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Abstract
This work deals with the problem of designing an optimal structure of a public service system.
The problem can be often formulated as a weighted p-median problem. Real instances of the
problem are characterized by big numbers of possible service center locations, which can take the
value of several hundreds or thousands. The optimal solution can be obtained by the universal
IP solvers only for smaller instances of the problem. The universal IP solvers are very time-
consuming and often fail when solving a large instance. Our approach to the problem is based
on the Erlenkotter procedure for solving of the uncapacitated facility location problem and on
the Lagrangean relaxation of the constraint which limits number of the located center. The
suggested approach finds the optimal solution in most of the studied instances. The quality
and the feasibility of the resulting solutions of the suggested approach depends on the setting
of the Lagrangean multiplier. A suitable value of the multiplier can be obtained by a bisection
algorithm. The resulting multiplier cannot guarantee an optimal solution, but provides a near-
to-optimal solution and a lower bound. If our approach does not obtain the optimal solution,
then a heuristic improves the near-to-optimal solution. The resulting solution of our approach
and the optimal solution obtained by the universal IP solver XPRESS-IVE are compared in the
computational time and the quality of solutions.
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1 Introduction

The p-median location problem has became one of the most well-known and studied problems
in the field of facility location. Solving the p-median location problem in the public service
system design is the NP-hard problem [6, 7]. The public service system structure is formed
by deployment of limited number of the service centers and the associated objective is to
minimize costs. The family of public service systems includes medical emergency system [11],
fire-brigade deployment, public administration system design and many others. Mathematical
models of the public service system design problem are often related to the p-median problem,
where the p-median problem is formulated as a task of determination of at most p network
nodes as facility locations. In real problems, the number of serviced customers takes the value
of several thousands and the number of the possible facility locations can take this value as
well. The number of possible service center locations impacts the computational time. To
obtain good decision on the facility location in any serviced area, a mathematical model of
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the problem can be formulated and some of the mathematical programming methods can
be applied to find the optimal solution. Reese summarized the exact solution methods for
the p-median problem in [4]. Mladenovic summarized the heuristic methods in [8]. Avella,
Sassano and Vasil´ev presented a branch-and-price-and-cut algorithm to solve large-scale
instances of the p-median problem in [9]. Balinski provided an early integer programming
formulation of the plant location problem that has historically been adapted to the p-median
problem in [10]. Erlenkotter designed the approach for solving of the location problem
in [1]. Erlenkotter approach is based on the theory of duality and the branch and bound
algorithm. The suggested approach realizes an algorithm DualLoc. Körkel continued and
improved the Erlenkotter approach and designed an algorithm PDLoc in [2]. Janáček
and Buzna [3] improved the Erlenkotter and Körkel approach and designed an algorithm
BBDual for solving the uncapacitated facility location problem. BBDual was extended by
the Lagrangean relaxation of the constraint which limits number of the located center. Usage
of the Lagrangean relaxation allowed to solve the p-median problem with the Erlenkotter
approach. The Algorithm pMBBDual [5] was designed for solving the p-median problem
with the Erlenkotter approach and the Lagrangean relaxation. If the algorithm pMBBDual
does not provide the optimal solution, then we would like to improve the near-to-optimal
solution by some heuristic.

2 Problem formulation

The p-median location problem finds the optimal location of exactly p facilities, so that
the sum of the distances between customers and their closest facilities, measured along the
shortest paths, is minimized. The location problem consists of a placing facility in some sites
of a given finite set I such as hospitals, police stations, warehouses and the customers from a
given finite set J such as people, patients in hospital or villages and cities. The costs of the
optimal deployment of facilities in the specific network constitute the fixed charges fi and
the costs cij . The fixed charges fi introduce costs for the facility location at the location
i. The costs cij introduce costs for the demand satisfaction of a j-th customer from the
location i. The formulated p-median location problem can be modeled using of the following
notation. Let the decision of the service center location at the place i ∈ I be modeled by a
zero-one variable yi ∈ {0, 1} which takes the value of 1, if the center is located at i, otherwise
it takes the value of 0. In addition, the variables zij ∈ {0, 1} for each i ∈ I and j ∈ J are
introduced to assign a customer j to a possible location i by the value of one. The maximal
number of the facility locations introduces a constant p. The p-median location model can
be formulated as follows:

Minimize
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijzij (1)

Subject to:
∑
i∈I

zij = 1 ∀i ∈ I (2)

zij ≤ yi ∀i ∈ I, ∀j ∈ J (3)∑
i∈I

yi ≤ p (4)

yi ∈ {0, 1} ∀i ∈ I (5)
zij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (6)
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The objective function (1) minimizes the total costs of the p-median location problem which
consists of the fixed charges fi and the costs cij . The constraints (2) ensure that each
customer is assigned to the exactly one possible service center location. Binding constraints
(3) enable to assign a customer to a possible location i, only if the service center is located
at this location. The constraint (4) bounds the number of the located service centers. The
obligatory conditions in the mathematical model are (5) and (6). This location problem
without the condition (4) gives the uncapacitated facility location problem (UFLP). If the
location problem contains the condition (4) and the fixed charges fi is equal zero for each
i ∈ I then it becomes p-median problem. Our p-median location problem is the combination
of the UFLP and the p-median problem.

3 Solution method

Algorithm pMBBDual [5] provides us a possibility of solving the p-median problem with an
iterative approach. The main advantage of the algorithm pMBBDual is the transformation
of the p-median location problem to the UFLP. The mathematical model (1–6) using the
Lagrangean relaxation of the constraint (4) which limits number of located centers is modified
as follows:

Minimize
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijzij + lg(
∑
i∈I

yi − p) (7)

Subject to:
∑
i∈I

zij = 1 ∀i ∈ I (8)

zij ≤ yi ∀i ∈ I, ∀j ∈ J (9)
yi ∈ {0, 1} ∀i ∈ I (10)

zij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (11)

The solution of the mathematical model (7–11) represents one iteration of the algorithm
pMBBDual. The quality and the feasibility of the solution of the suggested approach depends
on a suitable setting of the Lagrangean multiplier lg. The suitable value of the multiplier
can be obtained by a bisection algorithm. The comparison between XPRESS-IVE and the
pMBBDual showed that the algorithm pMBBDual does not provide the optimal solution for
the location problem all the time. We can obtain the optimal solution of the model (1–6)
by repeating the solution of the model (7–11) with a change of the Lagrange multiplier lg

until the last member of the objective function (7) is equal to zero. If a last member of the
objective function (7) is non-equal to zero then we obtain some solution. The value of the
obtained solution provides the lower bound (12) of the problem (1–6) which is written in a
relation:

OFRP =
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijzij + lg(
∑
i∈I

yi − p) (12)

The relation (13) provides the value of the obtained feasible solution of the problem (1–6):

OFNP =
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijzij (13)

We obtain some feasible solution, but a value of the optimal solution is between the values of
the non-relaxation problem solving OFNP (13) and the LP-relaxation solving OFRP (12).
If our approach does not obtain the optimal solution then we improve the near-to-optimal
solution by the heuristic, which will be presented in the next chapter.
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3.1 An exchange 1–1 heuristic with the reallocation of locations
An exchange 1–1 heuristic with the reallocation of locations works on the assumption that
we have the best feasible and infeasible solution. The best feasible solution is the solution
where number of locations is smaller and the nearest to p locations. The solution obtained
by the algorithm pMBBDual is the best feasible solution. The best infeasible solution is the
solution where number of locations is bigger and the nearest to p locations. The exchange
1–1 heuristic with the reallocation of locations has 3 phases:

Phase 1 – A reallocation of locations
A phase of the reallocation consists in creating of sets IS and ID from the locations in
the best feasible and infeasible solution. The set IS consists of the same locations in both
solutions and the set ID consists of the different locations in both solutions.

Phase 2 – An addition of locations to p

A phase of the addition consists in a separation of the set ID to the two subsets IDI and
IDN . The locations from IDI are included in the set IS and they create initial solution which
will be improved. The set IDI consists of the included locations. The set IDN consists of the
locations which are not included in the solution.

Phase 3 – A searching of the suitable exchange and its realization
A phase 3 searches the combination of locations which improves the actual solution. We
exchange only one location from the set IDI and the location from the set IDN . If we obtain
an exchange which improve the actual solution then we realize the exchange of the locations
and update sets of IDI and IDN . The improving exchange can be obtained by the strategy
first admissible or best admissible.

The exchange 1–1 heuristic ends when we do not find an improving exchange.

4 Numerical experiments

All numerical experiments mentioned in this paper were performed on a PC equipped with
Intel(R) Core(TM) i7 Q720 1.6 GHz processor, 8 GB RAM. The tested benchmarks consist of
the Slovak cities and villages in Slovak road network. The benchmarks in the Table 1 create
the cost matrix consisted of only a distance between the places. The benchmarks in the
Table 2 create the cost matrix consisted of a distance between the sites and the demands of
the villages or the cities. We compare the solution obtained by our approach and the optimal
solution obtained by the universal IP solver XPRESS-IVE in the computational time and
the quality of solutions. The quality of solutions indicates the value of the objective function
OF and the GAPES and the GAPLB. The GAPES represents the difference between the
values of the best found solution OFV1 and the exact OFES one expressed in the percentage
of the exact solution OFES as follows:

GAPES = OFV1 −OFES
OFES

∗ 100 (14)

The GAPLB corresponds to the difference between the value of the best found solution OFV1
and the lower bound OFRP expressed in the percentage of the lower bound OFRP as follows:

GAPLB = OFV1 −OFRP
OFRP

∗ 100 (15)
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4.1 Experiments 1
The experiments in the Table 1 was realized on the benchmarks from the set of all 315 places
in the district of Žilina (Figure 1).

In the Table 1 a column p gives the maximal number of the facility locations, columns t(s)
give the computational time in seconds, columns NoF give number of the facility locations
for the individual solution methods. A column OFES gives the value of the optimal solution,
a column OFNP gives the value of solving the non-relaxed problem (1–6), a column OFRP
gives the value of the solution LP-relaxation – the lower bound of the optimal solution,
a column OFV1 gives the value of the final solution of the exchange 1–1 heuristic with
the reallocation of locations. A column GAPEX gives the representation in the percentage
obtained by the relation (14) and a column GAPLB gives the approximate representation in
the percentage obtained by the relation (15). The time t(s) in V1 gives the total time of the
algorithm pMBBDual and the improving heuristic.

The experiments in the Table 1 shows that the algorithm pMBBDual gets better time in
compared to the universal solver XPRESS-IVE, but the obtained solution by the algorithm
pMBBDual can be optimal or near-to optimal. The obtained near-to optimal solution can
be improved using the improving heuristic. Using of the improving heuristic to the obtained
solution shows us the possibility of obtaining the optimal solution or better near-to-optimal
solution at the expense of increasing the computational time. The computational time of
the algorithm pMBBDual with the improving heuristic is better than the time obtained by
the universal solver XPRESS-IVE. The GAPES shows that the difference in percentage is
not worse than 1%. Based on the experiments in the Table 1 the improving heuristic can
provide the very near-to-optimal solution. The universal IP solvers are limited for solving
the large problems. If we cannot obtain the value of the optimal solution with XPRESS-IVE,
we use the lower bound OFRP for the comparison of solutions. The GAPLB is approximate
representation in the percentage because the value of optimal solution do not need to equal
the lower bound. The distortion is demonstrated in the Table 1 for the value p equals 210,
where GAPLB is 10,94% and GAPES is only 0,47%.

4.2 Experiments 2
Experiments in the Table 2 was realized on the benchmarks from the set of the customers
consisting of all cities and villages and the set of the candidates consisting of the 1000
biggest villages and cities in Slovak Republic (Figure 2). In the Figure 2 red points give the
candidates and all points give customers.

In the Table 2 a column p gives the maximal number of the facility locations, columns
t(s) give the computational time for the solution methods in seconds, a column NoF gives
number of the facility locations obtained by the algorithm pMBBDual without the heuristic.
A column OFNP gives the value of solving the non-relaxation problem (1–6), a column
OFRP gives the value of the solution of the LP-relaxation – the lower bound of the optimal
solution, a column OFV1 gives the value of the final solution of the exchange 1–1 heuristic
with the reallocation of locations. A column GAPLB gives the approximate representation
in the percentage obtained by the relation (15). The time t(s) in V1 gives total time of the
algorithm pMBBDual and the improving heuristic.

The experiments in the Table 2 shows that we obtain the optimal solution by the algorithm
pMBBDual with the improving heuristic for all selected value of p. The value of the optimal
solution is equal to the lower bound of the solution. If we compare the computational times
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Figure 1 Deployment of cities and villages in district of ŽIlina.

Table 1 Comparison of solutions XPRESS-IVE and pMBBDual without and with heuristic.

XPRESS-IVE pMBBDUal V1
p t(s) OFES NoF t(s) OFNP NoF OFRP t(s) OFV1 GAPES GAPLB

15 14,13 2803 15 2,52 2803 15 2803 – – – –
30 18,74 1832 30 1,78 1832 30 1832 – – – –
45 13,65 1400 45 2,15 1420 44 1400 2,60 1401 0,07 0,07
60 16,92 1138 60 2,65 1183 57 1138 3,14 1138 0,00 0,00
75 13,6 944 75 2,11 977 72 944 2,20 945 0,11 0,11
90 13,53 801 90 1,88 828 87 801 1,91 802 0,12 0,12

105 13,69 686 105 1,64 707 102 686 2,70 690 0,58 0,58
120 13,69 595 120 2,01 637 113 595 4,31 598 0,50 0,50
135 13,5 516 135 1,88 637 113 505 2,82 517 0,19 2,38
150 13,59 441 150 1,85 506 137 441 4,26 444 0,68 0,68
165 13,72 372 165 1,98 506 137 366 4,04 374 0,54 2,19
180 14,12 312 180 1,85 340 173 312 13,32 313 0,32 0,32
195 14,45 257 195 1,88 340 173 252 10,17 257 0,00 1,98
210 13,96 212 210 1,85 340 173 192 5,86 213 0,47 10,94
225 14,4 167 225 1,88 206 212 167 3,00 167 0,00 0,00
240 14,2 123 240 1,61 206 212 122 3,04 123 0,00 0,82
255 14,29 93 255 1,78 107 248 93 2,00 93 0,00 0,00
270 13,77 63 270 1,74 107 248 63 1,98 63 0,00 0,00
285 13,71 33 285 1,58 107 248 33 2,01 33 0,00 0,00
300 13,74 14 300 1,58 23 291 14 1,85 14 0,00 0,00
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Figure 2 Deployment of cities and villages in Slovak Republic.

Table 2 Results of algorithm pMBBDual without and with the improving heuristic.

pMBBDUal V1
p t(s) OFNP NoF OFRP t(s) OFV1 GAPLB( %)
50 100,8 535448 50 535448 – – –

100 35,4 321869 100 321869 – – –
150 65,7 248373 150 248373 – – –
200 113,0 207011 200 207011 – – –
250 104,5 178645 250 178645 – – –
300 132,4 160076 297 159044 143,3 159044 0,00
350 68,2 144076 350 144076 – – –
400 68,4 132427 400 132427 – – –
450 54,9 123775 449 123615 65,3 123615 0,00
500 71,9 116650 498 116388 72,6 116388 0,00
550 52,3 110558 549 110450 52,7 110450 0,00
600 46,0 105418 600 105418 – – –
650 46,1 101209 650 101209 – – –
700 41,0 98229 694 97869 41,9 97869 0,00
750 38,6 95308 747 95158 39,4 95158 0,00
800 39,0 93000 796 92832 40,3 92832 0,00
850 38,7 90976 848 90906 40,6 90906 0,00
900 39,1 89648 889 89340 42,1 89340 0,00
950 39,4 88264 945 88164 41,3 88164 0,00

1000 0,3 87427 1000 87427 – – –
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of the algorithm pMBBDual without and with the improving heuristic then the time of the
realization of the improving heuristic is a few seconds.

5 Conclusions

Solving the p-median location problem in the public service system design is NP-hard problem.
The optimal solution of the problem can be obtained by the universal IP solvers only for
smaller instances of the problem. The universal IP solvers are very time-consuming and
often fail when a large instance is solved. Our approach to the problem was based on the
Erlenkotter procedure for solving of the uncapacitated facility location problem and on the
Lagrangean relaxation of the constraint which limits number of the located center. We
designed algorithm pMBBDual which does not provide optimal solution for location problem
every time. So we tried to improve the obtained near-to-optimal solution with some heuristic.
We designed the exchange 1–1 heuristic with the reallocation of locations. The resulting
solution of our approach with the exchange heuristic and the optimal solution obtained by the
universal IP solver XPRESS-IVE were compared in the computational time and the quality
of solutions. Based on the numerical experiments we review that the solution obtained by
the algorithm pMBBDual is possible to improve. We cannot obtain the optimal solution
from near-to-optimal solution with the suggested improving heuristic every time. But the
improving heuristic can provide the very near-to-optimal solution in many instances of the
solved problem.

We improved the obtained solution by one heuristic, but in the future we would like to
design the other improving heuristics and choose the best heuristic to our approach. We
would like to generalize the Erlenkotter approach, design an algorithm with the Erlenkotter
approach for solving the p-median location problem which is not iterative and compare
algorithm pMBBDual with the improving heuristic, the algorithm with Erlenkotter approach
which is not iterative and the Z-Erlange and branch algorithm [12] in the computational
time and the quality of the obtained solution for the large-scale problems.
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