
Contention in Multicore Hardware Shared
Resources: Understanding of the State of the Art
Gabriel Fernandez1,2, Jaume Abella2, Eduardo Quiñones2,
Christine Rochange4, Tullio Vardanega5, and
Francisco J. Cazorla2,3

1 Universitat Politècnica de Catalunya
2 Barcelona Supercomputing Center
3 Spanish National Research Council (IIIA-CSIC)
4 IRIT, University of Toulouse
5 University of Padova

Abstract
The real-time systems community has over the years devoted considerable attention to the impact
on execution timing that arises from contention on access to hardware shared resources. The
relevance of this problem has been accentuated with the arrival of multicore processors. From the
state of the art on the subject, there appears to be considerable diversity in the understanding of
the problem and in the “approach” to solve it. This sparseness makes it difficult for any reader
to form a coherent picture of the problem and solution space. This paper draws a tentative
taxonomy in which each known approach to the problem can be categorised based on its specific
goals and assumptions.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Contention, Multicores, WCET Analysis

Digital Object Identifier 10.4230/OASIcs.WCET.2014.31

1 Introduction

At a conceptual level, the intent of timing analysis is to provide, at low-enough cost, a
WCET bound for programs running on a given processor. Ideally, the transition to multicore
processors should allow industrial users to achieve higher levels of guaranteed utilization,
together with attractive reduction in energy, design complexity, and procurement costs.
Unfortunately however, the architecture of multicore processors poses hard challenges on
(worst-case) timing analysis. The interference effects arising from contention on access to
processor-level resources in fact need far greater attention than in the singlecore case, as
much greater is the arbitration delay and state perturbation that resource sharing may cause,
and consequently much greater is the “padding” factor that needs to be captured in the
computed bounds to compensate for the relevant effects.

From a bottom-up perspective of the system architecture, the utilization that individual
tasks make of many of those shared resources at the processor level is too low to justify a
dedicated use of them. Efficient use of those resources, which is needed for decent average
performance, requires sharing. However, resource sharing shatters tightness in timing analysis
and endangers the trustworthiness of the bounds computed with it.

Different approaches (angles) have been considered to address the timing effects of
contention for shared resources. However, there is evident lack of common understanding of
the problem space, in terms of processor features, and of the assumptions made to solve it.

© Gabriel Fernandez, Jaume Abella, Eduardo Quiñones, Christine Rochange, Tullio Vardanega, and
Francisco J. Cazorla;
licensed under Creative Commons License CC-BY

14th International Workshop on Worst-Case Execution Time Analysis (WCET 2014).
Editor: Heiko Falk; pp. 31–42

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2014.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


32 Contention in Multicore Hardware Shared Resources

Contribution. This paper aims to contribute to the community understanding of how
bounds can be computed for the execution time of software programs running on processors
with shared hardware resources. Special attention is given to capturing the assumptions
made by each considered technique, as a way to gage the applicability of its results. The
authors’ intent is to capture the principal angles of attack to the problem, as they emerge
from the state of the art, flag-shipped by specifically representative strands of work, without
necessarily achieving exhaustive coverage of the literature. In the authors’ opinion, whereas
the number of works on multicore resource contention is vast and growing, the community
lacks a common understanding of the big picture, which would be needed to determine which
new techniques are needed to best address the problem from the perspective of benefiting
application.

2 A tentative taxonomy of state-of-the-art techniques to analyse the
timing impact of resource contention

Under the umbrella term of resource contention, we capture the various forms of timing inter-
ference that software programs suffer owing to access to shared hardware resources. Notably,
our analysis does not cover the contention on access to software resources. Furthermore,
contentions arising from parallel execution of a software program fall outside of our analysis
and are recognized in Section 4 as an important emerging ramification of the problem.

The challenge of contention in multicore processors has been addressed with various
approaches. This paper classifies them in four broad categories, dependent on where they
seem to direct their focus: (1) on system considerations, which address the contention
problem top down, from the software perspective; (2) on WCET considerations, which take
the opposite view, studying how contention phenomena affect the timing behaviour of the
software; (3) on architecture considerations, which devise processor features and arbitration
policies that help achieve composable timing behaviour; and on (4) Commercial Off-The-Shelf
(COTS) considerations, which propose processor-specific ways to deal with processor-specific
contention and arbitration features. We discuss the approaches in each category in isolation
and we break them down into subgroups where appropriate.

2.1 System-centric techniques
System-centric techniques take a top-down approach to the problem. Those techniques take
an off-chip, hence coarse-grained, perspective. Off-chip resources have longer latency and
also a higher degree of visibility from the software standpoint than on-chip resources. For
instance, at software level one can easily tell where a set of addresses is mapped to memory,
but it is (much) harder to determine which data item is (or is not) in cache at a given time.
In fact, the cache impact has characteristics that can be captured, from different angles
and with different precision, with techniques that we classify in different categories of our
taxonomy (system-centric and WCET-centric). Besides this cross-boundary overlap, the
techniques in this category predominantly focus on off-chip resources.

We single out three angles worthy of specific discussion: timing analysis frameworks;
access scheduling and allocation; and works on COTS architectures.

2.1.1 Timing analysis frameworks
In general, these techniques assume that on-chip shared resources (e.g. core-to-cache bus,
caches, etc) are replicated or partitioned across cores, so that software programs allocated



G. Fernandez, J. Abella, E. Quiñones, C. Rochange, T. Vardanega, and F. J. Cazorla 33

to a core suffer no contention on access to on-chip resources. These techniques also assume
that analysis frameworks model off-chip shared resources in isolation and provide worst-case
access timing bounds for them. The impact of contention is only considered for the off-chip
resources and it is captured compositionally1, when the WCET of the software program,
determined assuming no contention, is increased by delay factors that consider the sources of
off-chip contention in the presence of co-runners.

The shared resources considered in this class of approaches are assumed to process one
request at a time. It is also assumed that the corresponding services cannot be pre-empted
(or split or segmented). It is further assumed that the requests are synchronous so that the
requesting task is stalled while the access request is served. In reality, some requests are
asynchronous not blocking the calling task execution. The analysis focuses on individual tasks,
whose program units are logically divided into blocks for which maximum and minimum
access bounds and execution time bounds are derived.

For approaches in this class, the access to the shared resource is assumed to be arbitrated
by either a TDMA bus [9] or a dynamic arbitration bus [29] or else an adaptive bus arbiter [10].
For TDMA buses, focus is on determining the worst-case alignment of the requests in the
TDMA schedule. As the bus schedule is static, co-running tasks do not affect one another’s
execution time, which makes their execution time composable with respect to the bus. The
fact that service is assumed run-to-completion and that requests do not overlap simplifies
the problem.

For dynamic arbiters, the workload that a task places on the shared resource affects the
access time of the co-running tasks, which breaks time composability. This type of arbiters
has generated a research line of their own. Several authors [4, 29] propose how to derive
bounds for the number of accesses per task in a given period of time. The timing analysis for
an individual task therefore depends on the request workload generated by the co-runners in
that time duration. Interestingly, while the number of accesses that a task generates to the
resource can be considered independent of the co-runners as long as caches are partitioned,
the task’s frequency of access depends on how often the co-runners delay the task’s requests.
The cited models capture that dependence.

Adaptive arbiters (as in, e.g., FlexRay) exhibit a window with per-requester slot scheduling
combined with a window in which requests are dynamically arbitrated; this trait makes them
show characteristics that we have seen above as distinctive for static and dynamic arbiters.

The authors of [30] provide a useful survey of how time-deterministic approaches to bus
arbitration and scheduling for multicore processors can be captured, compositionally, by
timing analysis techniques. The cited work also presents benchmark-based empirical evidence
of the degradation that TDMA arbitration causes to average-case performance in comparison
to other techniques with acceptable characteristics in terms of time determinism.

2.1.2 Task scheduling and allocation

The state-of-the-art approaches to multicore scheduling and schedulability analysis that
match the techniques which fall in this category can be grouped in two sets: those that
ignore contention issues at their level and leave it to WCET analysis; and those that consider

1 We use the term compositional to signify that some property of an individual part of the system can
only be determined on (assumed) knowledge of the constituents of the system. This is in contrast with
the term composable, which regards those properties of an individual part that can be determined
considering that part in isolation and hold true on composition into the system [28].

WCET 2014



34 Contention in Multicore Hardware Shared Resources

it as a factor of influence to task allocation, which is adjusted to attain increased schedulable
utilization.

There essentially exist three classes of scheduling algorithms, which differ in the way
they assign tasks to cores [5]. Partitioned and global scheduling fall on the respective
extremes of the spectrum: the former statically maps tasks to cores, so that a task can only
be scheduled on the core it has been assigned to; the latter allows tasks to migrate jobs
from one core to another and does not leave any core idle if there is some work to be done
(work conserving), at the expense of possibly costly task (job) migrations. The former risks
considerable under-utilization of the processing resources, especially for tasks with medium
to high loads. The middle of the spectrum is occupied by clustered or semi-partitioned
algorithms, which – with various techniques and for different goals – only allow or cause
statically-set groups of tasks to migrate within statically or dynamically determined subsets
of cores.

Contention oblivious. The principal works on scheduling algorithms and associated schedulab-
ility analysis for multicore processors assume that the WCET of all tasks is given in input.
Thus, they assume that the WCET bounds may be determined before decisions are made on
task mapping to cores and on scheduling at run time. This is tantamount to postulating
that the WCET bounds are composable, that is to say, free from variations determined by
the presence of contenders in the system. Ironically, the only plausible way in which WCET
bounds can actually be made to be composable for use in schedulability analysis for multicore
processors is by increasing them compositionally, by a factor determined by given patterns of
conflicts that upper bound the actual contention delays suffered at run time. In essence, the
approaches of this kind escape the intrinsic (and painful) circularity between the dependence
of WCET analysis on knowledge of the contenders and the dependence of schedulability on
knowledge of the WCET of the tasks in the system, by inflating the WCET budgets so that
they can always be trusted to upper bound the actual costs.

Contention aware. Techniques such as [32, 12] focus on the shared last-level cache as one
of the main resources in which contention occurs. The cited works benefit from hardware
proposals that split the cache into different ways or allocate program data into different pages
(colors) so that each task is limited to use a subset of the sets in cache, thereby reducing
conflicts.

These works often assume partitioned scheduling for software programs, so that conflicts
can be determined in a less pessimistic way, and focus their attention on devising cache-aware
allocation algorithms that consider the mapping of tasks to cores determined by partitioning.
Some of the works focus on how to assign colors (i.e. set partitions) to the tasks. It is also
the case that works in this class do not address the contention occurring in other shared
resources like the memory.

Other works [23] build on hardware proposals that control the interaction in several
hardware resources (e.g. on-chip bus, cache and memory controller) in addition to the cache.
These proposals also consider task allocation and scheduling.

2.2 WCET-centric techniques
WCET-centric techniques determine the impact of contention in the access to shared resources
as part of WCET analysis. For multicore architectures, shared resources include cache
memories, buses and memory controllers, but some approaches have also been designed to
support intra-core resource sharing (e.g., pipeline and functional units in multithreaded



G. Fernandez, J. Abella, E. Quiñones, C. Rochange, T. Vardanega, and F. J. Cazorla 35

cores [3]). The objective of WCET-centric techniques is to derive safe stall times that can be
accounted for at instruction-level timing analysis. We distinguish between the approaches
that consider all the competing threads/tasks together to exhibit the possible interleavings of
their respective accesses to the shared resource, from those that exploit a static allocation of
slots among cores. In the latter category, some contributions include WCET-based strategies
to optimize the mapping/scheduling of threads/tasks to cores to optimize the global WCET
and/or to improve schedulability.

2.2.1 Joint analysis of concurrent tasks/threads

One way to identify how contention may impact the WCET of a task is to combine the
analyses of concurrent tasks to identify where they can interfere. Two kinds of interference
are considered here: spatial (tasks share storage, e.g. a cache) and temporal (tasks share
bandwidth, e.g. a bus). Both incur additional delays.

Techniques that address spatial contention start by perform individual tasks analyses, then
determine how contention affects their results. More precisely, they determine which cache
lines used by one task might be replaced by another task in a shared L2 instruction [14][33] or
data [11] cache. The analysis of contention does not account for the exact respective timings
of tasks (then could be valid for any schedule, provided all possible concurrent tasks are
known at analysis time). However, [33] improves the accuracy of the analysis by considering
constraints on task scheduling (non-preemptive, priority-based, with task inter-dependencies),
which allows bounding tasks lifetimes and limits the opportunities for contention.

To account for temporal conflicts and derive instruction timings, possible interleavings
of (statically-scheduled) threads must be explored. Several approaches use timed automata
to represent both the tasks and the state-based behaviour of hardware components. All
these automata are combined and model checking techniques are used to determine the
WCET though a binary search process. [6] focuses on the shared L2 cache with fixed cache
miss latency. A shared bus with First-Come-First-Served (FCFS) or TDMA arbitration is
analysed in [19]. The weakness of these approaches is in the huge number of states to be
handled.

2.2.2 Independent analysis of tasks/threads

Some techniques leverage the deterministic guarantees offered by the underlying hardware
on access to a shared resource. Thanks to such guarantees, they can analyse the WCET of
one task/thread independently of the concurrent workload.

The impact of arbitration delays on a TDMA bus with uniform slot size is explored
in [31]. The cited work presents an approach to evaluate the misalignment of accesses with
TDMA slots (TDMA offsets). A TDMA-composable system is assumed: arbitration delays
neither impact instructions that do not access the bus nor the bus access time (except for
the arbitration delay).

Some of the hardware solutions to enforce access guarantees do not offer equal oppor-
tunities to all threads. Cache partitioning techniques may allocate partitions with different
sizes [23]. Bus arbiter may grant a different number of slots to each core, as in [18] or
[26]. Those techniques use these mechanisms to increase the performance achievable by
combined task-to-core allocation and scheduling decisions, especially in the case of unbalanced
workloads (with variable demand levels to the shared resource). Performance benefits are
obtained as a result of reducing the WCET bound predictions for the affected tasks. As we

WCET 2014



36 Contention in Multicore Hardware Shared Resources

noted in Section 2.1, our taxonomy is not clear-cut enough to place some of these techniques
uniquely in one class, as they might arguably also belong to the system-centric group.

2.3 Architecture-centric techniques
Several hardware design paradigms have been proposed to deal with the inter-task interference
caused by contention for shared hardware resources. Four topical approaches can be singled
out in this group: the time-triggered architecture [36]; PRET [37]; CompSOC [8]; and
MERASA [38].

One of the differentiating elements for these approaches is whether they achieve compos-
ability at the level of the WCET bounds that they allow computing or at higher levels of
abstraction. The objective of the former solution is to support determining WCET bounds
for individual tasks in isolation, independently of the activity of their co-runners. When that
is guaranteed, the execution time of a task may well suffer variations caused by contention
effects caused by some of its co-runners, but its WCET estimate stays valid. With the
latter type of solutions, composability is achieved by regulatory mechanisms operating at
run time, and thus with effect on the task execution time. Those regulatory mechanisms
ensure that the activity of the co-runners cannot affect the response time of the hardware
shared resources. This form of composability may place more requirements on the processor
hardware than the former approach. In general it requires that the access time to a hardware
shared resource stays always the same irrespective of the actual load of the system. To that
end, a resource that might respond ahead of time is stalled until the agreed latency for the
request is reached.

From another angle, it is worth noting that a trade off arises as a consequence of the
observation that the pursuit of time composability always comes at the cost of some (over-
provisioning) pessimism. The effect of this (static) over-provisioning allows tightening the
WCET bounds, because they eradicate sources of variations, but at the cost of renouncing
the true meaning of time composability (as independence from the presence of contenders),
which is central to the incremental verification needs of integrated architectures such as
Integrated Modular Avionics (IMA).

Somewhat orthogonal to the discussion above, the focus of several proposals is to upper
bound the access time to hardware shared resources, either indirectly, by guaranteeing
pre-determined bandwidth on access to the resource, or directly by ensuring bounds on the
access time (comprised of the wait time preceding access upon request, and the actual service
time).

The techniques of interest from this angle vary for stateless and stateful resources. Stateless
resources have an access time that is not or only very modestly dependent on execution
history. A single-cycle latency bus is a typifying example of resources of this kind. If the
bus had a two-cycle latency, then the service time of a request might depend on whether
the preceding request was sent the cycle before the current one gets ready. Caches are a
difficult exemplar of stateful resources. This is because the state-dependent effect builds up
with history of execution, which causes analysis to have to keep track of the full history of
access. Truncated information requires conservative assumptions to be made. This difficulty
explains why the typical solution proposed for caches consists in splitting its space in small
areas assigned to individual tasks, so that history becomes much smaller (and free of conflicts
with co-runners) and thus easier to trace. This can be done dividing the cache into different
banks or different ways [22].

The most prominent stateless resources on which the real-time community has focused are
network-on-chip (NoC) and memory controllers. For the interconnection network, proposals



G. Fernandez, J. Abella, E. Quiñones, C. Rochange, T. Vardanega, and F. J. Cazorla 37

exist which range from from simple buses [35] or rings [20] to more complex solutions such as
those described in [41]. All share the goal to provide some type of bound to the longest time
a request has to wait to get access to the resource. For the memory controller, proposals
with the same goal exist [1, 21], though the actual solutions are more complex since the state
retention is higher.

2.4 COTS-based techniques
The goal of several works focusing on real hardware is to analyse how amenable a given
multicore design is for real-time analysis. To that end authors analyse different shared
resources as well as their impact on execution time. For many resources the manuals of the
processor under analysis rarely provide all the required information to analytically derive
those bounds. As a result, the way in which the authors derive bounds is different from
previous approaches and it is based on experimentation on the specific architectures under
analysis [25, 39, 17]. These works include analysis of the FreeScale P4080 and some FPGA
versions of the Aeroflex Gaisler LEON4.

Another set of works is carried out at an analysis level providing understanding of the
timing behaviour of hardware shared resources and the challenges they bring to timing
analysability [13, 27, 42]. Finally, some of the works on software-cache partitioning (page
colouring) have been done for processors like the ARM Cortex A9 [12].

3 Critique

This section reviews the techniques captured in the taxonomy presented in Section 2 against
multiple criteria including: (1) the presence of overlaps between them; (2) the presence of
gaps among them; (3) the realism of their assumptions; (4) the challenges in taking that
technique to industrial use; and (5) the relation between the confidence on the bounds
determined by timing analysis and the assurance guarantees suitable for the application
domain.

Much like the proposed taxonomy, the review discussed here is not meant to be exhaustive.
It therefore does not cover all criteria for all techniques. Instead, it only aims at singling out
specific problematics that we consider to need particular attention by the prospective user
and further study by the research community.

System-centric techniques. The principal limitation with this class of techniques stems
from their resting on two strong assumptions: that programs can be statically subdivided
into (super)blocks for which bounds on resource usage can be derived; and that only one
shared resource needs attention, which also does not support split transactions. The former
restricts applicability to programs that can be divided into blocks for which maximum and
minimum access bounds and execution time bounds can be derived. Further, working at
block level may increase pessimism because every block is given a single worst-case cost
value, which may be higher than the actual cost in the worst-case traversal of that block
as taken by the program. The latter assumption reduces the applicability of the solution
against increasingly common hardware.

For dynamic arbiters, the critical factor is in the dependence of their timing analysis
on the request workload generated by the co-runners of the program of interest in a given
time duration. On the one hand this trait reduces pessimism since the durations in which
conflicts on access may occur can be better determined. On the other hand, it breaks time
composability and resorts to compositionality. The latter defect may be a serious impediment

WCET 2014



38 Contention in Multicore Hardware Shared Resources

to incremental verification, which is a prerequisite to high-criticality domains (e.g., avionics).
Budgeting in advance for the co-runners is obviously one countermeasure to that, but at the
direct cost of over-provisioning.

WCET-centric techniques. The main challenge for this class of techniques arises from
having to find tractable ways to analyse increasingly complex hardware. The abstract
interpretation approach on which those techniques rely is inherently exposed to the state
explosion problem, which is dramatically worsened by the way in which the architecture
of modern processors cause the timing behaviour of several resources to exhibit possibly
large jitter, extremely sensitive to the history of execution [42]. This dependence obviously
cumulates bottom-up and manifests in very complex ways at software level.

As an example we consider a TDMA bus, whose timing behaviour is easy to model with
three main parameters: window size, number of contenders, and slot size per contender.
Interestingly, the state space for even such a simple model is already not negligible: when the
exact time of an access request cannot be determined in fact, a conservative assumption must
be made on when access will be granted (which inflates pessimism) or multiple candidate
access times are considered, which causes multiple states to be contemplated upward in the
analysis. As more complex NoC architectures are adopted by modern multiprocessors, more
parameters will be needed to model the sources of contention, with inordinate increase in
the complexity and cost of the analysis tools.

Architecture-centric techniques. A recurrent question on the viability of the techniques
in this class is whether the hardware design that they propose in the intent to favour time
analysability, will ever reach the market. This is a question of economics that equally applies
to all research domains that propose new hardware architectures. However, it is especially
important to the real-time systems domain, which holds a tiny niche of the market size, in
comparison to consumer products, without sufficient critical mass to swing the prevailing
design criteria from optimized for the average case to well-behaved in the worst case.

This is a long-known challenge for the real-time systems community. Fortunately, per-
severance and authority have shown able to win some battles, so that some of the proposed
designs (e.g., cache partitioning) are indeed retained in real processors. Our view here is
that the changes proposed for the bus and the memory controller are simple enough so that
they can be implemented in production with moderate effort and cost, for tangible benefits
on timing analysability. Whether or not that will actually happen remains to be seen.

In general all hardware approaches assume processor designs without timing anomalies. It
is interesting wondering, whether processor can be made simple enough to assure freedom from
timing anomalies, without this causing detriment to the attainable performance. Architectural
solutions will have to be devised that combine those two objectives harmoniously, which is not
the case yet with the dominant approaches to multi- and manycore processor architectures.

COTS-based techniques. The techniques that belong in this class face the challenge that the
architectural properties needed to provide full time isolation or time predictable interaction
among processor cores cannot be had owing to the lack or inaccuracy of specification
information or IP restrictions. Various approaches have been proposed to live with the
consequent uncertainty, which all require building confidence arguments that accord with the
requirements and practices of the application domain. The work in [34] makes an interesting
review of how safety assurance guarantees relate to stipulating bounds on execution time.



G. Fernandez, J. Abella, E. Quiñones, C. Rochange, T. Vardanega, and F. J. Cazorla 39

4 Other aspects of interest

In this section we briefly touch upon two other aspects that, for different reasons, are tangent
to questions addressed in this paper. One aspect, parallel programming, intrinsically enabled
and called for by multicore processors, presents a novel, emerging challenge to bounding
contention effects. The other aspect, with interesting potential and important ramifications,
stems from shifting the angle of attack to the timing analysis problem, from finding a single
value, the smallest possible computable upper bound, for all possible executions of a software
program, to determining a probability function whose tail can be cut at the exceedance
threshold of interest to the system.

Parallel applications. Communication of data in message-passing and synchronisations in
shared-memory programming induce delays that must be accounted for in execution times.
The focus is on deriving the WCET of the longest thread.

Two kinds of synchronization exist. (1) Mutual exclusion is very similar to accessing a
hardware shared resource that can serve a single thread at a time. Computing the worst-case
stall time of a thread at a critical section is analogous (when threads are served in a FIFO
order) to computing the worst-case delay to a round-robin bus [15]. Stall times can then be
integrated to instruction-level timing analysis. Another approach is to use timed automata
and a model checker, as in [6]. In [7], a shared-memory parallel programming language is
introduced and a fix-point analysis is able to identify all the possible thread interleavings at
critical sections. (2)Progress synchronisation includes barriers as well as condition signalling
and blocking message passing. Collective synchronisations (barriers), where all threads
meet, are easier to consider since the goal is to compute the WCET of the longest thread,
i.e. the last one to reach the barrier [15]. For point-to-point synchronisations (condition
signalling or message passing) however, stall times depend on the respective progress of the
threads. In [40], parallel applications where threads communicate through message passing
are considered. A joint analysis is proposed, where the analysis of worst-case communication
times is integrated into the analysis of the global WCET. The approach consists in merging
the control flow graphs of parallel threads, then adding edges to model the synchronisations
(dependencies) related to sending/receiving messages.

Some system-centric approaches have been extended to parallel fork-join applications
and decide altogether the allocation of threads’ memory in caches, the scheduling of threads’
accesses to the shared bus and the scheduling of the threads themselves to the cores [2].

The probabilistic approach. Timing analysis techniques can be broken down into determin-
istic, which produce a single WCET estimate, and probabilistic that produce multiple WCET
estimates with associated exceedance probabilities. It is noted that our discussion above has
focused on standard (deterministic) timing analysis techniques. While both deterministic
and probabilistic approaches try to reach time predictability, the former do so by advocating
for hardware and software designs that are deterministic in their execution time, while the
latter advocates for hardware and software designs that have a randomized timing behaviour,
to produce WCET estimates that can be exceeded with a given probability.

The probabilistic approach deals with contention by means of time-randomised bus
arbitration policies [16] as an alternative to deterministic policies such as round robin.
Similarly, in [24] it is proposed a time-randomised shared cache for which impact of contention
among co-running tasks can be determined. The main feature of this cache is that it does
not split the cache, either into ways or sets, to prevent the interaction among co-running

WCET 2014



40 Contention in Multicore Hardware Shared Resources

tasks. Instead, it controls how often tasks evict data from cache as a way to bound the
impact of contention on tasks’ WCET estimates.

5 Conclusions

A wealth of relevant literature addresses the problem of finding a bound on the timing
effect of contention on access to hardware shared resources in modern multicore processors.
The industrial practitioner, and the researcher alike, who approach that body of knowledge
without a preconceived solution in mind, may have serious difficulties in seeing the “big
picture” of what options are possible and at what consequences. This paper sketches an
initial taxonomy of the principal approaches that appear in the state of the art, and discusses
gaps and overlaps among them.

Acknowledgements. The research leading to this work has received funding from: COST
Action IC1202, Timing Analysis On Code-Level (TACLe); and the parMERASA and PROX-
IMA grant agreements (respectively no. 287519 and 611085 from the Seventh Framework
Programme [FP7/2007-2013]). This work has also been partially supported by the Spanish
Ministry of Science and Innovation under grant TIN2012-34557 and the HiPEAC Network of
Excellence.

References
1 B. Akesson et al. Predator: a predictable SDRAM memory controller. In CODES+ISSS,

2007.
2 A. Alhammad and R. Pellizzoni. Time-predictable execution of multithreaded applications

on multicore systems. In DATE, 2014.
3 P. Crowley and J.-L. Baer. Worst-case execution time estimation for hardware-assisted

multithreaded processors. In HPCA-9 Workshop on Network Processors, 2003.
4 D. Dasari and V. Nelis. An analysis of the impact of bus contention on the WCET in

multicores. In HPCC-ICESS, 2012.
5 R. Davis and A. Burns. A survey of hard real-time scheduling for multiprocessor systems.

ACM Comput. Surv., 43(4), 2011.
6 A. Gustavsson et al. Towards WCET analysis of multicore architectures using UPPAAL.

In Workshop on WCET Analysis, 2010.
7 A. Gustavsson et al. Toward static timing analysis of parallel software. In Workshop on

WCET Analysis, 2012.
8 A. Hansson et al. Compsoc: A template for composable and predictable multi-processor

system on chips. TODAES, 2009.
9 A. Schranzhofer et al. Timing analysis for TDMA arbitration in resource sharing systems.

In RTAS, 2010.
10 A. Schranzhofer et al. Timing analysis for resource access interference on adaptive resource

arbiters. In RTAS, 2011.
11 B. Lesage et al. Shared data caches conflicts reduction for wcet computation in multi-core

architectures. In RTNS, 2010.
12 B. Ward et al. Making shared caches more predictable on multicore platforms. In ECRTS,

2013.
13 D. Dasari et al. Identifying the sources of unpredictability in COTS-based multicore sys-

tems. In SIES, 2013.
14 D. Hardy et al. Using bypass to tighten wcet estimates for multi-core processors with

shared instruction caches. In RTSS, 2009.



G. Fernandez, J. Abella, E. Quiñones, C. Rochange, T. Vardanega, and F. J. Cazorla 41

15 H. Ozaktas et al. Automatic wcet analysis of real-time parallel applications. In Workshop
on WCET Analysis, 2013.

16 J. Jalle et al. Bus designs for time-probabilistic multicore processors. In DATE, 2014.
17 M. Fernández et al. Assessing the suitability of the NGMP multi-core processor in the

space domain. In EMSOFT, 2012.
18 M.-K. Yoon et al. Optimizing tunable WCET with shared resource allocation and arbitra-

tion in hard real-time multicore systems. RTSS, 2011.
19 M. Lv et al. Combining abstract interpretation with model checking for timing analysis of

multicore software. In RTSS 2010, 2010.
20 M. Panić et al. On-chip ring network designs for hard-real time systems. In RTNS, 2013.
21 M. Paolieri et al. An Analyzable Memory Controller for Hard Real-Time CMPs . Embedded

System Letters (ESL), 2009.
22 M. Paolieri et al. Hardware support for WCET analysis of hard real-time multicore systems.

In ISCA, 2009.
23 M. Paolieri et al. IA3: An interference aware allocation algorithm for multicore hard

real-time systems. In RTAS ’11, 2011.
24 M. Slijepcevic et al. Time-analysable non-partitioned shared caches for real-time multicore

systems. In DAC, 2014.
25 P. Radojković et al. On the evaluation of the impact of shared resources in multithreaded

cots processors in time-critical environments. ACM TACO, 2012.
26 R. Bourgade et al. Predictable two-level bus arbitration for heterogeneous task sets. In

ARCS, 2013.
27 R. Wilhelm et al. Designing predictable multicore architectures for avionics and automotive

systems. In Workshop on Reconciling Performance with Predictability (RePP), 2009.
28 S. Hahn et al. Towards compositionality in execution time analysis–definition and chal-

lenges. In Workshop on Compositional Theory and Technology for Real-Time Embedded
Systems, 2013.

29 S. Schliecker et al. Bounding the shared resource load for the performance analysis of
multiprocessor systems. In DATE, 2010.

30 T. Kelter et al. Evaluation of resource arbitration methods for multi-core real-time systems.
In Workshop on WCET Analysis, 2013.

31 T. Kelter et al. Static analysis of multi-core TDMA resource arbitration delays. Real-Time
Systems, 2013.

32 X. Zhang et al. Towards practical page coloring-based multicore cache management. In
EuroSys, 2009.

33 Yan Li et al. Timing analysis of concurrent programs running on shared cache multi-cores.
In RTSS, 2009.

34 P. Graydon and I. Bate. Safety assurance driven problem formulation for mixed-criticality
scheduling. In Workshop on Mixed-Criticality Systems, 2013.

35 J. Jalle et al. Deconstructing bus access control policies for real-time multicores. In SIES,
2013.

36 H. Kopetz and G. Bauer. The time-triggered architecture. Proc. of the IEEE, 91(1), Jan
2003.

37 I. Liu et al. A PRET architecture supporting concurrent programs with composable timing
properties. In 44th ACSSC, 2010.

38 MERASA. EU-FP7 Project: www.merasa.org.
39 J. Nowotsch and M. Paulitsch. Leveraging multi-core computing architectures in avionics.

In EDCC, 2012.
40 D. Potop-Butucaru and I. Puaut. Integrated Worst-Case Execution Time Estimation of

Multicore Applications. In Workshop on WCET Analysis, 2013.

WCET 2014



42 Contention in Multicore Hardware Shared Resources

41 M. Schoeberl et. al. A statically scheduled time-division-multiplexed network-on-chip for
real-time systems. In NoCS, 2012.

42 R. Wilhelm and J. Reineke. Embedded Systems: Many Cores – Many Problems. In SIES,
2012.


	Introduction
	A tentative taxonomy of state-of-the-art techniques to analyse the timing impact of resource contention
	System-centric techniques
	Timing analysis frameworks
	Task scheduling and allocation

	WCET-centric techniques
	Joint analysis of concurrent tasks/threads
	Independent analysis of tasks/threads

	Architecture-centric techniques
	COTS-based techniques

	Critique
	Other aspects of interest
	Conclusions

