucose or urine) and intensive insulin therapy and concluded that intensive therapy
resulted in lower mean blood glucose values and significantly reduced complications (retino-
pathy, nephropathy and macro-vascular disease). The risk of complication is directly related
to glycated hemoglobin known as HbA1c. OGrady et al. find that tighter blood glucose
levels achievable with a closed-loop artificial pancreas (AP) results in Medicare savings of
1.9 billion over 25 years with improved quality of life (QOL) [24]. A schematic view of a
closed-loop artificial pancreas is shown in Fig. 1, which is mainly composed of three parts:

Continuous time blood glucose measurement (CGM): The knowledge of glucose concen-
tration in blood is a key aspect in the quantitative understanding of the glucose-insulin
system and in diagnosis and treatment of diabetes. By the ability of CGM devices to provide
glucose readings in real time, engineers can exploit signal processing and control theory to

© Mahboobeh Ghorbani and Paul Bogdan;
licensed under Creative Commons License CC-BY

Medical Cyber Physical Systems – Medical Device Interoperability, Safety, and Security Assurance (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer; pp. 49–57

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.49
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

50 Challenges and Opportunities in Design of Control Algorithm for Artificial Pancreas

be used in designing efficient artificial pancreas. Besides the improvement of hardware part
of CGM devices, a vast amount of research has devoted to address denoising, prediction and
alert generation [13, 1, 5, 22, 17, 3, 6].

Figure 1 Systematic view of artificial pan-
creas [23].

Control algorithm and safety layer: The main
component of AP is the control algorithm that
determines the right insulin injection rate based
on CGM data to prevent hyperglycemia and
hypoglycemia. Design of a QOL-aware AP is
a challenging task since it requires building ac-
curate mathematical model of glucose-insulin
kinetics. Algorithms often include a safety layer
as a supervisory module that constraints insulin
delivery. This layer may monitor and limit in-
sulin on board (the insulin delivered but yet
to exert its action) or maximum insulin rate
or may suspend insulin delivery at low glucose
levels or when glucose is decreasing rapidly. In
this paper, we overview these challenges and control strategies employed so far.

Insulin injection device: The essential function of AP is the Insulin delivery. Insulin pumps,
if inserted in a proper closed-loop system allow automatic insulin delivery. There are several
technologies that can perform this task: an intra-venous route, subcutaneous insulin infusion
(SCII) or intaperitoneal insulin delivery. Continuous subcutaneous insulin infusion (CSII)
uses a portable electromechanical pump to mimic nondiabetic insulin delivery as it infuses at
preselected rates normally a slow basal rate with patient-activated boosts at mealtime.

2 Control related challenges and constraints

Blood glucose (BG) regulation requires control algorithm to determine the best insulin
injection over time. They have been tested in-silico and clinically over time and improved
over the years. In this section, we first address the main challenges and constraints in
designing efficient control algorithm. Next, we explain different control algorithms proposed
so far and compare their performance.

Non-negligible delay in glucose measurement and between insulin injection and absorp-
tion: After administration of a subcutaneous bolus of rapid acting insulin analogues, the
maximum BG lowering effect may occur after up to 90–120 min. This time lag is often not
accounted for design of control algorithm. Patients treated with insulin pump are warned
against stacking caused by the administration of a series of correction boluses. The same
principle applies to closed-loop systems. In order to prevent hypoglycemia, high glucose
levels have to be brought within normal range slowly during closed-loop delivery. Methods to
assess the impact of injecting insulin (e.g. the one proposed in [7]) are highly needed in order
to protect against insulin overdosing. Two alternative insulin delivery routes, intraperitoneal
(IP) and technosphere insulin (TI) showed faster pharmacokinetic characteristics that can
improve the design of future AP systems. Design of the AP using these fast acting alternative
routes may enhance BG regulation by reducing actuation delays, especially during mealtime.

M. Ghorbani and P. Bogdan 51

Asymmetric risk for low and high BG levels: The ultimate objective of any AP is to
improve QOL and minimize complications resulting from poor blood glucose control. Toward
this end, one should note to the asymmetric risk associated to high BG levels. Low BG levels
are acutely risky as they can result in altered mental state, seizures and coma. Meanwhile,
high BG levels increase the risk of chronic complications such as retinopathy, nephropathy
and cardiovascular disease.

Irreversible action of insulin: Only positive amount of the injected insulin is possible and
it cannot be collected back from the patients blood. An alternative to deal with this problem
is to use bihormonal treatment [12] consisting of injecting glucagon and insulin. However,
this also increases the problem space and complexity.

Meal detection/estimation: Meal dynamics can have a significant disturbance effect on
BG level. In a fully closed-loop mode, insulin is delivered on the basis of glucose excursions
only, without information about timing or meal size. In a less ambitious configuration that
uses meal announcement, the closed-loop system is informed about meal size, and may
generate advice on prandial insulin bolus.

Alternatively, control algorithms can automatically increase insulin delivery based on the
carbohydrate content of the meal. A hybrid approach is characterized by administration of a
small pre-meal priming bolus or administration of a fixed bolus and delivering the remaining
insulin through the closed-loop operation [9].

Time dependency of control requirements: An important challenge in development of
artificial pancreas is that overnight treatment requires slow acting insulin injection while
post-prandial control requires rapid and aggressive insulin delivery to control BG.

On the other hand, exercise of moderate intensity increases the risk of hypoglycemia
[32]. Exercise announcement or heart rate monitoring to suspend insulin during closed-loop
delivery may be another effective method to control glucose levels during exercise. Pre-
emptive carbohydrate intake or dual hormone treatment with glucagon might be needed to
fully eliminate the risk of exercise-related hypoglycemia as responses to exercise are highly
variable. To sum up, BG control is a time dependent process and this should be taken into
account in order to have a safe and efficient AP.

Variability of model parameters: Up to 4 times inter-subject variability in rapid-acting
insulin analogue pharmacokinetics has suggested with occasionally as much as 50 % intra-
subject variability [12]. Within subject variability of insulin needs includes both day-to-day
and hour-to-hour variations in insulin sensitivity owning to circadian and diurnal cycles,
dawn phenomenon (an abnormal early morning increase in BG concentration), acute illness,
stress and a delayed effect of alcohol intake. Basal insulin needs are generally lower in
young individuals compared with older ones. Also, since overnight control requires regulation
based on mild control actions while postprandial regulation is characterized by prompt and
energetic correction, timely control effect should take place.

3 Control algorithms for BG level regulation

In this section we present two main groups of controller for BG level regulation namely
proportional-integral-derivative and model predictive controller.

MCPS’14

52 Challenges and Opportunities in Design of Control Algorithm for Artificial Pancreas

3.1 Proportional-Integral-Derivative (PID) controller

PID controller is a generic control loop feedback mechanism widely used in industrial control.
The PID control algorithm for artificial pancreas adjusts the insulin delivery rate by assessing
glucose excursions from three viewpoints: the departure from the target glucose level (the
proportional component), the area under the curve between measured and target glucose
levels (the integral component) and the rate of change in measured glucose levels (the
derivative component). Some controllers include only a subset of the components (e.g. a
proportional-derivative [27]).

To better understand the intuition behind using PID controller in the control algorithm for
artificial pancreas, one should note that dose of insulin is directly related to the proportional
error (P) (current glucose minus target glucose) since a patient with higher glucose level
needs more insulin rather than one with lower glucose level. Moreover, in two patients with
the same glucose level but with different rate of glucose increase, the one with higher increase
rate should get a higher dose of insulin and this justifies the derivative element (D). To
understand the role of Integral element (I), it should be noted that for two patients with
the same current glucose level and no change in the very recent minutes, the one with more
hours spending in high BG level (thus, having more integral error) needs more insulin due to
the fact that this is a sign on insulin resistivity. Steil et al. have shown the normal healthy
pancreas displays proportional, derivative and integral dynamics [14]. They argue that the
abrupt step increase in glucose causes a rapid rise in pancreatic insulin release, which is
called first phase response and is related primarily to the derivative component. Slower rise
in insulin is called the second phase response, which corresponds to proportional term and
persists as long as glucose is elevated. There is also an integral component employed in the
second phase since insulin secretion after 3 hours of elevated glucose at a fixed level is greater
than insulin secretion after only 1 hour at the same glucose level.

Equation 1 shows the the components of control signal (u(t)) that is the amount of insulin
injection rate as a function of e(t) which is the difference between BG level and the reference
value. The Kp, Ki and Kd parameters can be assigned by learning algorithms that have
been discussed in control related textbooks. Optimizing using PID controller needs tuning of
the controller by some methods, like the ones proposed in [16] and [2].

u(t) = Kpe(t) +Ki

t∫
0
e(τ)dτ +Kd

de(t)
dt (1)

PID approach has inherent limitations due to time lags in glucose sensing and insulin
action. Several studies have investigated this approach and achieved some improvement
over conventional PID approach. For example, Weinzimer et al. in [29] have tested PID
algorithm for insulin injection in 17 adolescences. They have tested both fully closed-loop
and hybrid closed-loop (with pre-meal priming bolus) and show the addition of small manual
priming bolus doses of insulin given 15 min before meals improves glycemic excursions. A
different study by Renard et al. in [10] proved the feasibility of intraperitoneal insulin delivery
for artificial beta cell and supported the need for further study since subcutaneous insulin
delivery from a portable pump encountered delays and variability in insulin absorption. They
evaluated their proposed method in a clinical study on eight T1DM patients while the time
spent in 4.4–6.6 mmol/l was the primary end point. Another study in [12] uses both insulin
and glucagon to prevent hypoglycemia encountered in PID algorithm with only insulin as
the treatment.

M. Ghorbani and P. Bogdan 53

3.2 Model Predictive Controller
Model Predictive Control (MPC) is a general optimization framework that can involve many
different types of models and objective functions. The MPC approach is at the front of
current research into closed-loop systems. It acceptably accommodates delays associated
with insulin absorption and can also easily account for meal intake and prandial insulin
boluses by the patient. The other advantage of model predictive control paradigm is the
fact that it can account for variability since the model parameters can be personalized. The
main advantage of MPC is the fact that it allows the current timeslot to be optimized, while
keeping future timeslots into account. This is achieved by optimizing a finite time-horizon,
but only implementing the current timeslot. MPC has the ability to anticipate future events
and can take control actions accordingly.

The vital ingredient of MPC is a model that links insulin delivery and meal ingestion to
glucose excursions. This model can be physiological and account for fundamental processes
regulating glucose levels or a black box model that disregards insights but learns the insulin
glucose relationship via formal pattern recognition technique. They both can benefit from a
wide range of mathematical models of glucoregulatory system. It is therefore clear that proper
models of glucose and insulin kinetics as well as models that can be used to predict near-
future metabolic behavior are mandatory. Minimal models (describing the key components
of system functionality) and maximal models (nonlinear, high order models) are reviewed by
Cobelli in [6].

A general MPC problem formulation, which includes optimization objective (Equation 2),
glucose-insulin dynamical model (Equation 3) and initial value, glucose state and insulin
control constraints (Equation 4) can be written as follows.

minu(t)

tf∫
0

F (g(t), u(t)) dt (2)

dg(t)
dt

= aG g(t) + bG u(t) (3)

g(t = 0) = g0, umin ≤ u(t) ≤ umax , gmin ≤ g(t) ≤ gmax (4)

where g(t) denotes the BG level and u(t) denotes the amount of insulin injected at time t
which should be determined by solving the optimization problem; aG and bG are coefficients
representing the impact of injected insulin on the BG dynamics. Also, tf represents the finite
horizon of the control problem which is usually 2h to 4h prediction window that corresponds
to the bulk duration of action of a rapid acting insulin analogue such as aspart, lispro and
glulisine. gref (t) is the time dependent glucose reference value that can be chosen depending
on the current state to avoid hypoglycemia or hyperglycemia. Initial condition is addressed
by including g0 which is the initial glucose level. Finally, umin and umax are the minimum
and maximum allowed insulin amounts to be injected and gmin and gmax are the lower and
upper bounds on the glucose level. F (g(t) is a generic form for all possible cost functions.
But, it is usually desired to minimize a summation form including both the distance to
the reference glucose value and insulin injection effort. MPC has shown to be suitable for
multivariate nonlinear systems such as the human body and it significantly gives better
performance than PID control with patient-specific tuning. Several variations of MPC have
been proposed in the literature. We briefly categorize them as follows:

Linear model predictive control (LMPC): There are several research studies that use
linear model predictive controller. The work presented in [21] was the first in silico trial for

MCPS’14

54 Challenges and Opportunities in Design of Control Algorithm for Artificial Pancreas

linear model predictive approach which also showed better performance of MPC rather than
PID controller in terms of limiting the oscillation of glucose levels. Research efforts presented
in [31] and [9] were the first clinical investigations of linear model predictive algorithms in
artificial pancreas that reported the superiority of using this approach over PID controller.
in [21] Magni et al. in present an unconstrained MPC where the model is a linearization of a
nonlinear parameters.

Researchers extend the MPC by defining new types of objective function and additional
features to the problem formulation. Heusden et al. proposed using a priori patient charac-
terization and fitting a linear control relevant model around the control point [20]. They also
defined a new cost function named zone model predictive in contrast to previous studies in
which only the distance to a target reference point is considered as the cost function. They
consider a range for the BG level as the objective of the optimization and define the cost
function as the minimum distant to the preferred zone. They have verified the robustness of
the algorithm in silico and showed that the hypoglycemia is completely avoided even after
meal disturbance. Lee et al. in [15] use new meal size estimation algorithm to the integrated
AP and show how its performance is better than MPC-only case.

Non-linear model predictive (NMPC): Hovorka et al. in [28] present a nonlinear model
and Bayesian techniques to estimate parameters in simulation studies. Clinical studies were
performed under fasting conditions based on measurements that were delayed by 30 min to
mimic the time lag associated with a sensor. The authors performed overnight studies using
an algorithm and transferring results to a pump at 15 min intervals. The major result was a
reduction in nocturnal hypoglycemia compared to standard pump treatment. Zarkogianni et
al. also use a nonlinear model-predictive control for prediction of BG and control algorithm
[19]. They have shown the usefulness of using this nonlinear MPC in silico for different meal
profiles, fasting conditions, inter-patient variability and intraday variation.

Fractal model predictive control (FMPC): In spite of significant amount of work in PID
and MPC, the complexity of BG dynamics has not been fully addressed. For instance BG is
time dependent process that is influenced by various factors (meal size, exercise, psychological
state, etc.). This has prompted a comprehensive multifractal investigation of BG dynamics
[23] from publicly available data set [33]. The authors have shown how using fractional order
controller leads more robust control over conventional integer order model predictive controller.

Figure 2 Performance of fractal and
non-fractal MPC.

They formulate the BG dynamics as a time depend-
ent fractional order control problem and report the
feasibility of implementation of fractional controller
in hardware and report their results in terms of area
and speed in field programmable gate array (FPGA).
We compare the impact of applying fractional order
controller to the conventional first order derivative
controller. Fig 2 shows the outcome of applying both
types of controllers to bring to some reference value
which is 100mg/dL in this case. Unlike the expecta-
tion of integer order controller the final glucose value
at the end of control horizon is much lower than the
one expected.

M. Ghorbani and P. Bogdan 55

3.3 Assessment of Control performance
The ultimate goal of any closed-loop artificial pancreas controller is to minimize the com-
plications resulting from poor BG control. Research studies that have evaluated closed-loop
systems lasted at most several days. In these studies, time when glucose is in the target range
is the most widely used metric to assess closed-loop performance. On the other hand, target
glucose range differs in overnight and fasting condition (3.9–8.0 mmol/l) versus post-prandial
condition (up to 10 mmol/l). The low BG index can be helpful in quantifying the duration
and extent of hypoglycemia and other measures to assess severity of hypoglycemia and
hyperglycemia have been proposed such as Grade score [25]. To sum up, in spite of existence
of some FDA approved simulation environments ([4] and [8]), there is still significant need for
establishing unified simulation sequences and defining precise criteria to compare different
control algorithms. The same problem exists with the clinical studies in which there are no
unified clinical conditions to be able to compare performance of different control algorithm.

4 Conclusions and future work

The ultimate goal of any medical cyber physical system is to use technology to increase the
QOL for people. In type-1 diabetes mellitus, which is one of the fastest growing diseases
globally, the patient’s pancreas is not able to release insulin endogenously. As a result,
the patient needs exogenous insulin in order to control BG to reduce acute and chronic
complications. Recent technological advances have led to a paradigmatic shift in diabetes
treatment by offering automatic and semi-automatic systems to replace traditional procedures
to improve the QOL for diabetic people and let them forget about their disease.

Despite very advanced technologies in sensing and actuation technology, there is still a
huge gap to fill for designing a robust AP, which comes from lack of accurate mathematical
models and robust control algorithm. In this paper, we present main challenges and problems
to be addressed in design of AP. Then, we present the state of the art control algorithms for
closed-loop AP, which is mainly, composed of PID and model predictive control groups. As
discussed in the paper, even with application of model predictive controller, which is proved
to perform better than PID controller, clinical tests only prove simple situations e.g. over
night or after meal conditions and more sophisticated glycemic control during meals and
exercise is still challenging.

Future directions in research for developing more accurate mathematical models and
control algorithm include investigation and application of the recently investigated time
dependent fractional model for BG on more comprehensive data set for control purpose and
also investigating this state of the art model for hormone levels e.g. insulin and glucagon.
This is especially valuable for dual hormone closed-loop system [12, 11, 18], which is proven
to be effective only when the predictions of the hormone levels are accurate [30]. More
importantly, incorporating this mathematical model in state of the art software simulations,
which are reference for evaluation of several control algorithms.

References
1 DB. Keenan at al. Continuous glucose monitoring considerations for the development of a

closed-loop artificial pancreas system. Journal of diabetes science and technology, 5(6):1327–
1336, 2011.

2 A. Ali et al. Pid controller tuning for integrating processes. ISA transactions, 49(1):70–78,
2010.

MCPS’14

56 Challenges and Opportunities in Design of Control Algorithm for Artificial Pancreas

3 A. Ouattara et al. Blood glucose variability: a new paradigm in critical care? Anesthesi-
ology, 105(2):233–234, 2006.

4 BP. Kovatchev et al. In silico preclinical trials: a proof of concept in closed-loop control of
type 1 diabetes. Journal of diabetes science and technology, 3(1):44–55, 2009.

5 C. Chen et al. Recent advances in electrochemical glucose biosensors: a review. RSC
Advances, 3(14):4473–4491, 2013.

6 C. Cobelli et al. Diabetes: models, signals, and control. IEEE Reviews in Biomedical
Engineering, 2:54–96, 2009.

7 C. Ellingsen et al. Safety constraints in an artificial pancreatic β cell: An implementation of
model predictive control with insulin on board. Journal of diabetes science and technology,
3(3):536–544, 2009.

8 CD. Man et al. Meal simulation model of the glucose-insulin system. IEEE Trans on
Biomedical Engineering, 54(10):1740–1749, 2007.

9 D. Bruttomesso et al. Closed-loop artificial pancreas using subcutaneous glucose sensing
and insulin delivery and a model predictive control algorithm: preliminary studies in padova
and montpellier. Journal of diabetes science and technology, 3(5):1014–1021, 2009.

10 E. Renard et al. Closed-loop insulin delivery using a subcutaneous glucose sensor and in-
traperitoneal insulin delivery feasibility study testing a new model for the artificial pancreas.
Diabetes Care, 33(1):121–127, 2010.

11 FH. El-Khatib et al. Adaptive closed-loop control provides blood-glucose regulation using
dual subcutaneous insulin and glucagon infusion in diabetic swine. Journal of Diabetes
Science and Technology, 1(2):181–192, 2007.

12 FH. El-Khatib et al. A bihormonal closed-loop artificial pancreas for type 1 diabetes.
Science Translational Medicine, 2(27):27ra27–27ra27, 2010.

13 G. Sparacino et al. “smart” continuous glucose monitoring sensors: On-line signal pro-
cessing issues. Sensors, 10(7):6751–6772, 2010.

14 GM. Steil et al. Modeling β-cell insulin secretion-implications for closed-loop glucose homeo-
stasis. Diabetes technology & therapeutics, 5(6):953–964, 2003.

15 H. Lee et al. A closed-loop artificial pancreas using model predictive control and a sliding
meal size estimator. Journal of diabetes science and technology, 3(5):1082–1090, 2009.

16 J. Cho et al. Cascade control strategy for external carbon dosage in predenitrifying process.
Water Science & Technology, 45(4-5):53–60, 2002.

17 J. Kildegaard et al. Sources of glycemic variability—what type of technology is needed?
Journal of diabetes science and technology, 3(4):986–991, 2009.

18 JR. Castle et al. Novel use of glucagon in a closed-loop system for prevention of hypogly-
cemia in type 1 diabetes. Diabetes Care, 33(6):1282–1287, 2010.

19 K. Zarkogianni et al. An insulin infusion advisory system based on autotuning nonlinear
model-predictive control. IEEE Transactions on Biomedical Engineering, 58(9):2467–2477,
2011.

20 KV. Heusden et al. Control-relevant models for glucose control using a priori patient
characteristics. IEEE Transactions on Biomedical Engineering, 59(7):1839–1849, 2012.

21 L. Magni et al. Model predictive control of type 1 diabetes: an in silico trial. Journal of
diabetes science and technology, 1(6):804–812, 2007.

22 LBEA. Hoeks et al. Real-time continuous glucose monitoring system for treatment of
diabetes: a systematic review. Diabetic Medicine, 28(4):386–394, 2011.

23 M. Ghorbani et al. A cyber-physical system approach to artificial pancreas design. In Proc
of IEEE/ACM/IFIP CODES, page 17, 2013.

24 MJ. O’Grady et al. Changes in medicare spending for type 1 diabetes with the introduction
of the artificial pancreas. New York (NY): JDRF, 2011.

M. Ghorbani and P. Bogdan 57

25 NR. Hill et al. A method for assessing quality of control from glucose profiles. Diabetic
medicine, 24(7):753–758, 2007.

26 P. Reichard et al. The effect of long-term intensified insulin treatment on the development
of microvascular complications of diabetes mellitus. New England Journal of Medicine,
329(5):304–309, 1993.

27 PG. Jacobs et al. Development of a fully automated closed loop artificial pancreas control
system with dual pump delivery of insulin and glucagon. In Proc of IEEE EMBC, pages
397–400, 2011.

28 R. Hovorka et al. Five-compartment model of insulin kinetics and its use to investigate
action of chloroquine in niddm. American Journal of Physiology-Endocrinology And Meta-
bolism, 265(1):E162–E175, 1993.

29 SA. Weinzimer et al. Fully automated closed-loop insulin delivery versus semiautomated hy-
brid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes
care, 31(5):934–939, 2008.

30 SJ. Russell et al. Efficacy determinants of subcutaneous microdose glucagon during closed-
loop control. Journal of diabetes science and technology, 4(6):1288–1304, 2010.

31 WL. Clarke et al. Closed-loop artificial pancreas using subcutaneous glucose sensing and
insulin delivery and a model predictive control algorithm: the virginia experience. Journal
of diabetes science and technology, 3(5):1031–1038, 2009.

32 DCCT Research Group et al. Epidemiology of severe hypoglycemia in the diabetes control
and complications trial. The American journal of medicine, 90(4):450–459, 1991.

33 Diabetes Research in Children Network (DirecNet) Study Group et al. Accuracy of the
glucowatch g2 biographer and the continuous glucose monitoring system during hypogly-
cemia. experience of the diabetes research in children network (direcnet). Diabetes Care,
27(3):722, 2004.

MCPS’14

Automatic Resource Scaling for Medical
Cyber-Physical Systems Running in Private Cloud
Computing Architecture∗†

Yong woon Ahn and Albert Mo Kim Cheng

Department of Computer Science, University of Houston
4800 Calhoun Road, Houston, Texas, U.S.A.
{yahn,cheng}@cs.uh.edu

Abstract
Cloud computing and its related virtualization technologies have become one of dominant trends
to deploy software, compute difficult problems, store different types of data, and stream real-
time video and audio. Due to its benefits from cost-efficiency and scalability to maintain server
solutions, many organizations are migrating their server applications running on physical servers
to virtual servers in cloud computing infrastructures. Moreover, cloud computing has enabled
mobile and battery-powered devices to operate without strong processing power and large storage
capacity. However, it is not trivial to use this trendy technology for medical Cyber Physical Sys-
tems (CPSs) which require processing tasks’ requests to send instructions to the local actuator
within specified deadlines. Since a medical CPS device monitoring a patient’s vital signs may not
have a second chance to recover from an erroneous state, achieving cost-efficiency with higher re-
source utilization in cloud computing may not be the ultimate goal to configure the healthcare IT
infrastructure with medical CPS devices. In this paper, we focus on private cloud infrastructures
with the fair resource sharing mechanism in order to run medical CPS applications. First, we
introduce our medical CPS device model used for designing our cloud infrastructure following the
Integrated Clinical Environment (ICE) standard developed by the Medical Device Plug-and-Play
(MDPnP) project. Second, we investigate limitations to deploy CPS applications using existing
auto-scaling mechanisms. Finally, we propose our novel middleware with a virtual resource shar-
ing mechanism inspired by autonomic computing, and present its performance evaluation results
simulated in the OpenStack private cloud.

1998 ACM Subject Classification C.2.4 Distributed Systems, C.3 Special-Purpose and Applica-
tion-Based Systems, J.3 Life and Medical Sciences

Keywords and phrases Auto-Scaling, Cloud Computing, Medical Cyber-Physical System Device,
Virtualization, Autonomic-Computing

Digital Object Identifier 10.4230/OASIcs.MCPS.2014.58

1 Introduction

Cloud computing has become one of common technologies to provide unlimited computing
experiences with small and battery powered mobile devices. Moreover, it provides other great
advantages for deploying and maintaining server-side applications because of its flexibility to
scale up and down computing and storage resources elastically. This flexibility is implemented
by various hardware virtualization techniques which enable virtual machines (VMs) to be

∗ Supported in part by the National Science Foundation under Awards No. 0720856 and No. 1219082.
† This research is a part of the yPlatform project for medicine by Amerra Inc.

© Yong woon Ahn and Albert Mo Kim Cheng;
licensed under Creative Commons License CC-BY

Medical Cyber Physical Systems – Medical Device Interoperability, Safety, and Security Assurance (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer; pp. 58–65

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.58
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

Y. Ahn and A. Cheng 59

Figure 1 A hybrid cloud for medical devices
and applications.

Figure 2 A hybrid cloud for medical CPS
devices.

easily launched or terminated on demand to maintain the desirable Quality of Service (QoS)
level for different types of common application. Like other IT areas, cloud computing is
getting more attention from healthcare IT industries not only to reduce costs but also to
improve patient care. By taking advantages from cloud computing, the healthcare cloud
helps clinical environments remove their in-facility server rooms entirely by subscribing a
public cloud Infrastructure as a Service (IaaS) or partially by deploying a private or hybrid
IaaS [14]. Since medical records are generally very sensitive, and must be protected by highly
secure physical facilities, multi-layered software or hardware network security systems, data
encryption, and redundancy, operation of the in-facility server rooms can be more expensive
and less secure to process and store medical data. More seriously, some medical imaging
devices generate extremely massive data requiring huge data storages. To satisfy these
requirements, a public IaaS could be a common solution because of its highly secure physical
and virtual resources which also can be scaled up and down easily.

For non-real-time medical devices, public cloud computing solutions could be more
suitable to provide healthcare IT systems by taking advantage of existing cloud computing
solutions. However, these public and remote cloud solutions are too unpredictable to maintain
the desirable QoS of medical CPSs because VM monitors used by their services basically
do not know what type of medical application server is being loaded in a VM. Also, many
uncertainties from transferring data over various networks would be serious issues in using
public cloud solutions for medical CPSs. Although cloud computing service vendors provide
Service Level Agreements (SLAs) covering cases where the user cannot access their subscribed
computing and storage resources, they cannot guarantee that an application server responds
to a source application within a specific task deadline. To overcome this limitation, a hybrid
cloud architecture can be a solution. For non-real-time medical devices, we use VMs in a
public cloud, and for medical CPS device, we use VMs in a private cloud locally located as
shown in Figure 1. In this paper, we restrict a private cloud to operate as the in-facility
server solution built with a stable network environment. No private cloud offered by public
IaaS providers is considered as a private cloud in this paper. Each medical CPS device can
transmit real-time tasks to this private cloud which can be specially configured to process
real-time tasks with the highest priority. In this paper, we assume that each medical device
can be interconnected via the ICE standard [4] which is one of the MDPnP projects [10] to
support a cross-manufacturer medical device interoperability. Figure 2 shows data flows of
CPS medical devices connected via ICE interfaces to deliver their real-time and life-critical
tasks to ICE application servers running as a part of the ICE manager. The ICE supervisor

MCPS’14

60 Automatic Resource Scaling for Medical Cyber-Physical Systems

is responsible for generating alarms to indicate that the required tasks cannot be processed
with the current configurations of the ICE application servers. All ICE manager software and
hardware components can be run in a private cloud, if these components can be emulated
by virtualization technologies. If the medical device is a closed-loop CPS system, one or
more ICE application servers are run as computing resources to process requests, and to
respond action instructions to the source device. These ICE application servers also can
provide user interfaces help clinicians check patient’s states, and upload medical records to
EHR systems as shown in Figure 2. Despite using a hybrid cloud solution, there are still
possible issues to maintain the desirable QoS of medical CPS devices because most open
sourced and commercialized private cloud solutions such as OpenStack [13], Eucalypus [12],
and VMWare vCloud [16] have very similar auto-scaling mechanisms to adjust virtualized
computing resources dynamically. Although these existing auto-scaling mechanisms are
primary technologies to achieve the main goal to operate VMs on demand, these mechanisms
are commonly performed by checking system performance metrics which human system
administrators select. These system metrics can include the monitoring values of Virtual
CPU (VCPU), memory, storage I/O, and network bandwidth. Although these metrics can
represent a health status of each VM, they cannot represent whether all tasks are processed
within their deadlines specified by medical CPS devices [9].

There are three major requirements to design and implement a private cloud for medical
CPS devices using the ICE standard.
(a) A group of ICE application servers should always be ready to process all incoming

real-time tasks from multiple CPS devices, and respond action instructions to the source
CPS devices within specified deadlines.

(b) The private cloud must be designed to achieve a goal of higher physical and virtual
resource utilization except any emergency case.

(c) Computing resources must be automatically adjusted by an implemented mechanism
when a new CPS device is discovered, or one of connected devices increases bigger tasks.
These three requirements are essential, if we assume that the clinical environment adopts

an ICE standard. Since computing powers of ICE application servers are generally configured
before initializing the entire system, it requires that all ICE application servers always run to
satisfy the worst-case scenarios even for not discovered medical CPS devices. In other word,
there would be no advantage of the higher resource utilization by using cloud technologies.
Also, even if the clinical environment adopts a private cloud, supporting the MDPnP standard
would be another consideration. In this paper, we design middleware running in a private
cloud infrastructure to provide a novel auto-scaling mechanism to preserve the cost-efficiency.
Our middleware is performed independently in each VM with an ICE application server
without modifying the ICE standard. Moreover, in order to implement an automatic service
which can be self-optimized, we adopt the autonomic computing concepts to design our
middleware [5].

The remainder of this paper is organized as follows. In Section 2, we introduce other
researches working towards similar goals. Design and implementation of our solution are
presented in Section 3 and 4. In Section 5, we evaluate our proposed middleware running in
an OpenStack private cloud.

2 Related Work

For common real-time applications, S. Liu et al. proposed an on-line scheduling algorithm
of real-time services for cloud computing in [7]. Their algorithm modifies the traditional

Y. Ahn and A. Cheng 61

utility accrual approach [3, 8] to have two different time utility functions (TUFs) of profits
and penalties on executing tasks. One important assumption the authors made is that the
timeliness with relative task deadlines would be a more realistic principle for most real-time
applications than the absolute deadline guarantee for hard-real-time systems due to the
nature of diverse network communication methods causing many uncertainties. Although
their assumption about the timeliness is reasonable, this research does not consider cases of
medical CPS devices which might be discovered at any time.

As we stated in the previous section, the most feasible solution to operate medical CPS
devices in the cloud can be the auto-scaling mechanism to scale up the number of VMs to
process real-time tasks without missing their deadlines, and to scale down to provide the cost-
efficient and energy-saving physical data center alternative. In [9], M. Mao et al. proposed
an auto-scaling mechanism considering task deadlines and budget constraints. Although
their approach is based on deadline constraints to overcome downsides of the threshold-based
stock auto-scaling mechanisms monitoring system metrics, a system administrator still has
to adjust the configuration file manually whenever a new application needs to be connected.
Also the authors did not consider cases with real-time medical applications which are possibly
required to compress and transmit massive data to remote locations. To the best of our
knowledge, our approach is the first attempt to adopt the autonomic computing concepts to
operate the MDPnP environment.

3 System Design

In order to deploy medical CPS devices connected to a private cloud infrastructure, we first
show common procedures to process CPS tasks. We assume that all CPS medical devices
follow ICE standards to send and receive messages to and from an ICE supervisor, and we
also assume that healthcare environments use a private cloud to configure the ICE manager.

3.1 Medical CPS Device
Figure 3 shows procedures to sample data from patient’s body. In this paper, we focus
on medical CPS devices which sample patient health condition data via various sensors,
and compress them before transmitting to an ICE application server periodically. To
interact between two different types of medical device, we use the device profile protocol
introduced in [6]. This profile protocol is based on the ISO/IEEE 11073 Domain Information
Model. In order to discover a new medical device, each device must send its profile protocol
message to an ICE supervisor. This message includes device type, device health status,
manufacture information, clock, device model, medical nomenclature, sampling period, event-
trigger function, network interface, network protocol version, and so on. As Figure 3 shows,
compressed data, ∆, would have a deadline, δ, which must be processed by the server before
arriving the next period job to operate actuators. We call this data to the destined ICE
application server real-time tasks. Also, if the medical CPS device did not receive this action
command before sending the next period of sampled data, its device health status would
become the “fail” state.

3.2 Proposed Middleware between an ICE Supervisor and ICE
applications

In order to provide standard-compatible solutions for other existing ICE compliant systems,
we do not change an ICE supervisor and any of its internal procedures. Our system must be

MCPS’14

62 Automatic Resource Scaling for Medical Cyber-Physical Systems

Figure 3 An example of real-time tasks collected by one sensor: Pi is the value of time starting
ith period, ∆i is the number of time slots of the ith compressed period, and Di is the delay to digitize
sampled or input original data for ith period.

Figure 4 A parent VM with an ICE application server which has two VMs installing child ICE
application servers which are dealt as managed resources in the autonomic computing concept.

run independently from the existing ICE manager. The ICE supervisor is responsible only to
check whether the application servers and network interfaces can handle requests from newly
discovered medical devices. If it detects any resource shortage or inappropriate profiles from
the device, the supervisor indicates an alarm [4]. Our goal is to protect a medical device
from being rejected due to shortage of computing resources when using a private cloud. To
design our middleware to manage VMs running ICE application servers, we use autonomic
computing concepts to implement the self-management with four essential attributes such as
self-configuration, self-healing, self-optimization, and self-protection [5]. After initializing
the ICE manager, our middleware must accumulate knowledge from the previous history of
processing data and responding action instructions to decide whether the ICE supervisor
needs more resources or not.

In our middleware design, each VM is a node in a tree data structure shown in Figure 4.
Each node also can become an autonomic manager as shown in Figure 5. Our autonomic
manager has managed resources which can be other ICE application servers running in
different VMs. Our middleware is running in each VM and checking the health state of its
ICE application server usages by counting how many tasks missed their deadlines for the
predefined duration. There are four steps to accumulate knowledge and adjust managed
resources in our autonomic manager. In the monitoring step, our autonomic manager collects
managed resource states from its child VMs by checking the number of missed deadlines.
In the analyzing step, the autonomic manager calculates the number of VMs for the next
iteration, and sends a request to the next step to make a new plan such as task assignments
for ICE application servers in child VMs, if it would improve system’s overall utilization. In
the planning step, the new plan is setup to launch or terminate one or more VMs, if it is
requested by the previous step. Finally, in the executing step, the autonomic manager would
execute this plan by calling private cloud management functions such as jClouds [2]. From
these four steps, the managed resource can be adjusted by our autonomic manager running as
middleware without human interventions. Also, since each middleware runs in different VM

Y. Ahn and A. Cheng 63

Figure 5 A generic architecture for autonomic manager.

Figure 6 Real-time tasks used for the simula-
tion.

Figure 7 The number of VMs processing data.

independently, we can avoid any possible bottleneck when having one centralized coordinator
to manage all VMs. To avoid any issue from having less knowledge at the beginning, the
managed resources must be started with a sufficient number of VMs to process the worst
case scenario, and gradually this number of VMs would decrease if no new medical device is
discovered, or existing medical CPS devices stably transmit their real-time tasks periodically.

4 Implementation

We are implementing our system design on the OpenStack cloud which is one of the most
well-known open source cloud infrastructure. Currently, this OpenStack environment only is
used for medical CPS devices, and other medical applications use Amazon EC2 [1] public
cloud. To implement our middleware approach, we wrote a medical CPS device simulator in
Java. This simulator uses sampled ECG data from the MIT-BIH database [11] as its input,
and sends compressed data to the ICE application servers periodically, and must receive
action commands before sending other data to control its virtual actuator. In order to launch
and terminate VMs, we use jClouds to control VMs.

5 Performance Evaluation

To evaluate our approach, we use the OpenStack Grizzly version running with Intel Xeon E3
Quad-Core CPU, 16 GB RAM, 500GB SAS HDD, two network interface cards, and Ubuntu
server operating system. We use the Ubuntu 12.04 VM image [15] to run ICE application
server simulators, and each VM is launched with 512Mbyte RAM, one VCPU, and no local
storage. We assume that the ICE supervisor knows all current states of ICE application
servers, and works well to coordinate tasks for every connected medical CPS device. We
setup each ICE application server processes 100Kbyte ECG data per one second in the
incoming task queue. Figure 6 shows our total workload receiving from medical CPS device
simulators. At the beginning, we only have one medical device, but it increases its data size
slightly between 40 and 80 seconds. This scenario can represent unknown network errors or

MCPS’14

64 Automatic Resource Scaling for Medical Cyber-Physical Systems

Figure 8 The percentage of subtasks missing deadlines.

possible cases intentionally increasing sensor’s resolution. New medical devices are started to
be discovered from 150 seconds, and at 210 seconds, all eight medical devices start sending
tasks to request instructions. Tiny spikes shown on the slope mimic minor network errors
such as congestions. Figure 7 shows the number of VMs running ICE application servers.
When initializing our system, the ICE manager starts with eight VMs to prepare the worst
case scenario receiving tasks from all eight devices. In our simulation, all eight VMs are
initially structured as a balanced tree, and four autonomic managers in VMs have child
VMs as managed resources. Until ten seconds, each autonomic manager checks its manager
resources whether they process data or not. If they are not used to process tasks for this
amount of time, the autonomic manager plans to terminate its managed resources. After ten
seconds, it terminates its managed resources to achieve the higher server utilization. After
150 seconds, new medical devices are getting discovered and send tasks. Since our autonomic
managers work independently from the ICE supervisor, the total number of VMs could be
more than eight from our simulation for a moment. However, we believe that this issue
can be fixed by enabling communications between our autonomic managers to balance the
tree quickly. We compared our autonomic manager with the threshold-based auto-scaling
mechanism which monitors VCPU usages. If it detects over 80% of VCPU usages, it launches
a new VM in our simulation. Figure 8 shows the percentage of tasks missing their deadlines.
As we can see, if we run eight VMs all the time without considering resource utilization and
cost-efficiency, no deadline would be missed. However we lose the higher resource utilization
of using cloud technologies. As using the VCPU usage based auto-scaling mechanism, ICE
application servers missed deadlines of 240 tasks of total 735 subtasks as average values. But,
after applying our mechanism, it only missed 45 subtasks even without a separated physical
server only to run VMs. Our middleware improves 81.25% of the system reliability. We can
see some tasks missed deadlines during the second catastrophic overflow after 150 seconds
because of delays to launch new VMs. To overcome this drawback, we are adding workload
prediction algorithms to our system to launch new VMs less frequently.

6 Conclusion and Future Work

Recently, cloud computing with virtualization technologies has become a big trend providing
a new way to release software as a service and processing calculation-intensive tasks on
remote VMs because it is very scalable, reliable, and cost-efficient with the on-demand
computing model. Although most types of computing system and application can be migrated
to cloud computing services, there are several serious issues when running medical CPS
device applications. First, currently exiting cloud computing solutions with virtualization
technologies do not have any special mechanism to support real-time and sensor-based

Y. Ahn and A. Cheng 65

applications. Second, to achieve the higher resource utilization when using the cloud, an
auto-scaling mechanism is essential. However, existing performance metric based auto-scaling
mechanism is not suitable to support medical CPS devices because of its inability to meet task
deadlines. In order to support deadline-critical medical CPS devices following the MDPnP
standard, we propose novel middleware running in a private cloud infrastructure with the
ICE manager. This middleware with the autonomic manager uses self-management concepts
from an autonomic computing architecture to develop our proposed auto-scaling mechanism
for reserving virtual resources to meet timing constraints without human intervention. From
our simulation, we have demonstrated that our approach can scale up when new devices are
discovered. This research is still in progress as we develop more reliable workload prediction
algorithms for already connected medical devices dynamically changing their task sizes.
These prediction algorithms would enable our autonomic manager to launch new VMs even
before the ICE supervisor requires more resources.

References
1 Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/.
2 Apache jCloud. http://jclouds.apache.org/.
3 R.K. Clark. Scheduling dependent real-time activities. PhD thesis, Carnegie Mellon Uni-

versity, 1990.
4 ASTM F2761-2009. Devices in the Integrated Clinical Environment.
5 Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. IEEE

Computer, 36(1):41–50, 2003.
6 Tao Li and Jiannong Cao. Safety-ensured coordination of networked medical devices in

mdpnp. Technical report, Hong Kong Polytechnic University, 2012.
7 S. Liu, G. Quan, and S. Ren. On-line scheduling of real-time services for cloud computing.

In Services (SERVICES’10), 2010 6th World Congress on, pages 459–464, 2010. http:
//dx.doi.org/10.1109/SERVICES.2010.109.

8 C.D. Locke. Best-effort decision making for real-time scheduling. PhD thesis, Carnegie
Mellon University, 1986.

9 M. Mao, J. Li, and M. Humphrey. Cloud auto-scaling with deadline and budget constraints.
In Proc. 11th IEEE/ACM Int’l Conf. Grid Computing (Grid’10), pages 41–48, 2010.

10 Medical Device Plug and Play Program. http://www.mdpnp.org/.
11 MIT-BIH Database Distribution. http://ecg.mit.edu/.
12 D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorod-

nov. Eucalyptus opensource cloud-computing system. In CCA’08: Cloud Computing and
Its Applications, IEEE, 2008.

13 OpenStack. http://www.openstack.org/.
14 B. Sotomayor, Ruben S. Montero, I.M. Llorente, and I. Foster. Virtual infrastructure

management in private and hybrid clouds. IEEE Internet Computing, Vol. 13, 2009.
15 Ubuntu Cloud Image. http://cloud-images.ubuntu.com/precise/current/.
16 VMWare vCloud. http://www.vmware.com/products/vcloud-hybrid-service.

MCPS’14

http://aws.amazon.com/ec2/
http://jclouds.apache.org/
http://dx.doi.org/10.1109/SERVICES.2010.109
http://dx.doi.org/10.1109/SERVICES.2010.109
http://www.mdpnp.org/
http://ecg.mit.edu/
http://www.openstack.org/
http://cloud-images.ubuntu.com/precise/current/
http://www.vmware.com/products/vcloud-hybrid-service

Modeling of Reconfigurable Medical Ultrasonic
Applications in BIP
Stefanos Skalistis and Alena Simalatsar

Rigorous System Design (RiSD) Laboratory
École Polytechnique Féréral de Lausanne (EPFL), 1015 Lausanne, Switzerland
{stefanos.skalistis,alena.simalatsar}@epfl.ch

Abstract
Medical ultrasonic imaging applications require high quality of images produced in real-time often
with limited resources available. Deadlock-freedom and confluency must be guaranteed to ensure
the correctness of the applications, while feasibility and optimality properties are required to
provide the best Quality of Service (QoS) within available resources. In this paper we introduce
BIP (Behavior-Interaction-Priority) framework components as main building blocks to model
such applications in a correct-by-construction manner. Based on those components we model a
reconfigurable multi-mode processing pipeline for ultrasonic imaging that supports QoS manage-
ment by topology reconfiguration. Finally, as a proof of concept, we present a simple quality
controller as a well-triggered component, which when combined with the processing pipeline can
manipulate the quality of image processing.

1998 ACM Subject Classification D.1.3 Concurrent Programming, D.2.11 Software Architec-
tures, F.1.1 Models of Computation, F.3.1 Specifying and Verifying and Reasoning about Pro-
grams

Keywords and phrases Reconfigurable Pipelines, Quality of Service, Medical Ultrasonic Applic-
ations, Component-based System Design, Behavior-Interaction-Priority Modal Flow Graphs

Digital Object Identifier 10.4230/OASIcs.MCPS.2014.66

1 Introduction

Ultrasonic imaging is widely used in medicine [7] as a diagnostic technique to provide static
images (e.g., B-mode) and dynamic changes (e.g., based on Doppler effect). Static imaging
provides visualization of muscles and internal organs, to capture their size, structure and
any pathological lesions. Ultrasonic imaging based on Doppler effect [6] is widely used to
visualize motion, in particular blood flow for diagnosis, such as blood clots, heart valve defects,
aneurysms and many others. All these applications require high quality of images produced
in real-time. Often ultrasonic devices are used in trauma and first aid cases as well as for
remote diagnosis. This drastically limits the available resources for ultrasound computation
algorithms, which requires Quality of Service (QoS) management. Moreover, deadlock-
freedom and confluency must be guaranteed to ensure correctness of the computational and
controlling algorithms.

B-mode ultrasonic imaging, chosen as a case-study in this paper, can be performed in
different ways, also called modes or processing pipelines, which may achieve the output
image with different quality characteristics and resource requirements. Thus, quality of final
images depends first of all on the chosen processing mode. Moreover, the components of
a chosen processing pipeline may perform the computation with different quality outcome.
Components processing quality levels can be controlled by certain parameters set, e.g. the
cutoff quality of a low-pass filter by adjusting the order of the filter. Based on that, we

© Stefanos Skalistis and Alena Simalatsar;
licensed under Creative Commons License CC-BY

Medical Cyber Physical Systems – Medical Device Interoperability, Safety, and Security Assurance (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer; pp. 66–79

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.66
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

S. Skalistis and A. Simalatsar 67

distinguish two approaches for QoS management driven by i) topology, and ii) components
quality levels.

BIP (Behavior-Interaction-Priority) framework [1] provides essential means for rigorous
system design. We employ a particular branch of BIP framework, namely well-triggered
modal flows [3], which ensures correctness by construction and encompasses a synchronous
computation model. Well-triggered modal flows requires no additional coordination with the
BIP engine compared to the classical BIP. This is an important advantage, since additional
coordination implies potential computational overhead, which may be critical for a system
with limited resources. A well-triggered modal flow is composed of synchronized components,
which successively perform computation steps. It defines the behavior of the system. Well-
triggered modal flows are considered to be most fitting to model real-time multimedia
systems.

In the frame of development of a scalable low-power, high-performance and trusted
ultrasonic platform, feasibility, optimality and quality control become of utmost importance.
In terms of timing, feasibility implies that no processing task must miss its deadline. While
operating under this constraint, the system must make optimal use of its resources and
time budget and at the same time provide the maximum possible quality for the produced
images. Existing work [5] formulates and addresses the problem of QoS control of real-time
multimedia systems in a feasible and optimal manner.

In this paper we present the model of a reconfigurable multi-mode ultrasonic application.
The application is modeled as a modal flow graph composed of well-triggered components, that
guarantees deadlock-freedom and confluence by construction, with basic QoS management.
We define four essential types of the components required to build a reconfigurable multimedia
application, namely processing, buffer, accumulator and mode-selection components. We also
reason about the composition of such components showing that it results in a well-triggered
composite component, which is essential for overall deadlock-freedom and confluence. Each
component of this modal-flow comprises a configuration port that allows external component
reconfiguration by a specific set of parameters sent from a separate controller component. The
configuration ports are used for both structure reconfiguration by managing mode-selection
components and buffer sizes as well as specific quality level control of processing elements.

The rest of the paper is structured as follows; Section 2 provides background information
regarding BIP, modal flow graphs, and QoS. In Section 3 the problem is presented through
our case study of a real-life ultrasonic application. Following, Section 4 describes our generic
approach for modeling image processing applications, with the use of modal flow graphs,
that provides QoS management and guarantees deadlock-freedom and confluence. Section 5
illustrates our approach on a case study, emphasizing the QoS management by application
structure. Finally, in Section 6 we conclude and present ideas for future work.

2 Background

In this section we first present the essential background information, which starts with a
general description of the BIP (Behavior-Interaction-Priority) framework. Then we talk
about a specific part of this framework, namely modal flow components and graphs. We
conclude the section with the description of QoS management technique for multimedia
systems.

MCPS’14

68 Modeling of Reconfigurable Medical Ultrasonic Applications in BIP

Figure 1 Example of Modal flow component.

2.1 BIP Framework
BIP [1] is a framework that provides essential means for rigorous design and modeling of
heterogeneous systems. The BIP framework allows the modeling of systems as composition
of atomic components by encompassing three layers: Behavior, Interaction and Priority. The
behavior of each atomic component is described as 1-safe priority Petri-net extended with
data and ports. The composition of these components is supported by the Interaction and
Priority layers. Interactions between components, which are specified by connectors [2], are
used to define the way systems are composed of components. Priorities are used to eliminate
conflicts between interactions and thus restrict non-determinism.

In BIP the execution is driven by the BIP engine which has all the necessary information
about the components, their connectors and the associated priorities. At every execution
cycle, the engine receives information about the set of active ports for each of the atomic
components. It then computes the set of interactions that have maximal progress and if
there are more than one, picks one of them non-deterministically. The engine notifies the
components of the chosen interaction and computes the associated data transfers. Each of
the notified components then performs the associated transition and updates its state.

2.2 Modal Flow Graphs and Well-triggered Components
Modal flow components and modal flow graphs [3] are part of synchronous BIP and are used
to model systems that are composed of synchronous components. Modal flow components
are a particular class of 1-safe priority Petri-nets, extended with data and ports. As a
result, modal flow components can directly be translated into 1-safe Petri-nets, following the
semantics defined in [3]. These Petri-nets define the behavior of each component.

In modal flow components the dependency relations between events/actions are expressed
using three kind of causal dependencies [3]:

Strong: An event q strongly depends on p if the occurrence of p must always be followed
by q. That is p and q can not happen independently.
Weak: An event q weakly depends on p if the occurrence of p may be followed by q.
That is either p happens or the sequence pq happens.
Conditional: An event q conditionally depends on p if both p and q occur, then p must
be followed by q. Otherwise p and q can occur independently.

In Figure 1, an example of a modal flow component is depicted. In the figure, solid arrows
with filled arrowheads depict strong dependencies, solid arrows with normal arrowheads
depict weak dependencies and dashed arrows depict causal dependencies. The rectangles
represent ports and their associated data. This notation will be used in the rest of the paper.

S. Skalistis and A. Simalatsar 69

In this example, a component is presented that can receive an input, process it and
depending on the size decide to compress it, or not, before delivering the output. In Figure 1,
it is depicted that Output strongly depends on Process, which, in turn, strongly depends
on Input. This means that the component provides an output after processing, which, in
turn, may occurs only after the component has received an input. It must be noted that
this implies that the component, once the input is received, will obligatory process it and
consequently produce the output.

Furthermore, Compress weakly depends on Process, which means that compression may
occur after the processing. This depends whether the associated guard of that port, enclosed
in square brackets, validates to true. Also, Output conditionally depends on Compress, that is
if both occur then compression must happen before delivering the output. Finally, underneath
each port the update functions are placed, which describe the associated computations.

Well-triggered components are modal flow components for which deadlock-freedom and
confluence are guaranteed by construction iff the following constraints are met [3]:

The causal dependency graph has no cycles.
Each port has either strong or weak causes, but not both.
Each port has at most a minimal strong cause.
Each port that has strong causes, must have its guard true.

The example presented in Figure 1 is a well-triggered modal flow component. Interestingly,
these constraints, e.g. graph acyclicity, are easy to check, either manually or automatically.

Well-triggered components can be composed based on interactions among their ports.
The result of the composition is the modal flow graph that defines the behavior of the whole
system. It must be noted that composition is a partial operation. This means that the
composition of well-triggered components does not guarantee that the resulting modal flow
graph will be well-triggered as well. Thus, in order to guarantee deadlock-freedom and
confluence the constraints must be validated on the final modal flow graph.

As a result of confuency of well-triggered modal flow graphs, the existence of the BIP
engine, that is present in classic BIP, is redundant and unnecessary. The engine is considered
redundant since the confluent behavior of synchronous systems results in a deterministic
execution of interactions. The engine is unnecessary as it introduces an extra processing
overhead. This overhead originates from the fact that the BIP engine at each execution cycle
computes the set of maximal interactions. Based on the confluent behavior of synchronous
systems, this can be replaced by a single predefined scheduling of interactions out of all the
possible ones. Finally, as a consequence of confluency in BIP components, code generation is
possible.

2.3 QoS

There exist different approaches to systems design that address different levels of systems
criticality. Currently, these systems are classified as safety-critical or best-effort systems.
Safety-critical systems require high level of correctness, meaning no violation of critical
constraints, e.g. timing constrains, when all the deadlines must be met. Engineering of such
systems uses a conservative approach based on the worst-case execution time, which is often
largely over-estimated and, therefore, implies not optimal or even redundant use of available
resources. The best-effort systems are more relaxed in terms of critical constrains, where
occasional miss of deadlines will not cause any hazardous outcomes. The design of such
systems is mainly targeting efficient and optimal use of available resources.

MCPS’14

70 Modeling of Reconfigurable Medical Ultrasonic Applications in BIP

Design of medical ultrasonic systems require meeting both critical and best effort proper-
ties. Such engineering approach is addressed in [5]. The authors proposed a method for fine
grain QoS management of real-time applications, which allows the run-time adaptation of
overall system behavior. The proposed approach provides control over three main properties:

Feasibility, that is no deadline is missed;
Optimality, that maximizes the use of available resources, e.g. provide the best QoS
within specified resource constraints;
Smoothness of quality levels, that is of particular importance to the multimedia applica-
tions.

Such QoS management considers a single-threaded process network application, which
cyclically performs data transformation. Possible QoS levels and platform-dependent timing
information of processing components must be provided as an input. The coordination of
components execution is then controlled by a controller that monitors the progress of the
computation within each cycle.

3 Reconfigurable Multimedia Systems

Generally, image processing and its applications follow the input-process-output paradigm.
More specifically, an image processing application can be analyzed in several stages of
computation, each of which receives the result of the previous computation stage as input,
processes the input and delivers the output to the next computation stage.

This paradigm inherently enforces the components of an application to form processing
pipelines. It is important to note that different pipelines may achieve their outputs with
different quality characteristics, resource requirements and/or implementation. For example,
in Section 3.1, different ultrasound imaging pipelines for B-mode are presented. Another
typical example of that are pipelines that perform the required processing on raw images and
then compress them, compared to pipelines that first compress the images and then perform
the required processing [9]. The former, usually requires more resources but achieves better
quality, while the latter requires less resources but results in degraded quality.

It is apparent that even if both pipelines deliver same outputs, their implementation
may differ substantially since required processing actions performed on images have different
nature.

To this end, we distinguish two different approaches for quality management:
QoS by structure: In this approach, different quality outcomes are achieved based on
the mode of processing pipeline (i.e. processing first, compression first, etc).
QoS by precision: In this approach, having a concrete pipeline, different quality outcomes
are achieved based on the parameters of the processing components (i.e. low compression-
rate).

In this work we focus on providing a framework to model image processing pipelines that
can be reconfigured by combining different modes in order to encompass QoS by structure.

3.1 Case Study
There exist several types of imaging applications that are based on ultrasound waves, including
A-mode, B-mode (or 2D-mode), Doppler mode, Harmonic mode, and many others [4]. B-
mode (brightness mode) ultrasound application is the most-known imaging technique due to
its vast applicability in several diagnostic domains.

S. Skalistis and A. Simalatsar 71

Figure 2 Baseline B-mode Processing.

Figure 3 Frequency compounding.

In B-mode an array of transducers, called the probe, emits a beam of ultrasound waves
and scans a plane through the body, which is then transformed into a two-dimensional image
on a screen. There are variations of this technique that affect not only the way the retrieved
signal is processed, but also the quality of the output image. Such variations include, but
are not limited to:

the mode of processing (baseline, in-phase and quadrature, frequency compounding,
spatial compounding);
the shape of the probe (linear, convex, phased array, etc);
the type of the beam wave (planar, curved, etc);
the angle of steering of the beam.

In this paper we focus on the algorithmic part of the variations of ultrasonic techniques,
namely modes of processing. Generally, B-mode imaging consist of four processing stages; i)
RF processing, ii) Beamforming, iii) Demodulation, iv) Baseband processing. These stages
are comprised of several components, the ordering of which may slightly vary depending on
the processing mode. More specifically, we consider the following modes:
1. Baseline B-mode Processing: This is the typical processing pipeline as depicted in Figure 2.
2. Frequency Compounding: In this mode multiple bands are separately demodulated and

then summed. As a result, the output image has less high-frequency noise but also
lower resolution. This mode differs from the Baseline B-mode Processing only in the
Demodulation stage. The modified Demodulation is depicted in Figure 3.

3. Spatial Compounding: In this mode, instead of a single beam, several beams are emitted
with different types (e.g. steered, curved, etc). Since multiple firings are used to
reconstruct a single image, this procedure increases resolution. This mode differs from
the Baseline B-mode Processing only in the Baseband stage. The modified Baseband
processing is depicted in Figure 4.

MCPS’14

72 Modeling of Reconfigurable Medical Ultrasonic Applications in BIP

Figure 4 Spatial compounding.

Figure 5 I/Q B-mode compounding.

4. I/Q mode: In this mode, in contrast with the aforementioned modes, the Demodulation
stage occurs before Beamforming. The output quality depends on the subject under
study (e.g. normal tissue, abdomen, etc.) as well as the configuration parameters of the
components. The whole pipeline for this mode is depicted in Figure 5.

The quality of the resulting image depends on various aspects. It may depend on
parameters set of each component. For example, a low-pass filter with higher filter order, i.e.
cut-off quality, will result in a signal less contaminated with frequencies higher than cut-off
frequency. Alternatively, the quality of the final image is also determined by the choice of
the B-mode pipeline.

In this paper we exploiting the possibility to achieve optimal quality outcomes by
reconfiguring the mode of operation. In this case study, we also focus on minimizing the
program memory, that is to avoid redundant components where possible. The reason is that
such over-provisioning may have a direct impact on implementation cost (i.e. in a FPGA
implementation).

4 Components framework

In this section we present the framework of the classified components required to model
ultrasound image processing that allow to provide QoS not only by structure, but also
support QoS by precision.

We also show that their composition results in well-triggered components. This formal
specification guarantees that the final pipeline, which is composed of these components, is
deadlock-free and confluent.

S. Skalistis and A. Simalatsar 73

Figure 6 Processing Component. Figure 7 N -read Buffer Component of size s.

In order to model reconfigurable multimedia systems, we consider the following compon-
ents:

Processing Components: These components are the building blocks that follow the input-
process-output. They are responsible for applying the necessary transformation to the
input in order to get the desired output. They may have multiple inputs and/or outputs
but to simplify we will refer them as input and output, respectively.
Memory Components: These components are necessary for storing images between stages
that produce multiple outputs which have to be processed separately. For this reason
they must support multiple reads of the same value. They may have multiple inputs, but
only a single output. There are several possible different types of memory components
that can be modeled, such as FIFO, LIFO, etc. Following in this section, an N-read buffer
is formally defined.
Accumulating Components: These components are necessary for combining multiple
images into a single one (e.g. different color channels). They may have multiple inputs,
but only a single output. Following in this section, an N-write accumulator with a single
input and a single-output is defined.
Mode-selection Components: These components allow the reconfiguration of the pipeline.
It has a single input and multiple outputs, one of which is active at any time, based on
the mode.

Based on this components, it is possible to model complex pipelines that can be recon-
figured and provide QoS by structure. In order to support QoS by precision, each of the
aforementioned components must have a configuration port that will allow modification of
the processing parameters.

4.1 Processing Component
In Figure 6, the main building block of a pipeline, the processing component, is presented as
a well-triggered component. This component is responsible to receive an input, process it
and finally output the result in one computation step. At the beginning of each computation
step the component can receive new configuration parameters from the Conf port. It is
assumed that the component is initialized with default parameters.

In ultrasound applications the processing component, receives at the Input port a 2-
dimensional array that represents the image. Similarly, the component exposes the image at
the Output port. The Process port is needed to signal that the processing has been performed.
Finally, the Conf port is used to configure the component with appropriate parameters.

The strong dependencies between these ports enforce the input-process-output paradigm.
The conditional dependency between the Conf port and the Input port implies that if both

MCPS’14

74 Modeling of Reconfigurable Medical Ultrasonic Applications in BIP

Figure 8 N -write Accumulator. Figure 9 Mode-selector Component.

happen at same computation step, the configuration of the component must occur before
the component receives the input. That means that a) the component can receive new
configuration if there is no input to process; b) the component can receive the input and
process it if there are no new configuration parameters; c) the component will receive first
the new configuration parameters and then process the input based on these new parameters.

4.2 N-read Buffer Component
Figure 7 presents a buffering element, of size s as a well-triggered component. Following
the standard notation, this component receives an image from the Input port and stores it
internally, by copying the image to the memory and adjusting the front pointer f and the
element counter c. The Output port exposes the oldest image stored internally, and when
the image is read N times, the rear pointer r and the element counter c are adjusted. To
achieve that behavior the output counter o and the next index n are used. The Output port
is active, i.e. can be executed, only when the element counter is greater than zero, that is
there is at least one image stored. Similarly, the Conf port is active only when there is no
image in the buffer.

Storing and retrieving an element from a buffer can occur in arbitrary orderings. It
is assumed that the buffer can execute both in a single computation step. Based on this
assumption, Input and Output can occur independently, but if they occur in the same
computation step Output precedes Input.

Finally, based on this well-triggered component, an unbounded buffer can be modeled
as well by simplifying the update functions for the position pointers f and r, f:=f+1 and
r:=r+1 respectively. A typical 1-read buffer can also be modeled by eliminating the update
functions for o, n and replace them with the value of 1.

4.3 N-write Accumulator Component
Similar in logic to the buffer component is the accumulator component presented in Figure 8.
This component when it receives a new input, it accumulates (e.g sum, average, select
min/max, etc.) the new input with all the previously received inputs. When it has received
N inputs, it outputs the result and empties the data in order to receive new inputs.

4.4 Mode-selector Component
Another important component required to model multi-mode processing pipelines is that of
the mode-selector. The role of this component is to direct the received input to the correct
output and thus change the processing pipeline.

S. Skalistis and A. Simalatsar 75

In Figure 9, a selector component that supports two modes is presented. In this component
the Output1 and Output2 ports weakly depend on the Input port. This means that the
input can be received without producing any output, in the case when the selected mode is
not valid. As in all previous cases the Conf precedes the Input port for the aforementioned
reasons.

As with the processing component, the mode-selector component can be extended in
multiple outputs, in a similar manner.

4.5 Composition of components

The framework components presented earlier, namely processing, buffer, accumulator and
mode-selector components, are well-triggered. In order to construct deadlock-free processing
pipelines from such components we have to reason if their composition results in well-triggered
components as well. Composition is performed by merging the interacting ports and inheriting
the dependencies from all the interacting ports. To check that the result is still well-triggered
the constraints presented in Section 2.2 should hold.

Following, a descriptive reasoning is presented, regarding that the result of the composition
of the framework components is well-triggered. A more formal proof can be found in [8].

Processing – Processing: Combining two processing components results in a well-
triggered component if these are connected in series, that is the output of the former becomes
the input of the latter. The resulting component actually performs the two processing steps
sequentially, and is well-triggered.

Processing – Mode-Selector: Combining a processing component with a mode-selector
component, in terms of connecting the respective output and input, results in a well-triggered
component, since the mode-selector has no strong causes and no cycle is created.

Processing – Buffer: The same holds for combining the output port of the processing
component with the input port of a buffer. Their composition is well-triggered, as the
processing component has only strong causes and the input port of the component has only
one strong cause and no weak causes.

Processing – Accumulator: Similarly, combining the output of a processing component
with the input of an accumulator produces a well-triggered component. The resulting graph
has no cycles and the accumulator component has only one strong cause and no weak causes.

Accumulator – Mode-Selector: The composition of an accumulator component with a
mode-selector component, by connecting their respective output and input ports, results in a
well-triggered component. Although, the output port of the accumulator has a guard, the
mode-selector has no strong causes and the resulting graph has no cycles.

Accumulator – Processing: Combining, on the other hand, the output port of the
accumulator component with the input port of a processing component is not straightforward.
The output port of the accumulator has a guard, but this does not violates the constraints,
since when the two ports are merged, the resulting port has no strong causes. Thus, the
resulting component is a well-triggered component.

Buffer – Processing: Similarly, combining the output port of the buffer component with
the input port of a processing component results in well-triggered component, as after the
combination the resulting port has no strong causes.

Mode-Selector – Processing: In the same manner, combining the output port of a mode-
selector component with the input port of a processing component results in a well-triggered
component despite the guards.

MCPS’14

76 Modeling of Reconfigurable Medical Ultrasonic Applications in BIP

Time Gain
Compensation

DownMix Buffer

Delay
Apodization

Sum

Mode
Selector

RF Processing

I/Q Demodulation

Beamforming

B-modes:
- Baseline
- Frequency compounding
- Spatial compounding
- I/Q mode

Figure 10 RF Processing, Demodulation(I/Q mode), Beamforming.

Mode-Selector – Buffer: Finally, the same holds for combining the output port of a
mode-selector component with the input port of a buffer. Their composition is well triggered,
as no cycles are created and the guards belong to ports with no strong causes.

It must be noted that there are several possible ways to combine these framework
components. Nevertheless, the most interesting combinations, that can be used in processing
pipelines, are those presented above.

5 QoS by Topology Reconfiguration

QoS by topology reconfiguration concerns the management of quality solely through the
reconfiguration of the pipeline structure and not the configuration of its components. Fig-
ures 10-12 depict three consecutive parts of the reconfigurable pipline that consolidates the
B-mode pipelines presented in Section 3.1.

This consolidated pipline enables quality management by merely altering only the topology
of the pipeline based on the mode of operation, that is without changing the parameters of
the processing components.

Every component of this pipeline is represented by one of the framework components,
namely mode-selector, buffer, accumulator and processing component, that were defined in
Section 4.

Each component has an In (resp. Out) port that corresponds to Input port (resp. Output)
as defined for the processing components. Interactions between components are depicted with
solid lines connecting participating ports. Each component has a Conf port that can be used
for QoS managment by precision by altering the processing parameters of the components.
Apparently, parameters adjusted through the Conf port for the mode-selector, accumulator
and buffering components do not affect the quality per-se, as they do not perform any kind
of processing.

In Figure 10, the first two components perform the RF processing, which is the same for
all modes. After that, for all modes except from I/Q, the Beamforming is computed (by the
delay-apodization-sum component). As stated in Section 3.1, in I/Q mode the Demodulation
occurs before Beamforming. This is depicted in the lower branch (green line) in Figure 10
where the mode-selector component is used to switch among the modes. Further, that branch
rejoins the normal pipeline in order for Beamforming to be performed.

Figure 11 depicts the Demodulation for Baseline, Frequency and Spatial compounding
modes. In Baseline (blue line) and Spatial compounding (red line) the demodulation is
performed through a hilbert-transformation followed by a low-pass filter. On the other hand,

S. Skalistis and A. Simalatsar 77

Mode
Selector

Buffer

Hilbert
Transformation

Demodulation

B-modes:
- Baseline
- Frequency compounding
- Spatial compounding
- I/Q mode

Figure 11 Demodulation (for all modes except I/Q).

Mode
Selector

Sum

Scan
Conversion

Averaging
Log

Compression

Log
Compression

Scan
Conversion

Power
Envelope

Rescale

Baseband Processing

B-modes:
- Baseline
- Frequency compounding
- Spatial compounding
- I/Q mode

Figure 12 Baseband Processing (for all modes).

in Frequency compounding (black line) the image is passed multiple times through different
band-pass filters, i.e spliting the image into several new images of different frequency-bands.
The splitting is performed by using a buffer and reconfiguring the cut-off frequencies of the
band-pass filter, rather than using multiple fixed filters, in order to reduce the number of
components and thus reduce program memory. These images are then demodulated in the
same manner as Baseline and Spatial compounding modes.

Figure 12 depicts the Baseband processing for all modes. In Spatial compounding, which
is depicted on the top branch (red line), the multiple firings, which are required in this
mode, are averaged after the scan-conversion. After averaging several images, the processing
continues with log-compression followed by the rescaling so as to produce the final output.
Similarly, in Frequency compounding (black line), the different images produced previously,
by the band-pass filter, have to be summed-up. Then the same processing as with Baseline
B-mode (blue line) is following. Finally, in the bottom branch, the I/Q signals are combined
in the power-envelope and in the similar manner with the Baseline B-mode produces the
final output.

It must be noted that the components Sum, Averaging and Power Envelope can not be
modeled as processing components. Instead, they are modeled as accumulators. Similarly,
the buffers present in this pipeline should be unbounded N-read buffers, where each them
has an appropriate value of N.

MCPS’14

78 Modeling of Reconfigurable Medical Ultrasonic Applications in BIP

Figure 13 Simple QoS controller as well-triggered component.

This consolidated pipeline supports both QoS by structure based on the choice of a
particular pipeline mode, and QoS by precision, where each component can be reconfigured
separately. It also consists of well-triggered components, which can ensure deadlock-freedom
and confluence. In Figures 10-12 there are some components with input ports belonging
to more than one interaction, which is not allowed in modal flows in general. This can be
resolved by manually implementing that part of the system. Of course, this may result in a
non deadlock-free system and need to be further studied.

Finally, in Figure 13, a simple QoS controller is presented as a proof of concept that such
a controller can be designed following the well-triggered paradigm. As such, the controller
can be combined with the aforementioned pipeline and thus have a fully deadlock-free and
confluent system that supports QoS management. This controller has two input ports,
through which it receives the values qr (quality with respect to resolution) and qn (quality
with respect to noise). The controller chooses the appropriate mode by comparing these values
with the thresholds QR, QN. To make this more clear, the thresholds QR, QN distinguish
the “high” and “low” quality for noise and resolution, respectively, while the input values
are the desired quality levels. For example, if the requirements for quality with respect to
resolution is “high” and the requirements for quality with respect to noise is “low”, then the
controller chooses mode m=1, which is then trasmitted to the mode-selector components
that perform the choice of the porcessing mode.

6 Conclusion & Future Work

Ultrasonic imaging applications require high quality of images produced in real-time with
limited resources available. In this context, feasibility, optimality and quality control are of
significant importance, but the safety-critical nature of such applications requires guarantees
that the system will be deadlock-free and confluent. We present an approach to model such
applications using a synchronous computation model. Our approach is based on Modal
Flow Graphs, which is a formalism that encompasses a synchronous computation model and
guarantees by-construction deadlock-freedom and confluence provided the system satisfies
some easy-to-check structural constraints.

There are two aspects of QoS management; QoS by precision is based on adjusting the
parameters of some components of the computation chain, whereas QoS by structure is based

S. Skalistis and A. Simalatsar 79

on changing the topology of the computation chain. We have presented a model of the
pipeline that consolidates four modes of ultrasound B-mode processing and provides quality
control by structure through pipeline reconfiguration, as well as supports quality control by
precision through the adjustment of computational parameters at the component level.

We have introduced framework components, which are well-triggered modal-flow compon-
ents, that can be used to build reconfigurable multimedia pipelines. We have identified the
conditions that must be satisfied by the interconnection structure among the components in
order to preserve deadlock-freedom and confluence. With the case study we have demon-
strated how the processing pipline of the ultrasoic application can be composed out of these
framework components.

Finally, we have presented a simple QoS controller as a well-triggered component which
when combined with a reconfigurable pipeline results in a fully deadlock-free and confluent
system that supports QoS management by topology reconfiguration.

As part of on-going and future work, in the context of our case study, we are investigating
parameters (e.g. variable cut-off frequencies of the filters, levels of saprcity of the computation
matrixes, etc.) and constraints (power, time) that affect the QoS management. Based on
that, we are planning to extend the quality controller to take into account parameters and
constraints of the underlying platform and provide optimal use of resources.

Acknowledgements. The work described in this paper is part of the UltrasoundToGo
project. The aim of this project is to develop a scalable low-power, high-performance, trusted
platform for 3D portable ultrasound imaging systems.

References
1 Ananda Basu, Saddek Bensalem, Marius Bozga, Jacques Combaz, Mohamad Jaber, Thanh-

Hung Nguyen, Joseph Sifakis, et al. Rigorous component-based system design using the
BIP framework. IEEE Software, 28(3):41–48, 2011.

2 Simon Bliudze and Joseph Sifakis. The algebra of connectors: Structuring interaction in
BIP. In Proceedings of the 7th ACM/IEEE International Conference on Embedded Software,
EMSOFT’07, pages 11–20, New York, NY, USA, 2007. ACM.

3 Marius Dorel Bozga, Vassiliki Sfyrla, and Joseph Sifakis. Modeling synchronous systems in
BIP. In Proceedings of the Seventh ACM International Conference on Embedded Software,
EMSOFT’09, pages 77–86, New York, NY, USA, 2009. ACM.

4 Richard SC Cobbold. Foundations of biomedical ultrasound. Oxford University Press, USA,
2007.

5 Jacques Combaz, Jean-Claude Fernandez, Thierry Lepley, and Joseph Sifakis. Qos control
for optimality and safety. In Proceedings of the 5th ACM International Conference on
Embedded software, pages 90–99. ACM, 2005.

6 Zahra Keshavarz-Motamed, Julio Garcia, Emmanuel Gaillard, Romain Capoulade, Florent
Le Ven, Guy Cloutier, Lyes Kadem, and Philippe Pibarot. Non-invasive determination of
left ventricular workload in patients with aortic stenosis using magnetic resonance imaging
and doppler echocardiography. PLoS One, 9(1), 2014.

7 Sonia H. Contreras Ortiz, Tsuicheng Chiu, and Martin D. Fox. Ultrasound image enhance-
ment: A review. Biomedical Signal Processing and Control, 7(5):419 – 428, 2012.

8 Stefanos Skalistis and Alena Simalatsar. Modeling of Reconfigurable Medical Ultrasonic
Applications in BIP. Technical report, EPFL IC IIF RiSD, 2014.

9 Xiang Xie, GuoLin Li, ZhiHua Wang, Chun Zhang, DongMei Li, and XiaoWen Li. A novel
method of lossy image compression for digital image sensors with bayer color filter arrays.
In Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on, pages
4995–4998. IEEE, 2005.

MCPS’14

A Domain Specific Language for Performance
Evaluation of Medical Imaging Systems∗

Freek van den Berg, Anne Remke, and Boudewijn R. Haverkort

Design and Analysis of Communication Systems, University of Twente
P.O. Box 217, 7500 AE, Enschede, The Netherlands
{f.g.b.vandenberg,a.k.i.remke,b.r.h.m.haverkort}@utwente.nl

Abstract
We propose iDSL, a domain specific language and toolbox for performance evaluation of Medical
Imaging Systems. iDSL provides transformations to MoDeST models, which are in turn con-
verted into UPPAAL and discrete-event MODES models. This enables automated performance
evaluation by means of model checking and simulations. iDSL presents its results visually. We
have tested iDSL on two example image processing systems. iDSL has successfully returned
differentiated delays, resource utilizations and delay bounds. Hence, iDSL helps in evaluating
and choosing between design alternatives, such as the effects of merging subsystems onto one
platform or moving functionality from one platform to another.

1998 ACM Subject Classification B.8.2 Performance Analysis and Design Aids

Keywords and phrases Domain Specific Language, Performance Evaluation, Simulation, Model
Checking, Medical Systems

Digital Object Identifier 10.4230/OASIcs.MCPS.2014.80

1 Introduction

Medical imaging systems (MIS) are used to perform safety critical tasks. Their malfunctioning
can lead to serious injury [1]. The safety is, among others, significantly determined by
their performance, since imaging applications are time critical by nature. Predicting the
performance of MIS is a challenging task, which currently requires the physical availability
of such system in order to measure their performance. However, a model-based performance
approach would allow to predict the system’s performance already during early design and
can thereby shorten the design cycle considerably.

Interventional X-ray (iXR) systems are MIS that dynamically record high quality images
of a patient, based on X-ray beams. Design decisions in this domain are of various kinds,
such as the possibility of merging of subsystems onto one platform, moving functionality
from one to another platform, and assessing whether the system is robust against minor
hardware changes. This paper investigates the use of a model-based approach to obtain
insight in system performance.

We have decided to build iDSL, a domain specific language and toolbox for performance
evaluation of Medical Imaging Systems, on top of MoDeST [8], which recently has been
extended to support the modelling and analysis of Stochastic Timed Automata (STA) using
PRISM [17] and UPPAAL [18] as well as discrete-event simulation using MODES. This

∗ This research was supported as part of the Dutch national program COMMIT, and carried out as part
of the Allegio project under the responsibility of the Embedded Systems Innovation group of TNO, with
Philips Medical Systems B.V. as the carrying industrial partner.

© Freek van den Berg, Anne Remke, and Boudewijn R. Haverkort;
licensed under Creative Commons License CC-BY

Medical Cyber Physical Systems – Medical Device Interoperability, Safety, and Security Assurance (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer; pp. 80–93

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.80
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

F. van den Berg, A. Remke, and B. R. Haverkort 81

Total latency
and jitter

Service System

request

response

request

response

Service1

Process Resource

Service2

Process Resource

Measures of interest

Latency
breakdown
Process flow

Utilization
Queue size

Study

Scenario

Service
consumer

mapping

mapping

Figure 1 Conceptual model of a service system. Measures of interest are obtained using scenarios.

decision has been taken because of the expressiveness of STA and because MoDeST allows
to use both analytical and simulation techniques.

We have designed the Domain Specific Language iDSL tailored towards MIS. iDSL
adheres to the Y-chart philosophy [15], which separates the application from the underlying
computing platform. It further uses hierarchical structures like the performance evaluation
tool HIT [3]. And finally, iDSL can automatically generate design alternatives. We have
constructed automated transformations from iDSL to different MoDeST model variants,
each taking full advantage of the capabilities of the underlying evaluation tools, i.e., PRISM,
UPPAAL and MODES. While these tools have been used widely for performance evaluation
of embedded systems [13, 12, 16], to the best of our knowledge they have not been used
for evaluating the performance of MIS. Finally, we use GraphViz [7] and GNUplot [20] to
present performance outcomes graphically.

As for related work, [14, 19] apply model checking with UPPAAL on real-time medical
systems to address safety. A study in which PRISM is used, addresses quantitative verification
of Implantable Cardiac Pacemakers [5], which are time critical systems. [11, 21] evaluate the
performance of iXR systems based on the Analytical Software Design (ASD) method.

The Octopus Toolset [2] provides various tools for the modelling and analysis of software
systems in general, whereas iDSL is specifically designed for MIS. Earlier work [10, 22]
proposed a simulation-based approach using POOSL [6], leading to average values.

This paper is further organized as follows. Section 2 describes the conceptual model of
iDSL. Section 3 specifies the constructs and relations that constitute the iDSL language.
Section 4 covers the functionality and usage of the iDSL tool. Section 5 concludes the paper.

2 Conceptual model

This section describes the conceptual model that forms the basis of iDSL (see also Figure 1).
A service system, as depicted in the upper right block, provides services to service

consumers in its environment. A consumer can send a request for a specific service at a
certain time, after which the system responds with some delay.

MCPS’14

82 A DSL for Performance Evaluation of Medical Imaging Systems

image
processing

seq

image
pre
processing

 seq

image
processing

 seq

image
post
processing

 seq

motion
compensation

 seq

noise
reduction

 seq

contrast

 seq

image
processing
decomp

CPU

GPU

Figure 2 The IP ProcessModel (left) and IP ResourceModel (right) visualization are automatically
generated from the iDSL code.

A service is implemented using a process, resources and a mapping, in accordance with
the Y-chart philosophy [15]. A process decomposes high-level service requests into atomic
tasks, each assigned to resources through the mapping (from which we abstracted in the
figure). Hence, the mapping forms the connection between a process and the resources it uses.
Resources are capable of performing one atomic task at a time, in a certain amount of time.
When multiple services are invoked, their resource needs may overlap, causing concurrency
and making performance analysis more challenging.

A scenario consist of a number of invoked service requests over time to observe the
performance behaviour of the service system in specific circumstances. We assume service
requests to be functionally independent of each other. That is, service requests do not affect
each other’s functional outcomes, but may affect each other’s performance implicitly.

A study evaluates a selection of systematically chosen scenarios to derive the system’s
underlying characteristics. Finally, measures of interest define what performance metrics
are of interest, given a system in a scenario. Measures can either be external to the system,
e.g., throughput, latency and jitter, or internal, e.g., queue sizes and utilization.

3 Language constructs

We now demonstrate how to use iDSL by implementing an example Image Processing (IP)
system. We have included the grammar of the iDSL language as reference at the end of
the paper (see Figure 9). The iDSL language contains six sections, i.e., Process, Resource,
System, Scenario, Measure and Study. The former three sections specify the functioning of
the service system, whereas the latter three sections describe the way the system performance
is assessed. iDSL transforms automatically into MoDeST [8] models and we therefore define
its semantics in terms of MoDeST code. In what follows, we provide an iDSL instance per
section, and the belonging MoDeST code that serves as semantics. In some cases, iDSL also
provides an automatically generated visualization using GraphViz.

3.1 Process
A process decomposes a service into a number of atomic tasks, implemented in iDSL using a
recursive data structure with layers of sub-processes. At the lowest level of abstraction, the

F. van den Berg, A. Remke, and B. R. Haverkort 83

Table 1 Process: iDSL and MoDeST code.

iDSL Process code

Section Process
ProcessModel image_processing_application
seq image_processing_seq {

atom image_pre_processing load 50
seq image_processing {

atom motion_compensation load 44
atom noise_reduction load uniform(80 140)
atom contrast load 134 }

atom image_post_processing load 25 }

Generated MoDeST Process code

process image_processing(){
motion_compensation(44);
noise_reduction(Uniform(80,140));
contrast(134) }

process image_processing_seq(){
image_pre_processing(50);
image_processing();
image_post_processing(25) }

process image_processing_application_instance(){
generator_image_processing_application?;
image_processing_seq() }

Table 2 ResourceModel: iDSL and MoDeST
code.

iDSL ResourceModel code

Section Resource
ResourceModel image_processing_PC

decomp image_processing_decomp {
atom CPU rate 2
atom GPU rate 5 }

connections { (CPU , GPU) }

Generated MoDeST ResourceModel
code

process machine_call_GPU(real taskload){
machine_GPU_start! {= sync_buffer=taskload =};
machine_GPU_stop? }

process machine_GPU(){
real taskload;
machine_GPU_start? {= taskload=sync_buffer =};
delay (taskload / 5)
machine_GPU_stop!;
machine_GPU() }

atomic tasks each have a load, i.e., an amount of work, such as the number of CPU cycles.
The process for the example (Table 1 and Figure 2, left) combines seq and atom constructs.

At its highest level, it consists of a sequential task that decomposes into an atomic task “pre-
processing” with load 50, a sequential task “processing” and an atomic task “post-processing”
with load 25. At a lower level, the sequential task “processing” consists of three atomic tasks
named “motion compensation” with load 44, “noise reduction”, and ‘contrast” with load 134.
The load of “noise reduction” is drawn from a uniform distribution on [80,140], at execution
time.

In MoDeST, these hierarchies are implemented using layered processes, and the loads
as parameters that are used later. The process is triggered via a generator through binary
communications.

iDSL additionally supports the process algebraic constructs for parallelism (par), non-
deterministic choice (alt), probabilistic choice (palt) and abstraction, as well as a mutual
exclusion (mutex) to permit at most one process instance at a time on a certain process part.

3.2 Resource
In iDSL, a resource is defined as recursive hierarchical structure consisting of decomp and
atom constructs, and a binary relation that defines which resources are connected.

The decomp construct is used to create decomposable resources, whereas the atom
construct is used to specify atomic resources. They have a rate that specifies how much load
they can process per time unit, e.g., the number of CPU cycles per second. Resources that
are connected can perform operations in sequence for one process. The connections further
enhance the way resources are visualized and enable high-level input validations.

We model the resource in our example as a composite resource (Table 2 and Figure 2,
right). It consists of two atomic resources, i.e., a “CPU” with rate 2 and a “GPU” with rate 5.
Additionally, the “CPU” and “GPU” are connected. In the MoDeST code, two processes per
resource are created of which we have included the “GPU”. A resource is implemented using
binary communications to handle concurrency and a delay to represent the resource being in

MCPS’14

84 A DSL for Performance Evaluation of Medical Imaging Systems

Table 3 System: iDSL and MoDeST code.

iDSL System code

Section System
Service image_processing_service
Process image_processing_application
Resource image_processing_PC
Mapping assign { (image_pre_processing, CPU)

(motion_compensation, CPU)
(noise_reduction, CPU)
(contrast, CPU)
(image_post_processing, GPU) }

Generated MoDeST System code

process motion_compensation(real taskload){
machine_call_CPU(taskload) }

process image_post_processing(real taskload){
machine_call_GPU(taskload) }

Table 4 Scenario: iDSL and MoDeST code.

iDSL Scenario code

Section Scenario
Scenario image_processing_run
ServiceRequest image_processing_service

at time 0, 400, ...
ServiceRequest image_processing_service

at time dspace(offset), dspace(offset)+400,

Generated MoDeST Scenario code

process init_generator_image_processing_service
() { delay (0)

generator_image_processing_service() }
process generator_image_processing_service(){

clock c; tau {= c=0 =};
alt{
:: generator_image_processing_application!
:: delay(1) tau // time-out };

when urgent(c >= (400-0))
generator_image_processing_service() }

use, i.e., processing a process. The self-recursion ensures that the resource runs forever. The
delay is the quotient of the load and rate, e.g., CPU cycles divided by CPU cycles per second
leads to seconds. The second process (with prefix machine_call) abstracts communications
from the process layer. The MoDeST code reveals that concurrency is currently resolved
using non-deterministic choices, in a non-preemptive manner.

3.3 System
A system consists of one or more services. In our example (Table 3), we construct an overall
system with one service that combines the already defined process and resource (Figure 2). By
defining an additional mapping, we connect them to form a service (Figure 3). In MoDEST,
each mapping assignment results into a process that calls a resource.

3.4 Scenario
A scenario is defined as a bundle of services, on one system, that are individually requested
over time (Table 4). The times of the requests are defined in terms of the first and second
request, respectively 0 and 400 in the example here. Inter-request times are assumed to be
constant, 400 in the example. To illustrate the modelling flexibility, we have added another
set of service requests, including two dspace function calls that are constant within a design
instance (to be explained later). In MoDeST, two processes handle the timing. The first
(with prefix init) performs the initial delay once. The second then loops forever, with period
of the inter-request time, triggering the process once per loop. When the service system fails
to respond to a request immediately, a time-out occurs that drops the request.

3.5 Measure
Measures define what performance metric(s) one would like to obtain, given a system in a
certain scenario. Different measures might call for different techniques to obtain them, e.g.,
simulation, model checking or numerical analysis. To illustrate our approach, we specified
two measures (Table 5), based on two methods, i.e., MODES [8] based simulations and

F. van den Berg, A. Remke, and B. R. Haverkort 85

resources

image
processing

seq

image
pre
processing

 seq image
processing

 seq

image
post
processing

 seq

CPU

motion
compensation

 seq

noise
reduction

 seq

contrast

 seq

GPU

Figure 3 The IP Service visualization, which is automatically generated from the iDSL code.

UPPAAL [18] based model checking. The former uses Stochastic Timed Automata (STA)
as its underlying model, while the latter uses Timed Automata (TA). We create specific
MoDeST code (Table 5) for each case to combine the STA’s expressiveness and the TA’s
model checking capability.

First, simulations provide response times, for a given number of simulations of a certain
length. We use 1 run of length 280 in the example. Simulations additionally provide
insight in resource utilizations and latency breakdowns. To eliminate non-determinism,

Table 5 Measure: iDSL and MoDeST code.

iDSL Measure code

Section Measure
Measure ServiceResponse times

using 1 runs of 280 ServiceRequests
Measure ServiceResponse absolute times

for any ServiceRequest

Generated MoDeST Measure code for
MODES.

process image_processing(){
tau {= stopwatch_image_processing = 0,

image_processing_done = false =};
...
tau {= image_processing_done = true,

counter_image_processing++ =};
tau {= image_processing_done = false =} }

property property_latency_image_processing =
Xmax(stopwatch_image_processing |

stopwatch_image_processing_done &&
counter_image_processing==1);

process machine_GPU(){ ...
delay (taskload/ 5)
tau {= util_counter_GPU+= (taskload / 5) =};
.. }

property property_utilization_CPU =
Xmax (util_counter_CPU/10000 | time==10000);

we use an as soon as possible (ASAP) sched-
uler for time, and a uniform resolution for
choice [9], which are fixed parameters that
iDSL provides to MODES. The ASAP sched-
uler makes sure that whenever an action is
possible, it is performed immediately. The
uniform resolution selects one out of multiple
actions to perform when their underlying dis-
tribution is not specified, with equal probab-
ilities.

In MoDeST, we extend the already given
code with both measurement points and prop-
erties, for both the latencies and utilizations.
Each (sub)process is enclosed by a stopwatch
to register a latency value, whereas an ac-
tual property retrieves this value for a single
latency. Resources are augmented with a cu-
mulative delay counter, retrieved by means of
a property after some time, viz., an arbitrary
10000 in the example.

MCPS’14

86 A DSL for Performance Evaluation of Medical Imaging Systems

Transform

Eclipse
Xtexts/Xtend for DSLs

Create an iDSL
System model

MODES

GNUplot GraphViz

injection

Latency
bar chart

Latency
breakdown
chart

modeler

analyzer

Process+
resource+
mapping
chart

MCTAU

UPPAAL

Absolute
latency
bounds

Create an iDSL
Study model

analyzer

iDSL
grammar

Input validation

A B C
D

Figure 4 The iDSL tool chain overview. A modeller and analyser create an iDSL model based
on the iDSL grammar. The iDSL tool transforms this model into MoDeST and GraphViz models,
leading to performance measures to be evaluated by the analyser.

resources

image
processing
seq
306.7036

image
pre
processing

37.1696

 seq
image
processing

264.534

 seq

image
post
processing

5

 seq

CPU
0.836474

motion
compensation

45.884

 seq

noise
reduction
92.6735

 seq

contrast
125.976

 seq

GPU
0.025

Figure 5 The latency breakdown chart and utilization (offset=0), based on MODES simulation
results, which is automatically generated from the iDSL code.

F. van den Berg, A. Remke, and B. R. Haverkort 87

Table 6 Binary search for bounds, pseudo code.

LB: Compute lower bounds, pseudo
code

LB (lbound,ubound){
if (ubound==lbound) return lbound
check_value=(lbound+ubound)/2
UPPAAL (p = probability(latency<check_value))

if (p=0) LB (check_value,ubound)
else LB (lbound,check_value) }

Compute lower bounds, execution trace

LB(0,1024) -> LB(0,512) -> LB(0,256) ->
LB(128,256) -> LB(128,192) -> LB(128,160) ->
LB(144,160) -> LB(152,160) -> LB(156,160) ->
LB(158,160) -> LB(159,160) -> LB(159,159) -> 159

Table 7 Study: iDSL and MoDeST code.

iDSL Study DSL code

Section Study
Scenario image_processing_run

DesignSpace
(offset {0, 20, 40, 80, 120, 160, 200) }

Generated MoDeST Study code

real sync_buffer;
closed par{
:: do{image_processing_application_instance()}
:: do{image_processing_application_instance2()}
:: init_generator_image_processing_service()
:: init_generator_image_processing_service2()
:: machine_CPU()
:: machine_GPU() }

Second, model checking leads to the absolute minimum and maximum response times,
given a system and scenario. It does not require parameters in the iDSL language, because
its results are universal. The lower and upper bounds are valid when they are respectively
lower and higher than all possible outcomes. They are strict when additionally the distance
between them is minimal, i.e., the lower bound is the highest valid one and vice versa. iDSL
can return bounds that are both valid and strict.

For model checking, iDSL “downgrades” STAs to TAs [9] automatically, thereby, replacing
real numbers by integers, probabilistic choice and infinite distributions by non-deterministic
choice, and removing some performance measuring variables to reduce the state-space size.
For instance, the uniform function in the process (see Table 1), represented by a continuous
probability function in STAs, becomes a non-deterministic, finite choice.

While TAs only support properties with boolean expressions, the absolute values cannot
be retrieved using single properties. Therefore, we have equipped iDSL with a binary search
algorithm that leads to a solution in O(log(n)), with n the size of the search range. The
algorithm consists of two functions, i.e., a LB function to compute lower bound values and a
UB function for higher bound values.

LB is a recursive function (Table 6, top) with two parameters, the lower and upper bound
of the current range of values. The stop criterion, i.e., the lower and upper bound value are
the same, ends the recursion by returning the lower bound value. Otherwise, the range is
halved in two parts by taking the average value of the lower and upper bound. UPPAAL is
queried with this value to determine in which half of the range the lower bound is located.
A recursive call of LB then takes place using the right range half as parameter. The UB
function operates in a similar fashion.

To illustrate the functioning of LB, we apply it on the case with one image processing
system. We start by selecting the initial range of values. Since the algorithm is of O(log(n))
and the choice of n does therefore not affect the workload much, it is advised to overestimate
the size of the range. Based on simulation results, we choose [0:1024] to be our initial range.
The execution trace (Table 6, bottom) conveys 12 recursive calls before the final value 159
is finally obtained. This means that the one image processing system will never display a
service response time smaller than 159, in the given scenario.

MCPS’14

88 A DSL for Performance Evaluation of Medical Imaging Systems

3.6 Study
Finally, a study forms a collection of scenarios that one would like to analyse in an automated
manner. This is principally done by summing up one or more scenarios (Table 7). Individual
MoDeST models are created for each scenario, which each contain a main parallel process to
initiate all process model threads, generators and the resources involved.

We conclude with a design space, a shorthand way to specify a set of similar scenarios.
In our example, we vary the starting time offset of one of the service-request sequences to
be 0, 20, 40, 80, 120, 160 and 200. For this purpose, we create a design space in the study
and enumerate the desired values. After this, the dspace function can be used for the offset
parameter as done in the system section (Table 3). As a result, seven similar scenarios, one
corresponding to each offset value, are created that vary where and only where the dspace
function is used.

4 Tool and solution chain

This section covers the functioning of our iDSL tool (illustrated in Figure 4). iDSL requires
two user roles to be fulfilled, the modeller and the analyser. The modeller constructs a model
of a real system and the analyser specifies measures to perform. Execution of the model then
generates artefacts with performance metrics to be investigated by the analyser.

4.1 Modelling
A modeller and analyser interactively create an iDSL instance in the Eclipse IDE for DSL
Developers1, adhering to iDSL’s grammar. Input validation comprises syntax checking and
advanced checks, e.g., for unique naming and non-circular definitions. Additionally, warnings
and information boxes are displayed, e.g., when the design space is large. The modelling
ends with the creation of a valid iDSL model.

4.2 Execution
Created iDSL models are then automatically transformed into two kinds of GraphViz specific-
ations (Figure 4, A+B) and two kinds of MoDeST models (Figure 4, C+D). Transformations
are written in Xtend and generate text output, based on iDSL instance constructs.

Some GraphViz specifications are performance unrelated and provide a visual presentation
of the processes, resources and mappings of the system (as already shown in Figures 2 and
3). They are turned into a process+resource+mapping chart using the GraphViz tool.

The remaining GraphViz specifications have placeholders to contain performance numbers
and form one input of the injection step. Some MoDeST models are executed in the MODES
simulator and lead to latency and utilization numbers. The high-level latencies per instance
are transformed into a latency bar chart by GNUplot.

The latencies at different process levels and utilizations form the second input of the
injection. The remaining MoDeST models are executed in UPPAAL, via MCTAU [4], to
obtain absolute latency bounds.

The injection step takes a GraphViz specification with placeholders and MODES per-
formance numbers as input. By simply injecting the performance numbers at the right
placeholders, a new GraphViz specification results. It is forwarded to the GraphViz tool and
transformed into a latency breakdown chart (Figure 5). To illustrate the meaning of this

1 http://www.eclipse.org/downloads/packages/eclipse-ide-java-and-dsl-developers/junosr2

http://www.eclipse.org/downloads/packages/eclipse-ide-java-and-dsl-developers/junosr2

F. van den Berg, A. Remke, and B. R. Haverkort 89

chart, we show that the latency of a sequential process equals the sum of its sub-processes’
latencies, e.g. for “image processing”, the latency is (rounded off): 265 = 46 + 93 + 126.
Additionally, the utilization is the quotient of the busy time of a resource and the total
elapsed time. Take for instance the “GPU” resource, which is only used for “image processing”
and for 5 time units per service. Services are each invoked periodically every 400 time units.
Therefore, the “GPU” has a utilization of (5 + 5)/400 = 0.025.

4.3 Analysis
Using the presented tool chain, iDSL offers the possibility to compare several design altern-
atives from various perspectives, in an automated manner. We proceed with discussing the
results iDSL can generate. First, we discuss the results based on MODES simulations. After
that, we review results obtained from model checking using MCTAU and UPPAAL.

Simulation results. We have defined a study with seven design alternatives for which iDSL
automatically generates a latency breakdown chart and a latency bar graph. We present
the ones for the offset=0 case (Figures 5 and 6). As can be seen in Figure 6, the latency
varies highly. This is due to a high degree of concurrency, which forces the scheduler to
make many concurrency resolving decisions that each increase the variability. We further see
that the “noise reduction” and “contrast” processes contribute most to the latency, which
stems directly from their large loads. Additionally, we have included a CDF with the latency
times of the design alternatives altogether (Figure 7). It shows that when the offset is small
and the level of concurrency larger, latency times become higher. For the highest offsets, no
concurrency takes place.

Model checking results. We applied MCTAU on the case with one image processing system.
The computation of the lower (Table 6, bottom) and upper bound leads to values 159 and
189, respectively. The difference of 30 between them is caused by the uniform distribution
that is specified in the “noise reduction” process (Figure 8). As required by definition, all
simulation outcomes fall within the absolute bounds.

5 Conclusion and future work

In this paper we presented iDSL, a domain specific language and toolbox for the performance
evaluation of Medical Imaging Systems. iDSL automates performance analysis, for both
model checking and simulations, and displays results visually. We have demonstrated the
feasibility of our approach using a small example based on a real system, in which we
investigated MIS with two concurrent image processing applications.

iDSL has successfully returned differentiated delay, utilization and bound values for a
number of designs. In order to assess the scalability of iDSL, we will apply it on extensive
cases of our industrial partner Philips, in the Allegio project2. This will put the expressiveness
of the iDSL language to the proof and may lead to extensions to both the language and
toolbox.

We are currently investigating whether we can add a transformation for probabilistic
model checking. To support analysis further, we will extend iDSL to create graphs and
diagrams that display information of multiple scenarios, services and simulation runs, and
include GANTT charts.

2 http://redesign.esi.nl/research/applied-research/current-projects/allegio/

MCPS’14

http://redesign.esi.nl/research/applied-research/current-projects/allegio/

90 A DSL for Performance Evaluation of Medical Imaging Systems

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 0 50 100 150 200 250 300

ti
m

e

 request number

Latency

Figure 6 The MODES latency times bar graph (offset=0) for 280 service requests, which is
automatically generated from the iDSL code.

 0

 0.2

 0.4

 0.6

 0.8

 1

 150 200 250 300 350 400

C
u
m

u
la

ti
v
e
 p

ro
b

a
b

ili
ty

Time

offset 0
offset 20
offset 40
offset 80

offset 120
offset 160
offset 200

Figure 7 The cumulative distribution functions of latencies for seven design instances is auto-
matically generated from the iDSL code.

 0

 0.2

 0.4

 0.6

 0.8

 1

 155 160 165 170 175 180 185 190

C
u
m

u
la

ti
v
e
 p

ro
b

a
b
ili

ty

Time

Lo
w

e
r

b
o
u
n
d

U
p

p
e
r

b
o
u
n
d

Figure 8 The absolute minimum and maximum bounds, and a CDF of the simulation outcomes
is automatically generated from the iDSL code.

F. van den Berg, A. Remke, and B. R. Haverkort 91

Model
ProcessModel ResourceModel System Scenario Measure

Study

atom

seq

load

ProcessModel

AExp ProcessModel

uniform AExp AExp

ResourceTree
Resourcemodel Resource Resource

atom

decomp

rate

ResouceTree

AExp
ResourceTree

connections

ProcessModel ResourceModel Mapping
Service

Service AExp AExp time
Scenario

Measure
INT INT simulation

absolute bounds

runs

Study
Scenario DesignSpaceModel

Service
System

Mapping
Process Resource

Variable Value
DesignSpaceModel

dspace Variable

INT
AExp

AExp Op) (

Op x

-

+

/

AExp

Figure 9 The grammar of iDSL’s language as used in this paper. The grammar has the Model
concept as its top-level node. It decomposes into of one or more ProcessModels, ResourceModels, a
System (a set of Services), Scenarios, and a Measure and a Study.

MCPS’14

92 A DSL for Performance Evaluation of Medical Imaging Systems

Acknowledgements. We would like to thank Arnd Hartmanns of the MoDeST development
team for his help and efforts made during the development of iDSL.

We would like to thank Arjan Mooij of the Allegio project for informing us about the
binary search algorithm.

References
1 H. Alemzadeh, R. Iyer, Z. Kalbarczyk, and J. Raman. Analysis of safety-critical computer

failures in medical devices. IEEE Security & Privacy, 11(4):14–26, 2013.
2 T. Basten, E. Van Benthum, M. Geilen, M. Hendriks, F. Houben, G. Igna, F. Reckers,

S. De Smet, L. Somers, and E. Teeselink. Model-driven design-space exploration for em-
bedded systems: the Octopus toolset. In Leveraging Applications of Formal Methods, Veri-
fication, and Validation, volume 6415 of LCNS, pages 90–105. Springer, 2010.

3 H. Beilner, J. Mater, and N. Weissenberg. Towards a performance modelling environment:
News on HIT. In Modeling Techniques and Tools for Computer Performance Evaluation,
pages 57–75. Plenum Press, 1989.

4 J. Bogdoll, A. David, A. Hartmanns, and H. Hermanns. MCTAU: Bridging the gap between
modest and UPPAAL. In Proc. 19th International SPIN Workshop on Model Checking of
Software, volume 7385 of LNCS, pages 227–233. Springer, 2012.

5 Taolue Chen, Marco Diciolla, Marta Kwiatkowska, and Alexandru Mereacre. Quantitative
verification of implantable cardiac pacemakers. In Proc. 33rd Real-Time Systems Sym-
posium, pages 263–272. IEEE, 2012.

6 Eindhoven University of Technology. Software/Hardware Engineering - Parallel Object-
Oriented Specification Language (POOSL). http://www.es.ele.tue.nl/poosl/.

7 J. Ellson, E. Gansner, L. Koutsofios, S. North, and G. Woodhull. Graphviz—open source
graph drawing tools. In Graph Drawing, volume 2265 of LNCS, pages 483–484. Springer,
2002.

8 E. Hahn, A. Hartmanns, H. Hermanns, and J.-P. Katoen. A compositional modelling
and analysis framework for stochastic hybrid systems. Formal Methods in System Design,
43(2):191–232, 2012.

9 A. Hartmanns. Model-checking and simulation for stochastic timed systems. In Proc. 9th
International Symposium on Formal Methods for Components and Objects, volume 6957 of
LCNS, pages 372–391. Springer, 2010.

10 S. Haveman, G. Bonnema, and F. van den Berg. Early insight in systems design through
modeling and simulation. In Proc. 12th Annual Conference on Systems Engineering Re-
search, 2014. To appear.

11 S. Hettinga. Performance analysis for embedded software design. Master’s thesis, University
of Twente, 2010.

12 G. Igna, V. Kannan, Y. Yang, T. Basten, M. Geilen, F. Vaandrager, M. Voorhoeve,
S. de Smet, and L. Somers. Formal modeling and scheduling of datapaths of digital docu-
ment printers. In Formal Modeling and Analysis of Timed Systems, volume 5215 of LCNS,
pages 170–187. Springer, 2008.

13 G. Igna and F. Vaandrager. Verification of printer datapaths using timed automata. In
Leveraging Applications of Formal Methods, Verification, and Validation, volume 6416 of
LCNS, pages 412–423. Springer, 2010.

14 Z. Jiang, M. Pajic, and R. Mangharam. Cyber-physical modeling of implantable cardiac
medical devices. Proc. of the IEEE, 100(1):122–137, 2012.

15 B. Kienhuis, E. Deprettere, P. van der Wolf, and K. Vissers. A methodology to design
programmable embedded systems. In Embedded processor design challenges, volume 2268
of LCNS, pages 18–37. Springer, 2002.

F. van den Berg, A. Remke, and B. R. Haverkort 93

16 M. Kwiatkowska, G. Norman, and D. Parker. Controller dependability analysis by probab-
ilistic model checking. Control Engineering Practice, 15(11):1427–1434, 2007.

17 M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: verification of probabilistic
real-time systems. In Computer Aided Verification, volume 6806 of LNCS, pages 585–591.
Springer, 2011.

18 K. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. International Journal on
Software Tools for Technology Transfer, 1(1):134–152, 1997.

19 M. Pajic, Z. Jiang, I. Lee, O. Sokolsky, and R. Mangharam. From verification to imple-
mentation: A model translation tool and a pacemaker case study. In Proc. 18th Real-Time
and Embedded Technology and Applications Symposium, pages 173–184. IEEE, 2012.

20 J. Racine. GNUplot 4.0: a portable interactive plotting utility. Journal of Applied Econo-
metrics, 21(1):133–141, 2006.

21 R. Sadre, A. Remke, S. Hettinga, and B.R. Haverkort. Simulative and analytical evaluation
for asd-based embedded software. In Measurement, Modelling, and Evaluation of Comput-
ing Systems and Dependability and Fault Tolerance, volume 7201 of LCNS, pages 166–181.
Springer, 2012.

22 F. van den Berg, A. Remke, A. Mooij, and B.R. Haverkort. Performance evaluation for
collision prevention based on a domain specific language. In Computer Performance En-
gineering, volume 8168 of LCNS, pages 276–287. Springer, 2013.

MCPS’14

A Safety Argument Strategy for PCA
Closed-Loop Systems: A Preliminary Proposal∗

Lu Feng†, Andrew L. King, Sanjian Chen, Anaheed Ayoub‡,
Junkil Park, Nicola Bezzo, Oleg Sokolsky, and Insup Lee

Department of Computer & Information Science, University of Pennsylvania

Abstract
The emerging network-enabled medical devices impose new challenges for the safety assurance
of medical cyber-physical systems (MCPS). In this paper, we present a case study of building a
high-level safety argument for a patient-controlled analgesia (PCA) closed-loop system, with the
purpose of exploring potential methodologies for assuring the safety of MCPS.

1998 ACM Subject Classification D.2.9 Management (Software quality assurance), J.3 Life and
Medical Sciences, K.4.1 Public Policy Issues (Computer-related health issues, Human safety)

Keywords and phrases Medical Cyber-Physical Systems, Safety Argument, Assurance Cases,
Patient-Controlled Analgesia Infusion Pump, Closed-Loop Systems

Digital Object Identifier 10.4230/OASIcs.MCPS.2014.94

1 Introduction

Medical devices are increasingly used to deliver critical therapies. Because many devices
are used to control the release of chemicals or energy into the patient, the safety of such
devices are very important. In the United States, the Food and Drug Administration (FDA)
must approve each medical device before it can be marketed. The purpose of this approval
process is to ensure that each device meets an acceptable level of safety. The approval
process presents challenges to all parties involved. If a company fails to obtain approval for
a new device they will not be able to market it and will not be able to make a return on
their investment. For the FDA considerable resources are devoted to analyzing submissions
and determining if approval should be granted. Therefore, there is a need to effectively
communicate and review the safety of medical device systems with a range of stakeholders
(e.g., medical device manufacturers and regulatory authorities). The assurance case, which is
a method for expressing an argument about some properties of the system is a good way to
justify the safety of medical device systems. In fact, the FDA issued a draft guidance [11] in
2010 suggesting that medical manufacturers of infusion pumps provide a safety assurance
case with their pre-market submissions.

There are many challenges for both manufacturers and reviewers (i.e., regulatory bodies)
when it comes to effective application of the assurance case approach: for example, how
can one ensure that the argument presented by an assurance case is valid (e.g., logically
consistent)? How can one justify the confidence of evidence used? How can one evaluate
the sufficiency of an assurance case? Recently, research into assurance cases for medical

∗ This work is supported in part by NIH grant 1U01EB012470-01 and NSF grants CNS-1035715, IIS-
1231547.
† Lu Feng is supported by James S. McDonnell Foundation 21st Century Science Initiative – Postdoctoral
Program in Complexity Science/Complex Systems – Fellowship Award.
‡ Anaheed Ayoub is currently employed by Mathworks.

© Lu Feng, Andrew L. King, Sanjian Chen, Anaheed Ayoub, Junkil Park, Nicola Bezzo, Oleg Sokolsky,
and Insup Lee;
licensed under Creative Commons License CC-BY

Medical Cyber Physical Systems – Medical Device Interoperability, Safety, and Security Assurance (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer; pp. 94–99

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.94
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

L. Feng et al. 95

devices has been increasing. For instance, Weinstock and Goodenough [12] discussed the
safety case construction of generic infusion pumps; Jee et al. [4] constructed a safety case
for a pacemaker; Ayoub et al. [2] proposed a safety pattern for model-based development,
and applied it to a case study of generic Patient-Controlled Analgesic (PCA) infusion pump
software.

Recent technological advancements impose additional challenges for assuring the safety of
medical device systems. There is an emerging trend of network-enabled medical devices which
can communicate and coordinate with each other during the treatment, forming medical
cyber-physical systems (MCPS). New functionalities such as closed-loop continuous care,
which was not possible with stand-alone devices, are now being developed. However, MCPS
also bring new hazards (e.g., network failure) to patient safety, adding more concerns for the
safety argument in assurance cases.

In this paper, we consider a patient-controlled analgesia (PCA) closed-loop system, which
is an example of MCPS, and build a high-level safety argument for it. The purpose of this
case study is to explore potential methodologies for assuring the safety of MCPS. For the rest
of the paper, we introduce the background of PCA closed-loop system in Section 2, present
our safety argument in Section 3, and draw conclusions in Section 4.

2 Background: PCA Closed-Loop System

PCA infusion pumps are commonly used to deliver pain medication to patients who are
experiencing high levels of pain due to serious physical trauma (e.g., surgery). Patients often
have different tolerance levels for pain and different reactions to the medication. Therefore,
in addition to delivering opioids with a fixed schedule programmed by a caregiver, the PCA
pump also allows the patient to request an additional dose of medication (called bolus) by
pressing a button. A well-known hazard with opioid medication is that an overdose can cause
respiratory failure, which may be fatal to patients [8]. There are some safety mechanisms
built into modern PCA pumps. For example, a PCA pump can be programmed with limits
on the number of doses it will deliver, which helps to avoid overdose no matter how often the
patient pushes the bolus button. However, the existing safety mechanisms are not sufficient
to protect patients in all clinical scenarios and a large number of adverse events involving
PCA pumps have been reported [9]. The causes of patients receiving overdose include, but
are not limited to, the following:

the pump is misprogrammed,
the wrong concentration of drug is loaded into the pump,
a caregiver overestimates the maximum dose the patient can receive,
PCA-by-proxy, i.e., someone other than the patient presses the bolus button.

Obviously, there is still certain risk associated with the use of PCA pumps, to which we refer
as the residual risk of standalone pumps.

To mitigate the overdose hazard, clinicians must monitor the patient’s respiratory function
through vital sign sensor readings (e.g., blood oxygen saturation measured by a pulse
oximeter). Then, if the patient entered respiratory distress, the caregiver would manually
intervene to resucitate the patient. Unfortunately the current practice is both error prone
and burdensome for the clinician [3, 5].

Recently, the notion of a “closed-loop” PCA system has been proposed to ease the burden
of clinicians by interconnecting the infusion pump, pulse oximeter, and a computer controller
over a network. The controller would monitor the pulse oximeter readings and, when a
problem is detected, automatically stop the infusion pump and alert the clinician.

MCPS’14

96 A Safety Argument Strategy for PCA Closed-Loop Systems

Figure 1 PCA closed-loop system overview (adapted from [7]).

Figure 1 shows the architecture and essential data flow of a PCA closed-loop system. A
pulse oximeter receives physiological signals from a clip on the patient’s finger and calculates
the SpO2 values (i.e., the measure of blood oxygenation). The computer controller makes
control decisions based on SpO2 readings received from the pulse oximeter, and periodically
issues a “ticket” to the infusion pump. Each ticket limits the bolus and basal time period
that the pump can infuse before the patient could possibly be pushed into respiratory distress.
If the network becomes disconnected for a long period, the pump would expire the current
ticket and stop delivering pain medication to protect the patient from overdose. Unless the
ticket expires or the pump is stopped by the controller, the infusion pump will continue to
deliver opioids to the patient at the basal rate programmed by the caregiver. The patient
may also occasionally press the button and request a bolus from the infusion pump. After
the absorption of the opioid medication, the patient’s respiratory state may become more
depressed, which is reflected by the patient’s blood oxygenation level. The safety of such
a closed-loop system has been studied in [1, 10] via simulation-based analysis and formal
verification.

3 Safety Argument

In this section, we develop a high-level safety argument for the PCA closed-loop system.
Figure 2 shows our argument using the Goal Structuring Notation (GSN), a popular graphical
notation for organizing and presenting safety argument (we refer readers who are unfamiliar
with GSN to [6]).

The top-level goal (G1) is to show that “The PCA closed-loop system is at least as safe
as the stand-alone infusion pump, with respect to the overdose hazard”. Here, we assume
that the closed-loop system is built on top of a stand-alone infusion pump whose safety has
already been assessed in a separate safety argument, and the pulse oximeter’s behavior is not
affected by putting in the PCA closed-loop. This context is documented as C1.1 in Figure 2.

To address G1, our strategy is to argue by risk-benefit analysis (S1), which is defined in
the context C1.2. If the benefit brought by the closed-loop system outweighs its introduced
risk, then we can assert that the goal G1 is true. More specifically, the benefit refers to how
much residual risk of the stand-alone pump can be mitigated by the closed-loop system.

Following strategy S1, we decompose G1 into three sub-goals:
G2.1: The introduced risk due to hazards of closed-loop system is acceptable.
G2.2: Some residual risk of the stand-alone infusion pump is adequately mitigated by the
closed-loop system.
G2.3: The benefit of closed-loop system outweighs its introduced risk.

L. Feng et al. 97

G
1

Th
e

P
C

A
 c

lo
se

d-
lo

op
 s

ys
te

m
 is

 a
t

le
as

t a
s

sa
fe

 a
s

a
st

an
d-

al
on

e
in

fu
si

on
 p

um
p,

 w
ith

 re
sp

ec
t t

o
th

e
ov

er
do

se
 h

az
ar

d

C
1.
1

Th
e

cl
os

ed
-lo

op
 s

ys
te

m
 is

 b
ui

lt
us

in
g

an
 in

fu
si

on
 p

um
p

fo
r

w
hi

ch
 a

 s
ta

nd
-a

lo
ne

 s
af

et
y

ca
se

 e
xi

st
s

S1 A
rg

um
en

t b
y

ris
k-

be
ne

fit
 a

na
ly

si
s

G
2.
1

Th
e

in
tro

du
ce

d
ris

k
du

e
to

 h
az

ar
ds

 o
f

cl
os

ed
-lo

op
 s

ys
te

m
 is

 a
cc

ep
ta

bl
e

G
2.
2

Th
e

re
si

du
al

 ri
sk

 o
f t

he
 s

ta
nd

-a
lo

ne
 p

um
p

is
 a

de
qu

at
el

y
m

iti
ga

te
d

by
 th

e
cl

os
ed

-
lo

op
 s

ys
te

m

S2
.1

A
rg

ue
 o

ve
r a

ll
ha

za
rd

s

G
3.
1

Th
e

ris
k

of
 d

el
iv

er
in

g
w

ro
ng

 ti
ck

et
 is

 s
m

al
l

G
3.
2

Th
e

ris
k

of
 n

ot
 d

el
iv

er
in

g
tic

ke
t i

s
sm

al
l

G
3.
3

Th
e

ris
k

of
 p

um
p

ha
vi

ng

w
ro

ng
 in

te
rp

re
ta

tio
n

of

tic
ke

t i
s

sm
al

l

G
2.
3

Th
e

be
ne

fit
 o

f c
lo

se
d-

lo
op

 s
ys

te
m

ou

tw
ei

gh
s

its
 i

nt
ro

du
ce

d
ris

k

C
1.
2

D
ef

in
e

ris
k-

be
ne

fit
 a

na
ly

si
s

C
2.
1

Li
st

 o
f h

az
ar

ds
 th

at

m
ay

 in
tro

du
ce

 ri
sk G
3.
4

Th
e

ris
k

du
e

to
 c

ar
eg

iv
er

be

ha
vi

ou
r a

da
pt

at
io

n
is

 s
m

al
l

Fi
gu

re
2
H
ig
h-
le
ve
ls

af
et
y
ar
gu

m
en
t
fo
r
th
e
P
C
A

cl
os
ed

-lo
op

sy
st
em

.

MCPS’14

98 A Safety Argument Strategy for PCA Closed-Loop Systems

In Figure 2, we only further develop G2.1 as an example, while keep G2.2 and G2.3
undeveloped (denoted by a diamond underneath the rectangle element). In the following, we
elaborate on G2.1 in more details and propose possible strategies for G2.2 and G2.3.

The strategy (S2.1) for claiming goal G2.1 is to argue over a list of possible hazards
introduced by the closed-loop system, under the context (C2.1) that lists introduced hazards.
This strategy leads to four sub-goals, each of which corresponds to a hazard of the closed-loop
system. In Figure 2, these four goals (G3.1-G3.4) are not further developed. We briefly
discuss their corresponding hazards as follows.

(G3.1) Delivering a wrong ticket to the infusion pump. This hazard may be caused by
incorrect controller computation, corruption of the message on the network, or incorrect
sensor readings. We may argue that the risk of this hazard is small by providing formal
verification evidence for the correctness of the controller algorithm. Another useful
evidence is the verification of the infusion pump. If the pump correctly handles tickets
arriving from the network interface, tickets cannot make the pump infuse when it would
not be infusing in the stand-alone case, or infuse at a different rate. That is, at any time,
the pump would be infusing at the same rate as it would be infusing in the stand-alone
case, unless it has been stopped by an expired ticket. Therefore, a bad ticket would not
cause more overdose than in the stand-alone case, if the pump handles the ticket correctly.
(G3.2) Not delivering a ticket to the pump. Various reasons may cause this hazard. For
example, the controller does not produce a ticket when it should, due to an incorrect
implementation or incorrect sensor reading; or the calculated ticket is lost, due to
disconnected network or other failures. In any case, the infusion will continue unmodified
until the prescription runs out or the current ticket expires. Thus, this hazard would
not introduce additional risk because the patient receives exactly the same amount of
medication as in the stand-alone case.
(G3.3) The pump has a wrong interpretation of the ticket. Recall that a ticket contains
the maximum time period over which the infusion pump can infuse, a ticket that does
not expire when it should due to the pump’s wrong interpretation may lead to overdose.
Similar to the argument for G3.1, we can provide the formal verification of the pump as
evidence to show that the risk of hazard is small.
(G3.4) Caregiver behavior adaptation. For example, due to the automation of closed-loop
system, the caregiver may check the pump alarm state and assess the patient condition
less frequently than in the stand-alone case. Or, the caregiver learns to assume that the
system will self-correct and therefore applies more aggressive therapy. The argument
about this hazard relies on the caregiver’s training. Training materials and guidelines
will be used as evidence. In additional, a sufficiently reliable new alarm system must be
present to detect closed-loop system failure and notify caregivers.

We can argue goal G2.2 in a similar way as for G2.1, that is, arguing over residual risk
of the stand-alone pump that can be mitigated by the closed-loop system. As described
in Section 2, the residual risks include, for example, the pump being misprogrammed, the
wrong concentration of drug being loaded into the pump, a caregiver overestimating the
maximum dose the patient can receive, or someone other than the patient pressing the bolus
button. These hazards can be adequately mitigated in the closed-loop system due to the fact
that, the controller would automatically monitor the patient’s respiratory function via pulse
oximeter readings and automatically stop the infusion pump whenever necessary to protect
the patient from overdose.

Finally, goal G2.3 takes a holistic view of benefit and risk of the closed-loop system.
Essentially, we want to show that the benefit of the closed-loop system (i.e., mitigating

L. Feng et al. 99

residual risk of the stand-alone pump) outweighs its introduced risk. A formal risk-benefit
analysis report can be used as evidence to support this goal.

4 Conclusions

We have presented a high-level safety argument for a patient-controlled analgesia (PCA)
closed-loop system, where an infusion pump, a pulse oximeter, and a computer controller
are interconnecting over a network. The goal of the argument is to show that “The PCA
closed-loop system is at least as safe as the stand-alone infusion pump, with respect to the
overdose hazard”, and the strategy is to argue by risk-benefit analysis. This case study has
the potential of being generalized for other network-enabled medical devices. We hope to
further explore this direction in the future. Ultimately, we would like to develop a safety
argument pattern for closed-loop systems.

References
1 David Arney, Miroslav Pajic, Julian M Goldman, Insup Lee, Rahul Mangharam, and Oleg

Sokolsky. Toward patient safety in closed-loop medical device systems. In Proceedings of
the 1st ACM/IEEE Int’l Conf. on Cyber-Physical Systems, pages 139–148. ACM, 2010.

2 A. Ayoub, B. Kim, I. Lee, and O. Sokolsky. A Safety Case Pattern for Model-Based
Development Approach. In NFM2012, pages 223–243, Virginia, USA, 2012.

3 Rodney W. Hicks, Vanja Sikirica, Winnie Nelson, Jeff R. Schein, and Diane D. Cousins.
Medication errors involving patient-controlled analgesia. American Journal of Health-
System Pharmacy, 65(5):429–440, March 2008.

4 E. Jee, I. Lee, and O. Sokolsky. Assurance cases in model-driven development of the
pacemaker software. In 4th International Conference on Leveraging Applications of Formal
Methods, Verification, and Validation – Volume Part II, ISoLA’10, pages 343–356, Berlin,
Heidelberg, 2010. Springer-Verlag.

5 Joint Commission. Sentinel event alert issue 33: Patient controlled analgesia by proxy. http:
//www.jointcommission.org/sentinelevents/sentineleventalert/, December 2004.

6 Tim Kelly and Rob Weaver. The goal structuring notation – a safety argument notation.
In Proc. of Dependable Systems and Networks 2004 Workshop on Assurance Cases, 2004.
http://www-users.cs.york.ac.uk/tpk/dsn2004.pdf.

7 Andrew L. King, Lu Feng, Oleg Sokolsky, and Insup Lee. Assuring the safety of on-demand
medical cyber-physical systems. In Proceedings of the 1st IEEE International Conference
on Cyber-Physical Systems, Networks, and Applications (CPSNA’13), 2013.

8 P. E. Macintyre. Safety and efficacy of patient-controlled analgesia. British Journal of
Anaesthesia, 87(1):36–46, 2001.

9 Teryl K. Nuckols, Anthony G. Bower, Susan M. Paddock, Lee H. Hilborne, Peggy Wallace,
Jeffrey M. Rothschild, Anne Griffin, Rollin J. Fairbanks, Beverly Carlson, Robert J. Panzer,
and Robert H. Brook. Programmable infusion pumps in icus: An analysis of corresponding
adverse drug events. Journal of General Internal Medicine, 23(1):41–45, 2008.

10 Miroslav Pajic, Rahul Mangharam, Oleg Sokolsky, David Arney, Julian M. Goldman, and
Insup Lee. Model-driven safety analysis of closed-loop medical systems. IEEE Transactions
on Industrial Informatics, 2013.

11 U.S. Food and Drug Administration, Center for Devices and Radiological Health. Guid-
ance for Industry and FDA Staff – Total Product Life Cycle: Infusion Pump – Premarket
Notification [510(k)] Submissions, April 2010.

12 C. Weinstock and J. Goodenough. Towards an Assurance Case Practice for Medical Device.
Technical report, CMU/SEI-2009-TN-018, 2009.

MCPS’14

http://www.jointcommission.org/sentinelevents/sentineleventalert/
http://www.jointcommission.org/sentinelevents/sentineleventalert/
http://www-users.cs.york.ac.uk/tpk/dsn2004.pdf

Evaluating On-line Model Checking in
UPPAAL-SMC using a Laser Tracheotomy Case
Study
Xintao Ma1, Jonas Rinast1, Sibylle Schupp1, and Dieter Gollmann2

1 Institute of Software Systems, Hamburg University of Technology
21073 Hamburg, Germany
{xintao.ma,jonas.rinast,schupp}@tuhh.de

2 Security in Distributed Systems, Hamburg University of Technology
21073 Hamburg, Germany
diego@tuhh.de

Abstract
On-line model checking is a variant of model checking that evaluates properties of a system
concurrently while deployed, which allows overcoming limitations of inaccurate system models.
In this paper we conduct a laser tracheotomy case study to evaluate the feasibility of using the
statistical model checker UPPAAL-SMC for on-line model checking in a medical application.
Development of automatic on-line model checking relies on the precision of the prediction and
real-time capabilities as real-time requirements must be met. We evaluate the case study with
regards to these qualities and our results show that using UPPAAL-SMC in an on-line model
checking context is practical: relative prediction errors were only 2% on average and guarantees
could be established within reasonable time during our experiments.

1998 ACM Subject Classification D.2.4 Software Engineering – Software/Program Verification
– Model Checking, F.1.1 Computation by Abstract Devices – Models of Computations – Au-
tomata, F.1.2 Computation by Abstract Devices – Modes of Computations – Online Computa-
tion, I.6.3 Simulation and Modeling – Applications, I.6.7 Simulation and Modeling – Simulation
Support Systems, J.3 Life and Medical Sciences – Health

Keywords and phrases On-line Model Checking, Laser Tracheotomy, UPPAAL-SMC, Patient-
in-the-loop

Digital Object Identifier 10.4230/OASIcs.MCPS.2014.100

1 Introduction

In the medical domain not only the devices must operate reliably but also the safety of
connected patients must be guaranteed. This requirement becomes more and more pressing
with the increased development of patient-in-the-loop systems that monitor and treat patients
autonomously and where a malfunction could seriously harm the patient. Model checking,
a widely known technique to show that a system fulfills certain properties, might be an
option to ensure safe operation of such systems, but is often not adequate in the medical
context. Classic model checking relies on models that accurately predict the system state
also in a distant future for all system components for reasoning about the system. When
human physiology is involved such models are unavailable most of the time. For example,
predicting the long-term behavior of the blood oxygen concentration of a human patient
currently is infeasible since the present understanding of the processes within the human
body only permit short-time predictions.

© Xintao Ma, Jonas Rinast, Sibylle Schupp, and Dieter Gollmann;
licensed under Creative Commons License CC-BY

Medical Cyber Physical Systems – Medical Device Interoperability, Safety, and Security Assurance (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer; pp. 100–112

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.100
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

X. Ma, J. Rinast, S. Schupp, and D. Gollmann 101

On-line model checking relaxes the need for accurate long-term models required by classic
model checking. Instead of statically proving a property of the system on-line model checking
yields guarantees that are only valid for a limited time using bounded model checking. To
still provide a safety guarantee at all times the on-line model checking approach repeatedly
evaluates the property to extend its period of validity indefinitely. This iterative process
allows on-line model checking to dynamically adapt the underlying system model. Thus,
the on-line model checking approach can employ measures to adjust the model parameters
such that they match runtime observations if the model accuracy decreases significantly, and
thus reestablish a consistent state. Accurate long-term models are no longer required as the
dynamic adaptation of the short-term models to the current real-world situation may still
yield the desired long-term guarantees.

In this paper we carry out an on-line model checking case study using the model checker
UPPAAL and evaluate its statistical model checking module UPPAAL-SMC regarding its
suitability for on-line model checking. UPPAAL is one of few available tools that have the
potential to carry out automatic on-line model checking. Evaluating whether its performance
in practice meets the real-time requirements imposed by on-line model checking is crucial
to tapping its full potential. Therefore we encode the models of a previous on-line model
checking case study that models a laser tracheotomy surgery with hybrid models for the
model checker PHAVer using the timed automata formalization used by UPPAAL. This
relation enables us to compare our results to the previous work and lets us focus on questions
regarding UPPAAL-SMC’s performance and suitability. We then carry out the on-line model
checking process with our derived models using a prototype for automatic on-line model
checking with UPPAAL. Next, the collected data on the accuracy of parameter prediction
and the run-time performance is compared to the results of the original case study. Relative
errors of SpO2 estimations were on average about 2% which is slightly worse than the original
case study. For performance, a verification step took on average about 50ms which is a
significant improvement. As a general result it follows that it is practical to use UPPAAL in
an on-line model checking context.

The rest of the paper is organized as follows: Section 2 introduces related work. Section 3
provides a short introduction to hybrid automata and their relation to UPPAAL-SMC.
The on-line model checking approach and its implementation with UPPAAL is the topic of
Section 4. Section 5 shows the analyzed case study and its on-line models. Section 6 provides
our experiment results and an evaluation of those. At last, Section 7 summarizes the paper
and gives ideas on future research.

2 Related Work

In general on-line model checking can be put into the context of self-adaptive software. More
specifically, verification at runtime enables ways to produce self-adapting software systems [6].
Zhao et al. introduce the on-line model checking approach as a lightweight verification
technique to reduce the state space explosion problem [18]. They argue that on-line model
checking is significantly different from the runtime verification approach: in contrast to on-line
model checking runtime verification operates directly on the execution trace without involving
a system model. Thus, the approach is not capable of predicting property violations. Steering
is a control-theoretic approach trying to resolve this drawback [10]. Li et al. apply on-line
model checking to a laser tracheotomy surgery scenario to ensure the patient safety [14, 15].
They use the hybrid model checker PHAVer in combination with a custom implementation
to carry out the model checking procedure. This is the reference case study we compare

MCPS’14

102 Evaluating On-line Model Checking in UPPAAL-SMC

our UPPAAL implementation to. Bartocci et al. [2] and Chen et al. [8] deal with the model
repair problem, a related approach that tries to adjust model parameters to satisfy system
properties in case they are violated. However, here the adjustment goal for on-line model
checking is not to satisfy a property but to ensure that the model does not deviate from the
observed real-world state.

Regarding the implementation of on-line model checking, Bu et al. pursue the develop-
ment of an on-line model checking tool set called BACHOL, which is based on the linear
hybrid automaton model checker BACH, to facilitate verification of complex cyber-physical
systems [4]. Furthermore, in earlier work we began implementing a framework for on-line
model checking with UPPAAL [17]. This framework automatically performs the necessary
state reconstruction for seamless model simulation and verification.

In the context of closed-loop medical systems, King et al. report on their experience with
their Medical Device Coordination Framework (MDCF) when modeling a closed-loop medical
system to control an infusion pump [13]. Their research focuses on the interoperability
between medical devices. Arney et al. also analyze a patient-in-the-loop system [1]: they
develop UPPAAL and MATLAB models to show in advance potential flaws in the control
loop that endanger the patient. The development and verification of formal models for
pacemaker systems is the topic of work by Chen at al. [7] and Jiang et al. [12].

3 Timed and Hybrid Automata

Both the models from the original case study our work is based on and our models use
variations of finite state machines to represent the system. The original case study derives
a hybrid automata model. In UPPAAL, however, modeling of hybrid automata is only
possible with the statistical model checking extension UPPAAL-SMC as UPPAAL normally
uses networks of timed automata as the underlying modeling formalism, a subset of hybrid
automata.

A hybrid automaton, according to Henzinger, is a finite state automaton extended with a
set of continuous variables [11]. Thus, a hybrid automaton may model discrete and continuous
behavior. Such a hybrid automaton consists of the following parts:

Graph. A finite directed multigraph (V, E) that models the topology of the discrete
transitions with the locations V and the edges E.
Variables. A finite set of variables X = { x1, . . . , xn } valued in the reals (R) together
with its set of derivatives Ẋ = { ẋ1, . . . , ẋn }.
Condition Predicates. Three labeling functions that assign predicates to locations l ∈ V :
init assigns initial valuations, inv assigns an invariant condition, and flow assigns a
flow condition that determines how variables evolve over time in a location. These are
generally linear differential equations.
Guards. A labeling function guard that assigns predicates to edges e ∈ E that specify
when a transition over an edge may be triggered.
Actions. A labeling function action that assigns actions a ∈ Σ to edges e ∈ E that are
performed when a transition over the edge is triggered.

In UPPAAL-SMC a hybrid automaton is defined in terms of the underlying timed
automata definition such that most of the known UPPAAL features, e.g., synchronization,
could be carried over. In UPPAAL, a timed automaton is defined as follows

I Definition 1. A timed automaton T is a tuple T = { L, l0, C, A, E, I } where L is a set
of locations, l0 ∈ L is the initial location, C is a set of real-valued clock variables, A is the

X. Ma, J. Rinast, S. Schupp, and D. Gollmann 103

action set, E is the set of edges of the form (l, a, g, R, l′) where l, l′ ∈ L, a ∈ A, g a predicate
over C, and R a subset of C, and I is a function that assigns invariant predicates to locations
l ∈ L.

In Definition 1 the set R on an edge is its reset set, i.e., the set of clocks that are set to
certain values when a transition involving the edge is fired. Note that in UPPAAL a reset
of a clock does not necessarily mean the clock is set to zero; any integer value is allowed.
Furthermore, UPPAAL restricts predicates over C to conjunctions of terms that bound a
clock or a difference of clocks by an integer.

Definition 1 contains nearly all the necessary components for modeling a hybrid automaton.
When taking into account the renaming of components only the flow function defining the
behavior of individual variables in a location can not be specified directly. Therefore,
UPPAAL-SMC extends the timed automaton definition with an additional component F ,
which allows modeling of hybrid automata [9]. The function F corresponds to the flow
labeling in Henzinger’s hybrid automata and is called a delay function. It allows modification
of the default delay function of UPPAAL-SMC, which advances all clocks synchronously
at the same rate, in certain locations l by defining explicit rates for clocks: x′ = e where e

only depends on the discrete part of the state. It follows that the transformation of hybrid
models to UPPAAL-SMC models may be carried out if their flow function can be expressed
by explicit rates. In this case study we determine the delay function by performing a linear
regression (see Section 5 and Section 6).

For more information on UPPAAL, Behrman et al. provide a complete introduction [3].
The statistical model checking module, UPPAAL-SMC, is covered in the publication by
Bulychev et al. [5].

4 On-line Model Checking

This section introduces the on-line model checking process in Subsection 4.1 and then provides
details on the implementation aspects of it in Subsection 4.2.

4.1 The On-line Model Checking Approach
On-line model checking is a technique to apply classic model checking to domains where
accurate modeling of a system may be infeasible. In such cases classical model checking,
if based on approximate models, may yield seemingly satisfactory results. But in reality
those properties can not be guaranteed because the model does not correctly reflect the
system. On-line model checking overcomes the model inaccuracies by periodically adjusting
the underlying model to the real-world values observed from the system.

Figure 1 and Figure 2 depict the relation of the state spaces of both approaches. Figure 1
shows the classical model checking approach where a single model of the system is constructed.
Here, the model does not correctly model all aspects of the systems. Thus, the state space of
the model is only a subset of the state space of the system and an actual trace of the system
as shown by the arrow starting with the circle may leave the model state space. As only
the state space of the model is checked for compliance with the requirements for the system
there are cases where the model checking approach assures a system property but in reality
that property may not be satisfied. Thus, when an exact model of a system is not available
classical model checking does not yield reliable results.

In contrast, Figure 2 shows the situation when applying on-line model checking. Here,
the model is adjusted periodically and a new model is generated based on the current system

MCPS’14

104 Evaluating On-line Model Checking in UPPAAL-SMC

System
State
Space

Model
State
Space

Figure 1 State Space in Classic Model
Checking.

System
State
Space

Model State Spaces

Figure 2 State Space in On-line Model
Checking.

trace. The first benefit is that the concrete system state is always valid in the current model.
Thus, leaving the model state space is impossible and a guarantee obtained from the model
checker is always reliable although the models do not at all times accurately reflect the
system. Consequently, the obtained guarantees only have limited periods of validity because
of the limited model scope. The limited scope though is responsible for another benefit:
the model state spaces in general are smaller and thus the model checking performance
becomes better. It follows that with the on-line model checking approach the model checking
technique can be applied to domains where models are likely to be inaccurate because model
adjustments may overcome any inaccuracies.

I Example 2. As an example assume a light bulb is supposed to be switched on and off
every five seconds. Experience shows that this kind of light bulb malfunctions after 1000
on-off-cycles. It is critical that the light cycle in the system never stops and thus we want to
ensure a 30 second grace period to exchange the bulb when approaching the end of its lifetime.
If the model is correct a simple calculation yields the time when a change is necessary. Now,
assume that the real system does not switch the light on and off every five seconds but the
switching delay varies unpredictably. Then verifying every 30 seconds that no malfunction
occurs within the next minute would achieve the same 30-second grace period only if the
model variables are updated with the current light state and the number of on-off-cycles that
actually occurred.

4.2 Implementing On-line Model Checking
The implementation of on-line model checking of a real system can be divided into three
phases, one before deployment of the system, and two during deployment:

Modeling. During the modeling phase first the requirements for a system are specified.
Then a model of the system is developed that allows reasoning about those requirements.
Also, the initial state of the model is defined, i.e., the values with which the real system
starts operation.
Verification. In the verification phase a current system model is passed to the model
checking engine together with the requirement properties and checked for compliance. In
case the verification fails an emergency handling routine may be triggered to resolve the
issue. Otherwise a guarantee is obtained that the requirements are fulfilled for a limited
time bound T .
Adjustment. In the adjustment phase the real system is observed and the previous
model is adjusted accordingly to accurately represent the current and near-future states.

X. Ma, J. Rinast, S. Schupp, and D. Gollmann 105

switches <= 1000 switches >= 1000
t <= 5

Malfunction
Off

On

t = 0, switches++

t = 0
t <= 5

Figure 3 Model Checking Example System.

currentloc == 1

switches >= 1000

currentloc == 3

currentloc == 2

t <= 5

Off

switches <= 1000

Malfunction

Init

On t = 0

t = 0, switches++

switches = realswitches

switches = realswitches

t <= 5

Figure 4 On-line Model Checking Example System.

The adjustment must be performed before the period of validity T runs out to ensure
continuity of the guarantees. The newly created model is then forwarded to the next
verification phase.

When implementing on-line model checking it is thus necessary that the model provides
means for adjusting the model. In this paper we manually modify the basic system models
to allow the necessary modifications because automatically providing these means induces
a reconstruction problem of the previous system state [17] and solving the reconstruction
problem introduces additional machinery, which would dilute the focus on UPPAAL’s
performance of this case study.

I Example 3. Recall Example 2. Figure 3 shows the basic UPPAAL model for the example
system. The adaptation of the model is rendered possible by introducing two parameters, the
performed number of switches and the current state of the lamp. They are passed during the
adaptation phase from the real system to the model as the constant values realswitches
and currentloc. The resulting on-line model is depicted in Figure 4.

5 A Medical Case Study

In this section we present an on-line model checking case study on a medical laser tracheotomy
scenario and demonstrate the applicability of UPPAAL in such scenarios. In Subsection 5.1
we introduce laser tracheotomy in general and related safety requirements. The concrete
UPPAAL system models derived from the case study by Li et al. [14] are the focus of
Subsection 5.2.

MCPS’14

106 Evaluating On-line Model Checking in UPPAAL-SMC

Ventilator

Patient Supervisor

Laser Scalpel

Respiration Rate

Sensor Data

Start & Stop
Commands

Requests & Approvals

Figure 5 Laser Tracheotomy System [14].

5.1 Laser Tracheotomy
Tracheotomy is a surgery performed on patients that have problems breathing through their
nose or mouth, e.g., when the tongue muscle falls back and blocks the air flow while sleeping.
During the surgery a direct access to the windpipe of the patient is created, usually from the
front side of the neck. Laser tracheotomy refers to the kind of tracheotomy where the access
to the windpipe is created using a laser scalpel, a medical device capable of cutting tissue
with focused light. Using laser for the cut has several benefits such as a greater precision and
a reduction of blood loss due to blood vessels being closed immediately. However, during
tracheotomy the laser also poses the threat of tissue burns in case the oxygen concentration
in the windpipe of the patient is too high.

In this case study we want to ensure that the laser may only be triggered when an
operation is safe. Additionally, as the patient is ventilated during the surgery, we want
to ensure that the blood oxygen of the patient does not drop to dangerous levels, because
ventilation needs to be suspended during cutting. Lastly, for convenience of the surgeon, an
additional requirement is that once the use of the laser is approved the laser should emit for a
minimum time such that the cut is not interrupted unnecessarily. The verification properties
for the statistical model checking are given in WMTL≤ (Weighted Metric Temporal Logic) [5]:

O2 above threshold while laser emits
Pr[<=100](<> O2 > Th_02 && LaserScalpel.LaserEmitting)

SpO2 below threshold while laser emits
Pr[<=100](<> SpO2 < Th_SpO2 && LaserScalpel.LaserEmitting)

Laser stops emitting early
Pr[<=100](<> (O2 > Th_O2 || SpO2 < Th_SpO2) &&

t_appr < Th_appr && LaserAppr == true)
These properties characterize unreachable states and thus the probabilities should be zero
with the configured confidence.

5.2 System Modeling
The laser tracheotomy scenario described by Li et al. consists of four different components [14]:

Patient. The patient under surgery characterized by current windpipe oxygen level (O2)
and blood oxygen level (SpO2).
Ventilator. The medical ventilator device regulating the patient’s breathing rate during
the surgery. The ventilator is characterized by the current height of the pressure cylinder.
Laser Scalpel. The laser scalpel is used to cut the opening to the windpipe. The laser
scalpel is characterized by whether or not the surgeon currently wants to operate the
laser and if operation is allowed.

X. Ma, J. Rinast, S. Schupp, and D. Gollmann 107

VentPumpOut?VentPumpOut?

Start?

Start?Start?

Hold

Exhale

VentHold?

Initial

VentPumpIn?Inhale

Ventilator_State == 0

Ventilator_State == 2

O2' == O2PRM_inhale &&
SpO2' == SpO2PRM_inhale

Ventilator_State == 1

O2' == O2PRM_hold && SpO2' == SpO2PRM_hold

O2' == O2PRM_exhale &&
SpO2' == SpO2PRM_exhale

Figure 6 Patient UPPAAL Model.

Supervisor. The supervisor is responsible for ensuring the safety requirements of the
system as given in Subsection 5.1. The supervisor approves usage of the laser scalpel and
operates the ventilator.

Figure 5 shows the connections of the system components with respective communication
data. The ventilator regulates the respiration rate of the patient. The physiological signals
of the patient are measured by sensors and forwarded to the supervisor. The supervisor
analyzes the values and either approves usage of the laser scalpel requested previously and
consequently stops the ventilator, or usage is prohibited and the ventilator continues normal
operation. Additionally, when an approved cut is finished the ventilator starts operating again
by instruction of the supervisor. We now discuss our UPPAAL models of the components for
on-line model checking in more detail. All of the models were derived from the original hybrid
models using the encoding from Section 4. The main difficulty in the transformation of the
models is representing the continuous variables O2 and SpO2 in the hybrid models using
clock variables in UPPAAL-SMC and ensuring correct system behavior using synchronization.
The remaining parts are straight-forward because the graph components and transition
constraints carry over directly due to the same finite state machine formalism.

5.2.1 Patient

The patient model consists of three locations plus the initialization location. The locations
correspond to the patient inhaling and exhaling assisted by the ventilator and the patient
exhaling without assistance when the ventilator is switched off. In the three locations the
O2 and SpO2 values are predicted using a linear regression approach taking into account a
history of 30 seconds (see Section 6).

5.2.2 Ventilator

The ventilator model also has three main locations, an initialization location and two
intermediate locations for communication reasons. The main locations correspond to the
ventilator pumping air into the patient, out of the patient, and not pumping at all. Here the
current height of the ventilation cylinder, H_vent, is modified accordingly. Communication
with the patient model is implemented such that the patient always inhales and exhales
as enforced by the ventilator. Furthermore input from the supervisor model is accepted to
enable and disable the ventilator.

MCPS’14

108 Evaluating On-line Model Checking in UPPAAL-SMC

Start?

Start?

VentPumpOut!

SupervisorStop?

H_vent >= 300 && VentOn == true

Start?

H_vent <= 0

H_vent >= 300 &&
VentOn == false

PumpHold

Initial

PumpInVentPumpIn!SupervisorAppr?

VentPumpIn!

VentHold!

VentPumpOut!

PumpOut
Ventilator_State = 1

Ventilator_State = 0

Ventilator_State = 0

Ventilator_State = 1

Ventilator_State = 2

Ventilator_State == 0 Ventilator_State == 2

H_vent' == -100
&& H_vent >= 0

Ventilator_State == 1

H_vent' == 0

H_vent' == 100
&& H_vent <= 300

Figure 7 Ventilator UPPAAL Model.

SupervisorStop?

SupervisorAppr?

SupervisorStop? SurgeonCancel!

Start?

Start?

Start?

Laser_State == 0

LaserRequesting

LaserEmitting

LaserIdle

SurgeonStop!

SurgeonReq!
LaserCancelling

Start?

Initial

LaserReq = false, t_emit = 0

LaserReq = false, t_emit = 0

LaserReq = true

t_emit = 0

LaserReq = false,
t_emit = 0

LaserReq = false,
t_emit = 0

t_emit >= Temit_max

Laser_State == 2

t_emit' == 100 &&
t_emit <= Temit_max

Laser_State == 1

Laser_State == 3

Figure 8 Laser Scalpel UPPAAL Model.

5.2.3 Laser Scalpel

The laser scalpel model represents the interaction between the surgeon and the laser scalpel.
It uses four locations. The surgeon may send a request to the supervisor model to trigger the
laser, which eventually gets approved. When the laser emits the surgeon can either switch
the laser off or revoke the approval if conditions necessitate action. Communication thus
takes part between the laser scalpel and the supervisor model. The surgeon inputs are left
open meaning that any external input may be executed at any time during verification.

5.2.4 Supervisor

The supervisor model checks if the physiological parameters of the patient are within safe
boundaries and approves the laser usage for a maximum duration. If any of the safety
requirements gets violated the supervisor revokes its approval. The interesting part here is
that the initialization part also checks if a safety requirement was violated. This behavior is
necessary because when the model is adapted the O2 and SpO2 values may change, which
might invalidate a previous approval. Also, when the supervisor approves usage of the laser
the ventilator is put on hold.

X. Ma, J. Rinast, S. Schupp, and D. Gollmann 109

Start?

SupervisorStop!

SupervisorStop!

Start?

O2 >= Th_O2

O2 <= Th_O2 && SpO2 >= Th_SpO2 &&
LaserReq == true

LaserReq == false

t_appr >= Tappr_max

SpO2 <= Th_SpO2

Initial

SupervisorAppr!LaserApproved

Start?

SupervisorStop!

SupervisorStop!

SupervisorStop!

SupervisorStop!

LaserDisapproved

t_appr = 0, LaserAppr = false, VentOn = true

t_appr = 0, LaserAppr = false, VentOn = true

t_appr=0, LaserAppr=true, VentOn=false

LaserAppr = false, VentOn = true,
Supervisor_State = 0

LaserAppr = false, VentOn = true

LaserAppr = false, VentOn = true, Supervisor_State = 0

LaserAppr = false, VentOn = true

Supervisor_State == 0

SpO2 <= Th_SpO2
SpO2 > Th_SpO2

Supervisor_State == 1 && O2 < Th_O2

Supervisor_State == 1 && O2 >= Th_O2

t_appr' == 100 &&
t_appr <= Tappr_max &&
O2 <= Th_O2 && SpO2 >= Th_SpO2

Figure 9 Supervisor UPPAAL Model.

SetParameters(O2example, SpO2example, clockexample, boolexample, globaltime,Vent_State)

Start!

Figure 10 Initialization UPPAAL Model.

5.2.5 Initialization
Lastly, the initialization model has the purpose of initializing all constants that may have
been adapted to real-world values during model adaptation. Using broadcast synchronization,
a starting transition guarantees a common starting point for the whole model.

6 Experiments and Evaluation

To evaluate the on-line model checking approach with UPPAAL we carried out several
experiments with our models. Real-world patient data necessary for the adaptation steps was
extracted from the PhysioNet database, an open medical database offering a large collection
of recordings of medical signals of various kind (http://www.physionet.org). Six different
patient traces were assembled and used as a basis. Every patient trace was executed ten
times yielding 60 experiments in total. Table 1 shows the PhysioNet data bases and the
patient IDs of the data used. More information on the data can be found in the original
thesis on this topic [16]. All experiments ran the system for 600 seconds where every three
seconds a model adaptation and verification was performed. Thus, the workflow of every
three-second cycle is as follows: first we adjust the O2 and SpO2 values in the model to the
observed values. Then we try to verify the system properties for the next six seconds. And
lastly, we evaluate the verification results such that if a property was not verified we derive
that in three seconds an unsafe state occurs and thus emergency measures should be taken

Table 1 PhysioNet Databases and Patient IDs.

Database #1 #2 #3 #4 #5 #6
O2 (CO2) MGF/MF mgh077 mgh077 mgh089 mgh057 mgh019 mgh110

SpO2 MIMIC v2 a45463 a45436n 439n n10301n a45611n 477n

MCPS’14

110 Evaluating On-line Model Checking in UPPAAL-SMC

Table 2 Relative Errors of O2 and SpO2 Estimation.

[%] #1 #2 #3 #4 #5 #6
Min SpO2 0 1.43 0.52 2.28 0.48 0.59
Max SpO2 6.01 1.62 0.63 2.99 0.59 4.18
Avg SpO2 1.59 1.54 0.60 2.82 0.54 2.27
Min O2 0.6 18.0 12.3 16.8 11.3 8.3
Max O2 66.0 23.2 14.0 20.5 15.3 10.5
Avg O2 21.7 20.8 13.4 18.9 12.3 9.2

Table 3 Model Checking Execution Times.

[s] Minimum Maximum Average
UPPAAL-SMC 0.033 0.32 0.047

PHAVer 0.571 1.445 0.727

before the unsafe state is reached. Note that if the models correctly predict the short-term
behavior of O2 and SpO2 and the supervisor strategy is effective such an emergency can
not arise. The history window for the linear regression was 30 seconds in all cases. The
confidence level for the statistical model checker was set to 99%. We evaluated three aspects
of the approach: first we checked whether the safety requirements given in Subsection 5.1
are violated for any patient trace. Then we compared the relative errors of our O2 and SpO2
predictions to the values in the reference paper [14]. Lastly, we evaluated the execution times
with a focus on the real-time requirements.

The first result is straightforward: during all experiments all three safety properties were
satisfied at all times with the confidence level of 99%. Thus, our models seem to be accurate
enough to predict the physiological parameters of the patient for a time bound of three
seconds. Moreover, the supervisor strategy implemented in the models proves to be effective
at preventing accidental tissue burns resulting from triggering the laser at inappropriate
times.

Table 2 shows the relative errors of our parameter estimation. The SpO2 estimates are
very consistent and in general show a relative error of about 2%. These results are accurate
enough to guarantee the safety of the patient with regards to the blood oxygen. In contrast,
the estimation of windpipe oxygen is not that precise with an average relative error of about
16%. However, due to the supervisor strategy the safety of the patient is still guaranteed.
Still, the laser could potentially be allowed to fire more often. Thus, a more sophisticated
prediction strategy than linear regression is likely to yield better prediction results, which
enable the supervisor to approve the use of the laser more often. Compared to the results of
the original case study our SpO2 results are slightly less accurate but still useful for safety
statements. As the original case study does not specify exactly which patient traces were
used as an experiment basis differences in the results may simply stem from the selection of
different traces. For the O2 results Li et al. provide no relative error results.

Table 3 shows the execution times of an adaptation step of the models and the following
verification of the safety properties. Our experiments were carried out on a Macbook Pro
2.66 GHz with 4GB memory using iOS 10.6.8. In the experiments our approach took at
worst 320 milliseconds for a cycle while in the original case study nearly 1.5 seconds elapsed.
Unfortunately, the original case study does not specify the used hardware. Still, the approach
using simulation of timed automata in UPPAAL-SMC for verification performs significantly

X. Ma, J. Rinast, S. Schupp, and D. Gollmann 111

better than the symbolic verification of hybrid automata in PHAVer. Thus, we assume the
speedup can not be attribute only to differences in hardware, especially because our hardware
is not on the top end. Looking at the absolute values with the hard real-time constraints of
three seconds for one cycle in mind, using UPPAAL-SMC provides a performance advantage
in practice. With execution times of about 10% of the real-time deadlines the implementation
in a hard real-time system seems feasible.

7 Conclusion and Future Work

This paper presented the on-line model checking approach, a variant of model checking
that allows reasoning about systems where accurate long-term models are unavailable. We
implemented a medical laser tracheotomy case study using UPPAAL-SMC and used it
to evaluate the on-line model checking approach in practice. The on-line model checking
approach periodically adjusts the underlying system model to real-world values and analyzes
the new models, e.g., for patient safety issues. The case study showed that this approach is
capable of providing reliable safety guarantees even if the patient’s physiological behavior
is modeled only roughly using a simple linear regression approach when parameters are
continuously adapted to the real-world values. Although this paper identifies on-line model
checking as a useful technique to ensure safety of complex systems, further research is
necessary to support this claim. Future research should focus on larger scale case studies and
provide a unified approach including automatic adaptation interfaces to ease the development
of systems that should be monitored using on-line model checking. Such an automatic
adaptation interface would synthesize necessary means to adapt a model from a classical
model checking model and execute the on-line model checking procedure to allow seamless
simulation and verification of the system in question.

Acknowledgements. We thank the anonymous reviewers of MedicalCPS 2014 for references
to related work and comments that helped to improve the presentation.

References
1 David Arney, Miroslav Pajic, Julian M. Goldman, Insup Lee, Rahul Mangharam, and Oleg

Sokolsky. Toward patient safety in closed-loop medical device systems. In Proceedings of the
1st ACM/IEEE International Conference on Cyber-Physical Systems – ICCPS ’10, pages
139–148, Stockholm, Sweden, 2010. ACM New York, NY, USA.

2 Ezio Bartocci, Radu Grosu, Panagiotis Katsaros, C.R. Ramakrishnan, and Scott A. Smolka.
Model Repair for Probabilistic Systems. In Parash Aziz Abdulla and K. Rustan M. Leino,
editors, Tools and Algorithms for the Construction and Analysis of Systems, volume 6605
of Lecture Notes in Computer Science, pages 326–340. Springer Berlin Heidelberg, 2011.

3 Gerd Behrmann, Alexandre David, and Kim G. Larsen. A Tutorial on Uppaal 4.0. Technical
report, Department of Computer Science, Aalborg University, Aalborg, Denmark, 2006.

4 Lei Bu, Dingbao Xie, Xin Chen, Linzhang Wang, and Xuandong Li. Demo Abstract:
BACHOL – Modeling and Verification of Cyber-Physical Systems Online. In Proceedings
of the 3rd ACM/IEEE International Conference on Cyber-Physical Systems – ICCPS ’12,
pages 222–222, Beijing, China, April 2012. IEEE.

5 Peter Bulychev, Alexandre David, Kim G. Larsen, Marius Mikučionis, Danny Bøgsted
Poulsen, Axel Legay, and Zheng Wang. UPPAAL-SMC: Statistical Model Checking for
Priced Timed Automata. In Herbert Wiklicky and Mieke Massink, editors, 10th Workshop
on Quantitative Aspects of Programming Languages and Systems (QAPL 2012), volume 85

MCPS’14

112 Evaluating On-line Model Checking in UPPAAL-SMC

of Electronic Proceedings in Theoretical Computer Science, pages 1–16, Tallinn, Estonia,
July 2012.

6 Radu Calinescu, Carlo Ghezzi, Marta Kwiatkowska, and Raffaela Mirandola. Self-adaptive
software needs quantitative verification at runtime. Communications of the ACM, 55(9):69–
77, 2012.

7 Taolue Chen, Marco Diciolla, Marta Kwiatkowska, and Alexandru Mereacre. Quantitative
Verification of Implantable Cardiac Pacemakers. In Real-time Systems Symposium (RTSS
2012), pages 263–272. IEEE, December 2012.

8 Taolue Chen, Ernst Moritz Hahn, Tingting Han, Marta Kwiatkowska, Hongyang Qu, and
Lijun Zhang. Model Repair for Markov Decision Processes. In Theoretical Aspects of
Software Engineering (TASE 2013), pages 85–92. IEEE, July 2013.

9 Alexandre David, Dehui Du, Kim G. Larsen, Axel Legay, Marius Mikučionis, Danny Bøg-
sted Poulsen, and Sean Sedwards. Statistical Model Checking for Stochastic Hybrid Sys-
tems. In Electronic Proceedings in Theoretical Computer Science, volume 92, pages 122–136,
August 2012.

10 Arvind Easwaran, Sampath Kannan, and Oleg Sokolsky. Steering of Discrete Event
Systems: Control Theory Approach. Electronic Notes in Theoretical Computer Science,
144(4):21–39, 2006.

11 Thomas A. Henzinger. The Theory of Hybrid Automata. In Logic in Computer Science,
1996. LICS’96, pages 278–292. IEEE, 1996.

12 Zhihao Jiang, Miroslav Pajic, Salar Moarref, Rajeev Alur, and Rahul Mangharam. Model-
ing and Verification of a Dual Chamber Implantable Pacemaker. In Cormac Flanagan and
Barbara König, editors, Tools and Algorithms for the Construction and Analysis of Sys-
tems, volume 7214 of Lecture Notes in Computer Science, pages 188–203. Springer Berlin
Heidelberg, 2012.

13 Andrew King, Dave Arney, Insup Lee, Oleg Sokolsky, John Hatcliff, and Sam Procter. Proto-
typing Closed Loop Physiologic Control with the Medical Device Coordination Framework.
In Proceedings of the 2010 ICSE Workshop on Software Engineering in Health Care (SEHC
2010), pages 1–11. ACM, 2010.

14 Tao Li, Feng Tan, Qixin Wang, Lei Bu, Jian-Nong Cao, and Xue Liu. From Offline toward
Real-Time: A Hybrid Systems Model Checking and CPS Co-design Approach for Medical
Device Plug-and-Play (MDPnP). In Proceedings of the 3rd ACM/IEEE International Con-
ference on Cyber-Physical Systems – ICCPS ’12, pages 13–22, Beijing, China, April 2012.
IEEE.

15 Tao Li, Qixin Wang, Feng Tan, Lei Bu, Jian-nong Cao, Xue Liu, Yufei Wang, and Rong
Zheng. From Offline Long-Run to Online Short-Run: Exploring A New Approach of Hybrid
Systems Model Checking for MDPnP. In Joint Workshop on High Confidence Medical De-
vices, Software, and Systems and Medical Device Plug-and-Play Interoperability (HCMDSS-
MDPnP 2011), 2011.

16 Xintao Ma. Online Checking of a Hybrid Laser Tracheotomy Model in UPPAAL-SMC.
Master thesis, TU Hamburg-Harburg, December 2013.

17 Jonas Rinast, Sibylle Schupp, and Dieter Gollmann. State Space Reconstruction for On-
Line Model Checking with UPPAAL. VALID 2013, The Fifth Internation Conference on
Advances in System Testing and Validation Lifecycle, pages 21–26, 2013.

18 Yuhong Zhao and Franz Rammig. Online Model Checking for Dependable Real-Time Sys-
tems. In 2012 IEEE 15th International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing, pages 154–161. IEEE, April 2012.

Integrating Safety Assessment into the Design of
Healthcare Service-Oriented Architectures
Ibrahim Habli1, Abdulaziz Al-Humam1, Tim Kelly1, and
Leila Fahel2

1 University of York, York, UK
{Ibrahim.Habli,aaah501,Tim.Kelly}@york.ac.uk

2 Calderdale and Huddersfield National Heath Service Foundation Trust,
Halifax, UK
Lfahel@nhs.net

Abstract
Most healthcare organisations are service-oriented, fundamentally centred on critical services
provided by medical and nursing staff. Increasingly, these human-centric services rely on software-
intensive systems, i.e. medical devices and health informatics, for improving different aspects of
healthcare, e.g. enhancing efficiency through automation and patient safety through smart alarm
systems. However, many healthcare services are categorised as high risk and as such it is vital
to analyse the ways in which the software-based systems can contribute to unintentional harm
and potentially compromise patient safety. This paper proposes an approach to modelling and
analysing Service-Oriented Architectures (SOAs) used in healthcare, with emphasis on identifying
and classifying potential hazardous behaviour. The paper also considers how the safety case for
these SOAs can be developed in a modular manner. The approach is illustrated through a case
study based on three services: ambulance, electronic health records and childbirth services.

1998 ACM Subject Classification K.4.1 [Public Policy Issues]: Computer-related health issues

Keywords and phrases Healthcare, Safety, Assurance, Service-Oriented Architecture

Digital Object Identifier 10.4230/OASIcs.MCPS.2014.113

1 Introduction

Healthcare organisations are structured based on different, yet interdependent, services [1],
e.g. emergency and urgent care services, cancer services and ambulance services. Many of
these services are supported by software-intensive systems. These systems include medical
devices [23] (e.g. infusion pumps) and networked health IT systems (e.g. distributed
Electronic Health Record (EHR) systems). There is also an increased interest in improving
the integration between the different healthcare services through enhancing software and
data interoperability and standardising the interfaces between the health IT infrastructures
and medical devices [2, 3, 4].

Despite their significant benefits, software-based services and systems can pose risks
to patient safety [5, 6]. For example, between 2005 and 2009, the US Food and Drug
Administration (FDA) received over 56,000 reports of issues related to the use of infusion
pumps [7]. Many of the safety issues were traced to software defects. In the UK, the Medicines
and Healthcare Products Regulatory Agency (MHRA) reported a continuous increase in
medical device adverse incidents, totalling 9099 reports in 2009 [8]. The British Medical
Journal (BMJ) also reported a significant increase in medical device recalls and warnings [9].
Given the criticality of certain software systems, e.g. EHR, assessing the extent to which

© Ibrahim Habli, Abdulaziz Al-Humam, Tim Kelly, and Leila Fahel;
licensed under Creative Commons License CC-BY

Medical Cyber Physical Systems – Medical Device Interoperability, Safety, and Security Assurance (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer; pp. 113–123

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.113
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

114 Integrating Safety Assessment into the Design of Healthcare SOA

the software behaviour contributes to safety hazards in healthcare services should be an
integral part of the clinical risk assessment process and the overall clinical safety case [10, 11].
These safety hazards arise in clinical environments that are centred on the interactions
between many different human, procedural and technological elements. Understanding and
controlling the complex links between the software behaviour and the emergence of the
clinical hazards (i.e. potential to cause preventable/unintentional harm) is a significant
challenge. Addressing this challenge at the clinical level requires close collaboration between
different stakeholders, primarily clinical experts, health scientists, safety analysts and system
and software engineers. At the level of software systems, software engineers need to analyse
failures within, and between, the software-intensive healthcare systems (e.g. incorrect dosage
information provided automatically to an infusion pump by the EHR system [2]). Jointly
with clinical experts, these engineers should also analyse how these failures can become
hazardous behaviours once situated within a clinical environment (e.g. inaccurate blood
pressure data due to physical factors such as the height of an IV bag [12]). Unfortunately,
inadequate interaction between clinical experts and software engineers remains a major
hurdle for achieving effective risk assessment of software-intensive healthcare services [13].

Importantly, assurance has to be provided that the risk of the software hazardous
behaviours, identified in the clinical risk assessment process, has been adequately mitigated.
Increasingly, this is being communicated in the form of a safety or assurance case [7, 10, 11].
Safety cases provide a reasoned and structured argument of how the available evidence,
generated from testing and analysis, supports overall claims made about system safety. For a
complex clinical environment, the overall safety case is not monolithic but compositional [14],
comprising different safety arguments and evidence for the various healthcare services. These
services, including systems and processes developed by different organisations, are clearly
interdependent and so are their corresponding safety arguments [21].

This paper focuses on the safety assessment of services within healthcare Service-Oriented
Architectures (SOAs). It presents a preliminary approach to modelling and analysing SOAs
used in healthcare, with emphasis on identifying and classifying potential hazardous software
behaviour. The approach is based on two existing modelling techniques for specifying indi-
vidual services, and the processes connecting them, namely the Service oriented architecture
Modelling Language (SoaML) [15] and the Business Process Modelling Notation (BPMN) [16].
This approach also builds on adapting two existing safety analysis techniques, namely the
Functional Hazard Assessment (FHA) [17] and Software Hazard Analysis and Resolution
in Design (SHARD) [18]. Further, the paper explores how the safety case for the SOA can
be developed in a modular manner using the Goal Structuring Notation (GSN) [19]. The
approach is illustrated through examples from an exploratory case study based on three
services: ambulance, electronic health records and childbirth services.

The rest of the paper is organised as follows. An overview of the proposed SOA safety
assessment approach is presented in Section 2, followed by a more detailed description of the
safety analysis techniques in Sections 3 and 4. The safety analysis is illustrated in Section 5
using an exploratory case study. The nature and potential structure of a modular safety case
for SOA are discussed in Section 6, followed by conclusions in Section 7.

2 SOA Safety Assessment

A service has been defined as “a value delivered to another through a well-defined interface
and available to a community” [15]. The value that a service delivers, and the safety risks
associated with it, can only be realised and understood in the sociotechnical setting of the

I. Habli, A. Al-Humam, T. Kelly, and L. Fahel 115

	

Modelling

Safety Analysis

Safety Assurance

BPMNSoaML

SHARDFHA

SOA Fault Taxonomies

Modular GSN

Service Failure AnalysisService Hazard Analysis

Service Level Agreements

Figure 1 SOA Safety Assessment.

service (e.g. interactions between different types of services and processes). One approach
to designing and representing this setting, especially for software-based services, is through
an SOA. An SOA “provides a paradigm for defining how people, organizations, and systems
provide and use services to achieve results” [15].

For healthcare services, the SOA paradigm can assist in the assessment of patient safety,
in which accidents predominantly occur as a result of the interaction of different human,
system and organisational behaviours. An overview of the SOA safety assessment approach
proposed in this paper is depicted in Figure 1, and is briefly introduced in the rest of this
section. A more detailed description of the safety analyses is provided in the next two
sections.

Healthcare services, including interfaces and contracts between these services, are modelled
in this approach using SoaML. The SoaML models depict a modular description of the
healthcare SOA in which related contracts, interfaces and operations are encapsulated in,
and provided by, self-contained services. In order to identify the hazards associated with
services, we propose a variant of FHA, called Service Hazard Analysis (SHA), based on
analysing three potential service deviations [17]: (1) service not provided when required, (2)
service provided when not required and (3) incorrect service. The primary output of SHA is
a set of safety requirements defined at the service level.

Next, in order to analyse the causes of the service hazards, identified using SHA, the
detailed tasks implementing the SOA services and processes are modelled in BPMN, focusing
particularly on the flow of information between interacting tasks. The SHARD safety
analysis technique [18], which is a variant of the hazard and operability study (HAZOP)
technique [20], is adapted to analyse the flow of information between the tasks represented
within the SOA processes. We refer to this as Service Failure Analysis (SFA). The analysis
and resulting failure modes are driven by the application of a set of guidewords: omission,
commission, early, late and incorrect value [18]. Each of the failure modes is then associated
with specific service faults linked to existing SOA fault taxonomies (i.e. to make the analysis
SOA-specific [25]). The output of this analysis is a set of derived service safety requirements.

Finally, the above analyses are used as a core part of the safety evidence base to inform the
structure of the overall safety argument for the SOA safety case. Given the modular nature
of SOA, the safety argument is structured based on different, yet interrelated, argument
modules [14]. Most of these argument modules correspond to the safety justification of a

MCPS’14

116 Integrating Safety Assessment into the Design of Healthcare SOA

	
Figure 2 ServicesArchitecture Model.

specific individual service. Typically, within SOA, services interact based on pre-defined
Service-Level Agreements (SLAs) [22]. Similarly, the relationship between different argument
modules can be specified using argument contracts [14]. The mapping between SLAs and
the argument contracts drives the overall structure of the SOA safety argument and offers
traceability between the design, represented in the SOA models, and the safety assurance,
represented in the modular safety argument.

3 Service Hazard Analysis (SHA)

Safety analysis processes are centred on identifying, analysing and managing hazards. For
healthcare SOA, identifying the hazards associated with the services is essential for defining
the service safety requirements, which should influence the architectural design. In this
paper, hazard identification and classification is carried out based on SHA, using a high-level
representation of the SOA in SoaML. SHA consists of four steps:
1. Identify a service: high-level services are captured in SoaML ServicesArchitecture mod-

els. A ServicesArchitecture represents how Participants collaborate, by producing and
consuming Services to achieve goals. Figure 2 shows an example ServicesArchitecture
model that captures Participants (e.g. ambulance crew, patient and hospital-admission)
and Services (e.g. Request ambulance, Examine patient and Update health record).

2. Identify the service failure modes: the modes or types of failures that are considered in
this step are as follows: (1) service not provided when required, (2) service provided when
not required and (3) incorrect provision of service. These are intended for use as prompts
for identifying the different ways in which the service can fail. The use of these types
requires the safety analyst to interpret the meaning and relevance of specific failures in
the context of the service in hand (e.g. incorrect drug dosage has to be interpreted in the
context of specific classes of drugs for specific conditions or combinations of conditions).

3. Determine the safety effects and severity of each service failure mode: the adverse
consequences of the failure mode should be determined, taking into consideration different
factors, e.g. the condition of the patient and other services and systems (not just the
software systems). A safety classification should also be defined (e.g. Catastrophic, Major,
Considerable or Significant), typically based on Hazard/Risk Matrices (HRM) defined in
standards or by the healthcare organisation [10, 11]. In terms of determining the effects
of service failures, a useful feature of SoaML ServicesArchitecture models is that they
include a representation of service interaction and the Participants that use these services
(i.e. making it easier for the analyst to trace the effects of a failure mode). For example,

I. Habli, A. Al-Humam, T. Kelly, and L. Fahel 117

	 Figure 3 Link between SoaML and BPMN Models.

administrating certain drugs or treatments (e.g. radiotherapy) might have potential
hazardous effects on both the patients and the caregivers (both represented as SoaML
Participants).

4. Provide recommendations or service safety requirements: based on the identified
failure modes and their classification, recommendations, preferably in the form of service
safety requirements, should be generated, where the rigor/integrity with which the
requirements need be met should be proportionate to the severity of the failures (i.e.
higher degrees of severity requires more stringent integrity requirements and more rigorous
processes) [24, 27]. SHA is implementation-independent and should be performed at the
early specification and design stages of the SOA.

4 Service Failure Analysis (SFA)

Service hazards identified using SHA typically emerge from a combination of factors, whether
human, organisational or technological. Understanding and analysing the causes of these
hazards is an important step towards eliminating or reducing the risk of these hazards. In
this section we introduce SFA to examine the detailed implementation of the services, and
identify how failures, specifically interaction/information flow failures, can contribute to
service hazards. SFA consists of five steps:
1. Identify a flow between two tasks: SFA, as proposed in this paper, is based on a

behavioural model of the SOA represented in BPMN [16]. BPMN provides the ability to
communicate and represent internal procedures, based on Processes, using a graphical
and structured notation. Typically, these Processes represent workflows of connected
Tasks (i.e. atomic Activities), grouped into Swimlanes (i.e. a container for organising
Activities). Figure 4 shows an example BPMN process model, comprising connected
Tasks that are organised into five different Swimlanes (e.g. ambulance crew, patient and
hospital-admission). The SoaML model used for SHA (Section 3) and the BPMN model
used for SFA, in this section, are linked are follows (Figure 3): Services in SoaML interact
through defined Contracts. These Contracts have explicit Interfaces that offer a number
of Operations. Each of these Operations is then linked to a Task in BPMN, enabling
traceability between the different models at different abstraction levels. Further, each
Participant in SoaML is represented as a Swimlane in BPMN. This step in SFA involves
the selection of a link between two BPMN Tasks that captures a flow in terms of inputs,
outputs, data, sequence and timing.

2. Identify flow failure modes: similar to Step 2 in SHA, this step uses a number of
guidewords, this time based on SHARD, to determine the ways in which the selected

MCPS’14

118 Integrating Safety Assessment into the Design of Healthcare SOA

	 Figure 4 BPMN Model.

flow can deviate from its intended usage. Five guidewords are used here: omission,
commission, early, late and value [18]. The failures derived from the use of each of these
guidewords should be interpreted in the context of the SOA design.

3. Determine the potential causes of each flow failure mode: causes can be a combination
of technical, human and organisational events or conditions. For technical causes in
particular, we use the SOA fault taxonomy developed by Bruning et al [25]. This fault
taxonomy is well structured and categorises faults based on the SOA lifecycle phase in
which they can emerge: (1) publishing, (2) discovery, (3) composition, (4) binding and (5)
execution faults. The advantage of using these fault types is that they are SOA-specific.
However, again, these fault types should be used as prompts or hints for safety analysts
rather than as an exhaustive list of all possible SOA faults.

4. Determine the potential effects of each flow failure mode: the potential effects should
be recorded and should be examined in terms of the contribution that they can make to
the hazardous service failure modes, identified in SHA, or possibly the contribution that
they might make to new hazardous behaviours (i.e. missed during SHA).

5. Provide detailed safety requirements or design recommendations: where a failure
mode contributes to one or more hazards, one or more safety requirements should be
defined to address the failure mode. Further, some design recommendations could be
made for addressing the failure mode, e.g. based on existing safety tactics in the software
architecture literature or SOA-specific dependability tactics (e.g. in [26], which are
centred on the use of service redundancy, diversity, graceful degradation, monitoring and
containment).

5 Exploratory Case Study

In this section, we illustrate the use of SHA and SFA using extracts from an exploratory case
study, which is based on three healthcare services: ambulance, EHR and childbirth services.

A subset of these services is represented in the SoaML ServicesArchitecture model shown
in Figure 2. It covers the services used (i.e. produced and consumed) from the point a phone

I. Habli, A. Al-Humam, T. Kelly, and L. Fahel 119

Table 1 SHA Results.

	
call is made to request an ambulance (for a pregnant woman) to the point at which the
patient is admitted to a hospital (labour ward). Another set of ServicesArchitecture models
was created to capture subsequent stages e.g. fetal monitoring, first and second stages of
labour, caesarean section and postnatal care (not discussed further in this paper).

Table 1 shows an extract from the SHA results when applied to the Dispatch Ambulance
service. The analysis establishes the potential safety criticality of the Dispatch Ambulance
service, based on the severity of the worst credible effects of the identified failure modes,
leading to stringent safety requirements allocated to the Dispatch Ambulance service.

As can be observed from the results, the analysis is collaborative in nature, demanding
inputs from both engineers (e.g. determining how the service can fail) and clinicians (e.g.
assessing effects on patients). Figure 4 presents a more detailed model of the SOA using
BPMN, with more emphasis of the SOA process. BPMN Tasks in this process are mapped
into the Operations in the Interfaces provided by each SoaML Service while BPMN Swimlanes
are mapped onto the SoaML Participants.

Considering each flow between the Tasks, SFA was applied to the BPMN model. A sample
outcome is shown in Table 2, considering the last flow in the BPMN model, from Provide
patient health record to the End object (i.e. admission to labour ward). The analysis shows
how the lack of patient information from the EHR, and more seriously incorrect information,
can potentially lead to adverse patient complications.

6 SOA Safety Cases

Establishing and justifying an acceptable level of confidence in the safety of software-based
healthcare services will often require different safety arguments and evidence generated by
different service owners or providers. One approach to representing this compositionality
of the overall safety case for service-based systems is through modular GSN [19]. Modular
GSN supports the definition of the safety case based on the composition of different, but

MCPS’14

120 Integrating Safety Assessment into the Design of Healthcare SOA

Table 2 SFA Results.

	
interrelated, argument modules. When argument modules are composed a record of the
agreement and consistency can be recorded using a safety case contract [14]. This contract
“contains definition of the relationships between two modules, defining how a claim in one
supports the argument in the other” [19].

Modularity in the definition of services lends itself to the concept of modular safety cases.
Service owners or producers often rely on other services when guaranteeing and providing
their own services. Similarly, claims in certain argument modules can only be said to be
substantiated (the guarantee clause) if claims or evidence are available in other argument
modules that offer sufficient support (the rely clause). Figure 5 shows a preliminary GSN
modular structure for the safety case for the healthcare SOA considered in the case study in
the previous section. The safety case has three categories of argument modules:

Top-Level Argument Module includes a hazard-directed argument, which covers the main
safety claims concerning the identified service hazards, including interaction hazards;
Ambulance Service Argument Module, EHR Service Argument Module, Hospital Admission
Service Argument Module and Service Interactions Argument Module include hazard
mitigation arguments for the hazards posed by the different services and their interactions;
and
Ambulance Crew and Call Centre Argument Module, EHR System Argument Module and
Hospital Admission Argument Module include detailed arguments concerning the systems
and organisations responsible for implementing the healthcare services.

However, the safety case structure in Figure 5 and the case study description in Section 5
do not take into account that in larger regions (which include sub-regions), the same types
of healthcare services can be offered by a variety of different ambulance service providers
and hospitals. In such situations, the high-level argument structure in Figure 5, comprising
the top-level hazard-directed argument module and hazard mitigation argument modules
potentially need not change. Where the implementation of the provision of services changes,
the bottom tier safety argument structure will need to change. For example, if a healthcare
region was divided into two sub-regions, say east and west, with different hospitals, ambulance
crews and call centres, then the safety arguments concerning the systems and organisations
implementing the healthcare services would be different, taking into account the specific
design and operational issues concerning these systems and organisations.

I. Habli, A. Al-Humam, T. Kelly, and L. Fahel 121

	 Figure 5 SOA Safety Argument.

	 Figure 6 SOA Safety Argument (including Contracts).

MCPS’14

122 Integrating Safety Assessment into the Design of Healthcare SOA

Figure 6 shows a modified representation of the safety case structure in Figure 5, taking
into consideration the need for two different safety arguments (east and west) for each of
these argument modules: Ambulance Crew and Call Centre Argument Module and Hospital
Admission Argument Module. However, it can be noticed that the Ambulance Service
Argument Module and Hospital Admission Service Argument Module are now supported by
the Ambulance Crew and Call Centre Argument Module and Hospital Admission Argument
Module (east and west) via two contract modules. This loose coupling between these argument
modules can help in minimising the impact of change to the safety case when different systems
and organisations are used to provide the services (e.g. a third sub-region is introduced).

7 Conclusions

This paper has presented a preliminary approach to integrating safety assessment into the
design of healthcare SOA, covering three aspects: modelling using SoaML and BPMN, safety
analysis using SHA and SFA (adapting FHA and SHARD) and safety assurance using modular
GSN. An exploratory case study was also discussed, based on three services: ambulance,
electronic health records and childbirth services. We are currently developing a tool-support
platform for the above safety assessment approach in order to improve traceability between
the design, safety analysis and safety assurance models and provide automated means for
supporting the safety analysis process. We are also developing a set of modular safety
argument patterns that analysts can use as a basis for structuring SOA safety arguments.

Finally, examining the safety impact of interactions between services and service providers
remains a significant challenge, especially for healthcare services that span both primary
and secondary care and cover more than one medical condition (e.g. care and treatment of
diabetes in pregnancy which involves GPs, obstetricians, midwives, endocrinologists, and
diabetes-specialist nurses). Our future work will examine means for identifying, modelling
and analysing these interactions by integrating search-based technologies (e.g. simulation
and model-checking) into the above SOA safety assessment approach.

References
1 Keen J. What is a care pathway? 4th International Workshop on Software Engineering in

Health Care, Zurich, Switzerland, June 2012
2 Sokolsky, O., Lee, I., and Heimdahl, M. Challenges in the regulatory approval of medical

cyber-physical systems. International Conference on Embedded Software, Taipei, Taiwan,
October 2011

3 Arney, D., Goldman J.M., Whitehead, S. F., and Lee, I. Synchronizing an X-ray and
anesthesia machine ventilator: a medical device interoperability case study. International
Conference on Biomedical Electronics and Devices, Porto, Portugal, January, 2009

4 IEC. IEC 80001-1:2010, Application of Risk Management for IT-Networks Incorporating
Medical Devices – Part 1: Roles, Responsibilities and Activities. IEC, October, 2010

5 Rakitin, R. Coping with defective software in medical devices. IEEE Computer. 39, 4,
April 2006

6 Koppel, R., Metlay, J. P., Cohen, A., Abaluck. B., Localio, A.R., Kimmel, S. E., and Strom,
B. L. Role of computerized physician order entry systems in facilitating medication errors.
The Journal of Urology, March, 2005

7 FDA. Total Product Life Cycle: Infusion Pump Premarket Notification 510(k) Submissions.
April 2010

8 MHRA. Adverse Incident Reports 2009. Device Bulletin DB2010 (03), 2009

I. Habli, A. Al-Humam, T. Kelly, and L. Fahel 123

9 Heneghan, C., Thompson, M., and Billingsley, M. Medical device recalls in the UK and
the device regulation process: retrospective review of safety notices and alerts. BMJ, May
2011

10 Health and Social Care Information Centre. Clinical Risk Management: its Application in
the Manufacture of Health IT Systems. ISB 0129, 2013

11 Health and Social Care Information Centre. Clinical Risk Management: its Application in
the Deployment and Use of Health IT Systems. ISB 0160, 2013

12 Hofmann, R. Modeling Medical Devices for Plug-and-Play Interoperability. MS Thesis,
MIT, 2007

13 Sujan, M., Koornneef, F., Chozos, N., Pozzi, S., and Kelly, T. Safety cases for medical
devices and health IT: involving healthcare organisations in the assurance of safety. Health
Informatics Journal, 18, 4, September 2013

14 Fenn, J., Hawkins, R., Kelly, T., and Williams, P. Safety case composition using contracts:
refinements based on feedback from an industrial case study. Safety-Critical Systems Sym-
posium, Bristol, UK, February 2007

15 OMG. Service oriented architecture Modeling Language (SoaML) Specification. Version
1.0.1, May 2012

16 OMG. Business Process Model And Notation (BPMN). Version 2.0, 2011
17 SAE. ARP4761. Guidelines and Methods for Conducting the Safety Assessment Process on

Civil Airborne Systems and Equipment. December 1996
18 Pumfrey, D. The Principled Design of Computer System Safety Analyses. PhD Thesis, The

University of York, September 1999
19 GSN Standard Committee. Goal Structuring Notation (GSN), [On-line]. http::www.

goalstructuringnotation.info
20 Kletz T. Hazop and Hazan. 4th ed., Taylor and Francis, 2006
21 Brown, A., Fenn, J., and Menon. Issues and considerations for a modular safety certification

approach in a service oriented architecture. IET International System Safety Conference,
2010

22 Keller, A., and Ludwig, H. The WSLA framework: specifying and monitoring service level
agreements for web services. Journal of Network and Systems Management, 11, 1, March
2003

23 ISO. ISO 14971:2012: Medical devices. Application of Risk Management to Medical Devices.
July 2012

24 Habli, I., Hawkins, and R., Kelly. Software safety: relating software assurance and soft-
ware integrity. International Journal of Critical Computer-Based Systems (IJCCBS). 1, 4,
November 2010

25 Bruning, S., Weissleder, S., and Malek. A fault taxonomy for service-oriented architecture.
High Assurance Systems Engineering Symposium, Dallas, US, 2007.

26 Buckley, I., Fernandez, E.B., Anisetti, M., Ardagna, C., Sadjadi, M., and Damiani, E. To-
wards pattern-based reliability certification of services. On the Move to Meaningful Internet
Systems, Hersonissos, Greece, 2011.

27 Hawkins, R., Habli, I., and Kelly, T. The Principles of Software Safety Assurance. 31st
International System Safety Conference, Boston, USA, August 2013

MCPS’14

http::www.goalstructuringnotation.info
http::www.goalstructuringnotation.info

Design Pillars for Medical Cyber-Physical System
Middleware∗

David Arney1, Jeff Plourde1, Rick Schrenker1,
Pratyusha Mattegunta1, Susan F. Whitehead1, and
Julian M. Goldman1,2

1 MD PnP Program, Massachusetts General Hospital, Boston, MA, USA
info@mdpnp.org

2 Harvard Medical School, Cambridge, MA, USA
jmgoldman@mgh.harvard.edu

Abstract
Our goal is to improve patient outcomes and safety through medical device interoperability. To
achieve this, it is not enough to build a technically perfect system. We present here our work
toward the validation of middleware for use in interoperable medical cyber-physical systems. This
includes clinical requirements, together with our methodology for collecting them, and a set of
eighteen ‘design pillars’ that document the non-functional requirements and design goals that we
believe are necessary to build a successful interoperable medical device system. We discuss how
the clinical requirements and design pillars are involved in the selection of a middleware for our
OpenICE implementation.

1998 ACM Subject Classification J.3 Life and Medical Sciences, D.2.1 Requirements/Specifica-
tions

Keywords and phrases Medical Device Interoperability, Clinical Requirements, Design Pillars,
Requirements Elicitation, Validation

Digital Object Identifier 10.4230/OASIcs.MCPS.2014.124

1 Introduction

Medical device interoperability has the potential to reduce healthcare costs, improve patient
outcomes and improve patient safety. Achieving interoperability requires that medical devices
(including software applications) and other equipment share the same information model and
communication protocol. This enables applications to work with any source of compatible
data regardless of the manufacturer or specific device type. In this paper, we concentrate on
the communication protocol aspect of interoperability, in particular the role of middleware.

A system using separate medical devices is a distributed system. There is a long and rich
history of work in the field of distributed systems that can directly inform the development
of interoperable medical cyber-physical systems (MCPS). One broadly accepted tenet of
this work is that network architecture can be broken down into a number of layers; this is
perhaps most commonly illustrated by the Open Systems Interconnection (OSI) Seven Layer
Model. Breaking network architecture into these layers allows designing and reasoning about

∗ This publication was made possible by grant number 1U01EB012470 from NIH/NIBIB and award
number W81XWH-12-C-0154 from Department of Defense US Army Medical Research and Materiel
Command. Its contents are solely the responsibility of the authors and do not necessarily represent the
official views of the NIH/NIBIB or the US Army or the Department of Defense.

© David Arney, Jeff Plourde, Rick Schrenker, Pratyusha Mattegunta, Susan F. Whitehead,
and Julian M. Goldman;
licensed under Creative Commons License CC-BY

Medical Cyber Physical Systems – Medical Device Interoperability, Safety, and Security Assurance (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer; pp. 124–132

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.124
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

D. Arney et al. 125

them independently – a transport layer can operate on many different network and data link
layers that in turn can work with a multitude of physical layers. Middleware is software that
implements some of these middle layers between an application and networking hardware.
There are a great number of middleware implementations with widely varying capabilities
that implement various subsets of the seven layers. Choosing an appropriate middleware for
a particular domain is thus a complex undertaking that requires an understanding of what
applications need and expect from the network.

Systems Engineering similarly has a long history with many lessons that can inform
MCPS development. The most important lesson here is that user needs must be used to
validate system designs. Broadly stated, technical requirements are used for verification (that
“the system was built right”) and user requirements are used for validation (that “you built
the right system”). A technically flawless system that does not satisfy user needs will not be
used.

In this paper, we present two types of user requirements and discuss how they can
be used to validate middleware for MCPS. The two types of requirements are Clinical
Requirements, which capture the needs of clinicians, clinical engineers, biomedical engineers,
and other medically-oriented users and Design Pillars, which are broad-scope non-functional
requirements that we and our team of collaborators have formulated over ten years of building
MCPS implementations.

2 Implementations of ASTM F2761

Interoperable MCPS follow the architecture described in ASTM F2761-09(2013) [7]. This
standard does not call out a specific middleware, but includes high-level requirements
for any interoperable clinical environment. We aim specifically to support ‘plug-and-play’
interoperability, including the composition of devices that may be used as by applications as
components of the integrated system. Other existing standards such as ISO/IEEE 11073
specify all layers of the network stack, from physical to application. We reuse parts of the
11073 family, notably the terminology set (11073-10101) and parts of the information model
in our OpenICE implementation [13], adapting them as needed for use with a middleware.

ASTM F2761 defines a functional architecture for interoperable medical systems, illus-
trated in Figure 1. Clinicians use applications that interact with medical devices and that
run on a Supervisor. Patient-connected medical devices and other equipment connect to
the system via adapters (for legacy devices) or a built-in ICE Equipment Interface. The
Network Controller ties together devices with the Supervisor, and sends data to the Data

Device	

Data	 Logger	

Network	
Controller	 Supervisor	 External	

Interface	

Clinical	 Apps	

EMR	

ICE	 System	

Device	

Device	

Figure 1 ICE Functional Architecture.

MCPS’14

126 Design Pillars for Medical Cyber-Physical System Middleware

Logger, which functions analogously to the black-box recorder of an airplane. The ICE
system communicates with outside resources like an electronic health record (EHR) system,
physician order entry system, or pharmacy system through External Interfaces. Though
not shown in Figure 1, the patient and clinicians are key elements of the system, which
is intended explicitly to improve patient safety and outcomes. Middleware can be used to
implement this functional architecture by taking on responsibilities of the Network Controller
and, to a lesser extent, the Supervisor. With a sufficiently capable middleware, almost all
functions of the network controller are subsumed into the middleware.

Over the last 10 years we have built in our lab numerous prototype medical distributed
systems [9] utilizing a variety of connectivity solutions. We started by using approaches
built on web services such as SOAP and industrial systems like MODBUS to synchronize
an X-Ray exposure with an anesthesia machine ventilator [4] [8]. This was followed by an
infusion pump safety interlock built on a deterministic, hard real-time network implemented
on custom FPGA hardware [3]. We have done extensive work on patient-controlled analgesia
pumps including formal analysis of pumps [5], formal analysis of systems [6] [12] [2], and
closed-loop control [14]. In addition to publications, these systems were presented at medical
conferences including HIMSS, the American Society of Anesthesiologists annual conference,
the Society for Technology in Anesthesiology annual meeting, and other venues. Feedback
gathered from clinicians at these venues has gone into each iteration and been included in
the clinical requirements and design pillars. This body of work forms the basis for claiming
the validity of the design pillars in Section 3.

3 Design Pillars for Successful Interoperability

We have given the name Design Pillars to the set of non-functional requirements that
summarize the approach that we believe is necessary to achieve safe, adoptable medical
device interoperability. Other standards, including ISO 14971, IEC 60601, and FDA’s
guidance documents on risk management also include important guidance for interoperable
systems. This list has a different focus, aiming to capture the normally unwritten goals and
philosophy needed to achieve successful interoperability. These design pillars are a work in
progress and we welcome additions, comments, and arguments about them.

No Silos. Work toward a concrete implementation of the ICE standard has matured to a
point where harmonization is required. Silos of interoperability work that cannot successfully
interoperate are self-defeating. By identifying the most important characteristics of a
middleware for ICE systems we can begin the process of selecting the most appropriate
foundation for the platform. Future work can then proceed on a new generation of clinical
applications that operate within the scope of this platform.

Open Source. There must be an open source reference implementation. We will share our
software code and documentation with the community, giving them the necessary tools to
adapt and utilize our software, including commercial reuse. We will prefer dependencies
(tools and software libraries) that are available with open source and little or no cost. We
will demonstrate how a member of the broader community can easily make use of our work.
Our development is done in an open repository. Documentation, the ticketing system, and
bug tracking are all publicly visible. We encourage anyone interested to contribute to this
effort. To demonstrate the feasibility of proposed solutions, prototype implementations
are required. Such prototypes are most useful when they can be shared. This does not

D. Arney et al. 127

preclude closed-source implementations and commercialization once the conceptual use of a
middleware to build a platform for ICE apps has been proven. An open source reference
implementation permits other implementers to perform testing and reuse code as appropriate.

Existing Standards. Interoperability must be built on standards, utilizing existing software
standards to the greatest possible extent. Where existing standards must be corrected,
completed, or extended, the rationale must be documented.

Security. Medical systems inherently touch human lives and private information. ICE
implementations must be secure to the greatest extent possible. Security in this domain
encompasses a tremendous range. Most relevant to middleware selection are the needs
for identification, authentication, and authorization of connected devices, clinical users,
and patients. Information in transit and at rest must be secured with appropriate use of
encryption.

There is an apparent tradeoff between security and usability. Security features must not
slow down or prevent urgent clinical use.

Scalability and Extensibilit.y ICE implementations must scale gracefully. A platform that
enables a revolution in bedside devices must scale to support the next generation of devices.
Therefore even while we’re building concrete prototypes with the current generation of
medical devices we must anticipate a newer generation of devices that we expect will furnish
higher resolution data streams. Software simulation should be used for initial stress testing,
testing on hardware may also be necessary. The platform, supporting current generation
devices, should exhibit a great deal of underutilized capacity. ICE encompasses data and
control at scales from the bedside to the globe and must support integration at these scales.

High Availability. We are building software that must guarantee high availability. ICE
supports the integration of multiple sources of patient data. Components that fail should be
seamlessly replaced by redundant data sources or other components if they are available. Put
another way, risk control measures need to take into account component malfunctions. ICE
should support achieving single fault tolerance for applications. Dependability is availability
plus reliability – i.e., it’s there when you need it and won’t break while you’re using it.

Performance. Performance is another key to acceptance by the clinical community. Sluggish
performance may be inconsequential in the laboratory setting but a poorly performing system
in the clinic consumes a critical resource; the clinician’s time. Poor performance can also
encourage clinicians to marginalize the system; isolating the threat to their workflow. ICE
implementations must support dynamic detection and reporting of performance degradation.

Visibility of runtime configuration. ICE implementations must surface the state of the
system; for instance, the connection state of devices should be readily available to a user.
When the system is in an undesirable state, for example lacking connectivity to a critical
medical device, it is important that information be made available. A system operating with
hidden states will never earn the confidence of clinicians, but neither will a system cluttered
with unnecessary information. The platform must also allow for the plug-and-play assembly
of medical devices and because of this the configuration at runtime is the only source of
information about how the system is configured.

MCPS’14

128 Design Pillars for Medical Cyber-Physical System Middleware

Generic Interface. Each component will share its data representation in common. Software
shared in common among components will mediate all communication.

External Connectivity. ICE implementations must interface with external systems. Some
examples of external systems include an EMR system, an eHealth eXchange (NwHIN),
departmental systems (such as pharmacy), or network time protocol (NTP) servers inside or
outside of the hospital or home.

Novel Applications. ICE implementations must enable the development of novel applica-
tions that run within their frameworks. The point of ICE is to enable new clinical applications
to improve patient outcomes and safety.

Clinical Scenarios. Requirements for ICE implementations should be derived from publicly
available clinical scenarios so that traceability of technical requirements can be maintained.
Technical requirements must be linked to clinical requirements which are derived from clinical
scenarios. Technical design will also be informed by those scenarios and linkages between
design decisions and high-level clinical requirements must be documented.

Community Involvement. Developers of ICE implementations must maintain awareness
of developments in other large-scale initiatives and relevant standards bodies. The linkages
between external developments and implementation design decisions must be explicitly
documented. Findings should be shared back with Standard Development Organizations
where possible.

Forensic Data Logging. ICE implementations must create a credible log of all activity so
that adverse events can be investigated in order to surface and trace root causes of faults in
the distributed system. Every aspect of implementations must avoid any data pathways that
may “sidestep” this logging (while balancing this with our need for scalability and security).
Information known to bypass the data logger must be documented with a rationale.

Plug and Play. Components can be added to and removed from the system at any time.
The system must dynamically determine and monitor the presence of components. In the
interests of security, scalability, and performance components may be refused by the system
for various reasons but this refusal must be surfaced per 3. Applications must handle the
disappearance of required data and control sources or sinks and the appearance of new
sources and sinks gracefully.

Regulatory Pathway. ICE implementations operate in a regulated space. The regulators
vary geographically, but the need to demonstrate the safety and essential performance of
ICE systems and components is universal. To achieve this, ICE implementations should be
designed and implemented in such a way as to facilitate regulatory clearance. Following the
other design pillars should ease regulatory burdens.

Industry Adoptability. The goal of ICE to achieve dramatic improvements in patient
outcomes and safety can only be met if such systems are commercially available. To this end,
ICE implementations (particularly open source implementations) should facilitate commercial
reuse. At the same time, common networking pieces such as data representations must be
shared and developed in common.

D. Arney et al. 129

Human Factors. The user interface and other human factors issues need to be carefully
designed and tested in realistic environments so that new hazards that are introduced are
adequately controlled. For instance, when a device is operating as a component of a larger
system, its front panel must display an indicator that it’s under remote control.

4 OpenICE and Clinical Requirements

We have built an open source implementation of an interoperable medical device system
based on the ICE standard. We call this implementation OpenICE, and it is available
on SourceForge [13]. This implementation is built using the OMG standard middleware
DDS [11]. Implementing using DDS has helped to inform our requirements, but our clinical
requirements and design pillars are not tied to DDS. We have spent extensive time building
implementations on a variety of platforms and we believe that DDS is a good (stable, well-
supported, variety of implementations available, etc.) choice, but not the only choice. We
hope that our approach is useful to anyone implementing an interoperable medical system
on any platform.

An ideal middleware would support an abstract API that would permit many instantiations
on varying hardware and software platforms. DDS approaches this ideal in that the OMG
standard specifies an API that may be implemented in many ways. ICE implementations
have a wide range of requirements, for instance for timing and latency. Creating an abstract
API that will support scalability, reliability, fault tolerance, and safety analysis is is not
trivial, and we believe that this is a promising direction for research.

Our middleware choice was, and continues to be, driven by a combination of our design
pillars and our clinical requirements. The pillars and clinical requirements drive the technical
requirements that the middleware must meet for a particular system instantiation. We
validate that a middleware is appropriate for use in building interoperable MCPS such as an
ICE implementation by evaluating it against the design pillars and its capability to support
the needs documented in the clinical requirements. By documenting and assessing user
needs we gain assurance that the system we build will be suitable for use in its intended
environment.

Our approach is to allow clinical focus groups [10] to suggest clinical scenarios, which are
captured either in person or through our prototype clinical scenario repository [1]. These
scenarios then suggest clinical requirements, such as the samples shown in Figure 2. These
clinical requirements imply technical requirements which are implemented to build a concrete
system such as OpenICE. We use the technical requirements to verify the implementation,
the clinical requirements and design pillars to validate the implementation, document gaps,
and iterate. This waterfall development style description is overly linear, and it’s important
to realize that design and implementation are likely to iterate rapidly.

Clinical scenarios may document a situation where patient outcomes or safety could
be improved by the use of interoperable devices. It is vital that the set of scenarios also
include situations where a technical integration failure or lack of interoperability leads to
patient harm, as well as situations where interoperability leads to new hazardous situations.
Scenarios can be reflect an actual or imagined sequence of events that happened, or they
can be constructed from an imaginable sequence of events derived from what policies and
guidelines exist to prevent. In this work, we concentrate on the use of clinical requirements
and their influence on middleware selection, rather than the process of moving from clinical
scenarios to clinical requirements or from clinical to technical requirements.

The clinical requirements primarily represent the interactions of the system, including

MCPS’14

130 Design Pillars for Medical Cyber-Physical System Middleware

SCR1: The ICE system shall be aware of the required frequency / accuracy / reliability of
the incoming data for each parameter based on clinical significance, and shall choose
the closest available frequency / accuracy / reliability on the device and provide this
information to the clinician for review.

SCR2: If the device connected to the ICE system is not capable of providing the required
frequency / accuracy / reliability of the incoming data for each parameter based on
clinical significance, the ICE system shall choose the closest available frequency /
accuracy / reliability on the device and provide this information to the clinician for
review.

SCR3: The ICE System shall notify users when it loses connectivity with any of its compo-
nents.

Figure 2 Sample Clinical Requirements.

constituent devices, with users including clinicians and the patient. Our clinical requirements
have come from elicitation sessions, clinicians, hospital policies, existing documentation,
ASTM F2761 Annex B, clinical care guidelines, nursing documentation, clinical specialists,
incident reports, and other groups. Figure 2 contains a selection of clinical requirements
that have direct implications for middleware selection. For instance, consider SCR 3 “The
ICE System shall notify users when it loses connectivity with any of its components.” These
clinical requirements are written from the perspective of the clinical user, who may have
little or no knowledge of how the system works; they are a form of black box requirements.
This requirement could be implemented in a wide variety of ways. There are no requirements
stated for timing, for how the notification should happen, or for which component should
do the notification. Such specializations of the requirement follow from specific use cases
and specific implementations. The specialization of SCR 3 will be very different for an
ICE implementation intended to run only an application that sends data to an offline
documentation archive versus an implementation intended to support running an application
controlling a closed-loop infusion of a fast-acting drug. SCR 1 and SCR 2 may also raise the
eyebrows of those experienced in real-time systems. The closest possible match may not be a
very good match at all, which is why review is required, and any deviation may throw off
carefully engineered timings. It is important to remember that these requirements capture
clinical needs as voiced by clinicians. They are not technical engineering requirements, and
they are subject to interpretation and change in building implementations. Validation that
a given implementation satisfies the clinical requirement is inherently subjective. It is our
intention in compiling these that they be relatively unambiguous and reflect clinical consensus.
The clinical requirements shown in the examples are generic in the sense that they are meant
to apply to all ICE systems.

5 Conclusion

We have presented an approach to validating middleware selection for MCPS using user
needs as documented in design pillars and clinical requirements. We are using this approach
in our development of our OpenICE implementation, and we believe that the user needs we
document here will be useful for others who are working on medical device interoperability.
Our design pillars are intended to support making interoperability a community activity.
We want to be able to share interface code, test suites, and requirements with the whole
interoperability movement, not just ideas.

D. Arney et al. 131

Our goal is to improve patient outcomes and safety through interoperability. To achieve
this, it is not enough to build a technically perfect system, even one that satisfies all of
the clinical requirements. Our design pillars document the non-functional requirements and
design goals that we believe are necessary to build a successful interoperable medical device
system.

Acknowledgements. Our team at the MD PnP Program has had the pleasure of working
with many generous and brilliant collaborators. We would like to thank Sandy Weininger
and Yi Zhang at FDA CDRH and our collaborators on the Quantum Medical Device
Interoperability project, namely Insup Lee, Oleg Sokolsky, Andrew King and the rest of the
PRECISE team at the University of Pennsylvania, John Hatcliff and the members of the
Medical Device Coordination Framework project at Kansas State, Lui Sha and his team at
UIUC, Tracy Rausch, Wayne Saari and the DocBox crew, Dick Moberg, and Mike Robkin
and all of Anakena Solutions. We’ve all spent many hours hotly debating issues around
medical device interoperability. This paper represents some of our perspective, which has
been greatly improved by our collaborators input. Oversimplifications and omissions are our
own. We’re looking forward to the next round of discussion.

References

1 Diego Alonso, Jeff Plourde, Sandy Weininger, and Julian M. Goldman. Web-based clin-
ical scenario repository (CSR). In Poster Presentation at the Society for Technology in
Anesthesia Annual Meeting, 2014.

2 Rajeev Alur, David E. Arney, Elsa L. Gunter, Insup Lee, Jaime Lee, Wonhong Nam, Fred-
erick Pearce, Stephen Van Albert, and Jiaxiang Zhou. Formal specifications and analysis
of the computer-assisted resuscitation algorithm (cara) infusion pump control system. Soft-
ware tools for technology transfer, 5(4):308–319, 2004.

3 David E. Arney, Sebastian Fischmeister, Julian M. Goldman, Insup Lee, and Robert Traus-
muth. Plug-and-play for medical devices: Experiences from a case study. Biomedical
Instrumentation & Technology, 43(4):313–317, July 2009.

4 David E. Arney, Julian M. Goldman, Insup Lee, Ersel Llukacej, and Susan F. Whitehead.
Use case demonstration: X-ray/ventilator. In High Confidence Medical Devices, Software,
and Systems and Medical Device Plug-and-Play Interoperability, 2007, page 160, June 2007.

5 David E. Arney, Raoul Jetley, Paul Jones, Insup Lee, and Oleg Sokolsky. Formal meth-
ods based development of a PCA infusion pump reference model: Generic Infusion Pump
(GIP) project. In HCMDSS-MDPNP’07: Proceedings of the 2007 Joint Workshop on High
Confidence Medical Devices, Software, and Systems and Medical Device Plug-and-Play In-
teroperability, pages 23–33, Washington, DC, USA, 2007. IEEE Computer Society.

6 David E. Arney, Miroslav Pajic, Julian Goldman, Insup Lee, Rahul Mangharam, and Oleg
Sokolsky. Toward patient safety in closed-loop medical device systems. In Cyber-Physical
Systems (ICCPS’10), April 2010.

7 ASTM F2761-09(2013). Medical Devices and Medical Systems – Essential safety require-
ments for equipment comprising the patient-centric integrated clinical environment (ICE)
– Part 1: General requirements and conceptual model. http://www.astm.org/Standards/
F2761.htm.

8 David E.Arney, Julian M. Goldman, Susan F. Whitehead, and Insup Lee. Synchronizing
an x-ray and anesthesia machine ventilator: A medical device interoperability case study.
In BIODEVICES’09, pages 52–60, January 2009.

MCPS’14

http://www.astm.org/Standards/F2761.htm
http://www.astm.org/Standards/F2761.htm

132 Design Pillars for Medical Cyber-Physical System Middleware

9 Julian M. Goldman, Mike Jaffe, Dave Osborn, and Sandy Weininger. The Integrated
Clinical Environment (ICE) Standard (ASTM F2761-09) – The First Ten Years. In Poster
Presentation at the Society for Technology in Anesthesia Annual Meeting, 2014.

10 Julian M. Goldman, Susan F. Whitehead, and Sandy Weininger. Eliciting clinical re-
quirements for the medical device plug-and-play (MD PnP) interoperability program. In
Anesthesia & Analgesia: Abstracts of Posters Presented at the International Anesthesia
Research Society 80th Clinical and Scientific Congress, March 2006.

11 Object Management Group. Data distribution service (DDS). http://portals.omg.org/
dds/, March 2014.

12 Andrew King, David Arney, Insup Lee, Oleg Sokolsky, John Hatcliff, and Sam Procter.
Prototyping closed loop physiologic control with the medical device coordination framework.
In 2nd Workshop on Software Engineering in Health Care (SEHC’10), May 2010.

13 MDPnP Interoperability Program. OpenICE software repository. http://mdpnp.org/MD_
PnP_Program___OpenICE.html, March 2014.

14 Carl F. Wallroth, Julian M. Goldman, Jurgen Manigel, Dave Osborn, T Roellike, Sandy
Weininger, and Dwayne Westenskow. Development of a standard for physiologic closed
loop controllers in medical devices. In Poster Presentation at the World Congress of Anes-
thesiology, 2008.

http://portals.omg.org/dds/
http://portals.omg.org/dds/
http://mdpnp.org/MD_PnP_Program___OpenICE.html
http://mdpnp.org/MD_PnP_Program___OpenICE.html

OR.NET – Approaches for Risk Analysis and
Measures of Dynamically Interconnected Medical
Devices
Franziska Kühn1,2, Martin Leucker1, and Alexander Mildner3

1 Institute for Software Engineering and Programming Languages, University of
Lübeck, Germany
{kuehn,leucker}@isp.uni-luebeck.de

2 Graduate School for Computing in Medicine and Life Science, University of
Lübeck, Germany

3 UniTransferKlinik Lübeck, Germany
a.mildner@unitransferklinik.de

Abstract
Nowadays, it lacks an open, standardized and dynamic interconnection of medical devices. All
existing combinations of medical devices consist of isolated solutions with proprietary interfaces,
as no common standards for networking and the exchange of data of medical devices exist. This
situation leads to confusing operating rooms and inefficient operations. Thus, new strategies need
to be developed for the authorization of dynamically interconnected medical devices. Primarily,
those concern of an acquisition and methodical adaption of new requirements and risks resulting
from this way of interconnection. The approach is to develop a method for a risk analysis for
interconnected medical devices, which is structured modular and consists of a risk assessment of
the standalone device and a risk analysis for the interconnection considering the risks involved
in the transfer of functions. When interconnecting the medical devices the risk analysis of each
of the devices is taken and they are compared by a gap analysis. Through this strategy it
will be possible to realize a standard-compliant dynamic interconnection of medical products,
which would be advantageous both for clinic operators and producers. This paper presents the
current situation of the authorization of combined medical devices and proposes a strategy for
the risk management of dynamically interconnected medical devices as a substantial part of the
authorization.

1998 ACM Subject Classification J.3.3 Medical information systems

Keywords and phrases Modular Risk Analysis, Medical Device Interconnection, OR.NET, De-
velopment Method

Digital Object Identifier 10.4230/OASIcs.MCPS.2014.133

1 Introduction

At present, the dynamic interconnection of medical devices poses as well legal as technical
challenges, especially for clinic operators. On the one hand most medical devices the clinic
operators would like to interconnect are not interoperable, on the other hand the connection
of medical devices (which have not been authorized together) leads to a self-production by
the clinic operator [3]. The clinic operators can choose all-in-one operating room solutions
from certain manufacturers, but often expensive and elaborate custom integration projects
are necessary. All of the possible combinations today consist of isolated solutions with
proprietary interfaces and have a limited flexibility and interchangeability, as no common

© Franziska Kühn, Martin Leucker, and Alexander Mildner;
licensed under Creative Commons License CC-BY

Medical Cyber Physical Systems – Medical Device Interoperability, Safety, and Security Assurance (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer; pp. 133–136

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.133
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

134 Approaches for Risk Analysis and Measures

Figure 1 Risk analysis and conformity statement today.

standards for networking and the exchange of data of medical devices to each other and to
adjacent IT-systems exist. This situation leads to confusing operating rooms and inefficient
operations.

The OR.NET-project1, funded by the federal ministry of education and research (BMBF),
focuses on the safe, secure and dynamic interconnection of medical devices in the operating
room and clinic. The project includes almost 50 project partners ranging over medical device
manufacturers, clinic operators, standardisation organisations and research institutes. Besides
the safe and secure interconnection of medical devices, the main goals are a standardised
solution for the interoperability of all medical devices and the possibility of interconnecting
arbitrary medical devices for clinic operators without taking responsibility for the resulting
system.

This paper shows the authorization of combined medical devices nowadays, which is
illustrated in Section 2. The content of Section 3 deals with our general idea of the
authorization of dynamically interconnected medical devices. The strategy for the risk
management of such systems as a substantial part of the authorization is approached in
Section 4. Conclusively the paper discusses the advantages of a dynamic interconnection of
medical devices.

2 Today’s Situation of Authorisation

Figure 1 shows the idea of the procedure for obtaining an authorization of today’s systems
and combinations.

The procedure is generally based on the assumption that the whole system is known
and the individual components have been developed for an interaction of each other. Either
the person establishing the interconnection declares conformity and is responsible for the
entire system or both producers of the medical devices allow the application with the other,
precisely specified device and document this option in the intended use of their own medical
device [4]. Approving all combinations of interest in advance is not possible because of the
enormous number of possible combinations. Another problem is that once a component
is replaced, a new conformity assessment procedure of the entire system must be worked
through. These obstacles for a dynamic interconnection of medical devices, especially from
different producers, lead to a large amount of not connected medical devices and thereby
to a confusing amount of control elements and monitors in the operating room as shown in
Figure 2.

3 Futures Authorization

A dynamic, open interconnection of medical devices with their hardware and software
components is not yet implemented in today’s authorisation processes. Thus, new strategies
need to be developed for the authorization of such systems. Primarily, those concern of
an acquisition and methodological adaption of new requirements and risks resulting from

1 http://www.ornet.org

http://www.ornet.org

F. Kühn, M. Leucker, and A. Mildner 135

Figure 2 Operating room today.

Figure 3 Authorization of dynamically interconnected systems.

this way of interconnection [2]. Figure 3 shows the idea of the procedure for obtaining
an authorization of futures, dynamically interconnected medical device combinations. The
devices are authorized without knowledge of each other but with a defined interface. They
are connected by a safe medical IT-network (MIT), constructed and controled according to
EN 80001 [1].

4 Approaches for Risk Analysis and Measures

The aim is to develop a method to consider risks of a dynamic interconnection without
defining a specified connection partner. This method must be able to assess, evaluate, control
and document the risks additionally occurring by an interconnection. The structure of the
risk management is shown in Figure 4.

Risk analysis, -evaluation and -control is to be made separately for every medical device
in the combination. The producers do not longer allow the interconnection with only one
other, precisely specified medical product, but comply with a precisely defined interface. For
this reason it is necessary to precisely define the interfaces of the medical devices and certify
the respective medical devices including the interface specifications. The risk analysis of
each device is structured modular and consists of a risk assessment of the standalone device
(in accordance with today’s practices) and a risk analysis for the interconnection. The risk
analysis of the interconnection is developed by considering the risks involved in the transfer of
functions of the medical device to another one or the takeover of functions of another medical
device. These risks are transferred to a Failure Mode and Effects Analysis (FMEA) [5] and
risk control measures are applied. The clinic operator is only responsible for a safe and
reliable network conforming to EN IEC 80001 [1] and for meeting the producers demands on
the network e.g. like a minimum bit rate and, if required, implement risk measures for the
interonnection defined in the FMEA of a certain medical device. When interconnecting the

MCPS’14

136 Approaches for Risk Analysis and Measures

Figure 4 Risk management for dynamic interconnections.

medical devices the FMEAs of each of the devices are taken and they are compared by a gap
analysis. In that gap analysis the risks considered in the FMEAs for the interconnection are
compared by the clinic operator. If there are risks considered only in one of the FMEAs it
has to be checked if those mean additional risks also for the interconnected device. Only
if this is the case additional risk measures have to be taken to enable a safe and secure
interconnection.

5 Discussion

It lacks an open, standardized and dynamic interconnection of medical devices. This
interconnection would be advantageous both for clinic operators and producers. The clinic
operators could put together their ideal device combinations that would support their
operation flow best. An expected simplification of work processes would also lead to
monetary savings. In large medical technology companies the loss of proprietary interfaces
would lead to savings potentials, enabled by a simplified authorization and less needed expert
know-how. For small and medium businesses a standardized interconnection would open up
new business areas and they could have a better chance in the market if their devices could
interact with those of large producers. Simplified procedures and a reduced number of control
elements would relieve the operating room staff and increase patient safety. Merging data
sets from multiple devices would increase the quality of diagnoses and reduce the number of
required monitors.

References
1 Janko Ahlbrandt, Johannes Dehm, Rainer Röhrig, Christian Wrede, and Michael Imhoff.

Gemeinsames Positionspapier zur IEC 80001-1 – Risikomanagement für medizinische Net-
zwerke in der Intensiv- und Notfallmedizin. Technical report, DIVI, DGMBT, VDE, 2012.

2 International Electrotechnical Commission. EN IEC 60601-1:2006 – Medical electrical
equipment – Part 1: General requirements for basic safety and essential performance, 2006.

3 Armin Gärtner. Medizinproduktesicherheit Band 5: Medizinische Netzwerke und Software
als Medizinprodukt. TÜV Media GmbH, Cologne, Germany, 2010.

4 Council of the european communities. Council directive 93/42/eec of 14 june 1993 concern-
ing medical devices (amended by directive 2007/47/ec of 5 september 2007, June 1993.

5 Dieter H. Müller Thorsten Tietjen, André Decker. FMEA-Praxis – Das Komplettpaket für
Training und Anwendung. Carl Hanser Verlag, München, Germany, 2011.

Automated Verification of Quantitative Properties
of Cardiac Pacemaker Software∗

Marta Kwiatkowska and Alexandru Mereacre

Department of Computer Science, University of Oxford, UK
{marta.kwiatkowska,mereacre}@cs.ox.ac.uk

Abstract
This poster paper reports on a model-based framework for software quality assurance for cardiac
pacemakers developed in Simulink and described in [3]. A novel hybrid heart model is proposed
that is suitable for quantitative verification of pacemakers. The heart model is formulated at the
level of cardiac cells, can be adapted to patient data, and incorporates stochasticity. We validate
the model by demonstrating that its composition with a pacemaker model can be used to check
safety properties by means of approximate probabilistic verification.

1998 ACM Subject Classification I.6.4 Model Validation and Analysis, J.3 Life and Medical
Sciences

Keywords and phrases Pacemakers, Verification, Simulink

Digital Object Identifier 10.4230/OASIcs.MCPS.2014.137

1 Introduction

Today’s implantable medical devices are increasingly often controlled by embedded software
and rigorous software design methodologies are needed to ensure their safe operation and
to avoid costly device recalls. The natural models for medical devices, such as cardiac
pacemakers [6], GPCA infusion pumps [8] and continuous glucose monitors [11], are stochastic
hybrid systems: they involve discrete mode switching and nonlinear continuous flows, e.g.,
electrical signal or glucose level, while at the same time allowing for stochasticity that arises
from randomness of the timing of events. Therefore, developing effective methodologies to
provide safety assurance in this setting by means of quantitative verification is an important
challenge.

Regarding cardiac pacemakers, a number of model-based frameworks have been proposed,
to mention the Virtual Heart Model (VHM) of Jiang et al. [5, 7]. Though mainly intended
for simulation and testing, its timed automata pacemaker model [6] has been verified using
UPPAAL [10] against a random heart model. The random heart model can capture the
timing delays between events, but is unable to model the stochasticity in the timing that is
characteristic in a heart rhythm and varies from patient to patient. Following a suggestion
in [6] that physiologically-relevant heart models are needed to establish the correctness of
more complex properties for pacemakers, we earlier developed a realistic heart model that
addresses this issue [1]. The model was adapted from a sophisticated model that generates
multi-channel electrocardiogram (ECG) based on nonlinear ordinary differential equations
(ODEs) due to Clifford et al. [4]. To transfer to our setting, where we need to consider
that the pacemaker is implanted in the heart tissue, we convert external ECG signals into

∗ This work is supported by the ERC Advanced Grant VERIWARE, VERIPACE project and Oxford
Martin School Institute for the Future of Computing.

© Marta Kwiatkowska and Alexandru Mereacre;
licensed under Creative Commons License CC-BY

Medical Cyber Physical Systems – Medical Device Interoperability, Safety, and Security Assurance (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer; pp. 137–140

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.137
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

138 Automated Verification of Quantitative Properties of Cardiac Pacemaker Software

action potential signals read by implanted sensors. A unique feature of the model of [1]
is that the heart can probabilistically switch between normal and abnormal beat types, in
a manner that can be learnt from patient data. We performed quantitative, probabilistic
verification by analysing the composition of the pacemaker model of [6] and the heart model
against typical correctness properties such as (i) whether the pacemaker corrects faulty heart
beats, maintaining normal heart rhythm of 60-100 beats per minute (BPM), and (ii) that
the pacemaker does not induce erroneous heart behaviours (that is, it does not overpace the
heart unless necessary). These were implemented based on the probabilistic model checker
PRISM [9] and MATLAB.

One of the shortcomings of the heart model in [1] is that it does not capture the electrical
conduction system of the heart, and specifically the delays in the action potential signal as it
is propagated from cell to cell.

This paper reports on a model-based framework for software quality assurance for cardiac
pacemakers developed in Simulink and described in [3]. We instantiate the framework with a
physiologically-relevant heart model built as a network of cardiac cells. The heart model
is inspired by that of [7], except that we represent it as a network of input-output hybrid
automata, instead of timed automata, and enhance it with stochasticity. The model enables
the modelling of both diseased and normal rhythms, and can be adapted to exhibit random
delays in the timing of events that are patient-specific. We implement the heart model in
Simulink and validate it against the pacemaker models of [7], demonstrating basic safety
properties of the pacemaker by means of probabilistic approximate model checking, with
encouraging results. We also provide experimental results for advanced properties, including
pacemaker mediated tachycardia correction and detailed analysis of energy consumption.
This paper extends the results reported in [2]. The outcome of the research is a comprehensive
model-based framework based on Simulink suitable for simulation, as well as quantitative
verification, of pacemakers. The interested reader is referred to [3] for more detail.

2 Quantitative Verification

We implement both the heart model and the pacemaker model in Simulink.
Fig. 1a shows the Simulink implementation of a cardiac cell. The cell is implemented

by means of three Simulink blocks: Event generator, Hybrid set and Subsystem. The Event
generator block is responsible to generate the input events to the cell. The Hybrid set
implements the cell hybrid automaton model. The Subsystem block performs the integration
procedure to compute the voltage level of the cell. Fig. 1b shows a network of six cells. Each
cell block is composed from the three sub-blocks shown in Fig. 1a and connected to other
cells through delay and gain components.

We run a set of experiments on a faulty heart to verify that the pacemaker restores the
normal heart beat. In Fig. 2a we depict two signals. The first one (in blue) denotes the action
potential generated by the natural pacemaker cell of the heart situated in the atrium. More
precisely, we have three beats in six seconds, which is approximately 30 beats per minute.
The number of heart beats is thus too slow and needs the intervention of the pacemaker.
The second signal (in red) denotes the action potential from one of the cardiac cells situated
in the ventricle. This is the signal which is captured and paced by the pacemaker.

The second set of experiments depicts the relation between different programmable
parameters of the pacemaker and the battery charge. In Fig. 2b we depict the battery charge
in a period of 1 min when the programmable parameters TAVI and TURI of the pacemaker
are varied.

M. Kwiatkowska and A. Mereacre 139

(a) Cell block (b) Cell connection

Figure 1 Cardiac cell model.

t]
0 2 4 6 8

0

20

40

60

80

100

120

140

Time [sec]

V
ol

ta
ge

(a) Heart beat correction experiments

100

150

200

250

300

20
40

60
80

2000

2200

2400

2600

2800

3000

TAVI [msec]
TURI [msec]

En
er

gy

(b) Battery charge

Figure 2 Experiments.

References

1 T. Chen, M. Diciolla, M. Kwiatkowska, and A. Mereacre. Quantitative Verification of
Implantable Cardiac Pacemakers. RTSS, pp. 263–272. IEEE, 2012.

2 T. Chen, M. Diciolla, M. Kwiatkowska, and A. Mereacre. A Simulink Hybrid Heart Model
for Quantitative Verification of Cardiac Pacemakers. HSCC, pp. 131–136. IEEE, 2013.

3 T. Chen, M. Diciolla, M. Kwiatkowska, and A. Mereacre. Quantitative Verification of
Implantable Cardiac Pacemakers over Hybrid Heart Models. Information and Computation,
Elsevier, 2013.

4 G. Clifford, S. Nemati, and R. Sameni. An Artificial Vector Model for Generating Abnormal
Electrocardiographic Rhythms. Physiological Measurements, 31(5):595–609, May 2010.

5 Z. Jiang, M. Pajic, A. Connolly, S. Dixit, and R. Mangharam. Real-Time Heart model for
implantable cardiac device validation and verification. ECRTS, pp. 239–248. IEEE, 2010.

6 Z. Jiang, M. Pajic, S. Moarref, R. Alur, and R. Mangharam. Modeling and Verification of
a Dual Chamber Implantable Pacemaker. TACAS, pp. 188–203, 2012.

7 Z. Jiang, M. Pajic, and R. Mangharam. Cyber-Physical Modeling of Implantable Cardiac
Medical Devices. Proceedings of the IEEE, 100(1):122–137, 2012.

MCPS’14

140 Automated Verification of Quantitative Properties of Cardiac Pacemaker Software

8 B. Kim, A. Ayoub, O. Sokolsky, I. Lee, P. L. Jones, Y. Zhang, and R. P. Jetley. Safety-
assured development of the GPCA infusion pump software. EMSOFT’11, pp. 155–164.
ACM, 2011.

9 M. Kwiatkowska, G. Norman and D. Parker. PRISM 4.0: Verification of Probabilistic
Real-time Systems CAV’11, pp. 585–591, 2011.

10 K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell, 1997.
11 S. Sankaranarayanan and G. E. Fainekos. Simulating Insulin Infusion Pump Risks by

In-Silico Modeling of the Insulin-Glucose Regulatory System. CMSB, pp. 322–341, 2012.

Potential Advantages of Applying Assurance Case
Modeling to Requirements Engineering for
Interoperable Medical Device Systems∗

Rick Schrenker1, Jeff Plourde1, Diego Alonso1, David Arney1, and
Julian M. Goldman1,2

1 MD PnP Program, Massachusetts General Hospital, Boston, MA, USA
{raschrenker,jplourde1,dalonso,darney}@mgh.harvard.edu

2 Harvard Medical School, Cambridge, MA, USA
jmgoldman@mgh.harvard.edu

Abstract
This poster describes our initial work in applying assurance cases to the requirements engineering
processes necessary in building interoperable medical device systems.

1998 ACM Subject Classification D.2.9 Management, K.6.3 Software Management, K.6.4 Sys-
tem Management

Keywords and phrases Assurance Case, Goal Structured Notation, Requirements Engineering,
Interoperability, Medical Device

Digital Object Identifier 10.4230/OASIcs.MCPS.2014.141

Overview

Habli and others have described the application of assurance case methods to support goal-
oriented requirements engineering [3]. Atwood describes the application of goal-structuring
notation (GSN) to make visible the domain knowledge and assumptions that support the
validity of a specific requirement, noting the value of making this available for subsequent
analysis on a requirement change or reuse across a system family [2].

Among the objectives of the CIMIT MD PnP Program is to develop one or more instances
of systems that, using the same family of systems components and interfaces, satisfies
the functional and non-functional needs of four distinct clinical scenarios [4] according
to the criteria set forth in ASTM F2761-2009, Medical Devices and Medical Systems –
Essential safety requirements for equipment comprising the patient-centric integrated clinical
environment (ICE) – Part 1: General requirements and conceptual model [1].

Our challenges include, on identifying requirements that at the clinical use level appear
to span more than one use case, to assure that when the requirement and its derived
specifications continue to satisfy the high level need throughout decomposition into technical
requirements and specifications. Similarly, on changes to a requirement, the impact of the
change needs to be assessed across the set of clinical scenarios to which it contributes.

Our plan to apply GSN covers the following. We include examples of traceable documen-
tation and requirements decomposition and discussion of all points:

∗ This publication was made possible by grant number 1U01EB012470 from NIH/NIBIB and award
number W81XWH-12-C-0154 from Department of Defense US Army Medical Research and Materiel
Command. Its contents are solely the responsibility of the authors and do not necessarily represent the
official views of the NIH/NIBIB or the US Army or the Department of Defense.

© Rick Schrenker, Jeff Plourde, Diego Alonso, David Arney, and Julian M. Goldman;
licensed under Creative Commons License CC-BY

Medical Cyber Physical Systems – Medical Device Interoperability, Safety, and Security Assurance (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer; pp. 141–142

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.141
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

142 Assurance Case Modeling Applied for Interoperable Medical Device Systems

Documentation of traceability from clinical scenario through validation.
Decomposition of requirements (goals) across key functional and non-functional properties
(sub-goals).
Determination whether sharing of the above with stakeholders spanning the clinical,
technical, and management domains enable clearer communication, e.g., to support
decision making.
Analysis of how well the tools we are evaluating in the MD PnP Program cover the
breadth of requirements posed by the full set of clinical scenarios.
Capture and analysis of the cost of application of GSN to our work.

We are also in the process of implementing a requirements management database system
and are considering mapping between the GSN and database model to identify potential
added value in the combination, e.g. improvement to requirements conflict identification
processes.

References
1 ASTM F2761-09(2013). Medical Devices and Medical Systems - Essential safety require-

ments for equipment comprising the patient-centric integrated clinical environment (ICE)
– Part 1: General requirements and conceptual model. http://www.astm.org/Standards/
F2761.htm.

2 Katrina Attwood, Tim Kelly, and John Mcdermid. The use of satisfaction arguments for
traceability in requirements reuse for system families: Position paper. In University of
Madrid, Madrid Spain, pages 18–21, 2004.

3 Ibrahim Habli, Weihang Wu, Katrina Attwood, and Tim Kelly. Extending argumenta-
tion to goal-oriented requirements engineering. In Proceedings of the 2007 Conference on
Advances in Conceptual Modeling: Foundations and Applications, ER’07, pages 306–316,
Berlin, Heidelberg, 2007. Springer-Verlag.

4 MD PnP Interoperability Program. QMDI clinical scenarios. http://www.mdpnp.org/MD_
PnP_Program___Clinical_S.html, March 2014.

http://www.astm.org/Standards/F2761.htm
http://www.astm.org/Standards/F2761.htm
http://www.mdpnp.org/MD_PnP_Program___Clinical_S.html
http://www.mdpnp.org/MD_PnP_Program___Clinical_S.html

Process-Oriented Analysis for Medical Devices
Vasiliki Sfyrla1, Josep Carmona2, and Pascal Henck3

1 Viseo R&D, 4 Avenue Doyen Louis Weil, 38000 Grenoble France
vsfyrla@objetdirect.com

2 Universitat Politècnica de Catalunya, Calle Jordi Girona, 31, 08034 Barcelona,
Spain
jcarmona@lsi.upc.edu

3 Fresenius VIAL, Le Grand Chemin 38590 Brézins, France
pascal.henck@fresenius-kabi.com

Abstract
Medical Cyber Physical Systems are widely used in modern healthcare environments. Such
systems are considered life-critical due to the severity of consequences that faults may cause.
Effective methods, techniques and tools for modeling and analyzing medical critical systems are
of major importance for ensuring system reliability and patient safety.

This work is looking at issues concerning different types of medical industry needs includ-
ing safety analysis, testing, conformance checking, performance analysis and optimization. We
explore the possibility of addressing these issues by exploiting information recorded in logs gener-
ated by medical devices during execution. Process-oriented analysis of logs is known as process
mining, a novel field that has gained considerable interest in several contexts in the last decade.

Process mining techniques will be applied to an industrial use case provided by Fresenius, a
manufacturer of medical devices, for analyzing process logs generated by an infusion pump.

1998 ACM Subject Classification B.3.3 Performance Analysis and Design Aids, B.5.3 Reliability
and Testing, D.2.2 Design Tools and Techniques, I.2.6 Learning, I.5 Pattern Recognition

Keywords and phrases Process Logs, Process Mining, Discovery, Formal Analysis, Infusion
Pump

Digital Object Identifier 10.4230/OASIcs.MCPS.2014.143

1 Introduction

Medical Cyber physical systems couple tightly the cyber and physical parts to provide
mission-critical services in clinical environments [6]. They can be found embedded in a
wide range of medical devices from small size, including infusion pumps and pacemakers,
to large equipment such as x-rays. Medical devices are widely used in modern healthcare
environments improving effectiveness of the patient care. Nevertheless, medical devices
enormous complexity may affect the quality and the reliability of the overall system, putting
patients at risk.

Much consideration is being given to rigorous system design and analysis methods for
improving the trustworthiness of medical devices and verifying safety properties. Ensuring
safety and reliability has been studied for various medical devices including the pacemaker [5]
and the PCA Infusion Pump [11]. In the latter case, model-driven engineering is proposed for
establishing a safety assured implementation. The generic PCA reference model is translated
from Simulink to Timed Automata and its safety requirements described in temporal logic
formulae. Using the UPPAAL tool [4], requirements are verified for satisfiability.

© Vasiliki Sfyrla, Josep Carmona, and Pascal Henck;
licensed under Creative Commons License CC-BY

Medical Cyber Physical Systems – Medical Device Interoperability, Safety, and Security Assurance (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer; pp. 143–146

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.143
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

144 Process-Oriented Analysis for Medical Devices

In the medical devices industry, design tools such as Matlab/Simulink and Unified
Modeling Language(UML) are used for modeling the embedded system. However, in spite of
several contributions on defining semi-formal semantics for those specifications, they are still
not considered formal languages. Formal analysis need to be conducted on unambiguous
specification, thus transforming the underlying specification into a formal model is imperative.
Depending on the complexity of the system, model transformation can be a time consuming,
tedious and error-prone task.

This work proposes an alternative approach of analyzing and ensuring safety properties
of medical devices. Based on the process logs generated from the execution of a device,
it is possible to extract process related information e.g. process model or reconstruct the
system model in a formal representation. This methodology also known as process mining [8],
offers a wide range of analysis that can be performed on the generated model. It does not
only provide the means to increase safety and reliability of a system, it also opens up new
possibilities of performance analysis and optimization.

These aposteriori formal reasoning can complement existing analysis performed at the
model at design level such as model checking. Extracting a formal model from generated
logs, for already designed and implemented systems, may accelerate the desired analysis and
be more time efficient.

The remainder of this paper, presents the basic idea of process mining and the benefits
of applying process mining techniques for analyzing medical devices.

2 Process Mining

Process Mining [1] is a model-driven approach aiming at constructing process models based
on available process logs stored by information systems. A process model is a formal
representation of a process. It may represent several process information, like activity
executions, actors, roles, resources, time, data, among others. Starting from a process log
that represents the footprints left by executing a process, process mining techniques may
derive a formal process model that represents the underlying process. For instance, a process
model may focus on the control-flow perspective, i.e., the order of execution of activities
within a process execution. Process models can be described in different process modeling
languages such as BPMN, Petri Nets or Event Driven Process Chain.

A fundamental goal of process mining is the discovery and extraction of the model that
describes the process underlying in the process log. The reconstruction of the model is
the aim itself but process mining it is not limited to that. Conformance checking can be
performed to compare the derived model with the process log and monitor possible deviations.
Notice that while in discovery the only algorithm’s input is the log, in conformance two
inputs are considered: the log and the process model, the latter can be either obtained by
a discovery technique or manually designed from an expert. Analysis might aim also at
additional objectives including optimization of the process, testing for satisfiability of safety
properties, performance analysis etc.

In contrast to data mining, process mining techniques focus on the process perspective,
and hence the causal relations between different events of a process are identified. Process
mining is applicable to systems (e.g. ERP systems or embedded systems) that record their
behavior and produce process logs. Current research of process mining in the health-care
domain is in early stages. In [9], process mining was used to obtain insights related to
careflows for gynecological oncology patients. In [2] datasets of stroke patients have been
analyzed to demonstrate how to construct models for a whole data set or for only aspects

V. Sfyrla, J. Carmona, and P. Henck 145

Trace ID Activity

0 init
trans(N)
turn
mMStart
stop
Dconnect
mMStop
trans(I)
trans(F)

1 init
trans(N)
turn
trans(I)
trans(F)

2 init
trans(N)
trans(I)
trans(F)

... ...

(a)

Figure 1 (a) Generated traces from an Infusion Pump, (b) Discovered Model, (c) Verifying
property.

that are of interest for identifying for instance differences in treatment strategies between
different hospitals. Finally, the work [3] presents a framework to support process mining in
critical care that enables improvement for clinical guideline.

However, process mining in health care has not yet been considered within the context
of medical devices and towards the analysis of embedded software. In this context, process
mining techniques can be exploited for performing formal analysis and focusing on other
aspects such as performance and optimization.

To give an impression of how process mining could be applied to the analysis of medical
software, an example is illustrated in Figure 1. Figure 1(a) shows hypothetical logs generated
by the execution of an infusion pump software. Several activities are performed at each trace
0, 1 and 2. The Petri Net in Figure 1(b) is discovered using the ILP algorithm of ProM
tool [12]. ProM is a platform independent open source framework which supports a wide
variety of data and process mining techniques in form of plug-ins. Using the LTL checker
plug-in, the property always_when_turn_then_eventually_stop is verified. Figure 1(c)
indicates the trace that violates the given property. This is due to the fact that action turn
is not followed by stop.

MCPS’14

146 Process-Oriented Analysis for Medical Devices

3 Conclusions

We presented Process Mining, an approach for performing analysis using event logs generated
by medical devices. Using process mining techniques, we can exploit the information recorded
in the event logs.

We explore the possibility of conducting log-based verification [10] in order to prove
satisfiability of safety properties. Applying log-based verification to already designed systems
could be a faster way than model checking to prove properties. Manufacturers, such as
Fresenius [7], could be particularly interested by such an approach. The main reason is that
analysis can be performed without the effort of transforming existing models into the formal
description compatible with a model checker.

However, there are many challenges associated with the approach of log-based verification.
What are the interesting information to log and how to distinguish between good and bad
events taking into account that resources in medical systems are limited. How many scenarios
are needed to create logs and to what extent these logs cover the integrity of the model.

Future plans include working on the analysis of real logs generated by the execution of
the Fresenius infusion pump. This work aims at extracting results that can complement the
analysis of the model at design level, currently under investigation [13].

Acknowledgements. The authors would like to thank prof. I. Lee, prof. O. Sokolsky,
prof. K.K. Venkatasubramanian and prof. E. Vasserman for their invaluable insights.

References
1 W. van der Aalst. Process Mining, Discovery, Conformance and Enhancement of Business

Processes. Springer 2011
2 R. Mans, H. Schonenberg, G. Leonardi, S. Panzarasa, A. Cavallini, S. Quaglini, and W.

van der Aalst. Process mining techniques: an application to stroke care..
3 C. McGregor, C. Catley, and A. James. A Process Mining Driven Framework for Clinical

Guideline Improvement in Critical Care. 2011
4 The UPPAAL tool: http://www.uppaal.org/
5 C. Li, A. Raghunathan, and N.K. Jha, Improving the Trustworthiness of Medical Device

Software with Formal Verification Methods. Embedded Systems Letters, IEEE 2013.
6 A. Banerjee, K.K. Venkatasubramanian, T. Mukherjee, et al. Ensuring Safety, Security

and Sustainability of Mission-Critical Cyber Physical Systems. 2011
7 Fresenius Healthcare Company: http://www.fresenius-kabi.com/
8 Process Mining Manifesto: http://www.win.tue.nl/ieeetfpm/
9 R. S. Mans et al. Application of process mining in healthcare–a case study in a dutch

hospital. Biomedical Engineering Systems and Technologies. Springer 2009.
10 W.M.P. Aalst, H.T. Beer, and B. F. Dongen. Process Mining and Verification of Properties:

An Approach Based on Temporal Logic. On the Move to Meaningful Internet Systems 2005:
CoopIS, DOA, and ODBASE. Springer

11 B. Kim, A. Ayoub, O. Sokolsky, I. Lee, P. Jones, Y. Zhang, and R. Jetley. The safety-assured
development of the GPCA infusion pump. 2011

12 The ProM framework.http://www.promtools.org/prom6/
13 V. Sfyrla, S. Marcoux, and C. Vittoria Formal Analysis of Fresenius Infusion Pump (FIP).

2013

http://www.uppaal.org/
http://www.fresenius-kabi.com/
http://www.win.tue.nl/ieeetfpm/
http://www.promtools.org/prom6/

	p00-frontmatter
	Preface
	Workshop Organization

	p01-masci
	Introduction
	Background: the Generic Infusion Pump model
	GIP User Interface (GIP-UI)
	Validation of the GIP-UI architecture
	Hazard analysis based on the GIP-UI
	Scope of the analysis

	Sources of information
	Hazard analysis results
	Potential design errors in Output Status Manager
	Potential design errors in Renderer
	Potential design errors in Interaction Logic
	Potential design errors in Non-standard Input Interpreter

	Discussion

	Related work
	Conclusions

	p02-gregorczyk
	Introduction
	Related Work
	SOA for Medical Devices
	Conceptual Design
	MDPWS
	Liveliness
	Streaming
	Safety and Security
	Security

	BICEPS
	MIM
	Service interface

	Implementation
	Evaluation
	Conclusion and Future Work

	p03-ortiz-leon
	Introduction
	Windkessel models (WK)
	Lumped-parameter model of A. Ferreira
	Windkessel model coupled to left ventricle (WK+V)
	Systemic and pulmonary circulation model (2A2V)

	Analysis
	Conclusions

	p04-ringwelski
	Introduction
	Related Work
	Scenario
	Failures
	Expected Failure Rates

	Counter-measures
	Detecting Failures
	Calculating the parameters

	Defeating Failures
	Expected Improvements

	Conclusion and Future Work

	p05-ghorbani
	Introduction
	Control related challenges and constraints
	Control algorithms for BG level regulation
	Proportional-Integral-Derivative (PID) controller
	Model Predictive Controller
	Assessment of Control performance

	Conclusions and future work

	p06-ahn
	Introduction
	Related Work
	System Design
	Medical CPS Device
	Proposed Middleware between an ICE Supervisor and ICE applications

	Implementation
	Performance Evaluation
	Conclusion and Future Work

	p07-skalistis
	Introduction
	Background
	BIP Framework
	Modal Flow Graphs and Well-triggered Components
	QoS

	Reconfigurable Multimedia Systems
	Case Study

	Components framework
	Processing Component
	N-read Buffer Component
	N-write Accumulator Component
	Mode-selector Component
	Composition of components

	QoS by Topology Reconfiguration
	Conclusion & Future Work

	p08-berg
	Introduction
	Conceptual model
	Language constructs
	Process
	Resource
	System
	Scenario
	Measure
	Study

	Tool and solution chain
	Modelling
	Execution
	Analysis

	Conclusion and future work

	p09-feng
	Introduction
	Background: PCA Closed-Loop System
	Safety Argument
	Conclusions

	p10-ma
	Introduction
	Related Work
	Timed and Hybrid Automata
	On-line Model Checking
	The On-line Model Checking Approach
	Implementing On-line Model Checking

	A Medical Case Study
	Laser Tracheotomy
	System Modeling
	Patient
	Ventilator
	Laser Scalpel
	Supervisor
	Initialization

	Experiments and Evaluation
	Conclusion and Future Work

	p11-habli
	Introduction
	SOA Safety Assessment
	Service Hazard Analysis (SHA)
	Service Failure Analysis (SFA)
	Exploratory Case Study
	SOA Safety Cases
	Conclusions

	p12-arney
	Introduction
	Implementations of ASTM F2761
	Design Pillars for Successful Interoperability
	OpenICE and Clinical Requirements
	Conclusion

	p13-kuehn
	Introduction
	Today's Situation of Authorisation
	Futures Authorization
	Approaches for Risk Analysis and Measures
	Discussion

	p14-kwiatkowska
	Introduction
	Quantitative Verification

	p15-schrenker
	p16-sfyrla
	Introduction
	Process Mining
	Conclusions

