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Welcome to WCET 2014

It is my great pleasure to welcome you to the 14th International Workshop on Worst-Case
Execution Time Analysis (WCET 2014). This year’s edition of WCET continues its tradition
of being the premier forum for presentation of research results in the fields of hard real-time
systems, predictability and timing analysis. One important goal of WCET is to provide
a link between the timing analysis and the formal analysis, computer architecture and
compiler communities. Researchers and developers in these areas are addressing many similar
problems, but with different backgrounds and approaches. WCET is intended to expose
researchers and developers from either area to relevant work and interesting problems in the
other area and to provide a forum where they can interact.

The call for papers attracted 17 submissions from Asia, Europe and North America.
The program committee accepted 10 papers that cover a variety of topics, including formal
methods for WCET and value analysis, multicore challenges, timing analyses for emerging
cache architectures and software approaches supporting WCET analysis. In addition, the
program includes a keynote talk given by Vincent Nélis on the challenge of time-predictability
in modern many-core architectures, and a report by Christine Rochange on the 2014 edition
of the WCET Tool Challenge.

Putting together WCET 2014 was a team effort. First of all, I would like to thank the
authors and Vincent and Christine for providing the content of the program. I would like
to express my gratitude to the program committee and reviewers who worked very hard in
reviewing papers and providing suggestions for their improvements.

WCET 2014 is being organized as satellite workshop of the 26th Euromicro Conference on
Real-Time Systems (ECRTS 2014). I am therefore grateful to the ECRTS 2014 general chair,
Juan Antonio de la Puente, his local team, and the Real-Time Technical Committee Chair
of Euromicro, Gerhard Fohler, for their support. This year’s WCET workshop were not
possible without external support – the financial support by the EU COST Action IC1202:
Timing Analysis on Code-Level (TACLe) and by the COST Office is highly appreciated.

I hope that you will find this program interesting and thought-provoking and that the
workshop will provide you with a valuable opportunity to share ideas with other research-
ers and practitioners. These proceedings will hopefully serve as worthwhile reference for
researchers in the timing analysis and real-time systems domains, enjoy reading this volume.

Heiko Falk
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Principles for Value Annotation Languages
Björn Lisper

School of Innovation, Design and Engineering, Mälardalen University
Box 883, S-721 23 Västerås, Sweden.
bjorn.lisper@mdh.se

Abstract
Tools for code-level program analysis need formats to express various properties, like relevant
properties of the environment where the analysed code will execute, and the analysis results.
Different WCET analysis tools typically use tool-specific annotation languages for this purpose.
These languages are often geared towards expressing properties that the particular tool can handle
rather than being general, and mostly their semantics is only specified informally. This makes
it harder for tools to communicate, as well as for users to provide relevant information to them.
Here, we propose a small but general assertion language for value constraints including IPET
flow facts, which is an important class of annotations for WCET analysis tools. We show how to
express interesting properties in this language, we propose some syntactic conveniences, and we
give the language a formal semantics. The language could be used directly as a tool-independent
annotation language, or as a meta-language to give exact semantics to existing value annotation
and flow fact formats.

1998 ACM Subject Classification C.3 Special-Purpose and Application-Based Systems

Keywords and phrases Real-Time System, WCET Analysis, Flow Fact, Assertion

Digital Object Identifier 10.4230/OASIcs.WCET.2014.1

1 Introduction

WCET analysis tools provide means to estimate the WCET of code with increased confidence,
safety and automation compared with a manual analysis. Alas, full automation is hard to
attain due to a number of reasons. Some are fundamental, such as the undecidability of
the WCET analysis problem, others are of more practical nature like the need to provide
relevant information not present in the code, or give directives to fine-tune the analysis. Thus,
WCET analysis tools have annotation languages to provide various kinds of information to
the analysis. Examples are:

annotations providing information about the environment, like hardware configuration,
entry points of tasks, etc.,
annotations directing the analysis (like selection of abstract domain, context-sensitivity,
choice of internal representations, kinds of generated flow facts),
directives how to present the analysis results,
value annotations constraining the possible values of program variables in different
program points, and
flow facts constraining the possible program flows.

Unfortunately, the means to provide these kinds of information are not systematically
developed. WCET analysis tools tend to have their own annotation languages, which may
be apt to provide information for the respective tool but are not portable across tools. As
for manually provided information, many of these tool-specific formats do not provide a
particularly user-friendly syntax. The semantics is not always entirely clear either, due to
the absence of formal definitions.

© Björn Lisper;
licensed under Creative Commons License CC-BY
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2 Principles for Value Annotation Languages

Code−level

Constraints

Code

generator

Code

analysis

tool

Optimizing

compiler

WCET

analysis

tool

Other tools for

analysis &

verification

Model User

code

Figure 1 An ecosystem of embedded systems tools.

Furthermore, WCET analysis tools do not exist in isolation. Today one can speak of
an “ecosystem” of code-level tools, as depicted in Fig. 1, including code generators for
model-based development, general-purpose static code analysis tools, optimising compilers,
and tools for formal verification. It is obvious that general formats for code-level constraints
would be helpful for the integration of code-level tool chains.

The contribution of this paper is a step in this direction. We define a simple but general
core language for value constraints from first principles. Such constraints provide information
about reachable states, much like assertions in Floyd-Hoare logic [7, 8]. We take measures
to make the constraint language as independent of the “host language” as possible, making
it portable over a wide range of code formats. We make some suggestions for user-friendly
syntax. The language can express numerical constraints on values of program variables,
which is sufficient to express the value annotations and flow facts supported by current
WCET tool annotation languages, but it can easily be extended to express constraints on
other data types. We give the language a formal semantics, making minimal assumptions
on the semantics of the host language. We also prove a theorem about compositionality of
assertions.

2 Some Existing Annotation Languages

We now review the annotation languages for some existing WCET analysis tools.
FFX [3] is intended to be a portable WCET annotation language for flow facts. It is

supported by TuBound [12], oRange [4], Otawa [1], and CalcWCET167 [10]. FFX represents
the analyzed code as a structured XML document, where annotations appear as attributes
in tags representing program constructs such as loops. FFX can specify upper loop bounds,
and also whether or not they are exact. It is unclear whether it can represent more general
linear flow facts, which describe relations between execution counters for different parts of
the code. It can represent contexts: however, these seem not to be calling contexts but rather
information about the environment such as the target hardware.

The annotation language of aiT [5], called AIS [6], can describe various kinds of flow facts,
such as (upper) loop bounds, infeasible paths, and general linear flow constraints on IPET
execution counters. Loop bounds can be complex expressions, and may for instance refer
to execution counters of outer loops. Some context-sensitivity is provided by the ability to
tie flow facts to certain call sites for functions. AIS can represent flow facts both for source
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code (C) and for executables: locations for execution counters are formed from file name and
position in the file for source code, and are provided as numerical addresses for executables.

The WCET analysis tool SWEET [18] provides a rich set of different annotations. It
can read value constraints in a certain format, constraining the values of program variables
in certain program points to intervals. A common use is to specify value constraints on
inputs. SWEET can also compute value constraints and export them using the same format.
Furthermore SWEET provides a rich set of flow facts, including general linear constraints on
execution counters. Execution counters can be local to certain execution contexts (typically
loop or function bodies), and are then reset at each entry of the context. Flow facts
involving such counters can be constrained to certain ranges of loop iterations. Flow facts
involving global execution counters are also allowed. Flow facts can be constrained to be valid
only for certain calling contexts, which are specified by explicit call strings: this provides
context-sensitivity.

Bound-T [9] can use a number of different assertions. It can take value range constraints
for program variables, bounds on the number of loop iterations, and function calls, “path not
taken”-constraints, and different bounds on stack usage. Variables can also be asserted not to
have their values changed in certain parts of the program. Assertions can be tied to program
parts in an interesting way, identifying, e.g., loops by properties like that they use a certain
variable, call a certain function, or whether a loop is the inner or outer loop in a loop nest.
Assertions can be restricted to certain calling contexts and can thus be context-sensitive.
Bounds on the number of executions can also be placed directly on instructions, using
addresses or offsets.

These languages have some features in common. They can all express flow facts, of
different generality. The flow facts may concern global IPET execution counters as well
as local execution counters, for certain execution contexts. Some of them can also express
certain kinds of value constraints. They provide varying levels of context-sensitivity. Our
proposed core language aims to cover these aspects in a unified way.

3 A Wish List for a Language for Code-level State Constraints

Based on experience of WCET annotation languages as well as general language design, the
following wish list on a value constraint language can be formulated:

it should work over a wide range of code-level tools (not necessarily only for WCET
analysis),
it should work over a wide range of host languages, on different levels
it should be general yet simple, extensible, and have few but powerful constructs,
it should have a succinct, intuitive syntax for humans, as well as an easily machine-readable
form (XML) for tools,
it should be able to express general restrictions on flow facts, including the ability to
express constraints in existing annotation languages by translation,
it should be able to express different kinds of context sensitivity, and
it should have a clear and simple formal semantics.

This wish list has guided the design of our core language.

4 A Starting Point: The Assertion Language of Floyd-Hoare Logic

A general, existing assertion language for constraints on program variable values is the one
used in Floyd-Hoare logic [7, 8]. A good description is found in [19]. It has the following
elements:

WCET 2014



4 Principles for Value Annotation Languages

program variables, which depend on program state,
auxiliary variables, which are independent of state, and
some sublanguage to define predicates over variables (typically consisting of boolean and
arithmetic expressions, including quantifiers (∀, ∃) over auxiliary variables, but whose
elements may vary depending on what kind of assertions are to be expressed

An example of a statement in Floyd-Hoare logic is

{X = i}X := X + 1{X = i+ 1}

This assertion is a triple of a pre-condition, a program, and a post-condition. X is a program
variable and i an auxiliary variable. The statement expresses a relation that holds between
preceding and succeeding states: for any value of i, if the value of X equals i in a state
preceding the program, then it will equal i+ 1 in the state that results after having executed
the program.

Floyd-Hoare logic was originally defined for a simple, structured imperative language,
and it comes with a set of inference rules, based on the syntax of the language, by which
assertions can be proved deductively from sub-assertions of sub-programs. However the
assertions can also be given a direct semantics in terms of state transitions, which is of
interest here. See [19].

5 A Core Language for Value Constraints

Floyd-Hoare logic is defined over a high-level language where the control flow is decided
entirely by the syntax. We want our core language for assertions to work over a wide
variety of code formats, including low-level formats with unstructured control flow. Therefore
we abstract away from the syntax of the host language, and we will make only minimal
assumptions on its semantics. The abstract syntax for our assertion language is given by the
following:

a ::= n | i |X | a1 aop a2

p ::= true | false | p1 ∧ p2 | p1 ∨ p2 | ¬p | a1 rop a2 | ∀i.p | ∃i.p | PC = L

c ::= p1 → p2

Here a stands for arithmetic expressions, and p predicates. n stands for numerical constants,
i auxiliary variables, X program variables, aop arithmetic operators (+, −, . . .), and rop
relational operator (<, =, . . .). L stands for labels, see below. We will freely use operators
that can be derived from the core language, like implication ( =⇒ ).

This part defines a predicate language over arithmetic expressions that is completely
standard (except for the “PC = L” part, which will be explained below). Like in Floyd-Hoare
logic the difference between program variables and auxiliary variables is that the value
of a program variable depends on the state, whereas the values of auxiliary variables are
independent of the state. We allow quantification over auxiliary variables, but not over
program variables.

The statements of form p1 → p2 are the assertions in our core language, and they
correspond to the triples in Floyd-Hoare logic (with p1 as pre- and p2 as post-condition).
The meaning of p1 → p2 is “all states that are reachable from a state satisfying p1 must
satisfy p2”. We will provide an exact definition in Section 6.

We make the following assumptions on the host language and its semantics. It has
program variables that can hold values, and there are labels that identify program points. At
this point we assume nothing more about labels than that they can be compared for equality.
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The language has states: in each state σ, a program variable X holds a numerical value
σ(X). Furthermore there is a distinguished variable PC such that σ(PC) is a label: thus,
the state also contains the current position in the code. The semantics of a program in the
host language is given by a set of state transitions σ → σ′.

Our assertion language is defined over conditions on numerical expressions, but is easily
extended to conditions over other data types. It should also be straightforward to give the
language both a user-friendly syntax as well as a conveniently machine-readable XML format.
We propose some syntactic conveniences in Section 5.2.

The language so far can express sensitivity to contexts that are conditions on the state
(trough implication), but it does not have any means to express call-string contexts. We
show how this can be added in Section 7.

Let us now see some examples of assertions. To make the examples more concrete we
assume labels “entry”, “exit” representing the entry and exit point of the host program,
respectively:

(PC = entry)→ (PC = L =⇒ X < 17): for all states reachable from the start of the
program, if at label L then X < 17;

(PC = entry)→ (PC = L ∧ 3 ≤ I ≤ 7 =⇒ X < 17): for all states reachable from the
start of the program, if at label L, with the value of I between 3 and 7, then X < 17;

(PC = entry ∧ 1 ≤ X ≤ 10) → (PC = exit =⇒ Y ≤ 100): if the program is started
with 1 ≤ X ≤ 10 then, at exit, Y ≤ 100;

(PC = L ∧X = i)→ (PC = L′ =⇒ X = 2 · i): for any value of i, if the program passes
L with X = i then afterwards, whenever at L′, X = 2 · i;

true → X < 32767: a global invariant, in all states holds that X < 32767.
Notice how restrictions on inputs, like confining an input value to a certain range, can be
expressed as arithmetic contraints in the condition defining the initial states. Also note how
contexts that are restrictions to certain states can be expressed simply as antecedents in
implications. Such restrictions can for instance be presence at a certain program point, or
that the value of a loop counter is in a certain interval.

5.1 Labels

Labels can be basically anything that identifies program points. For high-level languages like
C, labels can be explicit C labels defined in the source code, or they can be formed from file
name, line number, and position on the line as in AIS. Another possibility is to use paths
through the parse tree of the program as labels. For low-level code a label can be a pair
(e, n) where e is a symbolic entry point and n is a numerical offset, or even a fully numerical
address for a linked executable.

Our basic core language only assumes that labels can be compared for equality. Certain
kinds of labels, like for instance numerical addresses, can allow a richer set of conditions to
specify sets of labels.

Different kinds of labels can be fragile to different extent, in that they may be destroyed
by recompilation or editing of the source code. Examples of fragile labels are numerical
addresses in executables, and line numbers in source code. Assertions that use such labels
may have to be restored frequently. While interesting, the construction of non-fragile labels
is outside the scope of this paper.

WCET 2014



6 Principles for Value Annotation Languages

5.2 Syntactic Sugar

The notation developed so far can be simplified for some common cases. For instance, it
can be expected that restrictions to certain program points are frequent. Thus, using the
notation “@L” for “PC = L” may help. It also seems like a common case to consider all the
states that are reachable from the entry point of the program: thus on the top level, where
an assertion is expected, one may allow to write p as a shorthand for @entry → p. Some of
our examples above can then be written:

@L =⇒ X < 17 (understood, for all states reachable from the entry point)
@L ∧ 3 ≤ I ≤ 7 =⇒ X < 17 (similarly)
(@entry ∧ 1 ≤ X ≤ 10)→ (@exit =⇒ Y ≤ 100)
(@L ∧X = i)→ (@L′ =⇒ X = 2 · i):

5.3 IPET Execution Counters and Flow Facts

IPET execution counters are "virtual" program variables that keep track of how many times
a program part has been executed. Flow facts are expressed as arithmetic value constraints
on these counters. The counters are typically defined relative to some execution context,
with some entry and exit points, such that they are reset each time the execution context is
entered and incremented by one each time the program part in question is executed. Global
execution counters are defined relative to the whole program, with the entry label as entry
point and exit as the exit point. For the final IPET calculation of the WCET estimate it is
the possible values of the counters at exit that are of interest.

To express IPET execution counters we introduce the unary operator “#” on labels: if
L is a label, then #L is the IPET counter associated with the program point of that label.
We leave open how to associate IPET counters with different execution contexts, and how
to exactly specify their semantics: for now we assume that they are global, and that their
semantics is given by the informal description above.

We can now express flow facts in our assertion language, as value contraints on the IPET
counters. Here are some examples:

@exit =⇒ #L < 100: a simple capacity constraint;
@exit =⇒ #L = 99: an exact capacity constraint;
@exit =⇒ #L1 + #L2 ≤ 1: a mutual exclusivity constraint;
(@entry ∧ 1 ≤ X ≤ 10) → (@exit =⇒ #L ≤ 100): a capacity constraint under the
condition that the value of X lies in the range [1 . . . 10] at entry;
(@entry ∧ X = n) → (@exit =⇒ #L ≤ 2 · n + 1): a parametric capacity constraint
relating the number of executions of L to the value of X at entry;
@exit_local ∧ 3 ≤ #L ≤ 7 =⇒ #Llocal < 17: for each of the iterations 3 to 7 of an outer
execution context with label L, Llocal is executed less than 17 times.

In the last example #Llocal is supposed to be a local execution counter, which is reset each
time its local execution context is entered.

As the values of IPET counters at exit from their execution contexts are of primary interest,
a possible syntactic simplification is to allow the “@exit =⇒ ” part to be implicit and add it
automatically when parsing a constraint that contains an IPET counter. So. for instance, the
second constraint above could then simply be written #L = 99, which then is to be interpreted
as @exit =⇒ #L = 99, which in turn stands for @entry → (@exit =⇒ #L = 99).
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5.4 Time
The state could also contain time. This gives the ability to express fine-grained real-time
constraints on certain pieces of code. For instance L and L′ may be program points in a
loop, with loop counter variable I, such that we want to specify that within each iteration
L′ should never be executed more than 7 time units later than L. If time is represented by
the program variable T , then this constraint can be expressed as

(@L ∧ t = T ∧ i = I)→ (@L′ ∧ i = I =⇒ T − t ≤ 7)

This example makes heavy use of auxiliary variables to refer to the value of a program
variable in a pre-condition from the post-condition. This is quite common. A possible
syntactic convenience is to make the equalities in the pre-condition implicit, and refer to the
“old” value of program variable X as X.old in the post-condition. With this notation, our
example becomes

@L→ (@L′ ∧ I = I.old =⇒ T − T.old ≤ 7)

6 Formal Semantics

We now give a formal semantics to our core assertion language defined in Section 5. As
is standard in programming language theory, we use semantic functions. These take three
arguments: a syntactic form, an interpretation I that maps auxiliary variables to values, and
a program state σ mapping program variables to values. The definitions of the semantic
function A[[ ]], for arithmetic expressions, and B[[ ]], for boolean expressions (predicates),
are completely standard and are given below for completeness (cf. [19]):

A[[n]] I σ = n A[[i]] I σ = I(i) A[[X]] I σ = σ(X)
A[[a1 aop a2]] I σ = A[[a1]] I σ aop A[[a2]] I σ

B[[true]] I σ = true B[[false]] I σ = false B[[p1 ∧ p2]] I σ = B[[p1]] I σ ∧ B[[p2]] I σ
B[[p1 ∨ p2]] I σ = B[[p1]] I σ ∨ B[[p2]] I σ B[[¬p]] I σ = ¬B[[p]] I σ

B[[a1 rop a2]] I σ = A[[a1]] I σ rop A[[a2]] I σ B[[∀i.p]] I σ = ∀n.(B[[p]] I[n/i]σ)
B[[∃i.p]] I σ = ∃n.(B[[p]] I[n/i]σ) B[[PC = L]] I σ = σ(PC ) = L

Here, I[n/i] stands for the interpretation that maps i to n but otherwise behaves like I.
We now give the semantic function C[[ ]] for assertions p1 → p2. The definition uses the

relation →∗ on states, defined by σ →∗ σ′ if and only if σ′ is reached from σ through zero or
more state transitions (reflexive-transitive closure of the transition relation →):

C[[p1 → p2]] = ∀I, σ, σ′.[(B[[p1]] I σ ∧ σ →∗ σ′) =⇒ B[[p2]] I σ′] (1)

Thus p1 → p2 if, for each state σ where p1 holds, and for each state σ′ that is reachable from
σ, p2 holds for σ′.

I Theorem 1 (Compositionality). p1 → p2 ∧ p2 → p3 =⇒ p1 → p3.

Proof. Assume that p1 → p2 and p2 → p3. σ →∗ σ for all states σ. Thus, since p1 → p2,
p2 holds for all states where p1 holds. Since p2 → p3 it follows that p3 holds for each state
reachable from a state where p1 and thus also p2 holds, thus it must hold that p1 → p3. J

Theorem 1 implies that assertions for a program can be composed out of assertions on its
parts, much like the inference rules for Floyd-Hoare logic.
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7 Context Sensitivity

Value annotations and flow facts can be made more precise if context-sensitive. The contexts
we have seen so far are sets of states defined by p′ in an assertion p→ (p′ =⇒ p′′), which
loosens the requirement on p′′ to hold merely for the reachable states where p′ holds. However,
another very important class of contexts are calling contexts. These can be used to express
that a value annotation is to hold only when a function is called in a certain way, perhaps
through a specific chain of other function calls. The well-known concept of call-strings [14]
can be used to define such contexts.

In our setting a call-string is a sequence of special labels that identify particular program
points like call sites for functions, or entry points to loops. Let L be the set of labels under
consideration, and let C ⊆ L be the set of labels that are considered to be call sites. A
sequence s ∈ C is then a call-string. Let S be an expression that defines a set of call-strings
C(S) ⊆ C. The notation

p→ p′ through S

is a suggested extension of the core language in Section 5 to denote an assertion where p′ is to
hold for those states, reachable from some state where p holds, through a sequence of states
such that the sequence of traversed call sites belongs to C(S). We will not be specific about
the exact format of S: it could, for instance, be some kind of regular expression defining a
set of call-strings.

For completeness we now give a formal semantics to this kind of assertion. In order to do
this we need to develop some notation for different sequences. Given the transition relation
“→” on states, which describes the semantics of the host program, we define:

Paths(σ, σ′) = {σ1 · · ·σn | σ1 = σ, σi → σi+1, i = 1, . . . , n− 1, σn = σ′ }
PC (σ1 · · ·σn) = σ1(PC ) · · ·σn(PC )

Labels(σ, σ′) = {PC (σ1 · · ·σn) | σ1 · · ·σn ∈ Paths(σ, σ′) }

Paths(σ, σ′) is the set of sequences of states leading from σ to σ′. PC (σ1 · · ·σn) is the
sequence of labels generated by the sequence of states σ1 · · ·σn. Labels(σ, σ′) is the set of
sequences of labels generated by the possible state transitions leading from σ to σ′. Finally
we introduce the well-known projection operator “�” on strings s and sub-alphabets A: s � A
is the substring of s obtained from its characters in A appearing in the same order as in s.
For instance, if A = {a, b, c} then adecbbe � A = acbb. We extend � to sets of strings S, viz.

S � A = { s � A | s ∈ S }

We can now extend (1) to call-string-sensitive assertions as defined above:

C[[p1 → p2 through S]] = ∀I, σ, σ′.[(B[[p1]] I σ∧(Labels(σ, σ′) � C)∩C(S) 6= ∅) =⇒ B[[p2]] I σ′]

Thus the assertion p1 → p2 through S holds if, for all sequences of labels from a state σ
where p1 holds to another state σ′, such that the projection of the sequence onto the set of
call sites is a call-string defined by S, p2 holds for σ′. Compared with (1), where p2 is to
hold for all states reachable from a state satisfying p1, p2 now only has to hold for states
reachable through a call-string given by S.

Theorem 1 can be extended to the context-sensitive case. Define S · S′ by C(S · S′) =
{ s · s′ | s ∈ C(S), s′ ∈ C(S′) }, where “·” is concatenation of sequences: we then have the
following result (proof straightforward, but omitted due to lack of space):

I Theorem 2. p1 → p2 through S ∧ p2 → p3 through S′ =⇒ p1 → p3 through S · S′.



B. Lisper 9

8 Related Work

We have already reviewed the annotation languages of some WCET analysis tools in Section 2.
There are a number of others: a comprehensive review and classification of such languages is
found in [11]. Most of them express flow facts as linear arithmetic constraints on execution
counters, as here, varying from simple looop bounds to general linear constraints. A notable
exception is the Information Description Language [15], which can specify sets of feasible
paths by regular expressions. This makes it possible to specify the exact order of execution
of different program parts, whereas constraints in IPET execution counters only constrain
the number of times they can execute and not the exact order.

Assertions using pre- and post-conditions have been used for a long time in formal software
development: a classical example is the Vienna Development Method [2]. Such assertions can
also be seen as contracts: the pre-condition is then the assumption on the environment, and
the post-condition is what the program guarantees if the assumption is fulfilled. Contracts
are essential for reasoning about component-based software. The language Eiffel provides
means to express contracts [13].

On model level, the language OCL is used to specify properties of UML models. A formal
semantics is given in [16]. The specification language Z uses Zermelo’s set theory to express
properties of models and programs in a pre/post-condition style [17].

9 Conclusions and Further Research

We have presented a simple core language for expressing assertions in pre/post-condition
style, making minimal assumptions on the host language. This language can express value
constraints, and it can be extended with IPET execution counters yielding the capability to
express flow facts. Parametric flow facts and value constraints can be expressed using the
auxiliary variables of the assertion language. We also proposed a way to include constraints
with call strings, making is possible to express context-sensitive assertions. Special care
was taken to develop the formal semantics of the language, and we proved a theorem about
compositionality of assertions. This theorem is of practical interest since it allows assertions
for a program to be composed from assertions on its parts.

We strongly believe that there is a need for a simple and general code-level assertion
language that is designed from first principles, and has a clear semantics. In the best of worlds,
a standardised such language could be used to exchange code-level information between a
variety of tools including WCET analysis tools. In any case it can help understanding the
underlying principles of annotation languages, and be used to give them a precise semantics.

Acknowledgment. This work was partially supported by COST Action IC1202: Timing
Analysis On Code-Level (TACLe), and by the Swedish Research Council project Contesse
(2010-4276).
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Abstract
The application of formal methods in the development of safety-critical embedded software is
recommended in order to provide strong guarantees about the absence of software errors. In this
context, WCET estimation tools constitute an important element to be formally verified. We
present a formally verified WCET estimation tool, integrated to the formally verified CompCert
C compiler. Our tool comes with a machine-checked proof which ensures that its WCET esti-
mates are safe. Our tool operates over C programs and is composed of two main parts, a loop
bound estimation and an Implicit Path Enumeration Technique (IPET)-based WCET calcula-
tion method. We evaluated the precision of the WCET estimates on a reference benchmark and
obtained results which are competitive with state-of-the-art WCET estimation techniques.
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1 Introduction

In the context of safety-critical embedded software, international regulations such as the
DO-178C standard promote the use of formal methods for software development. Among
them, formal verification provides guarantees about the specification and the implementation
of a program through the use of machine-checked proofs. Instead of relying on a manual
verification effort, the use of tools provides stronger guarantees about the absence of errors
in the proof. This is especially important for reasoning on real languages such as C.

Safety-critical systems are an instance of real-time systems, where programs must respect
given timing constraints. An important measure in real-time systems is the worst-case
execution time of a program. Obtaining a safe WCET estimate (that is, a value at least as
large as the actual WCET) is part of the necessary guarantees for such systems.

Current WCET estimation tools, even when based on sound static analysis techniques, are
not verified. This may lead to bugs being accidentally introduced in the implementation. The
main contribution of this paper is a formally verified WCET estimation tool operating over C
code. It extends previous work on formally verified static analyses ([5] and [4]) by adding our
WCET estimation, based on the classic IPET technique. In our approach, the code of our
tool is automatically generated from its formal specification. Furthermore, machine-checked
proofs ensure the estimated WCET is at least as large as the actual WCET.

Our formally verified WCET estimation tool has been integrated into CompCert [10],
a moderately optimizing, formally verified C compiler usable for critical software. This
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integration provides two major benefits for our tool: first, it allows us to reuse CompCert’s
formal specifications, including formal semantics for C and assembly (CompCert targets
PowerPC, ARM and x86 assembly). Second, it enables the integration of analyses at different
intermediate languages (e.g. high-level loop transformations and low-level WCET estimation).
It also allows us to benefit from CompCert’s optimizations (such as constant propagation) to
improve the precision of our WCET estimates.

In our formal development, we verified two major components of our WCET estimation
tool: a loop bound estimation technique (inspired by one of SWEET’s [7] techniques for
loop bound estimation), based on program slicing and a value analysis, and the generation
of an integer linear programming (ILP) system for WCET estimation via IPET. Combining
these techniques results in a WCET estimation tool together with a machine-checked proof
that the produced WCET estimate is safe. We evaluated the precision and efficiency of our
implementation on the Mälardalen WCET benchmarks [8]. Our results are competitive with
state-of-the-art WCET estimation techniques.

This paper is structured as follows: in Section 2 we present the architecture of our WCET
estimation tool, focusing on the techniques and implementation. In Section 3, we detail
the proof architecture, presenting a high-level view of the final correctness theorem in our
formalization and its main components. In Section 4, we describe the experimental evaluation
and its results. We present some related work in Section 5 and then conclude in Section 6.

2 Architecture of our WCET estimation tool

We developed our WCET estimation tool within CompCert, which is equipped with a
correctness theorem, that is, a proof relating the behaviors of source and compiled code,
which ensures that no bugs are introduced during compilation. CompCert has several
intermediate languages, among them RTL (for Register Transfer Language), where a program
is represented by its control-flow graph (CFG). Our loop bound estimation is performed at
this level. The WCET calculation phase is defined at the lowest level (assembly), closer to the
executable for more precision. The result of our analyses performed in RTL is transported to
assembly thanks to the correctness theorem.

Figure 1 illustrates the architecture of our WCET estimation tool (bottom row) within the
CompCert compilation chain (top row). We start by presenting the loop bound estimation
(Section 2.1). Due to space considerations, we only present an overview of this technique,
referring the reader to [5] for more details.

The other main component in our tool is the WCET calculation step, which generates
an ILP system to produce the WCET estimate (Section 2.2). It uses the result of the loop
bound estimation. Finally, we present some (optional) loop transformations (Section 2.3),
used to improve the precision of our WCET estimate. They are performed on structured
loops, during front-end compilation.

Figure 1 CompCert’s compilation chain (top) and our WCET estimation tool (bottom).
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2.1 Loop bound estimation
Our loop bound estimation technique, inspired by one of those used in SWEET [7], is
composed of three parts: program slicing, value analysis, and loop bound calculation. In
a deterministic and terminating program execution, the same program state cannot occur
twice, i.e. the values of the program variables are unique at each iteration. Thus, we count
the number of different states and use it as an upper bound for the number of loop iterations.

For each loop in the program, the first step consists in performing program slicing by
removing statements not related to the loop header, which is our slicing criterion. This
improves the precision and speed of the following passes. For instance, in the program below,
where the loop header is the loop exit condition (i < 5), program slicing removes statements
which do not affect the value of variable i (considering f free of side-effects).

i = 1;
a[0] = 0;
while (i < 5) {

a[i] = a[i-1] + f(i);
i++;

}

i = 1;

while (i < 5) {

i++;
}

Then, our value analysis computes, for each program variable at each program point,
an interval containing all possible values of that variable, as indicated in the code fragment
below. This interval is a safe over-approximation, and therefore when counting the number
of different possibilities, we will obtain a safe estimate of all possible values. This analysis is
based on abstract interpretation, and it is detailed in [4]. An example program is presented
below, with the result of our value analysis in the right column.

i = 0; j = 0;
while (i < 5)
{

i++;
if (i == 5 && j < 2) {

i = 0;
j++;

}
}

i ∈ [0, 0], j ∈ [0, 0]
i ∈ [0, 5], j ∈ [0, 2]
i ∈ [0, 4], j ∈ [0, 2]
i ∈ [1, 5], j ∈ [0, 2]
i ∈ [5, 5], j ∈ [0, 1]
i ∈ [0, 0], j ∈ [0, 1]
i ∈ [0, 0], j ∈ [1, 2]
i ∈ [0, 5], j ∈ [0, 2]
i ∈ [5, 5], j ∈ [2, 2]

The final stage consists in computing the product of the size of the domains of the relevant
variables for each loop – variables which are live, used and modified inside the loop. Only
these variables may influence the number of loop iterations.

The computed product is a safe loop bound estimation. For instance, in the previous
example there are two relevant variables, i and j. The number of iterations is safely bounded
by the product of the sizes of their intervals at the loop exit condition ([0, 5] and [0, 2]), that
is, 6× 3 = 18 iterations (the exact bound here is 15 iterations). This method also works for
nested loops, by computing the product of outer and inner loop bounds.

2.2 IPET-based WCET estimation
We apply a classic technique, namely IPET [11], to produce an ILP system representing the
program’s execution flow. The objective function to maximize, representing the program
execution time, is T =

∑
i∈code tixi. For each program point i in the program, xi is a static

over-approximation of the number of times i is executed, and ti is the cost coefficient (in
cycles) associated to this program point. In our tool, we currently use a simple cost model
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where ti = 1 for every instruction. Our ILP constraints are obtained from the reconstructed
CFG at the assembly level. The ILP also incorporates the loop bounds previously computed,
as constraints of the form xh ≤ N , where h is a loop header and N is the inferred loop
bound. RTL bounds are correctly transported to assembly thanks to CompCert’s semantic
preservation theorem.

2.3 Loop transformations
To improve the precision of our loop bound estimations, we apply two kinds of loop trans-
formations: loop inversion and loop unrolling. Loop inversion consists in converting while
and for loops into do-while loops. The motivation behind this transformation is the fact
that each kind of loop behaves differently with respect to loop iterations (while and for
loops execute the loop exit condition more often than the loop body). A cost-effective way
to deal with the variety of C constructs is to reduce them to a few general cases and treat
them uniformly, which is done by loop inversion. The code fragment below illustrates the
application of loop inversion to a simple while loop.

while (i < 5) {
f(i);
i++;

}

if (i < 5) {
do {

f(i);
i++;

} while (i < 5);
}

Loop unrolling is used to improve the precision of the WCET estimate for loops containing
conditional branches with different execution costs, for instance in a loop where the first
iteration performs differently from the others. Without loop unrolling, the cost of the longest
branch is considered in each iteration and results in a WCET overestimation. The code
below illustrates an example where loop unrolling helps to improve precision. The values
inside the /*...*/ comments indicate statically known values which will be optimized by
a constant propagation pass. For instance, the second call to the init() function in the
unrolled loop below is unreachable, and therefore eliminated after code simplification, as
indicated in the last column.

i = 0;
do {

if (i == 0) init();
i++;

} while (i < 2);

i = 0;
do {

if (i /*0*/ == 0) init();
i++;
if (i /*1*/ >= 2) break;
if (i /*1*/ == 0) init();
i++;

} while (i /*2*/ < 2);

i = 0;
do {

init();
i++;
//if (1 >= 2) break;
//if (1 == 0) init();
i++;

} while (i < 2);

To avoid excessive unrolling, we only unroll loops with conditional branches (which can
help improve the WCET), and limit the unrolling factor according to the size of the code.

3 Proof of our WCET estimation tool

Our tool has been specified and formally proved correct using the Coq [6] proof assistant.
With Coq’s functional specification and programming language, we proceeded as follows:
first, we specified our functions; then, we defined logical properties about these specifications;
afterwards, we proved these properties using Coq’s interactive proof mechanism, where we
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write the proof step-by-step while Coq checks its correctness; finally, we used the automatic
code generation mechanism available in Coq to obtain our verified tool directly from its
specification. In the end, we obtained an executable software (our WCET estimation tool)
plus its proof of correctness.

The proof of correctness is a proof of semantic preservation. In this section, we define
more precisely our notion of semantic preservation and then we detail the proof architecture
of the main components of the tool. We present what has been proved correct, with an
intuitive notion of the main correctness lemmas, and briefly mention the proof techniques,
i.e. how it has been proved.

3.1 Correctness theorem of the WCET estimation
To define the correctness of a WCET estimation algorithm, we need to define the WCET
itself and then what is a WCET estimate and how to compute it. We do so from a formal
semantics of the CompCert assembly language. We present here some notions necessary for
understanding our proof sketches.

In our semantics, a program state contains the value of each memory variable and machine
register at a given point in the program execution. The semantics defines the evolution of
program states. A well-formed sequence of program states forms an execution trace. We
denote Terminates(P, tr) as the complete execution of program P , producing the execution
trace tr.

We extended the CompCert assembly semantics to take into account the quantitative
aspect of the WCET, adding execution counters for every program point and program
transition (CFG vertex and edge, respectively). These counters correspond to the number of
occurrences of the program point (or program transition) in a given execution trace. They
represent the exact values obtained during execution along that trace.

The execution time T of an execution trace tr is defined as the sum of the execution
counters of every program point (since local costs are considered as 1). The worst-case
execution time of a program P is thus defined as the maximum execution time among all
possible program executions. More formally, we can define the WCET as follows. Let TR(P )
be the set of all possible traces of program P , that is, TR(P ) = {tr | Terminates(P, tr)}.
Then:

WCET (P ) = max
tr∈TR(P )

T (tr)

Note that this is only a mathematical definition: neither our algorithm nor our proof actually
enumerates all program paths.

To perform the WCET estimation, we over-approximate the execution counters using
the xi variables of the ILP system. Our WCET estimate, WCETE , is the sum of all xi

variables. For a WCET estimation tool to be considered sound, all estimates it produces
must be larger than or equal to the actual WCET. This can be stated as follows: for any
terminating program, every estimate tE produced by the tool must be an over-approximation
of the actual WCET.

I Theorem 1 (Correctness of the WCET Estimation).

∀P,∀tr , Terminates(P, tr) ∧WCETE(P ) = btEc =⇒WCET (P ) ≤ tE

WCETE is the actual WCET estimation (partial) function, defined as the composition
of all stages of our WCET estimation tool. A successful estimation is denoted by btEc. The
executable code for WCETE is automatically obtained from its formal specification.
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3.2 Proof techniques
In formal verification, the standard approach consists in formally specifying and proving
every concept and algorithm, once and for all. For instance, this means formally verifying
an ILP solver to prove the correctness of the WCET calculation phase, for every program.
However, the formal verification of an ILP solver is an endeavor which is out of our approach.
In such situations, there is an alternative proof technique which provides strong guarantees
about correctness, called a posteriori validation [14]. It consists in checking the result of a
computation (using a validator) without proving each step of its construction.

More specifically, we used verified validation, which includes a proof of correctness of the
validator itself. This proof ensures that any result accepted by the validator is indeed correct.
This technique is already used in CompCert, for instance during register allocation.

The major advantages of a posteriori validation are (1) manageable proof effort (especially
for algorithms relying on sophisticated heuristics, whose proof might be otherwise too costly)
and (2) the possibility to integrate untrusted code (such as an off-the-shelf ILP solver, instead
of having to prove the solver itself). The trade-off is that validation may incur some extra
computation time during program execution. However, in our case validators were used
in situations where their cost was negligible with respect to the computation time of the
solution itself (such as during ILP computation).

3.3 Correctness proof of the loop bound estimation
To deal with all kinds of loops (such as unstructured loops created by goto statements), the
correctness theorem of our loop bound estimation is defined in terms of arbitrary program
points. In other words, we prove that the execution counters of a given set of program
points are bounded by our estimation technique. In practical terms, these program points
correspond to loop headers, which entails that their loops are effectively bounded.

Since the loop bound estimation is composed of three parts, we defined a correctness
theorem for each of them and combined the proofs using theorems that already exist in
CompCert. The idea behind the correctness of each of these intermediate theorems is
presented in the following.

Program slicing

Informally, the correctness of program slicing is stated as: the bounds computed in the sliced
program are a safe overestimation of the bounds computed in the original program. In other
words, we can transform a program P , obtaining a program slice P ′, compute bounds on the
latter, and safely transpose these bounds to the original program.

More formally, and as an example of a Coq theorem, we present below a simplified version
of the correctness theorem of program slicing. Let P be an RTL program and slice(P,i)
its sliced version with respect to program point i. Let tr and tr’ be valid execution traces
of P and slice(P,i), respectively. Then, any bound B which is correct for the counter of i
in P’ (that is, counter(tr’, i) ≤ B) is also a correct bound in the original program.

Theorem slicing_correctness :
forall (P : program ) (i : program_point ) (tr tr ’ : exec_trace ),

Terminates (P, tr) ∧ Terminates (slice(P,i), tr ’) =⇒
forall (B : int),

counter (tr ’, i) ≤ B
=⇒ counter (tr , i) ≤ B.
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Program slicing is a transformation that preserves the semantics with respect to some
slicing criterion. This property is classically proved by induction on the execution relation
between the original and transformed programs. It amounts to showing that a step-by-step
parallel execution of both programs results in the same execution counters for the slicing
criterion (i.e. the loop header) in both programs.

To compute a slice efficiently, sophisticated data structures (such as postdominator
trees and program dependence graphs) are necessary. To avoid formalizing all of them, we
developed an untrusted program slicer and validated its result, obtaining the same guarantees
while enabling the adoption of more efficient slicers without having to change the proof.
Detailed information about the program slicer and its validation are described in [5].

Value analysis

An intuitive notion of the formal correctness of the value analysis can be stated as follows:
for any interval given by the value analysis, all possible variable values are taken into account.
This is true for each program point and each program variable. To prove it correct, we first
show that each individual execution step (given by the assembly formal semantics) is correct
in itself. For instance, after a CFG branch merge, an interval union of the values of each
branch is a correct over-approximation of the values after the merge.

The major difficulties in proving the value analysis come from issues related to the
complexity of the C language (such as having a large number of operators) and the efficiency
of the analysis. In the presence of loops, the analysis needs to perform several iterations
before it reaches a final (stable) solution. We show that each operator is correctly abstracted
into an interval, and then we show that the final solution is stable with respect to loops.
Both facts entail that the solution is a correct over-approximation.

Loop bound calculation

The proof of the loop bound calculation relates the sizes of the intervals of variable values to
the execution counters in the extended semantics. It is proved by induction on the execution
trace: every time an execution step would allow a program point to exceed its bounds, this
would lead to an infinite loop. The bounds, defined with respect to the result of the value
analysis, contain every possible value for all variables which influence the loop condition. For
instance, if variables i and j have bounds [0, 1], and they are the only variables influencing the
loop exit condition, then these pairs can appear at most once in the execution trace: (0, 0),
(0, 1), (1, 0) and (1, 1). Reaching the loop exit condition a fifth time (e.g. with (i, j) = (1, 1))
would imply an infinite repetition of the same sub trace, leading to an unbounded execution
time. The same reasoning is extended to handle nested loops.

3.4 Correctness proof of the ILP
As mentioned in Section 3.2, we use a posteriori validation to guarantee a correct ILP result.
Our verification is decomposed in three parts, as indicated in Figure 2. The first part consists
in proving that the ILP generation is correct. The second part is the ILP solving, performed
by an external component. The final part is the validation of the solution.

Proving the ILP correct means showing that each ILP variable is an over-approximation
of its corresponding execution counter. Using the flow constraints (including loop bounds),
the proof of correctness is based on reasoning by induction on the execution trace.

The generated ILP is sent to an external ILP solver (such as lpsolve [2]), which returns
an assignment of variable values and the corresponding WCET estimate. We prove two
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Figure 2 Diagram of the components used for the IPET verification.

properties about the result: that (1) it is a solution of the system (a valid assignment), and
that (2) it is the largest solution (i.e. the worst-case).

Verifying property (1) only requires substituting variables with their assigned values and
checking that all constraints are respected. To verify property (2), we show that any larger
solution is infeasible. To do so, we augment the system with the negation of the solution
(i.e. we add

∑
xi > tE , where tE is the solution given by the solver) and then we compute a

Farkas certificate [3], a set of linear coefficients which can be used to prove the infeasibility
of a linear system. This computation amounts to the solution of a system of the same size.

To integrate this technique within the proved framework, we define and prove a verified
validator in Coq, whose inputs are the ILP system, its (untrusted) solution and a certificate,
and whose output is true if the certificate confirms that the solution is valid. The correctness
theorem of the validator ensures that, if the inputs pass validation, then the solution is a
correct WCET estimate. With this final step, we prove the theorem stated in Section 3.1.

3.5 Feedback on the proof effort
Our proof effort resulted in over 15,000 lines of Coq code (half of them being Coq definitions,
and the other half being Coq proofs). The development also contains about 2,000 lines of
manually written OCaml code (which includes code such as the program slicer), and about
the same size of code automatically generated from the Coq development.

Concerning the development methodology, we followed the standard practice in formal
verification, which consists in performing the specification and the proof in parallel. While
performing the proof, several details about the specification need to be reformulated, either
to improve their clarity, or to enable the proof to go through (e.g. there are several ways to
specify a program slicer, but only a few of them lead to efficient proof strategies).

4 Experimental evaluation

We evaluated our WCET estimation tool on the Mälardalen WCET benchmarks. We
considered 15 of the 20 programs evaluated in [5]. The other 5 programs (adpcm, fft1, fir,
insertsort and ludcmp) contain loops which were not bounded due to imprecisions in the
value analysis, such as loops depending on floating-point variables or on memory contents.

We compiled the code to PowerPC assembly to estimate its WCET. To evaluate the
precision of our WCET estimation, we modified the programs having several possible execution
paths (e.g. by setting specific values to input variables) to ensure execution of a worst-case
path. We executed them using the formal semantics to obtain the exact WCET, and then
we compared this value to the estimate obtained on the original program.

Figure 3 presents our evaluation. For each program, we indicate the size of its source code
(LoC ) and we present the relative WCET overestimation, using 3 different configurations:
no loop transformations, loop inversion only, and loop inversion together with loop unrolling.
We also present the analysis times of our tool.
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No Loop Transformations Loop Inversion Inversion+Unrolling
Program LoC Overestimation Time (s) Overestimation Time (s) Overestimation Time (s) Class

cnt 267 18.3% 0.1 2.8% 0.2 3.3% 7.0 OK
cover 640 10.9% 1.0 11.5% 1.0 0.0% 21.8 OK
crc 128 100.2% 0.2 99.5% 0.2 99.2% 1.7 Imprecise
edn 285 141.5% 12.5 110.4% 13.1 110.4% 23.4 Imprecise
expint 157 2601.6% 0.0 2419.7% 0.0 0.0% 8.2 OK
fdct 239 0.0% 0.4 0.0% 0.5 0.0% 0.6 OK
fibcall 72 0.9% 0.0 1.1% 0.0 1.1% 0.0 OK
jfdctint 375 0.0% 0.3 0.0% 0.3 0.0% 0.5 OK
lcdnum 64 50.9% 0.0 55.2% 0.0 11.9% 0.1 OK
matmult 163 11.5% 0.3 0.0% 0.3 0.0% 0.5 OK
ndes 231 12.2% 4.0 3.6% 4.2 3.6% 225.4 OK
ns 535 88.3% 0.1 0.2% 0.1 0.2% 0.2 OK
nsichneu 4,253 106.1% 60.5 106.1% 60.2 106.3% 89.7 Imprecise
qurt 166 168.2% 0.7 165.7% 0.7 215.2% 3.0 Imprecise
ud 161 225.1% 0.6 217.3% 0.6 265.2% 11.3 Imprecise

Figure 3 Experimental results of our WCET tool, given as a relative overestimation w.r.t. the
exact WCET, without and then with loop transformations.

We classify the programs in two groups: OK (WCET estimate with no or small overesti-
mation) and Imprecise (significant overestimation). Comparing the different configurations
confirms that the loop transformations improved the precision of the WCET estimate, some-
times drastically (e.g. ns goes from 88% overestimation down to 0%, thanks to loop inversion,
and expint goes from 2420% to 0% due to loop unrolling). In a few programs, we see a
relative increase, which is due to the decrease in the absolute WCET of the transformed
loops. Overall, the loop optimizations provide a significant benefit in terms of precision.

5 Related work

There are several WCET estimation tools in the literature which perform loop bound
estimation, such as aiT [9], Bound-T [16], oRange [13], SWEET [7] and TuBound [15]. Our
objective is not to develop a novel technique to estimate the WCET, but to formally specify
an existing method and to prove it correct.

Due to its extensive flow analysis, SWEET was the inspiration for our loop bound
estimation. SWEET has two loop bound estimation techniques: one similar to the one we
formally verified, and another one having a context-sensitive mechanism capable of inferring
more precise flow constraints. The trade-off is that, in some cases, it may perform excessive
unrolling and not terminate. Unlike our tool, SWEET is not formally verified.

WCC [12] is a C compiler integrating an external WCET estimation tool. WCC performs
automatic loop bound estimation based on polyhedral evaluation, but it focuses on hardware-
level optimizations, while we focus on the control-flow analysis. WCC is not formally verified
and it relies on other tools (such as aiT) to obtain WCET estimates. Our tool, on the other
hand, only relies on external tools if they can provide certificates. This ensures that bugs in
their implementation do not affect the correctness of our tool.

The CerCo [1] project shares our views about the necessity of formal guarantees in WCET
estimation, but it has a different approach and objective. In CerCo, an original technique
transports annotations from the assembly to the C source program, and then it relies on a
non-verified tool, based on program proof (Frama-C), to produce proof certificates about the
correctness of the WCET estimates. Unlike ours, this approach is not entirely automatic:
after analyzing a program, some verification conditions may need manual proof. Concerning
the hardware model, cost information is based on a simple timing model, like our tool.
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6 Conclusion

We presented a formally verified WCET estimation tool whose correctness theorem ensures
its WCET estimates are safe. Our tool is built within the CompCert C compiler, providing
extra guarantees about the execution time of the code produced by the compiler. There
are now two complementary tools which operate over C code for safety-critical embedded
systems, and these tools are formally verified, which provides unprecedented guarantees.

Our tool relies on the formal verification of different techniques commonly used by
industrial-strength WCET estimation tools: loop bound estimation and IPET. Experimental
evaluation of the precision of our tool indicates satisfactory results. Future work includes
improving the precision of current analyses and adding a more realistic hardware model.
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Abstract
Measurement-based approaches with extreme value worst-case estimations are beginning to be
proficiently considered for timing analyses. In this paper, we intend to make more formal extreme
value theory applicability to safe worst-case execution time estimations. We outline complexities
and challenges behind extreme value theory assumptions and parameter tuning. Including the
knowledge requirements, we are able to conclude about safety of the probabilistic worst-case
execution estimations from the extreme value theory, and execution time measurements.
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1 Introduction

The measurement-based probabilistic timing analysis composes of measurements and statistic
analyses, particularly the Extreme Value Theory (EVT), to outline rare events out of
execution time measurements.

The EVT is a branch of statistics dealing with the extreme deviations from the median
of probability distributions. It seeks to assess, from an ordered sample of a given random
variable, the probability of events that are more extreme than any previously observed. The
EVT applies to execution time and Worst-Case Execution Time (WCET), since it offers
guarantees to have projected the tail of measurement distributions. Thus, EVT provides
what is called safe WCET estimations accounting for rare events.

Real-time relies on WCETs to model task execution behaviors: a real-time system becomes
predictable by always accounting for the worst-case at every task execution. As the input
space for the task code is finite and the hardware behavior is assumed to be deterministic, it
is reasonable to argue about the exact worst-case execution time. The WCETexact and its
estimation C are upper-bounds for any possible execution behavior of that task.

Unfortunately, systems are unpredictable as the environment can be diverse and dy-
namic with multiple possible evolutions in time. Both hardware and software elements
may experience some variability or even randomness1, e.g. multi-processor, cache, branch
predictors, DRAM refresh, interruptions that occur whenever they are most inappropriate,
and the interferences between interacting elements in the system lead to the dependences

1 Randomness is intended in the common sense, as lack of pattern or predictability in events.
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that emphasize unpredictabilities and variability, [7]. WCETexact is in general unknown and
potentially unknowable, and the estimation C could be extremely pessimistic.

Probabilities could model system indeterminacy and unpredictabilities, capturing multiple
behaviors with their frequencies of happening. Such a fine grained system probabilistic
representation reduces the pessimism brought by deterministic models, where only the
estimation of the worst-case is taken into account. Then, the challenge is to guarantee
probabilistic estimations of worst-case execution time, and build with the probabilities a safe
alternative to the deterministic real-time. The EVT has been recently applied with that
purpose, but it is still far from accomplishing such job.

1.1 State of the Art
A measurement-based approach to timing analysis implies a near-zero cost for system coding
and modeling in order to get task execution time observations [2]. The problem consists
of guaranteeing the coverage of all the possible execution conditions and obtaining reliable
WCET estimations.

Ensuring exhaustive execution condition coverage requires knowledge of the system,
slightly reducing the advantage of measurement-based approaches with respect to static
timing analysis approaches [14]. Even if the worst-case execution time is computed using
test generation techniques which ensure feasible path coverage, usual assumptions reduce
the input set variability. This fact decreases complexity, but demands an improved system
model to identify the worst-case execution condition.

More “analytical” approaches to measurement-based timing analysis, make use of the
statistics of extremes [8, 9] to construct predicted WCETs. In particular, recent works have
re-formalized the application of EVT to the WCET problem [2, 1] by making use of an
ad-hoc probabilistic hardware architecture. Those approaches are able to guarantee accurate
probabilistic WCET estimations from measured execution time distributions.
Contributions. In this article, we intend to show challenges and possibilities applying the
EVT to the task execution problem. Thus, we present the EVT resulting distribution for
different system conditions and parameters. Besides, we aim at continuing the discussion
around claimed robustness of the extreme value theory in terms of the guarantees it offers to
the probabilistic worst-case execution time estimation.

The idea of this work is to present some results from a set of experiments to show: i) the
impact of EVT parameters on the resulting worst-case execution time distributions; ii) the
differences between block maxima EVT and peak over threshold EVT, the two approaches
to EVT; iii) a qualitative evaluation of the EVT robustness. We focus on the required EVT
hypotheses and their impact on the resulting pWCET estimations. The whole statistical
analysis framework is to begin a complete and formal discussion about EVT sustainability
to the execution time problem.
Data Setup. For our tests we make use of real traces taken from an Intel(R) Xeon(R)
E5620 2.4 GHz dual socket, each socket with four cores and three levels of cache. The
schedMcore2 runtime support and Linux Trace Toolkit new generation (LTTNG) tracing
framework are applied to guarantee real-time execution and extract accurate execution
time measurements. The task implementations considered are single-path and multi-path
tasks from the Mälardelen benchmark suite3. Out of them we extract the execution time
measurements as traces called “single-path” and “multi-path”, respectively.

2 https://forge.onera.fr/projects/schedmcore
3 http://www.mrtc.mdh.se/projects/wcet
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Furthermore, we apply two artificial execution time random distributions as the normal
distribution and a multi-modal distribution (obtained from 3 normal random variables
combined). They are considered to compare results with realistic measurements. All the
execution time are in nsec, and the number of observations is 100000 per trace.

2 Probabilistic Timing Analysis

Execution Time Profiles (ETPs) C are measured execution time distributions.4 C are empirical
distributions that lack of completion and coverage, which means that from the ETPs it is not
possible to conclude about worst-case execution time. Nonetheless, ETPs are important to
investigate in order to derive execution pattern/trends from which define worst-case execution
conditions, and then worst-case execution times.

2.1 Probabilistic Worst-Case Execution Time
Statistical estimations of the worst-case execution time induce the notion of probabilistic
WCET (pWCET), alternative to the deterministic WCET. pWCET is as distributions of
WCET values Cj , each of them with associated a probability pj of being WCET, C =(

Cj
pj = P{C = Cj}

)
j∈{1,··· ,J}

; pj is the probability that Cj is an upper-bounds of the task

execution time. The following is a possible definition of pWCET.

I Definition 1 (probabilistic Worst-Case Execution Time). Given Ck the distribution of
execution time measured in a certain configuration/condition k. The probabilistic Worst-
Case Execution Time distribution C∗ of a task is a tight upper bound on the execution time
Ck of all possible execution conditions. Hence, ∀k, C∗ � Ck.5

The exact pWCET C∗ would be the tightest upper bound to any Ck, C∗ � C
∗ � Ck, ∀k.

The probabilistic worst-case execution time can also be defined from the exceeding
thresholds and the 1-Cumulative Distribution Function (1-CDF) representation. Given
a probability of exceedence p∗, the value C∗ is the worst-case execution time such that
P{C∗ ≥ C∗} ≤ p∗. Alternative to the pWCET distribution, we can call minimum probabilistic
worst-case execution time the tuple 〈C∗, p∗〉. In real-time and certification issues, safety is
validated with exceedence probability smaller than 10−9. We consider that threshold and
define the pWCET as 〈C∗, 10−9〉, although the following reasoning is open to any threshold.

A pWCET estimation C∗, in order to be safe, has to be greater than or equal to the exact
pWCET, which is unknown, and any measurement Ck. A distribution C∗ is greater than or
equal to a distribution Ck iff P{C∗ ≤ c} ≤ P{Ck ≤ c} for any c and the two random variables
are not identically distributed (two different distributions). For the 〈C∗, 10−9〉 estimation,
we say that it is safe if for each pWCET 〈C, p〉, including the exact one, for all C ≥ C∗,
p ≤ 10−9.

2.2 Extreme Value Theory
The extreme value theory is a branch of statistics dealing with the extreme deviations from
the median of probability distributions. It seeks assessing, from a given ordered sample of

4 We use calligraphic letters to represent probability distributions; non calligraphic letters are for single
values.

5 Total ordering of distributions is guaranteed by comparing distribution probabilities. Thus a distribution
Ci is greater than or equal to a distribution Cj , Ci � Cj , iff P{Ci ≤ c} ≤ P{Cj ≤ c}, for every c.
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Figure 1 EVT applied to different cases.

a random variable, the probability of events that are more extreme than any previously
observed. The EVT allows to estimate tails of distributions and thus explores rare events,
where the WCET and its probabilistic version pWCET should lie. Two are the EVT
approaches possible: Block Maxima (BM) and Peak over Threshold (PoT). The safety of the
statistical pWCET estimation through EVT has always been referred to the independence
and identical distribution (i.i.d.) hypotheses. If both are verified, then the EVT distribution
tail projection can be considered as a safe pWCET estimation. Along this paper we discuss
those assumptions and extend them.

Figure 1 shows the tail projection effect of the EVT once applied to measured distributions.
With the 1-CDF representation we appreciate not strong difference between the measurements
distributions and the EVT distributions. For the scope of the paper, this is what we call
accuracy of the EVT estimations.

2.2.1 Law of sample maxima – Block maxima approach
EVT is notably very useful when one has to work with only a fixed set of data (measurement-
s/observations), not having other info outside those observed. Consequently it is assumed in
the following that a set of i.i.d. samples X1, . . . , XN of a time series (Xt)t>0 (equivalently as
distribution X being the samples from distributions6) is available. The associated ordered
sample set is defined with X(1), . . . , X(N). EVT enables to estimate for some thresholds S
the probability P{(Xt)t>0 > S}.

The main result of EVT [5], is that the maxima of an i.i.d. sequence converges to a
Generalized Extreme Value (GEV) distribution Gξ under some general conditions, which
admits a generic Cumulative Distribution Function (CDF) Gξ(x). GEV distributions are
composed of three distinct types, characterized by ξ = 0, ξ > 0 and ξ < 0 that correspond to
the Gumbel, Fréchet and Weibull distributions respectively. Let us define G, the CDF of the
i.i.d. samples X(1), . . . , X(N).

I Theorem 2. Suppose there exist aN and bN , with aN > 0 such that, for all y ∈ R
P
{
X(N)−bN

aN
≤ y
}

= GN (aNy + bN ) N→∞−→ G(y), where G is a non degenerate CDF, then G is
a GEV distribution Gξ. In this case, one denotes G ∈ MDA(ξ) (MDA = Maximum Domain
of Attraction).

Unless samples of maxima are directly available, it is then required to group the samples
X(1), . . . , X(N) into blocks and fit the GEV using the maximum of each block. While the
aN and bN distribution parameters are found by best fitting the input trace of events, the
grouping into block maximum is somewhat an arbitrary parameter. Although all three

6 A sample, equivalently an observation, comes from a distribution, thus the representation as calligraphic
or non-calligraphic letters are equivalent.
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parameters are influent, we focus on the block size, named b from now on, to show the impact
that it has on the EVT pWCET estimation.

2.2.2 Peak over threshold approach
Instead of grouping the samples into block maxima, PoT considers the largest samples Xi

to estimate the probability P{X > S}. The link between EVT and the distribution of a
threshold exceedence is firstly described in [13]. The following theorem can be obtained:

I Theorem 3. Let us assume that the distribution function G of i.i.d. samples X1, . . . , XN

is continuous. Set y∗ = sup{y, G(y) < 1} = inf{y, G(y) = 1}. Then, the next two assertions
are equivalent: a) G ∈ MDA(ξ), and b) there exists a positive and measurable function
u 7→ β(u) such that lim

u 7→y∗
sup

0<y<y∗−u
|Gu(y)−Hξ,β(u)(y)| = 0. Gu(y) = P{X − u ≤ y|X > u},

and Hξ,β(u) is the CDF of a generalized Pareto distribution (GPD) with shape parameter ξ
and scale parameter β(u).

The expression of the GPD distribution function Hξ,β(x) depends on both ξ and β.
Theorem 3 is in fact useful to estimate a probability of exceedance P (X > S) since it

can be rewritten as P{X > S} = P{X > S|X > u} · P{X > u}, for S > u. A natural
estimate of P{X > u} is given by the empirical mean P̂MC{X > u} = 1

N

∑N
i=1 1Xi>u, from

the Monte Carlo method (MC). With the Theorem 3 and for significant value of u, one
obtains P̂{X > S|X > u} = 1 −Hξ,β(u)(S − u). The estimate of P{X > S} is then built

with P̂POT{X > S} =
(

1
N

∑N
i=1 1Xi>u

)
·
(
1−Hξ,β(u)(S − u)

)
.

The parameter u can be selected arbitrarily, as it affects the accuracy as well as safety of
the EVT PoT estimation.

3 Extreme Value Theory applicability

First we describe what is the independence we are looking for in order to apply the EVT,
then we extend it to other conditions. The meaning of independence we are looking for
is whether individual observations within the same execution trace are correlated with
each other or not. Knowing one observation tells you something about another, in which
case they are dependent; knowing one observation tells you nothing about another, in
which case they are independent. In this section we investigate deeply stationarity and
independences/dependences for execution time traces.

The independence is not a necessary hypothesis for the EVT, since Leadbetter et al. [11]
and Hsing [10] developed EVT for stationary weakly dependent time series. Those two
references also establish statistical tools for that situation. For independent but not identic-
ally distributed random variables, a basic probabilistic result is in Mejzler [12]. In our
EVT investigation, we start considering and supporting less constraining hypotheses than
independence, such as stationarity and extremal dependences. We present tests to verify
them and the guarantees that can be provided to the results of the extreme value theory
with such assumptions.

3.1 Stationarity
Given execution time data sets, to verify stationarity the autocorrelation can be computed
with lag plots, or turning point test can be performed. These are to model the relationship
that exists between measured observations.
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Table 1 Independence, stationarity and identical distribution tests.

runs test Kolmogorov-Smirnov test autoregressive Ljung-Box test
single-path 0.506 0.02804 AR(1) 0.07153
multi-path 0.6832 0.5434 AR(7) 0.2169
normal mono-variate 0.5755 0.8222 AR(0) 0.4593
multi-variate 0.729 0.4653 AR(0) 0.9825

Hypothesis testing means deciding, from a number of observations, whether one should
consider a property to be true or not. The resulting ρ-value tells whether accept or reject
the null hypothesis H0. Normally, ρ > 0.05 validates the null H0, while ρ ≤ 0.05 rejects H0,
thus validates the alternative H1.

With no mean of formalism, a process is stationary if its mean, variance and autocovariance
structure do not change over time. An autoregressive (AR) model is a representation of
type for random process: i) AR(0) denotes the sequence of observations without dependence
– white noise, ii) AR(1) is process with a positive ϕ parameter where only the previous
observation in the process and the noise term contribute to the output, and so on. We make
also use of the Ljung-Box (LB) test, which examines whether there is significant evidence for
non-zero correlations between lags. Large ρ-values from the LB test suggest that the series is
not stationary, thus there is no trend between consecutive observations; this would support
independence.

A test applied in [2] aims at proving that samples are independent by looking for
randomness. This is called runs test, or Wald Wolfowitz test, where randomness is sought
within the observed data series by examining the frequency of “runs”; a “run” is a series of
similar responses. Furthermore, we consider the Kolmogorov-Smirnov (KS) test to verify the
identical distribution hypothesis and check if the observations follow the same distribution.

Table 1 describes the hypothesis verification tests and their results with respect to the
input measurements. For runs test, KS test and LB test, results are given as ρ-value.
Noticeably, real execution traces are independent (single-path) or stationary (multi-path).
The EVT can be applied to real cases, since their randomicity is enough for the EVT
application. This means that there would not be the need for extra randomicity, as for
example with random replacement cache policies, [2, 1].

3.2 Dependence of the extreme samples
While showing that just stationarity is needed to apply EVT, we can still get independence
as far as extreme samples are concerned. Indeed, EVT can still be applied on time series
with temporal dependence if the extreme samples are sufficiently separated in time. In that
case, extreme samples can be considered as independent. To estimate the dependence level
of extreme samples, it can be interesting to compute the extremogram of the samples.

An extremogram is a measure of extremal dependence for time series measurement [3].
Contrary to the usual methods for characterizing the dependence of samples, it only focuses
on their extreme values. Let us firstly consider the theoretical definition of an extremogram.

The extremogram ρ(h) of a stationary time series (Xt)t≥0 is defined by: ρ(h) =
lim

n→+∞
P{X0>an,Xh>an}

P{X>an} , with an a sequence such that P{|X | > an} ≈ n−1. The variable h
can be seen as a correlation length.
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Figure 2 Extremogram of single-path time series and multi-path time series examples.

In practice, if one assumes that the consecutive samples (Xt)1≤t≤N are available, an

estimator ρ̂(h) of the extremogram ρ(h) has been proposed as ρ̂(h) =
∑N−h

t=1
1(Xt>a,Xt+h>a)∑N

t=1
Xt>a

,

where 1(Xt>a,Xt+h>a) is equal to 1 if (Xt > a,Xt+h > a) and 0 otherwise. The threshold a
is experimentally set as the 0.98-quantile of the samples.

Several remarks can be made on the estimator ρ̂(h). Firstly, this estimator varies between
0 and 1. When ρ̂(h) −→ 1, the extremal samples are highly correlated. In that case, group
of consecutive extremal samples can be observed in time. De-clustering algorithm is then
often required in order to apply safely EVT [6]. When ρ̂(h) −→ 0, the extremal samples are
uncorrelated and can arise as individual sample in the time series. EVT can then be applied
with more confidence.

Figure 2 shows the extremogram to single- and multi-path cases. The extreme samples of
these 2 time series have a limited correlation, ρ̂(h) < 0.1, and de-clustering is not required.

4 Extreme Value Theory approaches

The idea behind the EVT is close to a black box approach which is applied to avoid knowledge
of the system, thus overcoming the complexity that today’s systems have. The advantage
that EVT offers to pWCET estimation is about the relatively small cost and good accuracy
of the pWCET estimations. Unfortunately there exists complexity due to parameter selection.
Indeed, in both BM and PoT cases, there are parameters to be defined (respectively b and
u), and their impact to the resulting pWCET has to be considered. In this section we depict
the differences that exist between the two forms of EVT applied to task execution time.

4.1 EVT parameters
To evaluate the impact of block size and threshold parameters we apply EVT by changing
those parameters within a certain range. For BM, the size of the blocks b is such that
b ∈ {5, 10, 20, 50, 100, 200}. For PoT, the thresholds are selected via the quantiles q(p), where
p is the quantile probability. Thus, it is u ∈ q(0.7), q(0.8), q(0.9), q(0.95), q(0.98), q(0.9999).
Figure 3 compares the parameters effects with four different input distributions and the
1-CDF representations. For the empiric distributions there is more accuracy from the EVT
estimations, at least within a certain exceeding probability range [1, 10−6]. While in the
single-path case the PoT appears to be more accurate7, in case of multi-path execution
traces, it is BM which is more accurate. The effectiveness of the EVT depends on the shape
of the input distribution, and it is not possible to conclude about one EVT approach being
better than another. To note how increasing the parameters, i.e. increasing the block size or
the threshold (the quantile), the quality of the EVT estimation degrades not linearly.

7 Accuracy is empirically defined with respect to the measurements, since the exact pWCET is unknown.
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Figure 3 EVT pWCET distributions and values varying block size and threshold.

Table 2 10−9 exceeding thresholds with different EVT parameters compared with the measured
value.

max BM b = 5 BM b = 10 BM b = 20 BM b = 50 BM b = 100 BM b = 200
single-path 13755 14388 14312 14184 13886 13894 13918
multi-path 6750 41812 26353 19065 6779 6820 6920

max PoT p(0.7) PoT p(0.8) PoT p(0.9) PoT p(0.95) PoT p(0.98) PoT p(0.9999)
single-path 13755 13758 13758 13769 14006 14729 13752
multi-path 6750 6861 6861 6974 34563 4.94 ∗ 108 6851

max u, p(0.7) u, p(0.8) u, p(0.9) u, p(0.95) u, p(0.98) u, p(0.9999)
single-path 13755 13623 13636 13684 13695 13701 13751
multi-path 6750 3985 6697 6712 6714 6715 6832.33

In Table 2 it considered the pWCET tuple definition 〈C∗, 10−9〉. Here is understandable
the difficulty that EVT has in accurately estimating the pWCET with extreme parameters,
such as small b and PoT with few values above the threshold (u = 0.9 or more). Estimated
C∗ at limit cases are either very far from the measured values, i.e. multi-path with u = 0.95,
u = 0.98, and b ≤ 20, or very close to the measured values, i.e. b = 100 and b = 200.
Both PoT and BM pWCET estimation remains safe with no underestimations. But while
increasing b the pessimism decreases, and perhaps the capability of embedding rare events
decreases, increasing u it is the accuracy of the pWCET estimation to reduce resulting into
more pessimistic pWCET estimations. In case of multi-path those trends are more evident
due to the multi-variate distribution the EVT has to handle. In there, interesting are the
results for u = 0.98 and u = 0.9999, respectively with a huge pWCET estimation and a
maybe too small one. Critical cases have to be avoided in order to PoT safe and sound. Last
three rows of the table are the thresholds used by the PoT at the respective quantiles, to
give an idea about where are the estimated pWCETs.

Both table and figure describe outline the complexity in selecting the best parameter,
which depends on the input measured distribution.

4.2 EVT robustness: estimation of relative error
Bootstrap [4] is a well-known statistical method that enables to estimate characteristics of a
statistics. It can notably be applied to estimate relative error and confidence interval of the
pWCET distribution and quantiles obtained with EVT.

For that purpose, it is firstly needed to re-sample the data X1, . . . , XN to obtain a
bootstrap re-sample X∗1 , . . . , X∗M . The term X∗j is a sample set of size N and is determined
from X1, . . . , XN by random sampling with replacement. From the bootstrap re-sample
X∗1 , . . . , X

∗
M , one can then estimate M pWCET distributions, pWCET1, . . . ,pWCETN and

the associated 10−9-quantiles obtained with EVT. The relative errors or the 95% confidence
interval of these quantities are then easily computable.
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Figure 4 pWCET and associated relative of single-path and multi-path time series examples.
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Figure 5 EVT path variation and frequency impact.

Let us apply bootstrap to estimate relative errors and confidence interval for single-
and multi-path series with M = 100. The pWCET distribution and its corresponding
relative error are plotted in Figure 4 for single-path series. The 10−9 quantile of the pWCET
distribution is equal to 13766 with [13743, 13797] as 95% confidence interval. The pWCET
distribution and its corresponding relative error are plotted in Figure 4 for multi-path series.
The 10−9 quantile of the pWCET distribution is equal to 6922 with [6730, 7454] as 95%
confidence interval. In both single- and multi-path series, the pWCET distribution obtained
with bootstrap is smooth since it is estimated with a mean operator. The accuracy of the
pWCET distribution decreases with execution time, indeed the probability associated to
pWCET becomes very low when execution time increases. This probability is thus badly
estimated since the number of samples N is constant.

4.3 EVT robustness: completeness

In this section we show some of the limits of the EVT once applied to the worst-case execution
time problem. It is due to the knowledge of the system: in order to be effective (and safe),
the EVT has to know which are the worst case execution conditions.

In Figure 5 we have applied the artificial multi-modal distribution as input to the EVT.
The multi-modal distribution has been obtained combining three normal distributions with
different mean values. In our test we have changed the execution time inputs. “first” is
the measurement trace obtained from the normal distribution with the smallest mean. The
EVT applied to that trace of observations is labeled “first”. “first-second” is the case where
the EVT is applied to a trace obtained with the least mean and second least mean normal
distributions. “all” has the whole set of observations from the three distributions. We notice
that, just with partial information (not the whole multi-modal distribution but portions of
it), the EVT is not able to safely infer the extremes, and thus pWCETs.

The EVT needs complete set of inputs (depicting the measurement conditions) in order
to be safe: EVT robustness depends on the knowledge of the system and its execution
conditions, including variability sources due to input variability and path coverage.
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5 Conclusion

With this work we begin a formal analysis of the extreme value theory applied to the
probabilistic worst-case execution time problem. We first present the problem as well as the
EVT and its two possible approaches, i.e. block maxima and peak over threshold. Their
applicability together with assumptions are verified, proving that the i.i.d. hypothesis is
too strict, while stationarity and extremal dependences are allowed for safe EVT pWCET
estimations. Furthermore, we provide initial verification means to EVT complexity and
parameter selection, outlining the impact that parameters have on the pWCET estimation.
Finally, we introduce the notion of robustness for EVT estimations.

In the future, we intend to continue in those directions aiming at listing the EVT limits
and its potential. This helping the developer better choosing between measurement-base
approach and static timing analysis, and perhaps combining both in an efficient hybrid
timing analysis.
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Abstract
The real-time systems community has over the years devoted considerable attention to the impact
on execution timing that arises from contention on access to hardware shared resources. The
relevance of this problem has been accentuated with the arrival of multicore processors. From the
state of the art on the subject, there appears to be considerable diversity in the understanding of
the problem and in the “approach” to solve it. This sparseness makes it difficult for any reader
to form a coherent picture of the problem and solution space. This paper draws a tentative
taxonomy in which each known approach to the problem can be categorised based on its specific
goals and assumptions.
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1 Introduction

At a conceptual level, the intent of timing analysis is to provide, at low-enough cost, a
WCET bound for programs running on a given processor. Ideally, the transition to multicore
processors should allow industrial users to achieve higher levels of guaranteed utilization,
together with attractive reduction in energy, design complexity, and procurement costs.
Unfortunately however, the architecture of multicore processors poses hard challenges on
(worst-case) timing analysis. The interference effects arising from contention on access to
processor-level resources in fact need far greater attention than in the singlecore case, as
much greater is the arbitration delay and state perturbation that resource sharing may cause,
and consequently much greater is the “padding” factor that needs to be captured in the
computed bounds to compensate for the relevant effects.

From a bottom-up perspective of the system architecture, the utilization that individual
tasks make of many of those shared resources at the processor level is too low to justify a
dedicated use of them. Efficient use of those resources, which is needed for decent average
performance, requires sharing. However, resource sharing shatters tightness in timing analysis
and endangers the trustworthiness of the bounds computed with it.

Different approaches (angles) have been considered to address the timing effects of
contention for shared resources. However, there is evident lack of common understanding of
the problem space, in terms of processor features, and of the assumptions made to solve it.
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Contribution. This paper aims to contribute to the community understanding of how
bounds can be computed for the execution time of software programs running on processors
with shared hardware resources. Special attention is given to capturing the assumptions
made by each considered technique, as a way to gage the applicability of its results. The
authors’ intent is to capture the principal angles of attack to the problem, as they emerge
from the state of the art, flag-shipped by specifically representative strands of work, without
necessarily achieving exhaustive coverage of the literature. In the authors’ opinion, whereas
the number of works on multicore resource contention is vast and growing, the community
lacks a common understanding of the big picture, which would be needed to determine which
new techniques are needed to best address the problem from the perspective of benefiting
application.

2 A tentative taxonomy of state-of-the-art techniques to analyse the
timing impact of resource contention

Under the umbrella term of resource contention, we capture the various forms of timing inter-
ference that software programs suffer owing to access to shared hardware resources. Notably,
our analysis does not cover the contention on access to software resources. Furthermore,
contentions arising from parallel execution of a software program fall outside of our analysis
and are recognized in Section 4 as an important emerging ramification of the problem.

The challenge of contention in multicore processors has been addressed with various
approaches. This paper classifies them in four broad categories, dependent on where they
seem to direct their focus: (1) on system considerations, which address the contention
problem top down, from the software perspective; (2) on WCET considerations, which take
the opposite view, studying how contention phenomena affect the timing behaviour of the
software; (3) on architecture considerations, which devise processor features and arbitration
policies that help achieve composable timing behaviour; and on (4) Commercial Off-The-Shelf
(COTS) considerations, which propose processor-specific ways to deal with processor-specific
contention and arbitration features. We discuss the approaches in each category in isolation
and we break them down into subgroups where appropriate.

2.1 System-centric techniques
System-centric techniques take a top-down approach to the problem. Those techniques take
an off-chip, hence coarse-grained, perspective. Off-chip resources have longer latency and
also a higher degree of visibility from the software standpoint than on-chip resources. For
instance, at software level one can easily tell where a set of addresses is mapped to memory,
but it is (much) harder to determine which data item is (or is not) in cache at a given time.
In fact, the cache impact has characteristics that can be captured, from different angles
and with different precision, with techniques that we classify in different categories of our
taxonomy (system-centric and WCET-centric). Besides this cross-boundary overlap, the
techniques in this category predominantly focus on off-chip resources.

We single out three angles worthy of specific discussion: timing analysis frameworks;
access scheduling and allocation; and works on COTS architectures.

2.1.1 Timing analysis frameworks
In general, these techniques assume that on-chip shared resources (e.g. core-to-cache bus,
caches, etc) are replicated or partitioned across cores, so that software programs allocated
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to a core suffer no contention on access to on-chip resources. These techniques also assume
that analysis frameworks model off-chip shared resources in isolation and provide worst-case
access timing bounds for them. The impact of contention is only considered for the off-chip
resources and it is captured compositionally1, when the WCET of the software program,
determined assuming no contention, is increased by delay factors that consider the sources of
off-chip contention in the presence of co-runners.

The shared resources considered in this class of approaches are assumed to process one
request at a time. It is also assumed that the corresponding services cannot be pre-empted
(or split or segmented). It is further assumed that the requests are synchronous so that the
requesting task is stalled while the access request is served. In reality, some requests are
asynchronous not blocking the calling task execution. The analysis focuses on individual tasks,
whose program units are logically divided into blocks for which maximum and minimum
access bounds and execution time bounds are derived.

For approaches in this class, the access to the shared resource is assumed to be arbitrated
by either a TDMA bus [9] or a dynamic arbitration bus [29] or else an adaptive bus arbiter [10].
For TDMA buses, focus is on determining the worst-case alignment of the requests in the
TDMA schedule. As the bus schedule is static, co-running tasks do not affect one another’s
execution time, which makes their execution time composable with respect to the bus. The
fact that service is assumed run-to-completion and that requests do not overlap simplifies
the problem.

For dynamic arbiters, the workload that a task places on the shared resource affects the
access time of the co-running tasks, which breaks time composability. This type of arbiters
has generated a research line of their own. Several authors [4, 29] propose how to derive
bounds for the number of accesses per task in a given period of time. The timing analysis for
an individual task therefore depends on the request workload generated by the co-runners in
that time duration. Interestingly, while the number of accesses that a task generates to the
resource can be considered independent of the co-runners as long as caches are partitioned,
the task’s frequency of access depends on how often the co-runners delay the task’s requests.
The cited models capture that dependence.

Adaptive arbiters (as in, e.g., FlexRay) exhibit a window with per-requester slot scheduling
combined with a window in which requests are dynamically arbitrated; this trait makes them
show characteristics that we have seen above as distinctive for static and dynamic arbiters.

The authors of [30] provide a useful survey of how time-deterministic approaches to bus
arbitration and scheduling for multicore processors can be captured, compositionally, by
timing analysis techniques. The cited work also presents benchmark-based empirical evidence
of the degradation that TDMA arbitration causes to average-case performance in comparison
to other techniques with acceptable characteristics in terms of time determinism.

2.1.2 Task scheduling and allocation

The state-of-the-art approaches to multicore scheduling and schedulability analysis that
match the techniques which fall in this category can be grouped in two sets: those that
ignore contention issues at their level and leave it to WCET analysis; and those that consider

1 We use the term compositional to signify that some property of an individual part of the system can
only be determined on (assumed) knowledge of the constituents of the system. This is in contrast with
the term composable, which regards those properties of an individual part that can be determined
considering that part in isolation and hold true on composition into the system [28].
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it as a factor of influence to task allocation, which is adjusted to attain increased schedulable
utilization.

There essentially exist three classes of scheduling algorithms, which differ in the way
they assign tasks to cores [5]. Partitioned and global scheduling fall on the respective
extremes of the spectrum: the former statically maps tasks to cores, so that a task can only
be scheduled on the core it has been assigned to; the latter allows tasks to migrate jobs
from one core to another and does not leave any core idle if there is some work to be done
(work conserving), at the expense of possibly costly task (job) migrations. The former risks
considerable under-utilization of the processing resources, especially for tasks with medium
to high loads. The middle of the spectrum is occupied by clustered or semi-partitioned
algorithms, which – with various techniques and for different goals – only allow or cause
statically-set groups of tasks to migrate within statically or dynamically determined subsets
of cores.

Contention oblivious. The principal works on scheduling algorithms and associated schedulab-
ility analysis for multicore processors assume that the WCET of all tasks is given in input.
Thus, they assume that the WCET bounds may be determined before decisions are made on
task mapping to cores and on scheduling at run time. This is tantamount to postulating
that the WCET bounds are composable, that is to say, free from variations determined by
the presence of contenders in the system. Ironically, the only plausible way in which WCET
bounds can actually be made to be composable for use in schedulability analysis for multicore
processors is by increasing them compositionally, by a factor determined by given patterns of
conflicts that upper bound the actual contention delays suffered at run time. In essence, the
approaches of this kind escape the intrinsic (and painful) circularity between the dependence
of WCET analysis on knowledge of the contenders and the dependence of schedulability on
knowledge of the WCET of the tasks in the system, by inflating the WCET budgets so that
they can always be trusted to upper bound the actual costs.

Contention aware. Techniques such as [32, 12] focus on the shared last-level cache as one
of the main resources in which contention occurs. The cited works benefit from hardware
proposals that split the cache into different ways or allocate program data into different pages
(colors) so that each task is limited to use a subset of the sets in cache, thereby reducing
conflicts.

These works often assume partitioned scheduling for software programs, so that conflicts
can be determined in a less pessimistic way, and focus their attention on devising cache-aware
allocation algorithms that consider the mapping of tasks to cores determined by partitioning.
Some of the works focus on how to assign colors (i.e. set partitions) to the tasks. It is also
the case that works in this class do not address the contention occurring in other shared
resources like the memory.

Other works [23] build on hardware proposals that control the interaction in several
hardware resources (e.g. on-chip bus, cache and memory controller) in addition to the cache.
These proposals also consider task allocation and scheduling.

2.2 WCET-centric techniques
WCET-centric techniques determine the impact of contention in the access to shared resources
as part of WCET analysis. For multicore architectures, shared resources include cache
memories, buses and memory controllers, but some approaches have also been designed to
support intra-core resource sharing (e.g., pipeline and functional units in multithreaded
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cores [3]). The objective of WCET-centric techniques is to derive safe stall times that can be
accounted for at instruction-level timing analysis. We distinguish between the approaches
that consider all the competing threads/tasks together to exhibit the possible interleavings of
their respective accesses to the shared resource, from those that exploit a static allocation of
slots among cores. In the latter category, some contributions include WCET-based strategies
to optimize the mapping/scheduling of threads/tasks to cores to optimize the global WCET
and/or to improve schedulability.

2.2.1 Joint analysis of concurrent tasks/threads

One way to identify how contention may impact the WCET of a task is to combine the
analyses of concurrent tasks to identify where they can interfere. Two kinds of interference
are considered here: spatial (tasks share storage, e.g. a cache) and temporal (tasks share
bandwidth, e.g. a bus). Both incur additional delays.

Techniques that address spatial contention start by perform individual tasks analyses, then
determine how contention affects their results. More precisely, they determine which cache
lines used by one task might be replaced by another task in a shared L2 instruction [14][33] or
data [11] cache. The analysis of contention does not account for the exact respective timings
of tasks (then could be valid for any schedule, provided all possible concurrent tasks are
known at analysis time). However, [33] improves the accuracy of the analysis by considering
constraints on task scheduling (non-preemptive, priority-based, with task inter-dependencies),
which allows bounding tasks lifetimes and limits the opportunities for contention.

To account for temporal conflicts and derive instruction timings, possible interleavings
of (statically-scheduled) threads must be explored. Several approaches use timed automata
to represent both the tasks and the state-based behaviour of hardware components. All
these automata are combined and model checking techniques are used to determine the
WCET though a binary search process. [6] focuses on the shared L2 cache with fixed cache
miss latency. A shared bus with First-Come-First-Served (FCFS) or TDMA arbitration is
analysed in [19]. The weakness of these approaches is in the huge number of states to be
handled.

2.2.2 Independent analysis of tasks/threads

Some techniques leverage the deterministic guarantees offered by the underlying hardware
on access to a shared resource. Thanks to such guarantees, they can analyse the WCET of
one task/thread independently of the concurrent workload.

The impact of arbitration delays on a TDMA bus with uniform slot size is explored
in [31]. The cited work presents an approach to evaluate the misalignment of accesses with
TDMA slots (TDMA offsets). A TDMA-composable system is assumed: arbitration delays
neither impact instructions that do not access the bus nor the bus access time (except for
the arbitration delay).

Some of the hardware solutions to enforce access guarantees do not offer equal oppor-
tunities to all threads. Cache partitioning techniques may allocate partitions with different
sizes [23]. Bus arbiter may grant a different number of slots to each core, as in [18] or
[26]. Those techniques use these mechanisms to increase the performance achievable by
combined task-to-core allocation and scheduling decisions, especially in the case of unbalanced
workloads (with variable demand levels to the shared resource). Performance benefits are
obtained as a result of reducing the WCET bound predictions for the affected tasks. As we
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noted in Section 2.1, our taxonomy is not clear-cut enough to place some of these techniques
uniquely in one class, as they might arguably also belong to the system-centric group.

2.3 Architecture-centric techniques
Several hardware design paradigms have been proposed to deal with the inter-task interference
caused by contention for shared hardware resources. Four topical approaches can be singled
out in this group: the time-triggered architecture [36]; PRET [37]; CompSOC [8]; and
MERASA [38].

One of the differentiating elements for these approaches is whether they achieve compos-
ability at the level of the WCET bounds that they allow computing or at higher levels of
abstraction. The objective of the former solution is to support determining WCET bounds
for individual tasks in isolation, independently of the activity of their co-runners. When that
is guaranteed, the execution time of a task may well suffer variations caused by contention
effects caused by some of its co-runners, but its WCET estimate stays valid. With the
latter type of solutions, composability is achieved by regulatory mechanisms operating at
run time, and thus with effect on the task execution time. Those regulatory mechanisms
ensure that the activity of the co-runners cannot affect the response time of the hardware
shared resources. This form of composability may place more requirements on the processor
hardware than the former approach. In general it requires that the access time to a hardware
shared resource stays always the same irrespective of the actual load of the system. To that
end, a resource that might respond ahead of time is stalled until the agreed latency for the
request is reached.

From another angle, it is worth noting that a trade off arises as a consequence of the
observation that the pursuit of time composability always comes at the cost of some (over-
provisioning) pessimism. The effect of this (static) over-provisioning allows tightening the
WCET bounds, because they eradicate sources of variations, but at the cost of renouncing
the true meaning of time composability (as independence from the presence of contenders),
which is central to the incremental verification needs of integrated architectures such as
Integrated Modular Avionics (IMA).

Somewhat orthogonal to the discussion above, the focus of several proposals is to upper
bound the access time to hardware shared resources, either indirectly, by guaranteeing
pre-determined bandwidth on access to the resource, or directly by ensuring bounds on the
access time (comprised of the wait time preceding access upon request, and the actual service
time).

The techniques of interest from this angle vary for stateless and stateful resources. Stateless
resources have an access time that is not or only very modestly dependent on execution
history. A single-cycle latency bus is a typifying example of resources of this kind. If the
bus had a two-cycle latency, then the service time of a request might depend on whether
the preceding request was sent the cycle before the current one gets ready. Caches are a
difficult exemplar of stateful resources. This is because the state-dependent effect builds up
with history of execution, which causes analysis to have to keep track of the full history of
access. Truncated information requires conservative assumptions to be made. This difficulty
explains why the typical solution proposed for caches consists in splitting its space in small
areas assigned to individual tasks, so that history becomes much smaller (and free of conflicts
with co-runners) and thus easier to trace. This can be done dividing the cache into different
banks or different ways [22].

The most prominent stateless resources on which the real-time community has focused are
network-on-chip (NoC) and memory controllers. For the interconnection network, proposals
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exist which range from from simple buses [35] or rings [20] to more complex solutions such as
those described in [41]. All share the goal to provide some type of bound to the longest time
a request has to wait to get access to the resource. For the memory controller, proposals
with the same goal exist [1, 21], though the actual solutions are more complex since the state
retention is higher.

2.4 COTS-based techniques
The goal of several works focusing on real hardware is to analyse how amenable a given
multicore design is for real-time analysis. To that end authors analyse different shared
resources as well as their impact on execution time. For many resources the manuals of the
processor under analysis rarely provide all the required information to analytically derive
those bounds. As a result, the way in which the authors derive bounds is different from
previous approaches and it is based on experimentation on the specific architectures under
analysis [25, 39, 17]. These works include analysis of the FreeScale P4080 and some FPGA
versions of the Aeroflex Gaisler LEON4.

Another set of works is carried out at an analysis level providing understanding of the
timing behaviour of hardware shared resources and the challenges they bring to timing
analysability [13, 27, 42]. Finally, some of the works on software-cache partitioning (page
colouring) have been done for processors like the ARM Cortex A9 [12].

3 Critique

This section reviews the techniques captured in the taxonomy presented in Section 2 against
multiple criteria including: (1) the presence of overlaps between them; (2) the presence of
gaps among them; (3) the realism of their assumptions; (4) the challenges in taking that
technique to industrial use; and (5) the relation between the confidence on the bounds
determined by timing analysis and the assurance guarantees suitable for the application
domain.

Much like the proposed taxonomy, the review discussed here is not meant to be exhaustive.
It therefore does not cover all criteria for all techniques. Instead, it only aims at singling out
specific problematics that we consider to need particular attention by the prospective user
and further study by the research community.

System-centric techniques. The principal limitation with this class of techniques stems
from their resting on two strong assumptions: that programs can be statically subdivided
into (super)blocks for which bounds on resource usage can be derived; and that only one
shared resource needs attention, which also does not support split transactions. The former
restricts applicability to programs that can be divided into blocks for which maximum and
minimum access bounds and execution time bounds can be derived. Further, working at
block level may increase pessimism because every block is given a single worst-case cost
value, which may be higher than the actual cost in the worst-case traversal of that block
as taken by the program. The latter assumption reduces the applicability of the solution
against increasingly common hardware.

For dynamic arbiters, the critical factor is in the dependence of their timing analysis
on the request workload generated by the co-runners of the program of interest in a given
time duration. On the one hand this trait reduces pessimism since the durations in which
conflicts on access may occur can be better determined. On the other hand, it breaks time
composability and resorts to compositionality. The latter defect may be a serious impediment
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to incremental verification, which is a prerequisite to high-criticality domains (e.g., avionics).
Budgeting in advance for the co-runners is obviously one countermeasure to that, but at the
direct cost of over-provisioning.

WCET-centric techniques. The main challenge for this class of techniques arises from
having to find tractable ways to analyse increasingly complex hardware. The abstract
interpretation approach on which those techniques rely is inherently exposed to the state
explosion problem, which is dramatically worsened by the way in which the architecture
of modern processors cause the timing behaviour of several resources to exhibit possibly
large jitter, extremely sensitive to the history of execution [42]. This dependence obviously
cumulates bottom-up and manifests in very complex ways at software level.

As an example we consider a TDMA bus, whose timing behaviour is easy to model with
three main parameters: window size, number of contenders, and slot size per contender.
Interestingly, the state space for even such a simple model is already not negligible: when the
exact time of an access request cannot be determined in fact, a conservative assumption must
be made on when access will be granted (which inflates pessimism) or multiple candidate
access times are considered, which causes multiple states to be contemplated upward in the
analysis. As more complex NoC architectures are adopted by modern multiprocessors, more
parameters will be needed to model the sources of contention, with inordinate increase in
the complexity and cost of the analysis tools.

Architecture-centric techniques. A recurrent question on the viability of the techniques
in this class is whether the hardware design that they propose in the intent to favour time
analysability, will ever reach the market. This is a question of economics that equally applies
to all research domains that propose new hardware architectures. However, it is especially
important to the real-time systems domain, which holds a tiny niche of the market size, in
comparison to consumer products, without sufficient critical mass to swing the prevailing
design criteria from optimized for the average case to well-behaved in the worst case.

This is a long-known challenge for the real-time systems community. Fortunately, per-
severance and authority have shown able to win some battles, so that some of the proposed
designs (e.g., cache partitioning) are indeed retained in real processors. Our view here is
that the changes proposed for the bus and the memory controller are simple enough so that
they can be implemented in production with moderate effort and cost, for tangible benefits
on timing analysability. Whether or not that will actually happen remains to be seen.

In general all hardware approaches assume processor designs without timing anomalies. It
is interesting wondering, whether processor can be made simple enough to assure freedom from
timing anomalies, without this causing detriment to the attainable performance. Architectural
solutions will have to be devised that combine those two objectives harmoniously, which is not
the case yet with the dominant approaches to multi- and manycore processor architectures.

COTS-based techniques. The techniques that belong in this class face the challenge that the
architectural properties needed to provide full time isolation or time predictable interaction
among processor cores cannot be had owing to the lack or inaccuracy of specification
information or IP restrictions. Various approaches have been proposed to live with the
consequent uncertainty, which all require building confidence arguments that accord with the
requirements and practices of the application domain. The work in [34] makes an interesting
review of how safety assurance guarantees relate to stipulating bounds on execution time.
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4 Other aspects of interest

In this section we briefly touch upon two other aspects that, for different reasons, are tangent
to questions addressed in this paper. One aspect, parallel programming, intrinsically enabled
and called for by multicore processors, presents a novel, emerging challenge to bounding
contention effects. The other aspect, with interesting potential and important ramifications,
stems from shifting the angle of attack to the timing analysis problem, from finding a single
value, the smallest possible computable upper bound, for all possible executions of a software
program, to determining a probability function whose tail can be cut at the exceedance
threshold of interest to the system.

Parallel applications. Communication of data in message-passing and synchronisations in
shared-memory programming induce delays that must be accounted for in execution times.
The focus is on deriving the WCET of the longest thread.

Two kinds of synchronization exist. (1) Mutual exclusion is very similar to accessing a
hardware shared resource that can serve a single thread at a time. Computing the worst-case
stall time of a thread at a critical section is analogous (when threads are served in a FIFO
order) to computing the worst-case delay to a round-robin bus [15]. Stall times can then be
integrated to instruction-level timing analysis. Another approach is to use timed automata
and a model checker, as in [6]. In [7], a shared-memory parallel programming language is
introduced and a fix-point analysis is able to identify all the possible thread interleavings at
critical sections. (2)Progress synchronisation includes barriers as well as condition signalling
and blocking message passing. Collective synchronisations (barriers), where all threads
meet, are easier to consider since the goal is to compute the WCET of the longest thread,
i.e. the last one to reach the barrier [15]. For point-to-point synchronisations (condition
signalling or message passing) however, stall times depend on the respective progress of the
threads. In [40], parallel applications where threads communicate through message passing
are considered. A joint analysis is proposed, where the analysis of worst-case communication
times is integrated into the analysis of the global WCET. The approach consists in merging
the control flow graphs of parallel threads, then adding edges to model the synchronisations
(dependencies) related to sending/receiving messages.

Some system-centric approaches have been extended to parallel fork-join applications
and decide altogether the allocation of threads’ memory in caches, the scheduling of threads’
accesses to the shared bus and the scheduling of the threads themselves to the cores [2].

The probabilistic approach. Timing analysis techniques can be broken down into determin-
istic, which produce a single WCET estimate, and probabilistic that produce multiple WCET
estimates with associated exceedance probabilities. It is noted that our discussion above has
focused on standard (deterministic) timing analysis techniques. While both deterministic
and probabilistic approaches try to reach time predictability, the former do so by advocating
for hardware and software designs that are deterministic in their execution time, while the
latter advocates for hardware and software designs that have a randomized timing behaviour,
to produce WCET estimates that can be exceeded with a given probability.

The probabilistic approach deals with contention by means of time-randomised bus
arbitration policies [16] as an alternative to deterministic policies such as round robin.
Similarly, in [24] it is proposed a time-randomised shared cache for which impact of contention
among co-running tasks can be determined. The main feature of this cache is that it does
not split the cache, either into ways or sets, to prevent the interaction among co-running
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tasks. Instead, it controls how often tasks evict data from cache as a way to bound the
impact of contention on tasks’ WCET estimates.

5 Conclusions

A wealth of relevant literature addresses the problem of finding a bound on the timing
effect of contention on access to hardware shared resources in modern multicore processors.
The industrial practitioner, and the researcher alike, who approach that body of knowledge
without a preconceived solution in mind, may have serious difficulties in seeing the “big
picture” of what options are possible and at what consequences. This paper sketches an
initial taxonomy of the principal approaches that appear in the state of the art, and discusses
gaps and overlaps among them.
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Abstract
We study static timing analysis of programs running on GPU accelerators. Such programs follow
a data parallel programming model that allows massive parallelism on manycore processors. Data
parallel programming and GPUs as accelerators have received wide use during the recent years.

The timing analysis of programs running on single core machines is well known and applied
also in practice. However for multicore and manycore machines, timing analysis presents a
significant but yet not properly solved problem.

In this paper, we present static timing analysis of GPU kernels based on a method that we call
abstract CTA simulation. Cooperative Thread Arrays (CTA) are the basic execution structure
that GPU devices use in their operation that proceeds in thread groups called warps. Abstract
CTA simulation is based on static analysis of thread divergence in warps and their abstract
scheduling.
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1 Introduction

In this paper, we study the timing of data parallel kernels executed on SIMT machines. The
SIMT execution model (Single Instruction Multiple Threads) is typical for the abundant
GPUs (Graphics Processing Units) that have become the main platform for massively parallel
computing. In addition to their original purpose, graphics, GPUs are used as general purpose
computing devices for applications covering a wide range from super computing to ordinary
desktop computing.

GPUs are used also in some real-time applications, but their wider application for such
purposes is limited by the lack of solid timing analysis methods. Especially considering
safety critical applications, methods giving run-time guarantees are a must. Many embedded
systems found in cars, airplanes, medical instruments, etc. are safety critical. As traditional
single-core processors have ceased to scale effectively in their performance, multicore and
manycore processors are needed in order to cope with the increasing computational demands
of novel applications.

In this paper, we consider the timing of kernels executed on SIMT machines and focus
on worst-case execution time (WCET) analysis. We make the following contributions:

we present an abstract model of SIMT execution that is suitable for WCET analysis,
a static WCET analysis method for SIMT executed data parallel kernels, and
a WCET analysis of an example kernel that captures typical GPU computation.

We have structured our presentation in the following way. We start with a background
section that describes GPU computation. In our background description, we use a short
example kernel that we use also as a running example through the paper. We continue
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by describing our method in a section that is divided into subsections according to the
main phases of our method: static divergence analysis, abstract warp construction, and the
abstract CTA simulation itself. After that, we present an abstract GPU machine that we
call mini-SIMT and present how our example program can be executed on the machine. This
is followed by our WCET analysis applied to the program. We end our paper with a short
review of related work and our conclusions.

2 Background

Graphics Processing Units (GPU) can be used as accelerators for general purpose computing
in a setting that is is called GPGPU computing. GPUs are not stand-alone devices. They
need a host computer to operate.

The basic operation in GPGPU computing consists of normal thread execution on the
CPU of the host computer. Computationally heavy operations are launched to the GPU
to be executed. Launches follow the abstract architecture of GPU devices, which forms the
basis of GPGPU programming as exemplified by CUDA and OpenCL. The programs in such
languages include code for both the host CPU and the accelerator GPU [7, 6].

Abstractly, GPUs consist of several processors with several cores each. Each of the
processors has a fast local memory that its cores share. The processors communicate with
each other by using a slow and large global memory.

GPU launches consist of a massive number of threads that are explicitly partitioned
into blocks by the programmer. The processors on a GPU execute the blocks in any order
and without synchronization until no blocks remain unexecuted. We will ignore the block
structure of GPGPU programs in the rest of this paper. A broader view can be found, e.g.,
in [1].

2.1 Kernels
The GPU side code of GPGPU programs consist of kernels. A kernel defines the computation
done by a single thread during a launch. The kernels belonging to the same block operate
in a shared memory. For simplicity, we assume a launch to consist of a single block in the
following and the GPU to consist of a single processor.

TriangleSum (Listing 1) is an example of a kernel. It is somewhat artificial, but it
contains in a compact form many of the properties that are typical for GPGPU programming.
The kernel is written in a language resembling the C language variant used in OpenCL.

To use the kernel, it must be launched. Consider, for example, a 16x16 matrix m to be
processed by the kernel into a triangle column sum vector v of length 16. On the CPU side
we would execute the code in Listing 2 to make a launch.

The launch causes 16 threads to be started on the GPU accelerator as indicated by size
between the angle brackets that mark the call as an accelerator call. The 16x16 matrix m is
in the row major layout.

Inside the kernel, we have a special variable Tid that is defined by the system as the
number of the thread executing (e.g., if thread 0 evaluates Tid, it gets the value 0). As i is
initialized to value Tid and incremented by c (i.e., 16), the reference m[i] will cause each
thread to access the element (Tid, j) of the matrix, where j is the iteration number.

As can be seen from the code, different threads execute different number of iterations of
the for loop. Only the upper right triangle of the matrix gets accessed. Further, only every
second row will be summed because of the condition d % 2 and an adjustment will be added
to some elements because of the condition d % (Tid + 1) == 0.
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Listing 1 An example kernel.
__kernel TriangleSum (float* m, float* v, int c) {

int d = 0; /* each thread has its own variables */
float s = 0; /* s is the sum to be collected */
int L = (Tid + 1) * c;
for (int i = Tid; i < L; i += c) {

if ((d % (Tid + 1) == 0)
s += 1;

if (d % 2)
s += m[i];

__syncthreads (); /* assuming compiler support for this */
d += 1;

}
v[d -1] = s;

}

Listing 2 A launch of the example kernel.
size = 16;
float m[size] = {0, .., 255};
float v[size ];
TriangeSum <size >(m, v, size );

By default, the threads are free to proceed at their own pace. However, to synchronize
the threads the programmer has added a barrier. All active threads will wait each other at
__syncthreads() and proceed only after all of them have reached the barrier. After the
loop, each thread writes the adjusted sum of one triangle column to the result vector v.

2.2 SIMT execution model
GPU devices use the Single Instruction Multiple Threads (SIMT) execution model. In the
model, threads are grouped into warps of constant size. For example, with the warp size
8, our example launch would consist of two warps: one for threads 0...7 and the other for
threads 8...15.

In the SIMT model, each warp is processed by executing the same instruction for all
of its threads. In this respect, the SIMT model resembles typical vector computing (the
SIMD model). For example, the addition s += m[i] is a single instruction but does eight
operations in parallel.

However, all threads have their own program counter. Thus, the processing of threads can
differ if there is branching. In the SIMT execution model, the different progress of threads is
called thread divergence.

Simple if statements can be handled by predicated execution. For example, the value
of the if statement condition d % (Tid + 1) == 0 can be computed in parallel for all the
threads in a warp and a corresponding execution mask can be formed. The following addition
statement has effect only for the threads marked active by the mask.

Nested branching, such as nested if statements, is more complicated to handle. For
example, the code in Listing 3 has two nested divergences. Because of p1, some threads are
executing s3. The others are split by p2 to execute the different subbranches.

To handle such structures, stack-based reconvergence mechanisms are typically used by
GPU hardware. Let the condition p1 to evaluate to the vector (1, 1, 0, 0, 0, 0, 1, 1). Thus,
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Listing 3 Nested branching
if (p1) /* A */

if (p2) s1 /* B */
else s2

else s3 /* C */
... /* D */

A = 11111111

C = 00111100B = 11000011

D = 11111111

R−pc

− 11111111

MaskNext−pc

A

R−pc

− 11111111

MaskNext−pc

D C 00111100

D

D B 11000011

R−pc

− 11111111

MaskNext−pc

D C 00111100

D

A B C D

R−pc

− 11111111

MaskNext−pc

D

stack top

Program flow Active threads

Initial stack contents

Stack after divergence

After branch completion

After reconvergence

Time

Figure 1 Thread divergence handling.

threads 3. . . 6 should evaluate the else branch labelled C. The GPU hardware pushes the
mask 00111100 onto a reconvergence stack together with the PC value C and reconvergence
PC value D. The reconvergence PC value is needed to mark the instruction at which the
divergent threads meet. The processing sequence is illustrated in Figure 1.

2.3 Avoiding memory latencies
Execution can be stalled by an instruction reading memory. GPU hardware hides such
latencies by allowing multiple warps to be run concurrently. All the warps from a single
block are collected into a Cooperative Thread Array (CTA). The scheduling hardware of
the GPU keeps track of ready warps of a CTA, i.e., warps that are not stalled because of
memory accesses (or other reasons). Typically round-robin scheduling policy is used and the
scheduler is able to keep in pace with instruction issuing.

Considering our example program, the benefit of round-robin scheduling can be easily
seen. By default, the warps get the same amount of execution cycles from the processor. The
warps executing TriangleSum will progress almost with the same speed through the code
and will also reach the synchronization barrier __syncthreads() almost simultaneously at
each iteration. Thus, the barrier wait time is not very large.

We define occupancy as the number of ready warps. The memory latency hiding is
dependent on the occupancy of the processor. As the warps may be partially filled, occupancy
may differ from thread utilization.1

1 Occupancy is usually defined as the percentage actual_warps/max_warps (but we will use the warp
count) and current hardware can support 64 warps of 32 threads (but we will use modest numbers).
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3 WCET estimation method

In describing our WCET estimation method, we concentrate on features related to the SIMT
execution model and omit the other features (e.g., pipelines and caches). We define the total
time spent in execution as

Texec = Tinstr + Tstall

where Tinstr is the number of cycles spent executing instructions and Tstall is the number of
cycles spent in instruction execution stalls because of local memory waits.

Even assuming a simplistic hardware model, Tinstr cannot be directly counted from the
code, because the SIMT execution model allows divergence. Considering an if-else structure,
the execution time is

Tif_else =


Ttrue_branch if all threads converge to true
Tfalse_branch if all threads converge to false
Tfalse_branch + Ttrue_branch if threads diverge

Considering loops, the execution time of a warp is the time of the longest thread in
the warp. Thus, for control structures, the execution time is dependent on divergence. To
estimate the WCET statically, we need static divergence analysis.

Warp scheduling hides the memory latencies. In the worst case, all warps execute a
memory read on consecutive cycles and the stall is

Tstall = max(0, Tmemory −Nwarps)

where Tmemory is the memory access latency and Nwarps is the warp occupancy. Note that
Tstall is directly added to the total execution time, not to individual warps.

To get tight timing estimates for SIMT executed programs, we must be able to statically
estimate occupancy. We base the estimation on a method that we call abstract CTA
simulation. Abstract CTA simulation needs abstract warps to be constructed.

In the following, we will first describe divergence analysis, then abstract warp construction,
and finally abstract CTA simulation.

3.1 Static divergence analysis
We base our static divergence analysis on GSA (Gated Single Assignment). It augments
programs with value chaining information and resembles SSA (Static Single Assignment).
Instead of the φ-function of SSA it uses three special functions to build the chains:

γ function is a join for branches. γ(p, v1, v2) is v1 if the p is true (or else v2).
µ function is a join for loop headers. µ(v1, v2) is v1 for the 1st iteration and v2 otherwise.
η is the loop exit function η(p, v). It chains a loop dependent value v to loop predicate p.

GSA allows control dependencies to be transformed into data dependencies whose chains
we can follow. We say that a definition of a variable is divergent if the value is dependent on
the thread. If there are no divergent definitions for a branch predicate, we know the branch
to be non-divergent. The details of the method can be found in [3].

3.2 Abstract warp construction
For static WCET estimation, we need timing information of the warps to be executed. We
do this by constructing abstract warps. Abstract warps resemble the traditional control flow
graphs. An abstract warp A = (V,E) is directed graph. The nodes V have three node types:
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Time nodes describe code regions with two values. Tinstr is the upper bound of the
instruction execution time consumed. Tshift is the upper bound of the variation of the
instruction execution time caused by thread divergence.
Memory access nodes that mark places where memory access stalls may happen.
Barrier nodes that mark places where barrier synchronization must happen.2

An abstract warp is constructed from the code in a recursive bottom-up way by applying:

procedure construct(program element P)
case P
is compound statement S1, S2: R = Join(construct(S1), construct(S2))
is if statement for S1, S2: R = LUB( construct(S1), construct(S2))
is loop statement with body S: R = Cons_loop_edge(construct(S))
is memory read statement S: R = Cons_flow_edge(Time(S), Memory())
is memory barrier statement S: R = Cons_flow_edge(Time(S), Barrier())
is some other S: R = Time(S)

where R is the return value. The constructor Join merges S1 and S2 by summing the Tinstr
and Tshift values, if they are statically resolvable. The constructor LUB merges S1 and S2
by selecting the worst-case Tinstr and the Tshift values, if they are statically resolvable. The
constructors Time, Memory, and Barrier construct simple nodes.

3.3 Abstract CTA simulation
We use abstract CTA simulation to get execution time estimates for the kernels whose
structure we can statically resolve. Instead of exhaustively executing all warps with thread
masks, convergence mechanisms, and all possible scheduling interleaving choices, abstract
CTA simulation considers a single abstract warp. It uses static estimation to understand the
effects of multiple warps, thread divergence, memory latencies and scheduling choices.

Our abstract CTA simulation assumes the hardware to use round-robin scheduling for
warps. This means that without divergence between the warps, the warps will be executed
as convoys. A convoy is the execution of the same instruction by all warps in a single
round-robin cycle. We define divergence from this scheduling as convoying shift TSHIFT ,
which is the program counter distance among threads within a single round-robin cycle.

The WCET calculation is based on cumulative sum of instruction execution and memory
stall times during the abstract CTA simulation. In the simulation, we use bounds for
occupancy: Nlow is the lower bound and Nhigh is the upper bound.

procedure simulate(abstract warp A, warp count WC)
TWCET = 0
Nlow = Nhigh = WC

proceed through A = (V, E) until termination
let v ∈ V be the current node
case v
is time node:
TWCET += Nhigh ∗ Tinstr
TSHIFT += Tshift

2 Note that barriers can cause deadlocks in actual programs. We assume programs to be deadlock-free.
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is barrier node:
reset TSHIFT and update Nlow and Nhigh

is memory access node:
add the access to LOG
increment TSHIFT according to Nlow
update Nlow and Nhigh

flush accesses from the LOG

The simulation of memory access interleavings is done by keeping a LOG, whose length
is limited by TSHIFT and the branching encountered during the simulation. When we flush
an access from LOG, we increment TWCET by Tstall . In computing Tstall , we pessimistically
consider the interleavings that can happen within the LOG. Thus, instead of considering
whole programs (see, e.g., [5]), we consider interleavings within a small window.

In actual hardware, warps can execute a kernel without synchronization. Our interleaving
mechanisms can handle only modest convoying shifts. We can accurately simulate some loop
types. Most importantly, these include the loops for which the loop branch is non-divergent.

4 The mini-SIMT machine

We will use a simple machine language (inspired by [3]):

Labels (L) ::= l ∈ N
Variables (V) ::= Tid ∪ {v1,v2,...}
Instructions ::=
- (jump if zero/not zero) | bz/bnz v, l

- (unconditional jump) | jump l

- (store into shared memory) | store vx = v

- (load from shared memory) | load v = vx

- (arithmetic operation) | binop v1 = v2 op v3
- (immediate copy) | const v = n

- (re-convergence) | sync
- (synchronization barrier) | barrier v1, v2

A mini-SIMT program executes kernels with SIMT execution model with multiple cores
and uses round-robin scheduling to schedule ready warps. For each warp, the machine
keeps a synchronization stack holding frames (lid ,Θdone, lnext ,Θtodo), where lid is the con-
ditional branch that caused the divergence, Θdone is the set of cores that have reached
the synchronization point, lnext is the instruction where the set of cores Θtodo will resume
execution.

The machine pushes frames at branches (bz or bnz) and pops them at reconvergence
points, but uses a separate reconvergence instruction sync to mark the reconvergence points
(instead of pushing reconvergence PC onto a stack). Only load can cause memory stalls. The
barrier instruction unschedules the warps that have reached the barrier until v2 threads
are the same barrier (identified by v1).

The mini-SIMT machine code for our example kernel and its control flow graph is given
in Figure 2, whose right side lists excerpts of the kernel executed with 4 threads in a single
warp, instruction execution time of 1 cycle, and memory latency of 10 cycles
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l00: const d = 0

l02: const i = Tid
l03: binop L = c + 1
l04: binop L = Tid * L
l05: binop L = L + c
l06: binop Tp = Tid + 1

l01: const s = 0

l07: binop p = i − L
l08: bz p, l23

l09: binop p = d & Tp
l10: bz p, l12

l12: sync

l13: binop p = d % 2
l14: bnz p, l17

l15: load x = i
l16: binop s = s + x

l11: binop s = s + 1

l23: sync
l24: binop x = d − 1
l25: binop x = x + v
l26: store x = sum

l17: sync
l18: barrier 0, b
l19: binop b = b − 1
l20: binop d = d + 1
l21: binop i = i + c
l22: jmp l07

Cycle PC: instruction mask
00 l00: const 1111

...
25 l15: load 1111
26 l15: stall
27 l15: stall

...
33 l08: bz 1111
34 l23: sync 1000
35 l09: binop 0111

...
86 l08: bz 0001
87 l23: sync 0001
88 l24: binop 1111
89 l25: binop 1111
90 l26: store 1111

Figure 2 The control flow graph of our translated example program (left) and parts its execution
with 4 threads (right), 1 = active thread, 0 = passive thread. Note the pushes and pops by sync.

5 An example of analysis

To clarify our method, we consider the program in Listing 1 to be executed on a mini-SIMT
machine with 16 threads in 4 warps. In the following, we will first do divergence analysis for
the kernel, then we will construct an abstract warp that describes the kernel, and finally, do
abstract CTA simulation for it.

5.1 Static divergence analysis

We use GSA in the divergence analysis. Consider the branch at l08. GSA places a µ function
at l07 that chains the branch predicate to the definition (l02: const i = Tid). As Tid is
a divergent value, the loop is divergent. Similarly, the branch at l10 is divergent because its
predicate is chained to the definition (l06: const i = Tid + 1).

The branch at l14 is not divergent. GSA places a µ function at l07 that chains
the branch predicate to the definitions (l00: const d = 0) and (l20: const d = d + 1).
Both definitions are non-divergent. Thus, the branch itself and also the memory access
controlled by the branch are non-divergent.

5.2 Abstract warp construction

Our abstract warp construction basically follows the CFG given in Figure 2. The number of
instructions in the basic blocks give us the related Tinstr values, because of the execution
time of 1 cycle for all instructions. The construction algorithm splits the block of l15 in two
and places a memory access node in between, because the block contains a memory read.
Similar splitting happens for the block of l18, into which a barrier node is added.

Some nodes can be merged together. Especially, the path (l09, l10, l11, l12, l13, l14,
l15) is interesting. It is a worst-case path with divergence at l11. The corresponding time
node gets the values Tinstr = 7 and Tshift = 1. The resulting abstract warp is in Figure 3.
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shift
T       = 0

instr
T       = 7

instr

shift
T       = 0

T       = 2
instr

T       = 7

shift
T       = 1

instr

shift
T       = 0

T       = 3
instr

shift
T       = 0

T       = 4

instr

shift
T       = 0

T       = 4

Figure 3 Abstract warp of the example kernel, where boxes are time nodes, the circle is a memory
access node, and the bar is a barrier node.

5.3 Abstract CTA simulation
The abstract CTA simulation begins from the leftmost node in Figure 3. As the warp width is
4, we have 4 warps. Thus, the first node adds 7 ∗ 4 = 28 cycles to TWCET and sets Tshift = 0.
The simulation processes similarly for the next time node.

After that we encounter a divergent branch. Because of the static loop branching predicate
we are able to resolve that the iteration counts for the warps are (4, 8, 12, 16). Thus, we
proceed with Nlow = Nhigh = 4.

TSHIFT = 1 when we encounter the memory access node. The memory access will set
TSHIFT = 3. Such increasing shift would cause problems later in the simulation, but the
barrier node will reset TSHIFT to 0 and flush the read from LOG by increasing TWCET by
10−Nlow = 6 stall cycles.

After four iterations, one warp will diverge from the loop and the simulation continues
in the loop with Nlow = Nhigh = 3. After exiting the loop, the simulation continues with
Nlow = 1 and Nhigh = 4 for the remaining block yielding a final estimate TWCET = 804. By
using a cycle accurate simulator we obtain 688 as the true execution time.

6 Related work

The timing analysis of programs running on single core machines is rather well known. A
survey of the WCET methods applicable for such purposes can be found in [8]. The common
methods can be roughly divided into measurement-based methods and methods based on
static program analysis. The static program analysis methods typically divide the WCET
analysis problem into three sub-problems: flow analysis, processor behavior analysis, and
WCET estimate calculation. Some methods have applied model checking, e.g., [4].

Recently, there has been a rising interest on WCET analysis targeting multicore platforms.
For example, Gustavsson et. al. [5] present a timing analysis of multithreaded programs
on a multicore computer. Their approach applies abstract execution to rather unrestricted
programming model. Chattopadhyay et. al. [2] present a unified framework for WCET
analysis. The framework is to tackle the problems that have arisen, when the classical
approaches have been applied to multicore machines. There has been some work addressing
WCET analysis of GPU computing, such as [1].

7 Conclusion

In this paper, we present static timing analysis of GPU programs based on a method that
we call abstract CTA simulation. Abstract CTA simulation is based on static analysis of
thread divergence in warps and their abstract scheduling.

Our method has obvious limitations. The static divergence analysis can give false positives
that lead to over-estimation of execution time. Further, our handling of loops is simplistic.
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For divergent loops it can give pessimistic timing, especially when there is complex branching
in a kernel.

However, according to our own experience in GPGPU programming, typical kernels are
simple in their structure. Many kernels do computation in a map-reduce style, where the
mapping phase is essentially non-divergent and the reduction phase is divergent. Often,
the actual occupancy is high for the mapping phase and low for the reduction phase. Our
approach fits the analysis of such kernels.

Despite its short comings, our methods is very scalable. It can be used to analyze the
WCET of very large numbers of parallel threads. This is caused by the fact that the abstract
CTA simulation captures efficiently the timing of parallel threads. Abstract CTA simulation
spends time in resolving iterations, but typical GPU kernels are short as they rely on massive
parallelism.

Currently, our method lacks formal proof of correctness. Further, its applicability is
limited by the fact that it has not been integrated with a traditional WCET estimation of
the CPU side. Thus only kernels can be analyzed instead of full programs. We see these
aspects as the most important topics for further research.
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Abstract
To derive safe bounds on worst-case execution times (WCETs), all components of a computer
system need to be time-predictable: the processor pipeline, the caches, the memory controller,
and memory arbitration on a multicore processor. This paper presents a solution for time-
predictable memory arbitration and access for chip-multiprocessors. The memory network-on-
chip is organized as a tree with time-division multiplexing (TDM) of accesses to the shared
memory. The TDM based arbitration completely decouples processor cores and allows WCET
analysis of the memory accesses on individual cores without considering the tasks on the other
cores. Furthermore, we perform local, distributed arbitration according to the global TDM
schedule. This solution avoids a central arbiter and scales to a large number of processors.
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1 Introduction

The trend in processor design is to increase performance by including more and more
processing cores in a single chip. This has been accompanied by a shift from bus-based
interconnects to some form of packet switched networks-on-chip (NoC), because chip-wide
single-cycle communication has become infeasible. Typically the on-chip processors share an
external memory for large shared data structures and for program code. A dedicated NoC is
often used for this communication. The NoC and the shared memory are shared resources
and in general purpose processors they are a source of timing interferences between tasks
executing on different processor cores.

To enable static worst-case execution time (WCET) analysis of applications executing on
a multicore processor, both the individual processor cores and the shared memory system
(including the NoC) need to be time-predictable [19]. This paper presents the design for timing
predictability of the memory interconnect for a chip-multiprocessor. The presented memory
system offers time-composability where the execution times of different tasks executing on
different processor cores are independent of each other.

Figure 1 shows the multicore platform, as it is developed in the T-CREST project. Several
processor cores, the Patmos processors [22], are connected to two NoCs: (1) a core NoC for
message passing between processor-local scratchpad memories [7, 21,24], and (2) a memory
NoC – the focus of this paper – that connects all processor cores to the shared, external
memory via the memory controller.

The main idea of the presented design is to use TDM scheduling from end to end,
such that read or write transactions towards the shared memory are transmitted from the
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Figure 1 Multicore architecture with several processor cores connected to two NoCs: one for
core-to-core message passing and one for access to the shared, external memory.

initiating processor core to the memory without any dynamic arbitration or buffering. Only
the processor-local memories (caches and/or scratchpad-memories) buffer any data. By
injecting transactions according to a global schedule, they can be propagated in a pipelined
fashion even without flow control. The TDM slots and the TDM schedule are defined by the
sequence of equally sized read or write transactions towards the memory.

Compared to implementations that use source rate control and dynamic arbitration, the
use of TDM results in both a simple hardware implementation and a straightforward WCET
analysis. Furthermore, executing this global TDM schedule distributed at the processor cores
results in distributed arbitration that scales well with increased number of processor cores.
Compared to other TDM memory arbiters we consider pipelining in the design and account
for the pipeline delays in the timing parameters. This is the contribution of the paper.

The paper is organized in 6 sections: Section 2 presents related work. Section 3 presents
the design of the memory NoC and Section 4 the resulting timing of memory transactions
and TDM slotting. Section 5 presents the implementation and evaluation of the memory
NoC in an FPGA. Section 6 concludes.

2 Related Work

The design of time-predictable multicore systems is attracting increasing interest. Cullman et
al. discusses some high-level design guidelines [3]. To simplify WCET analysis (or even make
it feasible) the architecture shall be timing compositional. That means that the architecture
has no timing anomalies or unbounded timing effects [12]. The Patmos processor, used in
the proposed time-predictable multicore, fulfills those properties. For multicore systems the
authors of [3] argue for bounded access delays on shared resources. This is in our opinion
best fulfilled by a TDM based arbitration scheme, as presented in this paper.

From a structural point of view, communication between processor cores and external
memory is different from inter-core communication. While the former follows a many-to-one
communication pattern, the latter requires many-to-many communication. Consequently,
approaches to make many-to-many communication predictable [5, 13, 24] are not directly
comparable to the work presented in this paper.
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The proposed memory NoC is similar to “mesh-of-trees” NoCs [2, 17] with a single tree.
These NoCs perform 2:1 arbitration in the nodes of the trees such that a request that is
blocked by a request on the other input will win arbitration in the next cycle. Therefore,
arbitration follows a distributed round-robin scheme.

Different arbitration schemes for a time-predictable memory access of a processor and a
video controller are evaluated in [15]. The work has been extended to build a time-predictable
multicore version of the Java processor JOP [16]. A TDM based memory arbitration is used
and the WCET of individual bytecodes of the Java processor take the possible positions within
the TDM schedule into account. Therefore, some latency introduced by TDM arbitration can
be hidden. In contrast to our distributed TDM memory arbiter, the JOP TDM arbiter was
designed to include the read response within the TDM slot. This design limits the possibility
to pipeline the arbiter.

The initial memory connection in the T-CREST project is the so-called Bluetree [6].
Bluetree is a tree of 2:1 multiplexers where the default behavior is that one of the inputs has
priority over the other. To avoid starvation of the lower priority input, a counter controls the
maximum number of priority messages when a low priority message is pending. This design
is optimized to deliver good average-case performance and guarantee worst-case responses.
Compared to the Bluetree, our design is not work conserving, but has a shorter worst-case
latency guarantee, considering all other parameters the same.

An approach close to our work is presented in [18]. The proposed multicore system is
also intended for tasks according to the simple task model [9]. The local cache loading for
the processor cores is performed from a shared main memory. Similar to our approach, a
TDM based memory arbitration is used. The memory wheel of the PRET architecture [11] is
also a form of TDM arbitration. PRET’s memory wheel arbitrates between the six hardware
threads of processor rather than between different processor cores. Therefore, scalability is
not a major concern.

Gomony at al. argue for coupling the NoC TDM slotting with the TDM arbitration
within a memory controller [4]. This is in line with our argument. However, compared to
their design we completely avoid buffering in the NoC and in the memory controller.

Schranzhofer et al. [23] present a timing analysis for TDM arbitration. They model the
case where memory accesses are allowed only at the beginning and end of a task, the case
where accesses are allowed at any time, and a hybrid of these two cases. Kelter et al. [8] also
present a timing analysis for TDM arbitration. They compare several variants that trade off
precision and analysis effort. They find that their approach can lead to significantly lower
WCETs for timing-composable systems than for non-composable systems.

Most TDM based designs consider equal slots for all processor cores. However, it is easy
to envision a schedule where some cores get more than one slot per TDM period. One can
optimize this allocation with the WCET of the individual tasks running on the different
processor cores. However, it has been shown that this rather coarse grain optimization is not
very efficient [25].

3 Memory Network-on-Chip Design

Figure 2 shows the memory NoC design. As this NoC serves a many-to-one communication
flow between several processor cores and a single memory controller, it is organized as a
tree. Each processor core is connected via a standard interface, the open core protocol
(OCP) [14], to the network interface (NI). The NIs are connected by a tree of merge circuits
downstream towards the memory interface (MI) and back upstream for the return data. The
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Figure 2 The distributed TDM based memory NoC.

MI is connected to the on-chip memory controller, which itself is connected to the external
memory.

The memory NoC supports burst read and write transactions. For single word/byte
writes, write enable signals for individual bytes are supported. When the external memory
is a DRAM device that needs refresh, a refresh circuit is added to the memory NoC at the
same level as a processor core. Therefore, refresh consumes one TDM slot, but has no further
influence on the memory access timing.

Each core local NI executes the core relevant part of the global TDM schedule. When
the time slot for a core arrives and a memory transaction is pending, the NI acknowledges
the transaction to the processor core and the transaction data freely flows down the network
tree. No flow control, arbitration, or buffering (except pipeline registers to improve clock
frequency) is performed along the downstream path. The memory request arrives at the MI
and is translated back to an OCP transaction request to the memory controller. Here OCP
handshaking is generated, but the TDM schedule is organized such that it is guaranteed that
the memory controller and the memory are ready to accept the transaction.

On a read transaction, the result is returned from the memory to the memory controller
and from there back upstream to the processor cores. The returning to the processor cores
can be a simple broadcast to all processors, which itself can be pipelined. Alternatively, it
can be organized as a broadcast tree as shown in Figure 2. Due to the pipelining, several
read requests might be on the fly in the memory NoC, memory controller, and memory.
Therefore, a processor might see a read return from a former read request by a different
processor after sending the read request.

To identify the correct return data there are two possibilities: (1) either tag the memory
transaction with the core number or (2) use time to distinguish between the early and false
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Table 1 Timing parameters for the memory interface, the memory controller, and the memory
NoC.

Parameter Meaning

tb Burst transfer length
tr2b Read command to read burst delay
tb2e Write burst to command end delay
trd = tr2b + tb Read transaction timing (at the memory interface)
twr = tb + tb2e Write transaction timing (at the memory interface)
tctrlrd , tctrlwr Non-pipelinable time delays in the memory controller
tslot = max(trd + tctrlrd , twr + tctrlwr) Minimum slot length

N Number of processor cores
T = N × tslot TDM period (with equal memory bandwidth)
Ldown Memory NoC and controller downstream latency
Lup Memory NoC and controller upstream latency

twcrd = T − 1 + Ldown + tslot + Lup Worst-case read transaction time
twcwr = T − 1 + tslot Worst-case write transaction time
tbcrd = Ldown + tslot + Lup Best-case read transaction time
tbcwr = tslot Best-case write transaction time

and the correct read responses. With a tagged transaction and pipelining in the memory
controller and memory, the memory controller needs to organize a short queue of the tags of
outstanding read requests. As a positive side effect, this information can be used to send the
return information only to the originally requesting processor core along the upstream tree,
saving power in the other paths. Using time to distinguish between read returns is possible
with the static TDM schedule and simple to implement in the local NI. The NI knows the
latency for the read request and simply ignores any receiving data until this latency has
passed.

For a write transaction there are two options for the handshake between the processor core
and the memory NoC: (1) just post the write data and generate the write acknowledgement
locally or (2) wait for the write and the write acknowledgment from the memory controller.
Just posting the write lets the processor pipeline continue to execute code and hides the
memory NoC latency. As the memory NoC does not reorder any memory transactions
there is no issue with memory consistency. If the memory and/or controller supports error
return codes (e.g., on a parity error) waiting for the response enables error signaling with an
exception in the processor core.

The design is configurable with 4 parameters: (1) the level of downstream pipelining, (2)
the maximum time for a memory transaction (i.e, the TDM slot length), (3) the additional
latency within the memory controller, and (4) the level of upstream pipelining. The pipeline
levels influence downstream and upstream latencies.

4 Pipelined Access Timing and Slot Length

We are mainly interested in the worst-case access time for a memory transaction (cache miss).
For some scenarios, it might also be interesting what the best-case access time is. For WCET
analysis, where we look at a sequence of memory accesses with operations in between, we are
interested in how much of the access latency can be overlapped with execution and therefore
hidden.
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Core 0 command r0

Core 1 command r1

NI command r0 r1

Controller command r0 r1

Memory r0 D D D D r1 D D D D

Controller response D D D D D D D D

Core 0 response D D D D

Core 1 response D D D D

T − 1 Ldown tslot Lup

Slot 3 Slot 0 Slot 1 Slot 2

Figure 3 Access latency, TDM slot length, and slot shifting due to pipelining.

Table 1 shows all timing parameters, which are in clock cycles. Timing parameters with
a lower case t in the name denote non-pipeline delays and parameters with an upper case L

delays that can be pipelined. E.g., the bursting of data via the pins of the memory chips
cannot be pipelined, but the burst of data traveling in the memory NoC can be pipelined.

Memory read and write transactions at the memory chip take tb clock cycles for the burst
transfer of the data and some additional latency for a read command to process (tr2b) and a
write command to finish (tb2e). Due to some inefficiency in the memory controller, additional
delays on read or write transaction (tctrlrd and tctrlwr) may be introduced that cannot be
hidden by pipelining. The combination of those memory and controller delays determines
the minimum TDM slot length tslot .

The slot length tslot and the number of processing cores determine the TDM period T .1
The memory NoC (and the memory controller) introduce additional latency that needs to be
added for the worst-case access time (twcrd and twcwr). However, even with a low number of
processing cores the TDM period T is the main contributor to the access latency.

Figure 3 shows two read transactions by cores 0 and 1 in a configuration with four cores.
The accesses of the cores are delayed until the respective slot arrives; this delay may be up
to T − 1 cycles. From the core’s network interface to the memory, a latency of Ldown cycles
is added. Accessing the memory requires tslot cycles. Transmitting the data back to the core
adds Lup more cycles. The sum of these times determines the access latency observed at
a core. The minimum TDM slot length depends however only on the maximum time the
memory requires to serve a transaction.

Figure 3 shows that pipelining shifts the TDM slots in time along the path from the
processor cores to the memory and back. Therefore, a core’s slot starts at different times in
different parts of that path. When the timing of the (SDRAM) memory controller is known
(e.g., in [10]), the read and write commands can be sent from the client in the exact right
point in time so they travel trough the network, arrive at the memory controller, and then
arrive at the SDRAM bus without any flow control or buffering (except pipeline registers).

1 Assuming equal bandwidth for all processing cores. Optimizing the bandwidth of the individual cores
for the WCET has not been very beneficial [25].
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For WCET analysis the timings for individual cache misses are: twcrd for a cache line fill
and twcwr for a cache line write back. Compared to a round-robin arbitration, the constant
time between two possible accesses can be used to tighten WCET bounds for a sequence of
accesses. The time spent executing instructions that do not access memory (or are guaranteed
hits) between two accesses can be subtracted from the TDM period T .

5 Implementation and Evaluation

We have implemented three different memory arbiters: (1) a round-robin arbiter, (2) a
centralized TDM arbiter, and (3) the distributed TDM arbiter as described in Section 3. We
used the high-level hardware description language Chisel [1], which allows the generation
of Verilog code for logic synthesis. To evaluate the arbiter rather than the processor cores,
we connected the arbiters to test driver cores (4, 8,. . . , 128), together with a PLL, and a
memory controller. The design was synthesized and constrained to run at 200 MHz with
Altera Quartus II. As target device we chose the Cyclone IV FPGA used on Altera’s DE-115
development board (part number EP4CE115F29C7N).

All arbiters use the OCP communication interface used in T-CREST project. For a
multicore with N cores, it has N OCP slave interfaces that receive data from the processor
cores and one OCP master interface that sends data to the memory controller. To make
the arbiter reusable, it is configurable with five parameters: number of cores, address width,
data width, burst length, and controller delay. Additional parameters like slot length and
period are derived from these parameters.

For a multicore with N cores, each core is given an id, 0, 1, . . . N − 1. Based on the
number of cores, a specific time slot is defined for each core in the TDM based arbiters. The
slot length is defined as tslot = max(trd + tctrlrd , twr + tctrlwr), which is the amount of clock
cycles for a read or write burst. The slot length and the number of cores is configurable. In a
complete memory access period, T = N × tslot , each processing core has a chance for either
a read or write burst. At each core a counter is used to generate the according single cycle
enable signal.

For the centralized TDM arbiter, a finite state machine (FSM) controls the local TDM
arbitration. When the enable signal is asserted, the FSM will transfer the memory access
request of the corresponding node into the memory tree. The FSM has only three states:
idle, read, and write.

For the distributed TDM arbiter, the arbitration is divided into N local arbiters. Each
local arbiter has a counter for the TDM slot counting. The outputs of all local arbiters are
fed to a tree of OR gates and into pipeline registers before reaching the memory controller.
On the return path from the memory controller, this data is broadcasted to all the local
arbiters. Two pipeline registers on the downstream path and one on the upstream path are
enough to keep the critical path short enough for a 200 MHz operating frequency.2

Figure 4 shows the maximum frequency (Fmax) of each arbiter. The centralized arbiters
(round-robin and central TDM) lead to slower clock frequency when increasing the number
of processing cores. The simple round-robin arbiter can be clocked faster than the central
TDM arbiter. In contrast, the maximum frequency of the distributed TDM arbiter remains
relatively close to the input frequency (200 MHz), even as the number of nodes increases
exponentially. The distributed TDM arbiter has the shortest critical path since the datapaths

2 A RISC style processor core can be clocked at about 100 MHz in this FPGA family.
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Figure 4 Maximum frequency (Fmax) for different arbiters and number of processor cores.

Table 2 Logic cell counts for different arbiters and different number of processor cores.

Number of processor cores 4 8 16 32 64 128

Round-robin 139 324 614 1267 2549 5114
Centralized TDM 235 446 969 1943 3893 7764
Distributed TDM 470 980 1894 3827 7575 10277

from each node to the memory, through the arbiter, are independent of each other and broken
up with pipeline registers.

Table 2 shows the resource consumption of each arbiter in terms of logic cell (LC) count
on the FPGA. To set the number in relation, a RISC style processor pipeline consumes about
2000–5000 LCs. The centralized TDM arbiter requires more logic cells than the round-robin
arbiter.

The distributed TDM arbiter replicates some logic (e.g., the counters for the TDM slots)
at the client side. Therefore, it consumes more resource, but also allows the highest clock
frequency. Each client side component consumes about 30 LCs. However, the memory tree,
made up of OR gates, consumes a large number of LCs. For every 4 cores, a 4-input look-up
table (LUT) is needed for every bit of the OCP signals. As a rough estimate, about 55 logic
cells are needed for the OR-gate tree per node. With a back-of-an-envelope calculation the
LCs needed for the 128-core multicore can be estimated as: 30 LC per core * 128 + 55 LC
per OR-gate tree * 128 = 10880. This confirms the synthesized results shown in Table 2.

Compared to centralized TDM arbitration, as used in [11] and [16], our pipelined design
with the distributed arbitration at the individual nodes scales better with more nodes. The
additional cost is moderate. The cost per node is in the range of 120 LCs, where a RISC
style processor node itself consumes between 2000 and 5000 LCs.

6 Conclusion

Computer systems for real-time systems need to be time-predictable to allow static WCET
analysis. For multicore processors with shared memory the access to this shared memory
needs to be time-predictable as well. A time-division multiplexing (TDM) arbiter is time-
predictable. It allows calculating the WCET of a task executing on one processor core
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independent from other tasks executing on other cores. This paper presented a TDM memory
network-on-chip with distributed arbitration and pipelining to achieve a high throughput
through the interconnect. The additional latency through pipelining does not influence the
slot length of the TDM schedule. The TDM schedule and the knowledge of the pipelined
interconnect is the input for the WCET analysis of memory accesses for a multicore processor.

Source Access

The source of the described memory NoCs is open source under the simplified BSD licenses
and available at GitHub within the Patmos project: https://github.com/t-crest/patmos.
Details on the build process can be found in the Patmos reference handbook [20].
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Abstract
The recent technological advancements and market trends are causing an interesting phenomenon
towards the convergence of High-Performance Computing (HPC) and Embedded Computing (EC)
domains. Many recent HPC applications require huge amounts of information to be processed
within a bounded amount of time while EC systems are increasingly concerned with providing
higher performance in real-time. The convergence of these two domains towards systems requir-
ing both high performance and a predictable time-behavior challenges the capabilities of current
hardware architectures. Fortunately, the advent of next-generation many-core embedded plat-
forms has the chance of intercepting this converging need for predictability and high-performance,
allowing HPC and EC applications to be executed on efficient and powerful heterogeneous ar-
chitectures integrating general-purpose processors with many-core computing fabrics. However,
addressing this mixed set of requirements is not without its own challenges and it is now of
paramount importance to develop new techniques to exploit the massively parallel computation
capabilities of many-core platforms in a predictable way.
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1 Current Trends in Application Requirements

Nowadays, computing systems are subject to a wide continuum of requirements, spanning
from high-performance computing (HPC) systems to real-time embedded computing (EC)
systems. Sitting on one extremity of that spectrum, HPC systems have been for a long time
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those targeting demanding analytic- and simulation-oriented applications that require massive
amounts of data to be processed. For HPC system designers, “the faster, the better” is
the mantra. On the other side of the spectrum, EC systems have also focused on very
specific systems; in particular those with pre-set and specialized functionalities for which
timing requirements prevail over performance requirements. Historically, the key objective
for designers of EC systems was to design highly predictable systems where the time taken
by every computing operation is upper-bounded and these upper-bounds are known at design
time; Being fast was secondary.

With the new generation of computing platforms and the ever-increasing demand for
safer but more complex applications, the conceptual boundary that was pulling HPC and EC
systems apart is getting thinner every day. HPC systems require more and more guarantees
on the timing behavior of their applications while EC systems face an increasing demand
for computational performance. As a result, these HPC and EC systems that used to be
torn apart by orthogonal requirements are now converging towards a brand new category of
systems that share both HPC and EC requirements. This is the case of real-time complex
event processing (CEP) systems [6], a new area of computing systems that literally cross the
boundaries between the HPC and the EC domains.

In these CEP systems, the data come from multiple event streams and is correlated in
order to extract and provide meaningful information within a pre-defined time bound. In
cyber-physical systems for instance, ranging from automotive and aircraft to smart grids and
traffic management, CEP systems are embedded in a physical environment and their behavior
obeys technical rules dictated by this environment. Another example is the banking/financial
markets where CEP systems process large amounts of real-time stock information in order
to detect time-dependent patterns, automatically triggering operations in a very specific and
tight time-frame when some pre-defined patterns occur [12].

The underlying commonality of the systems described above is that they are time-critical
(whether business-critical or mission-critical) and with high-performance requirements. In
other words, for such systems, the correctness of the result is dependent on both performance
and timing requirements, and the failure to meet either of them is critical to the functioning
of the system. In this context, it is essential to guarantee the timing predictability of the
performed computations, meaning that arguments and analysis are needed to be able to make
arguments of correctness, e.g., performing the required computations within well-specified
time bounds.

2 Trends in the High-performance and Embedded Computing
Domains

Until now, trends in high-performance and embedded computing domains have been running
in opposite directions. On the one hand, HPC systems are traditionally designed to make
the common case as fast as possible, without concerning themselves for the timing behavior
(in terms of execution time) of the not-so-often cases. The techniques developed for HPC are
usually based on complex hardware and software structures that make any reliable time bound
almost impossible to derive. On the other hand, real-time embedded systems are typically
designed to provide energy-efficient and predictable solutions, without heavy performance
requirements. Instead of fast response times, they aim at having predictable response times,
in order to guarantee that deadlines are met in all possible execution scenarios. Hence these
systems are typically based on simple hardware architectures, using fixed-function hardware
accelerators that are strongly coupled with the application domain.



V. Nélis et al. 65

This section presents the evolution of both the HPC and the EC computing domains
from a hardware and software point of view.

2.1 Hardware Trends
Owing to the immense computational capabilities needed to satisfy the performance re-
quirements of HPC systems and because the resulting exponential increments of power
requirements exceeded the technological limits of classic single-core architectures (typically
referred to as the power-wall), multi-core processors have entered both computing markets
in the last years [11]. The leading hardware manufacturers are now offering an increasing
number of computing platforms that integrate multiple cores within a chip, which contributes
to an unprecedented phenomenon sometimes referred to as the multi-core revolution.

Multi-core processors are much more energy-efficient and have a better performance-per-
cost ratio than their single-core counterpart as they improve the application performance
by exploiting thread-level parallelism (TLP). Applications are split into multiple tasks that
run in parallel on different cores, which has for consequence to spread into the multi-core
world an important challenge that was already faced by HPC designers at multi-processor
system level: the parallelization. In the HPC domain, many-core platforms are seen as a
highly scalable multi-core architecture that overcomes the limits of traditional multi-cores
(such as the contention for memory bus for example) and considerably increases the degree
of parallelization of the tasks that can be exploited.

In the EC domain, the necessity of developing more flexible and powerful systems have
pushed the embedded market in the same direction. For instance, the mobile phone market
evolved from selling cellphones with a limited number of well-defined functions to selling
smart-phones and tablets with an unlimited access to a virtual store full of user-made
applications. As newest applications are more and more greedy in term of performance,
multi-core architecture have been increasingly considered as the solution to cope with the
performance and cost requirements [3], because they allow multiple application services to be
scheduled on the same processor, which maximizes the hardware utilization while reducing
its cost, size, weight and power requirements. Unfortunately, most of multi-core architectures
have been designed to provide increased performance rather than towards offering time-
predictability to the application system and broadly speaking, these platforms failed to
provide an appropriate execution environment to time-critical embedded applications. This
is why those applications are still executed on simple architectures that are able to guarantee
a predictable execution pattern while avoiding timing anomalies [7], which makes real-time
embedded platforms still relying on either single-core or simple multi-core CPUs, integrated
with fixed-function hardware accelerators into the same chip: the so-called System-on-Chip
(SoC).

The needs for time-predictability, energy-efficiency, and flexibility, coming along with
Moore’s law greedy demand for performance and the advancements in the semiconductor
technology, have progressively paved the way for the introduction of many-core systems in
both the HPC and EC domains. Examples of many-core architectures include the Tilera
Tile CPUs [13] (shipping versions feature 64 cores) in the embedded domain and the Intel
MIC [4] and Intel Xeon Phi [5] (featuring 60 cores) in the HPC domain. The introduction of
many-core systems has set up an interesting trend wherein both the HPC and the real-time
embedded domains converge towards similar objectives and requirements. Figure 1 shows
the trend towards the integration of both domains. In this current trend, challenges that
were previously specific to each computing domain start to be common to both (including
energy-efficiency, parallelisation, compilation, software programming) and are magnified by
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Figure 1 Trend towards the integration of HPC and embedded computing platforms.

the ubiquity of many-cores and heterogeneity across the whole computing spectrum. In
that context, cross-fertilization of expertise from both computing domains is mandatory. In
our opinion, there is still one fundamental requirement that has not yet been considered:
time predictability as a mean to address the time criticality challenge when computation is
parallelised to increase the performance. Although some research in the embedded computing
domain has started investigating the use of parallel execution models (by using customized
hardware designs and manually tuning applications by using specialized software parallel
patterns [10]), a real cross-fertilization of expertise between HPC and embedded computing
domains is still missing.

2.2 Software Trends
Industries with both high-performance and real-time requirements are eager to benefit
from the immense computing capabilities offered by these new many-core embedded designs.
However, these industries are also highly unprepared for shifting their earlier system designs to
cope with this new technology, mainly because such a shift requires adapting the applications,
operating systems, and programming models in order to exploit the capabilities of many-core
embedded computing systems. Neither many-core embedded processors have been designed
to be used in the HPC domain, nor HPC techniques have been designed to apply embedded
technology. Furthermore, real-time methods that determine the timing behavior of an
embedded system are not prepared to be directly applied to the HPC domain and many-core
platforms, leading to a number of significant challenges. Although customized processor
designs could better fit real-time requirements [10], the design of specialized processors for
each real-time system domain is not a desired option for obvious financial reasons.

Different parallel programming models and multiprocessor operating systems have been
proposed and are increasingly being adopted in today’s HPC computing systems. In recent
years, the emergence of accelerated heterogeneous architectures such as GPGPUs, have
introduced parallel programming models such as OpenCL [9], the currently dominant open
standard for parallel programming of heterogeneous systems, or CUDA [8], the dominant
proprietary framework of NVIDIA. Unfortunately, they are not easily applicable to systems
with real-time requirements since, by nature, many-core architectures are designed to integrate
as many functionalities as possible into a single chip and thus they inherently share as many
resources as possible amongst the cores, which heavily impacts the ability to provide timing
guarantees.
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The embedded computing domain world has always seen many application-specific
accelerators with custom architectures on which applications are manually tuned to achieve
predictable performance. Such types of solutions have a limited flexibility which complicates
the development of embedded systems. However, we firmly believe that commercial-off-
the-shelf (COTS) components based on many-core architectures are likely to dominate the
embedded computing market in the near future. Assuming that embedded systems will
evolve in this way, migrating real-time applications to many-core execution models with
predictable performance requires a complete redesign of current software architectures. Real-
time embedded application developers will therefore either need to adapt their programming
practices and operating systems to future many-core components, or they will need to
content themselves with stagnating execution speeds and reduced functionalities, relegated
to niche markets using obsolete hardware components. This new trend in the manufacturing
technology, alongside the industrial need for enhanced computing capabilities and flexible
heterogeneous programming solutions of accelerators for predictable parallel computations,
bring to the forefront important challenges for which solutions are urgently needed. To
that end, we envision the necessity to bring together next-generation many-core accelerators
from the embedded computing domain with the programmability of many-core accelerators
from the HPC computing domain, supporting this with real-time methodologies to provide
time-predictability. Time-predictability is an essential feature to allow system designers to
model the timing behavior of the system through timing analysis techniques and then, based
on these models, check that all its timing requirements are fulfilled.

3 Background on timing analysis techniques

What is it?
Timing analysis is any structured method or tool applied to the problem of obtaining
information about the execution time of a program, a part of a program, or even any kind of
computer operation such as a fetching a data in the cache or sending a packet over a network.
The fundamental problem that timing analysis techniques have to deal with is the fact that
the execution time of an operation is not a fixed constant, but rather varies across a range
of possible execution times. Variations in the execution time of an operation occur due to
variations in input data, as well as the characteristics and execution history of the software,
the processor architecture, and the computer system in which the operation is executed.

What is it needed for?
Timing analysis is needed to assess that all the timing requirements of the system are fulfilled.
In the EC domain, most of systems with real-time requirements require a reliable timing
analysis to be efficiently designed and verified, in particular when the system is used to
control safety critical components in application areas such as vehicles, aircraft, medical
equipment, and industrial plants. In these application domains, in order for the whole system
to be validated and assessed as safe, it is commonplace that only a subset of tasks has to
fulfill strict timing requirements (i.e., they are required to complete their operations within
specified time limits). That is, only few components of the entire system are “critical” and
in need of precise timing analysis. An accurate timing analysis is consequently not always
required as many components may be subject to real-time requirements but are in essence
not critical. It is currently the case, for example, for most of modern applications that share
HPC and real-time requirements.
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Although the high criticality of some applications is beyond doubt, for many functions
it is rather a business matter to evaluate whether the costs and consequences of a timing-
related failure is worth the cost of the various mechanisms that must be implemented to
prevent/handle this failure. In industrial systems, there is a continuum of criticality levels in
the set of components of a real-time system. Depending on the criticality of each component
an approximate or less accurate analysis might be acceptable. Real-time applications are
commonly categorized as safety-critical (or life-critical), mission-critical, and non-critical. A
failure or malfunction of a safety-critical application may result in death or serious injury to
people, loss or severe damage to equipment or environmental harm, whereas a failure of a
mission-critical application may result in a failure of the entire system, but without damaging
it nor its embedding environment, and a failure of a non-critical application has no severe
consequences. While safety- and mission-critical components must be certified with a very
high level of confidence (through extremely accurate and thorough analyses), components
that are less or not critical at all need only to maintain a “decent” average throughput and
should be proven not to affect the execution behavior of the critical components.

How does timing analysis work?
The worst-case execution time of an operation depends not only on the intrinsic nature of
the operation and its inner sub-operations, but also on external events that may occupy or
lock a resource that the operation needs to access. For example, the worst-case traversal
time of a packet throughout a network-on-chip does not only depend on intrinsic properties
like the size of the data sent, the routing algorithm employed, or the capacity of the links
between the source and the destination, but also on the current traffic on the network at
the time the packet is sent. This means that, in order to provide a safe upper-bound on
the execution time of an operation, timing analysis techniques must consider not only the
nature of the operation and the characteristics of the executing environment, but also they
must identify the worst “context” in which the operation can be performed. Owing to this
influence of the context of execution, the body of knowledge developed in academia further
sub-categorizes the timing analysis objectives and distinguishes between (i) the worst-case
execution time (WCET) analysis and (ii) the interference analysis.

What is WCET analysis?
The WCET analysis is the context-independent part of the timing analysis that focuses on
deriving a safe upper-bound on the execution time of a program (or any piece of code). It
assumes that the analyzed program runs in isolation and without interruption, i.e., there is no
other user-tasks running concurrently with the analyzed task, interrupts from the operating
system are disabled, and the analyzed task gets immediate access to a resource as soon as
it needs to. Under these circumstances, the WCET of a program is defined as the longest
execution time that will ever be observed when the program is run on the target hardware.
It is the most critical measure for most real-time work. For example, as mentioned earlier,
the WCET of tasks is a key component for the higher-level schedulability analysis, but in
practice it is also used at a lower level analysis, e.g., to ensure that software interrupts will
have sufficiently short reaction times, or to guarantee that operating system calls return to
the user application within pre-defined time-bounds.

WCET analysis can be performed in a number of ways using different tools, but the main
methodologies employed can be broadly classified in three categories: (1) static analysis
techniques, (2) measurement-based analysis techniques, and (3) hybrid techniques. Broadly
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speaking, measurement-based techniques are suitable for software that are less time-critical
and for which the average-case behavior (or a rough WCET estimate) is more meaningful or
relevant than an accurate estimate. For example, systems where the worst-case scenario is
extremely unlikely to occur and/or the system can afford to ignore it if it does occur. For
highly time-critical software, where every possible execution scenario must be covered and
handled, the WCET estimate must be as accurate as possible and static analysis or some
type of hybrid method is therefore preferable.

What is interference analysis?

The interference analysis is the execution-context aware part of the timing analysis. It
focuses on deriving safe upper-bounds on the extra execution time-penalty that the analyzed
task may suffer during its run-time because of the interference with other tasks and with
the system. It takes into account the context in which each operation is performed and
identifies the worst-case interference scenario for the analysis. Typically, interference analysis
will supplement the outputs of the WCET analysis by factoring in extra delays due to, for
example, sporadic SW/HW interrupts or the interference from other tasks on the shared
communication bus, network, or caches. Specifically, for every shared software and hardware
components (such as the caches, the main memory, the shared data, etc.) and for each access
to these resources that the analyzed task may request, the interference analysis techniques
identify the worst initial “state” of the component and the worst-case scenario of interference
(from the system and the other tasks) on that component that would induce the largest
execution time for the analyzed access. These upper-bounds are then used to adjust the
WCET estimates obtained from the WCET analysis techniques. It must be noted that both
the WCET analysis techniques and the interference analysis techniques may analyze the
same SW/HW resources, but their main focus and objectives are not the same. For example,
some WCET analysis tools include cache analysis, during which the tool may substantially
tighten the WCET estimate by taking into account that the requested data will not always
have to be fetched from the main memory as it may have been loaded already and is thus
available in the local cache. In contrast, interference analysis techniques also analyze the
cache(s) but relax the assumption that the analyzed task is the only one that can use it, thus
allowing tasks to evict cache lines from each other. Relaxing this assumption trivially causes
the tasks to experience extra delays during their execution and the WCET estimates must
therefore be augmented accordingly.

Interference between tasks and applications are typically reduced by ensuring a certain
degree of “isolation” between those tasks and applications. Isolation can come in different
flavors: tasks can be isolated in the time domain, the space domain, or both, and it can
be symmetric or asymmetric. Isolation between system components also provides other
advantages: it is fostered by system designers to avoid fault propagation for example, and
when system timeliness is of concern, it helps provide two major features:

Time compositionality: the timing properties of interest at system level can be determined
from the timing properties of its constituent components.

Time Composability: the timing properties determined for individual components in
isolation should hold after the composition with other components.

Typically, these two properties (and in particular the time-composability property) are
obtained by enforcing spatial and temporal isolation between software components at run-
time.
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Figure 2 Performance degradation and guarantees improvement.

4 Glance at a few forthcoming challenges in ensuring
time-predictability

The challenge of ensuring time-predictability for this new generation of systems with mixed
requirements is twofold. On one side, the software solutions used in HPC systems must be
adapted to be more predictable while preserving (as much as possible) their efficiency and
on the other side, timing analysis techniques used to validate EC systems must be adapted
to these new software solutions.

What does it imply to adapt the HPC software solutions?
It mostly implies reducing the dynamicity of all the mechanisms that are responsible for the
management of the communication, memory, and computing resources. Instead of taking
decisions on-the-fly based on the execution history and/or the current state of the system (as
it is done in HPC systems), most of the decisions regarding the allocation of the resources
among the tasks should ideally be taken before the run-time to enable a thorough offline
analysis of the system timing behavior. Figure 2 (left side) illustrates the expected trends in
the (observed) average performance and in the guaranteed performance when the dynamicity
of the resource allocation schemes is reduced. Typically, as we shift the decision-taking
process from the run-time to the design-time we limit the dynamicity of the system, which
has for effect to decrease the observed performance as the system becomes less “flexible”
while the guaranteed performance increases as the system becomes more predictable. The
challenge here is to obtain high performance and tight guarantees of this high performance as
depicted on the right-hand side of Figure 2 or, if this turns out not to be possible, one should
at least find an appropriate trade-off between the observed performance and the guaranteed
performance.

What are the changes needed at the programming model level?
In a nutshell, programming models need to be extended to provide detailed information
about the code including for instance information on the control flow, timing properties, and
functional and data dependencies between parts of the code. These annotations of the code
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could be used to extract an accurate and complete model of the application where all the
dependencies between the functions (or any piece of code) are clearly documented. Together
with the control flow information and the estimations of the worst-case execution time of
each part of the code, this information could be used by timing analysis techniques to derive
safe bounds (exact or probabilistic) on the overall execution time of the application.

To the best of our knowledge, the greatest effort in that direction is provided at Barcelona
SuperComputing Center (BSC) where researchers have developed OmpSs, a programming
model that integrates features from the StarSs programming model developed also at BSC into
a single programming model. In particular, the objective of OmpSs is to extend OpenMP with
new directives to support asynchronous parallelism and heterogeneity (devices like GPUs).1
However, it can also be understood as new directives extending other accelerator based APIs
like CUDA or OpenCL. The OmpSs environment is built on top of the Mercurium compiler
and the Nanos++ run-time environment. More details about OmpSs and its objective can
be found in [2].

Once we have a time-predictable setup, can we apply
commercially-available WCET analysis tools?

It is very unlikely that all the existing methods will be applicable to the next-gen applications
that share HPC and real-time requirements, especially it is the case for static approaches.
Although static approaches have proven to be very efficient for safety-critical embedded
systems these next-gen applications are not (yet?) safety-critical even though they present real-
time requirements, which means that they are not subject to the hard and fast programming
rules that are idiosyncratic to the safety-critical domain. They typically use pointers, dynamic
memory allocation, recursive functions, variable-length loops, etc., and sometimes these
applications are implemented by third party companies that are not concerned at all by the
validation of the overall system, i.e. the code is not annotated with timing-related information
that could be helpful for the timing analysis like loop-bounds for instance. Because of the
lack of strict programming rules and the lack of information related to timing aspects of the
code, static approaches are likely to fail to provide tight upper-bounds on the execution time
and we foresee a rising popularity of measurement-based and probabilistic approaches in a
near future.

Furthermore, it must be noted that it is unreasonable (if not impossible) to perform an
exhaustive testing of these next-gen applications. Besides the fact that the size and the
complexity of the software are constantly increasing, forthcoming platforms may chose to
continue to increase their performance by borrowing more and more techniques from the
HPC domain, including advanced computer architecture features such as caches, pipelines,
branch prediction, and out-of-order execution. These features increase the speed of execution
on average, but also make the timing behavior much harder to predict by parsing the code,
since the variation in execution time between fortuitous and worst cases increases. The
problem was already central in single-core platforms but is now further exacerbated in a
multi/many-core setting where low-level hardware resources like caches and communication
medium are shared by several cores, thereby inducing situations in which several entities
contend for accessing the same resource.

1 Note that this objective has been achieved by now and the latest version of openMP already integrates
the research results obtained at BSC in that domain.
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And what about interference analysis techniques?
As introduced before, the existing WCET techniques cannot be applied as is and need to
be augmented by further analyses to factor in all the extra delays due to contention for the
shared resources. Although preliminary results have already been presented in that direction
(see [1] for a list of potential sources of interference between tasks), most of the scientific
papers on the subject present techniques to estimate the extra delay due the contention for a
single shared resource. That is, the authors focus on one and only one source of interference
at a time, such as the cache, the network, the memory bus, etc., while the challenge of
making these analyses work together has almost never been studied and we firmly believe
that interference analysis need to be tackled in a holistic, integrated perspective.
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Abstract
The quest for time-predictable systems has led to the exploration of new hardware architectures
that simplify analysis and reasoning in the temporal domain, while still providing competitive
performance. For the instruction memory, the method cache is a conceptually attractive solution,
as it requests memory transfers at well-defined instructions only. In this article, we present a
new cache analysis framework that generalizes and improves work on cache persistence analysis.
The analysis demonstrates that a global view on the cache behavior permits the precise analyses
of caches which are hard to analyze by inspecting cache state locally.
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1 Introduction

In this paper, we are concerned with instruction cache architectures for real-time systems,
and in particular with their analysis. For time-predictable architectures, we expect that it
is possible to compute precise worst-case execution time (WCET) bounds for a sequence
of instructions by only considering the number of cache misses, instead of the actual cache
state at each instruction. Time-compositional architectures, such as Patmos [17], that enjoy
this property are not just simpler to analyze, they also facilitate a larger class of timing
analysis techniques and reduce the problem of interfering components, such as data and
instruction caches. For non time-compositional architectures, global analyses like ours are
still applicable, but need to be combined with local classification using prediction graphs [1].

The method cache was devised as an alternative to set-associative instruction caches
for time-predictable architectures [16]. In contrast to traditional instruction caches, it does
not manage individual cache lines, but holds entire blocks of code of variable size, e.g.,
an entire function. Conceptually, the advantage of the method cache is that only few,
compiler-controlled instructions may cause a cache miss. This can be exploited to better
control instruction-memory related latencies, to avoid interferences between instruction and
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data cache competing for main memory access, and to optimize instruction cache usage. The
performance of the method cache and the quality of worst-case guarantees for this cache,
however, strongly depend on the compiler and the availability of a precise cache analysis.

In this article, we show that with a global view on the cache behavior, it is possible to
effectively analyze instruction caches using the first-in-first-out (FIFO) replacement policy.
We therefore invalidate previous assumptions that the method cache, which uses a FIFO
replacement strategy, is intrinsically hard to analyze.

The key contribution of this article is a novel cache analysis that is applicable to various
instruction cache architectures. To the best of our knowledge, this is the first scalable
and precise analysis technique for method caches with variable code block size and FIFO
replacement. Our cache analysis is also applicable to standard set-associative caches using
either FIFO or the least-recently-used (LRU) replacement strategy, and is thus applicable to
a wide range of target platforms.

The paper is organized as follows: Section 2 provides background information on the
method cache and its variants. Section 3 presents our scope-based cache analysis, which is
evaluated in Section 4. Section 5 discusses related work, Section 6 concludes the paper.

2 Method Cache

In contrast to set-associative caches, the method cache stores whole blocks of code of variable
size [16, 2], Cache entries are allocated and evicted only at certain instructions such as
call and return instructions, and are in general considerably larger than a cache line of a
set-associative cache.

This design brings several advantages. It requires less memory for cache tags than a
set-associative cache, there are no interferences with the data cache to be considered, and
the cache may use more efficient burst transfers to load the program code into the cache.
Furthermore, since cache lookup and replacement only have to be performed at call and
return instructions, those cache management operations are not on the critical path of the
processor pipeline and could be multi-cycle operations. Finally, the cache analysis only needs
to consider a few instructions such as call and return, as all other instructions are guaranteed
hits and do not change the cache state.

However, the application code must be partitioned into code blocks at compile time. If
the code consists only of small blocks, the method cache may evict entries due to its limited
associativity. Large code blocks containing control flow or call sites might be evicted before
all instructions in that block have been executed. The compiler must therefore partition the
control flow graph into code blocks so that the cache performance is not degraded either by
the cache’s associativity or by loading unused code into the cache.

A method cache can be implemented in a multitude of ways: Fixed block method cache:
The cache is organized into blocks of fixed size. Each function is allocated in exactly one
cache block. While this organization has the highest fragmentation, it allows for a LRU
replacement policy. Variable block method cache: Like the fixed-block method cache, the
cache is organized in blocks of fixed size. However, a function can be allocated to multiple
blocks. This leads to a lower fragmentation, but a LRU policy is complex to implement in
hardware. Thus, a FIFO replacement policy is usually employed. Variable sized method
cache: This variant abandons the internal organization in blocks, thus eliminating internal
fragmentation.
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void m() {
access (m) /* miss if m is not cached */
access (a);
access (m) /* miss if a evicted m */
access (b);
access (m) /* miss if b evicted m */
access (c);
access (m) /* miss if c evicted m */

}

Figure 1 Limits of CHMC: FIFO cache analysis (4-way).

3 Scope-Based Cache Analysis

The two cache analysis techniques that have been extensively studied and implemented in
industrial WCET analysis tools are cache hit-miss classification (CHMC) and persistence
analysis. The former uses abstract interpretation to compute the set of possible cache states
at each instruction in a virtually unrolled and inlined program model [18]. Subsequently,
each access to memory is either classified as cache hit, as cache miss, or unknown. This
information is finally taken into account when analyzing the timing behavior of the pipeline.

As discussed in [1], if the access to a memory block depends on an unpredictable condition,
the CHMC technique fails to classify corresponding cache accesses. CHMC analysis is also less
effective for FIFO caches, even though a precise cache state abstraction has been developed
[3, 4]. In the example in Figure 1, assuming a cache with associativity four, it is not possible
to classify any of the individual accesses to m as cache hit. This is because any of the accesses
to m might be a cache miss, depending on the initial state, although there will be at most
one cache miss for m in total.

Persistence analysis [1, 9] was conceived to improve the precision of the analysis of LRU
caches, and overcome the limitation of CHMC concerning conditional cache accesses. The
idea is to classify whether an instruction might suffer a cache miss the first time it is executed,
but will hit the cache on subsequent accesses. If this is the case, the cache access is said
to be (globally) persistent. Because a cache access might be persistent for the execution
of one function, but not the whole program or task, a more useful notion is that of local
persistence. An access is said to be persistent with respect to a scope (e.g., the execution of
a function), if every time the scope is executed, the access will be a cache miss the first time
only. The fact that a persistent cache block will be loaded only on the first access during
each execution of the scope is subsequently taken into account during WCET calculation.

Persistence analysis as defined in the literature improves the analysis of LRU caches, but
is not applicable to caches using the FIFO replacement policy. Consider again the example in
Figure 1: although at most one of the accesses to m is a cache miss, it need not be the first
one. Therefore it is necessary to generalize the concept of persistence analysis (first-miss) to
an analysis that accounts for misses that may occur at most once, although not necessarily at
the first access. Moreover, in order to obtain a precise analysis, we found that it is necessary
to review and refine the concept of persistence scopes. Support for scopes that include some
but not all accesses to a memory block (e.g. because of shared library routines) and for
scopes that do not correspond to functions or loops (e.g. single-entry regions) are crucial for
efficient scope-based analysis of FIFO caches, but have not been considered in previous work.
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3.1 Scope-based Cache Analysis Framework
The following discussion considers the general form of the scope-based cache analysis that is
applicable for standard set-associative instruction caches and also for different variants of
the method cache. We will use the term memory block to either denote a block of memory
associated with a cache line, or a code block in context of the method cache.

The goal of the scope-based cache analysis is to compute a set of scopes S(B) for each
memory block B, such that (1) every access to the memory block is in at least one scope
S ∈ S(B) (2) during the execution of any scope S ∈ S(B), at most one access to B will be
a cache miss. If those two conditions are met, the sum of the execution frequencies of all
scopes in S(B) is an upper bound for the number of cache misses for the memory block B.

In summary, these are the constituents of our analysis:
Scope Graph: The scope graph used by our analysis is an acyclic, hierarchical control-flow

representation. Each node in the scope graph represents either a function, a loop or a
callsite. The scope graph data structure is essential to ensure the performance of our
cache analysis.

Conflict Detection: The analysis builds on a decision procedure that determines whether a
memory block needs to be loaded at most once during the execution of a scope. In this
case, we say the block is conflict-free with respect to the scope.

Computation of Conflict-Free Scopes: For each memory block, the analysis computes a
set of conflict-free scopes. We not only consider functions and loops, but dynamically
compute single-entry regions that are conflict-free scopes. The analysis traverses the
acyclic scope graph bottom-up, and reuses results from nested scopes to ensure good
performance.

IPET model: In the IPET model, we introduce cache miss variables, that represent the
frequency of cache misses at a certain instruction. Their sum corresponds to the total
number of cache misses for one memory block. The total number of cache misses of a
memory block is in turn bounded by the frequency of the conflict-free scopes associated
with the block.

3.2 Scope Graph
A scope graph is a hierarchical representation of the program’s control-flow. Each node
represents a set of instruction sequences that correspond to one execution of the program
fragment represented by the scope. The root node represents all executions of the program
to be analyzed, and each of the instruction sequences represented by a child node is included
in one of instruction sequences represented by the parent node. The kind of scope graph
used in our analysis is acyclic; this is essential to permit a bottom-up analysis. The nodes in
a scope graph either correspond to functions, loops or callsites. Scopes that correspond to
single-entry regions are not represented in the scope graph, but formed dynamically during
analysis (see Section 3.3). Nodes in the scope graph are in turn associated with access graphs
that model cache accesses within the scope.

Access graphs are acyclic flow graphs and consist of five different kinds of nodes: The
entry node and exit node of an access graph represent the start and end of any cache access
sequence associated with the scope, and control-flow nodes represent the beginning of a basic
block. Cache accesses that are local to the scope are represented by memory access nodes.
Subscope nodes correspond to the execution of a subscope that is a child in the scope graph.
Finally, back-edge nodes model transfer to the scopes’s entry node, for example to model the
back edge of a loop.
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Algorithm 1 Scope Set Computation
1: procedure CacheScopeAnalysis(ScopeGraph G)
2: for all memory blocks B do
3: S[B] ← {}
4: end for
5: for all nodes N ∈ bottom-up–traversal(G) do
6: for all memory blocks B accessed in N do
7: if IsConflictingScope(B, N) or

N is root node then
8: S[B] ← S[B] ∪ CollectScopes(B, N)
9: end if
10: end for
11: end for
12: return S
13: end procedure

The construction of the scope graph starts at the scope node that represents the program
or task to be analyzed, and processes every function exactly once. First, we compute the
strongly connected components (SCC) of the function’s CFG. Each trivial SCC corresponds
to a basic block, and is replaced by a control-flow node and a sequence of zero or more access
graph nodes representing memory accesses and function calls. Non-trivial SCCs are replaced
by a subscope node representing the corresponding loop, which is processed in turn.

The access graph of a loop is constructed in a similar way. First, we replace back edges
by edges to back-edge nodes that represent transfer of control to the scope entry. This
way, every access graph is acyclic, which simplifies the implementation of conflict-detection
algorithms. Next, the SCCs of the loop’s CFG are computed, and the same procedure as for
functions is applied to construct the access graph. In this case, non-trivial SCCs correspond
to nested loops. The access graph for a callsite is a simple flow graph that executes one of
the subscopes corresponding to functions possibly called at the callsite.

3.3 Computation of Conflict-Free Scopes

Algorithm 1 determines a set of scopes for each memory block B, such that the total number
of cache misses of B is bounded by the sum of the frequencies of these scopes. It traverses
the scope graph bottom-up, starting at the leaves, and determines for every memory block,
whether it is conflict-free with respect to the current scope. If the memory block is not
conflict-free, the routine CollectScopes computes conflict-free subscopes.

The goal of CollectScopes is to determine conflict-free single-entry regions in the
CFG of the conflicting scope (Algorithm 2). The algorithm traverses the access graph of
the scope in topological order, visiting every node exactly once. The procedure assumes the
existence of functions NewRegion(v) to create a new single-entry region with header v and
AddToRegion(R,v) to add v to region R. Back-edge nodes always form a singleton region,
as they correspond to edges back to the entry of the access graph (Line 5). In order to
expand a region, all predecessors of a node have to be in the same region (Line 6). Moreover,
a node can only be in the same region as its predecessors, if the resulting scope is conflict-free
with respect to the memory block. Accesses to memory blocks in conflicting subscopes need
not be collected, as they have already been handled while processing the subscope (Line 19).

Note that if the call to AddToRegion(R,v) on Line 11 is replaced by NewRegion(v),
one obtains a simpler variant of the algorithm that only considers static persistence scopes.
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Algorithm 2 Scope Collection
1: procedure CollectScopes(Block B, Scope N)
2: G ← access graph of N
3: for all nodes v ∈ topological-traversal(G) do
4: if ∃u ∈ preds(v) s.t. u is back-edge node then
5: NewRegion(v)
6: else if ∃u ∈ preds(v) s. t. ∀w ∈ preds(v)

GetRegion(u) = GetRegion(w) then
7: R ← GetRegion(u)
8: if IsConflictingRegion(B, R ∪ {v}) then
9: NewRegion(v)
10: else
11: AddToRegion(R, v)
12: end if
13: else
14: NewRegion(v)
15: end if
16: end for
17: S ← { }
18: for all regions R do
19: if B is accessed in R and

R is not a conflicting subscope then
20: S ← S ∪ R
21: end if
22: end for
23: return S
24: end procedure

3.4 Conflict Detection
So far, the cache analysis framework did not distinguish between different replacement
strategies, but relied on the existence of the decision procedures IsConflictingScope and
IsConflictingRegion that we describe next.

A memory block is conflict-free with respect to a scope, if it will be loaded from memory
at most once during the execution of this scope. For set-associative caches using either
the LRU or FIFO replacement strategy, this is the case if the cardinality of the set of all
distinct cache lines that (1) map to the same cache set and (2) are possibly accessed during
the execution of the scope, is less than or equal to the associativity of the cache. For all
variations of the method cache, a memory block is conflict-free if (1) the number of distinct
code blocks is less than or equal to the associativity of the cache and (2) the total size of all
the distinct accessed code blocks, is less than or equal to the size of the method cache.

IsConflictingScope(B, N) and IsConflictingRegion(B, R) are true if the memory
block B is not conflict-free with respect to the scope associated with N and R, respectively.

The conflict detection strategies described above are sound for both LRU and FIFO
caches. The LRU replacement strategy also permits a potentially more precise conflict
detection routine, however. In an LRU cache, a memory block is conflict-free with respect to
the scope if it is locally persistent with respect to the scope. This in turn is the case if any
sequence of accesses between two accesses to the memory block is conflict free.

3.5 IPET Modeling
The integration of the cache miss constraints into the IPET model is shown in Algorithm 3. In
the algorithm, we write f(x) to denote a linear expression that corresponds to the execution
frequency of x. For all memory access nodes, we introduce a cache miss variable that models
the frequency of cache misses at this point in the program. The cost of this variable is the cost
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Algorithm 3 Extend IPET
1: procedure ExtendIPET(ScopeGraph G)
2: Scopes ← CacheScopeAnalysis(G)
3: for all access nodes N do
4: add cache miss instruction variable Nm

5: assert Nm ≤ f(N)
6: cost(Nm) = miss penalty for N
7: end for
8: for all memory blocks B do
9: let A = access nodes for B
10: assert

∑
N∈A

f(Nm) ≤
∑

S∈Scopes[B] f(S)
11: end for
12: end procedure

of a cache miss of the corresponding memory block, and is reflected in the objective function
of the ILP. Furthermore, each of these variables is obviously bounded by the frequency of
the corresponding memory access (Line 5). For all memory blocks potentially accessed, we
assert that the sum of all corresponding cache miss variables is bounded by the sum of the
frequencies of scopes in the conflict-free scope set for that block (Line 10).

4 Evaluation

The target platform for our evaluation is the Patmos architecture [17]. Patmos uses a five-
stage in-order dual-issue RISC pipeline; floating-point operations are performed in software.
The patmos-clang compiler builds on the LLVM compiler framework, and provides support
for WCET analysis, as well as a backend for the Patmos architecture [14]. The benchmarks
are compiled using the default optimization settings (-O2), which enables most LLVM
optimizations. Measurements were carried out using pasim, a cycle-accurate simulation of
the Patmos architecture. We do not use a data cache and assume data resides in a scratch-pad
memory. In our setting, the relative influence of the instruction cache performance on the
performance of the processor is thus more pronounced. Since Patmos is a time-composable
architecture, this decision does not have any effect on the timing of the instruction cache.

For the memory timing, we use the actual timings of an SDRAM controller developed for
Patmos [10]. This memory controller is able to hide latencies for longer burst lengths. In the
evaluation we use burst sizes of 8 words that take 11 cycles for a read.

The WCET analysis is carried out using platin, a tool that is bundled with our compiler
and is primarily intended to bridge the gap between compilers and WCET analysis tools.
For evaluation purposes, platin supports the extraction of flow fact hypothesis from test
runs. This is useful for early-stage development estimates, and provides an excellent way
to compare cache analysis results with measurements [7]. The cache analysis itself is only
provided with information on infeasible paths, whereas the WCET calculation uses all flow
facts that were extracted from test the runs, including the observed frequency of basic blocks.

For our evaluation, we considered benchmarks from two well-established benchmark suites
for WCET analysis; the MRTC benchmark suite [6] and PapaBench [13]. In this section, we
compare the analysis results of a set-associative instruction cache and three variations of the
method cache: (1) a set-associative cache with LRU replacement, (2) a fixed block method
cache, using LRU replacement, (3) a variable block method cache with FIFO replacement,
and (4) a variable size method cache with FIFO replacement.

Table 1 shows the evaluation results for 1 KB caches, using our scope-based cache analysis
technique. We chose rather small 1 KB caches to stress test the analysis, as using larger
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Table 1 Comparison of an instruction cache and three different method cache variants.

benchmark I$-8 FB-4 VB-8 VS-8 VS-8-NS
1 ndes 1.00 1.07 1.07 1.05 1.24
2 jfdctint 1.00 1.11 1.11 1.11 1.00
3 cnt 1.00 1.08 1.08 1.08 1.00
4 fdct 1.00 1.09 1.09 1.09 1.00
5 adpcm 1.00 1.01 1.01 1.01 1.01
6 edn 1.00 1.06 1.06 1.06 1.13
7 select 1.00 1.09 1.09 1.11 1.35
8 fbw/send_to_pilot 1.00 1.18 1.13 1.09 1.59
9 qsort 1.00 1.75 1.67 1.12 5.55
10 fbw/check_failsafe 1.00 1.60 1.60 1.31 1.81
11 fbw/check_values 1.00 1.60 1.60 1.31 1.82
12 ud 1.00 1.08 1.07 1.02 1.12
13 fbw/ppm_task 1.00 1.44 1.39 1.40 1.85
14 nsichneu 1.00 1.18 1.18 1.18 1.29

caches results in many of the benchmarks being trivial to analyze. For all method cache
configurations but the last one, we used a reasonable default for the function splitter, which
prefers block of roughly 256 bytes if possible. The baseline is the performance of a standard 8-
way set-associative cache (I$-8). The next column provides the relative WCET performance
of a fixed-block method cache (FB-4). We chose a 4-way cache here to have reasonable large
block sizes (256 bytes) that functions need to be split to. The fourth column (VB-8) shows
the performance of variable-block method cache with a block size of 128 bytes.

The column VB-8 shows the performance of variable-block method cache with associativity
8. The third method-cache variant is a variable-sized cache, where code blocks do not need
to be multiples of some block size. The result for this cache using the usual function splitter
setting is shown in column VS-8. Additionally, we evaluated the performance of the variable
size method cache when the function splitter only splits functions down to fit in the cache
(VS-8-NS).

It can be seen that the method cache performs equal or poorer than the instruction cache
in all explored configurations. However, for most benchmarks the increase of the WCET
bound is in an acceptable range for the variable-sized block method cache configuration.
What is surprising is that the very simplistic fixed-block cache performs quite well due to the
good compiler support through function inlining and splitting. This might be an indication
that there is more headroom to adapt the function splitter to provide better results for the
variable-sized method cache.

5 Related Work

The analysis presented in this paper builds on our earlier work on method cache analysis for
JOP [8]. The previous analysis was tied to the concept of a Java method, did not use the
scope-graph representation, and only considered methods as scopes. Metzlaff and Ungerer
also compared the WCET bounds for different instruction cache architectures [12]. For the
method cache, their CHMC analysis represents possible cache states as the powerset of all
possible cache configurations. As this is prohibitively expensive if the number of possible
cache configurations grows, the cache has to be reset at the analysis start, and might not be
applicable to larger applications [11].
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For set-associative caches, the CHMC analysis of Grund and Reineke [4] exploits the fact
that when memory blocks are accessed repeatedly, it becomes possible to classify accesses
in a FIFO cache. Their work was the first to demonstrate that CHMC analysis is feasible
for FIFO caches. An innovative approach by the same authors is to use results from cache
competitive analysis [15]. The idea of this analysis is to determine the maximum number of
misses for a smaller LRU cache that is known to perform no better than the FIFO cache.
However, this analysis effectively reduces the size of the cache visible to the analysis by a
factor of two.

Whereas early persistence analyses were unsound, recent articles published corrected
dataflow algorithms that promise improvements compared to CHMC analyses [9, 1]. The
implementation in [1] combines persistence analysis and CHMC, which appears to be an
advisable strategy in practice, especially when dealing with complex architectures. Neither
article, however, considers the FIFO replacement strategy, fine-grained scopes or memory
blocks that belong to more than one scope.

Guan et. al. recently presented an approach to FIFO cache analysis that, similar to ours,
derives cache miss constraints [5]. Instead of precise scopes, they attempt to improve precision
by deriving cache miss ratios relative to the scope entry. Their evaluation demonstrates
significant improvements compared to a CHMC-based FIFO analysis, and could possibly be
integrated into our framework.

6 Conclusion

In this paper, we presented a new cache analysis framework that generalizes work on cache
persistence analysis and it is applicable to a wide range of instruction caches using either
FIFO or LRU replacement strategies.

We used this cache analysis and our LLVM-based compiler to explore method caches
in a realistic setting. We found that even in combination with a memory controller that is
limited to bursts of fixed length, our analysis is able to attest the method cache a WCET
performance that is competitive to an 8-way set-associative instruction cache. Furthermore,
we showed that adding explicit support for the method cache in the compiler has a high
impact on the performance of the method cache.

In future work, we plan to enhance the function splitter algorithm and integrate it with
the cache analysis so that the cache block region formation can profit from the knowledge of
the analysis. Finally, we also plan to apply the scope-based cache analysis to data caches,
where persistence analysis has been proven to be useful before.
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Abstract
The growing complexity of modern computer architectures increasingly complicates the prediction
of the run-time behavior of software. For real-time systems, where a safe estimation of the
program’s worst-case execution time is needed, time-predictable computer architectures promise
to resolve this problem. A stack cache, for instance, allows the compiler to efficiently cache a
program’s stack, while static analysis of its behavior remains easy. Likewise, its implementation
requires little hardware overhead.

This work introduces an optimization of the standard stack cache to avoid redundant spilling
of the cache content to main memory, if the content was not modified in the meantime. At first
sight, this appears to be an average-case optimization. Indeed, measurements show that the
number of cache blocks spilled is reduced to about 17% and 30% in the mean, depending on the
stack cache size. Furthermore, we show that lazy spilling can be analyzed with little extra effort,
which benefits the worst-case spilling behavior that is relevant for a real-time system.
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1 Introduction

In order to meet the timing constraints in systems with hard deadlines, the worst-case
execution time (WCET) of real-time software needs to be bounded. This WCET bound
should never underestimate the execution time and should be as tight as possible. Many
features of modern processor architectures, such as pipelining, caches, and branch predictors,
improve the average performance, but have an adverse effect on WCET analysis. Time-
predictable computer architectures propose alternative designs that are easier to analyze.

Memory accesses are crucial for performance. This also applies to time-predictable
alternatives. Analyzable memory and cache designs as well as their analysis thus recently
gained considerable attention [13, 8, 9]. One such alternative cache design is the stack
cache [1, 5], i.e., a specialized cache dedicated to stack data, which is intended as a complement
to a regular data cache. This design has several advantages. Firstly, the number of accesses
going through the regular data cache is greatly reduced, promising improved analysis precision.
For instance, imprecise information on access addresses can no longer interfere with the
analysis of stack accesses (and vice verse). Secondly, the stack cache design is simple and
thus easy to analyze [5]. The WCET analysis of traditional caches requires precise knowledge
about the addresses of accesses [13] and has to take the (from an analysis point of view
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complex) replacement policy into account. The analysis of the stack cache on the other hand
is much easier and amounts to a simple analysis of the cache’s fill level (occupancy) [5].

In this paper we propose an optimization to improve the performance of the stack cache’s
reserve operation based on the following observation: in many cases, the actual data spilled
by a reserve has exactly the same value as the data already stored in main memory. This
may happen in situations where data is repeatedly spilled, e.g., due to calls in a loop, but
not modified in the meantime. Thus, the main idea is to track the amount of data that is
coherent between the main memory and the cache. The cache can then avoid to needlessly
spill coherent data. We show that this tracking can be realized efficiently using a single
pointer, the so-called lazy pointer. We furthermore show that the existing analysis [5] can be
easily adapted to this optimization, by simply refining the notion of occupancy, to account
for the coherent space defined by the lazy pointer.

Section 2 introduces the stack cache, followed by a discussion of related work. Section 4
presents the motivation for our work. In Section 5, we explain lazily spilling and its static
analysis. We finally present the results from our experiments in Section 6.

2 Background

The original stack cache [1] is implemented as a kind of ring buffer with two pointers: stack
top (ST) and memory top (MT). The former points to the top of the logical stack, which
consists of all the stack data that is either stored in the cache or main memory. The latter
points to the top element present in main memory only. For simplicity, we herein assume a
hardware implementation1 with a stack growing towards lower addresses.

The difference MT − ST represents the amount of occupied space in the stack cache.
Clearly, this value cannot exceed the total size of the stack cache’s memory |SC|, thus
0 ≤ MT− ST ≤ |SC|. The stack control instructions hence manipulate the two stack pointers,
while preserving this equation, and initiate the corresponding memory transfers as needed.
A brief summary is given below (details are available in [1]):

sres x: Subtract x from ST. If this violates the equation from above, i.e., the stack cache size
is exceeded, a spill is initiated, which lowers MT until the invariant is satisfied again.

sfree x: Add x to ST. If this results in a violation of the invariant, MT is incremented accordingly.
Memory is not accessed.

sens x: Ensure that the occupancy is larger than x. If this is not the case, a fill is initiated,
which increments MT accordingly so that MT − ST ≥ x holds.

Using these three instructions, the compiler generates code to manage the stack frames of
functions, quite similar to other architectures with exception of the ensure instruction. For
brevity, we assume a simplified placement of these instructions. Stack frames are allocated
upon entering a function (sres) and freed immediately before returning from a function
(sfree). The content of a function’s stack frame might be evicted from the cache upon
function calls. The compiler thus ensures a valid stack cache state, immediately after each
call site (sens). This simplified placement can be relaxed as discussed in Section 5.2. We
furthermore restrict functions to only operate on their locally allocated stack frames. Any
stack data shared between functions, or exceeding the stack cache’s size, is allocated on the
so-called shadow stack outside the stack cache.

1 Note that the stack control instructions could also be implemented by means of software.
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3 Related Work

Static analysis [12, 3] of caches typically proceeds in two phases: (1) potential addresses of
memory accesses are determined, (2) the potential cache content for every program point
is computed. Through its simpler analysis model, the stack cache does not require the
precise knowledge of addresses, thus eliminating a source of complexity and imprecision. It
has been previously shown that the stack cache serves up to 75% of the dynamic memory
accesses [1]. Our approach to compute the worst-case behavior of the stack cache has
some similarity to techniques used to statically analyze the maximum stack depth [2]. Also
related to the concept of the stack cache, is the register-window mechanism of the SPARC
architecture, for which limited WCET analysis support exists in Tidorum Ltd.’s Bound-T
tool [11, Section 2.2].

Alternative caching mechanisms for program data exist with the Stack Value File [6] and
several solutions based on Scratchpad Memory (SPM) (e.g. [7]), which manage the stack in
either hardware or software.

4 Motivating Example

Figure 1 shows a function bar using the stack cache allocating a stack frame of two words
(l. 2) on a stack cache of size of 8 words. The stack frame is freed before returning from the
function (l. 16). The loop (l. 5–14), repeatedly calls function foo. We assume function foo
reserves 8 words, thus evicts the entire stack cache content and displaces 8 words.

Assuming no stack data has been allocated so far, the stack cache is entirely empty. The
MT and ST pointers are pointing to the top of the stack at address 256. The sres instruction
of function bar (l. 2) decrements ST by two, without any spilling. At this point, MT points to
address 256 and ST to 248 resulting in an occupancy of 2 words.

The stack store and load instructions (l. 4, 7) do not modify the MT and ST pointers.
After the function call to foo, an sres execution reserves 8 words. Decrementing ST by 32
with an unmodified MT would result in an occupancy of 10 words (256− 216), exceeding the
stack cache size. Two words are thus spilled and bar’s stack frame is transferred to the
main memory (addresses [248, 255]). Before returning from foo, its stack frame is freed, by
incrementing ST by 32 (ST = MT = 248), meaning that the stack cache is empty. The sens
instruction (l. 11) executed next, is required to ensure that bar’s stack frame is present in
the cache for the load of the next loop iteration. Therefore, a cache fill operation increments
the MT pointer to 256. The current cache state is identical to the state before the function
call. For subsequent loop iterations, the stack cache states change in exactly the same way.
An interesting observation at this point is that the values of the respective stack slots are
loop-invariant and do not change. Consequently, during every iteration the exact same values

1 function bar ()
2 sres 2
3 // store loop - invariant stack data
4 sws [1] = ...
5 loop:
6 // load loop - invariant stack data
7 lws ... = [1]
8 // displaces entire stack cache
9 call foo

10 // reload local stack frame
11 sens 2
12 cmp ...
13 // jump to beginning of loop
14 bt loop
15 // exit function
16 sfree 2
17 ret

Figure 1 foo evicts the entire stack cache, bar’s stack data is thus spilled on each iteration.
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are written to the main memory. Even more, the respective memory cells already hold these
values for all loop iterations except for the first. A standard stack cache obviously lacks the
means to avoid this redundant spilling of stack data that is known to be coherent.

5 Lazy Spilling

We propose to introduce another pointer, which we call lazy pointer (LP), that keeps track of
the stack elements in the cache that are known to be coherent with main memory. The lazy
pointer only refers to the data in the stack cache, thus the invariant ST ≤ LP ≤ MT holds.

The LP divides the reserved space in the stack cache into two regions: (a) a region between
the ST and LP and (b) a region between the LP and MT. The former region defines the effective
occupancy of the stack cache, i.e., it contains potentially modified data. The data of the
second region is coherent between the main memory and the stack cache. Whenever the
ST moves up past the LP or the MT moves down below the LP, the LP needs to be adjusted
accordingly. When a stack store instruction writes to an address above the LP, some data
potentially becomes incoherent. Hence, the LP should move up along with the effective
address of the store.

5.1 Implementation

Following the above observations, we need to adapt the stack control instructions and the
stack store instructions to support lazy spilling. Note, however, that lazy spilling does not
impact the ST and the MT, i.e., their respective values are identical to a standard stack cache.

sres x: The stack cache’s sres instruction decrements the ST. Moreover, the reserve
potentially spills some stack cache data to the main memory and thus may decrement the
MT. To respect the invariant from above, this may require an adjustment of the LP to stay
below the MT. We can, in addition, exploit the fact that the newly reserved cache content
is uninitialized – and thus can be treated as coherent with respect to the main memory.
For instance, when ST = LP before the reserve, all the stack cache content is known to be
coherent, which allows us to retain the equality ST = LP even after the sres instruction.
Moreover, when the space allocated by the current sres covers the entire stack cache, all the
data in the stack cache is uninitialized. In this case it is again safe to assume ST = LP after
the reserve. Apart from updating the LP, the spilling mechanism itself requires modifications.
Originally, the MT pointer is used to compute the amount of data to spill. However, when
lazy spilling is used, the amount of data to spill does not depend on the MT anymore. Instead,
the LP has to be used to account for the coherent data present in the stack cache. With
respect to spilling, the LP effectively replaces the MT – hence the term effective occupancy for
the region between the ST and the LP.

sfree x: The stack cache’s sfree instruction increments the ST. The MT may potentially
increase as well. To satisfy the invariant from above, the LP is incremented in case it is below
the ST. No further action is required.

sens x: The stack cache’s sens instruction does not modify the ST and may only increase
the MT. The invariant is thus trivially respected. Moreover, coherency of the data loaded into
the cache is guaranteed. The sens instruction thus requires no modification.

store: The stack store instruction writes to the stack cache and may thus change the
value of previously coherent data. Therefore, the LP needs an adjustment whenever the
effective address of the store is larger than the LP, i.e., the LP needs to be greater than the
effective address of the store instruction.
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Result: Construct SCA Graph G

initialize worklist W with entry context (s, 0);
while unhandled context c in W do

f ← function of c;
e← effective occupancy of c;
foreach call instruction i in f calling f ′ do

e′ ← min(e + r, oeff[i]));
c′ ← (f ′, e′);
add edge c→ c′ to G;
if c′ is a new context then

add new node to G;
add context c′ to W

Algorithm 1: Construct Spill Cost Analysis Graph

I Example 1. Consider again the program from Figure 1. The stack cache is initially empty
and the ST, the MT, and the LP point to address 256. As before, the sres instruction moves
the ST down to address 248. The LP moves along with the ST, since ST = LP and we assume
that the newly reserved and uninitialized space is coherent with the main memory. Next, the
store instruction (l. 4) modifies some data present in the stack cache. The LP consequently
has to move upwards and now points to address 252. The first call to function foo causes
two words to be spilled (see Section 4) and the MT is thus decremented to 248. As the LP is
larger than the MT at this point, the LP would normally require an adjustment. However,
since we assume that foo reserves the entire stack cache, it is safe to set the LP to the value
of ST (216). Any stores within foo then automatically adjust the LP as needed. The stack
cache is again empty after returning from function foo. All three pointers of the stack cache
then point to address 248. The sens reloads the stack frame of function bar (l. 11), leaving
both ST and LP unmodified, but incrementing MT to 256. The occupancy of the normal stack
cache at this point is 8 (2 words), while the effective occupancy of the stack cache with lazy
spilling is 0, i.e., the entire cache content is known to be coherent. The effective occupancy
for the next call to foo as well as for subsequent iterations of the loop, stays at 0. The reserve
within foo thus finds the entire stack cache content coherent and avoids spilling completely.
Finally, when the program exits the loop, the sfree instruction (l. 16) increments ST to 256.
In order to satisfy the invariant, LP also has to be incremented.

5.2 Static Analysis
With the restrictions from Section 2 in place, the analysis algorithms assume that reserve
and free instructions appear at a function’s entry and exit; this may be relaxed, given the
program remains well-formed regarding its stack space. Due to space restrictions, we refer
to [5], which describes the relaxation and the analysis of the original stack cache design.

The filling behavior of ensure instructions is not affected by lazy spilling, therefore, the
context-insensitive ensure analysis remains unchanged compared to its original. The spilling
behavior of a reserve instruction depends on the state of the stack cache at function entry,
which in turn depends on a nesting of stack cache states of function calls reaching the current
function. To fully capture this context-sensitive information, we can represent spill cost in
the spill cost analysis graph (SCA graph). An example SCA graph is depicted in Figure 2b.
The effective spill cost for an sres instruction in a specific calling context is computed from
the occupancy of the context and the locally reserved space x (in sres x). This value is then
multiplied with the timing overhead of the data transfer to external memory.
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Without lazy spilling, the construction of the SCA graph depends on the notion of stack
cache occupancy, i.e., the utilized stack cache region of size MT − ST. In order to benefit
from the reduced overhead of lazy spilling, we need to consider the possibly smaller region
LP− ST. Bounds for this effective occupancy of the stack cache are propagated through the
call graph during reserve analysis, which constructs the SCA graph as shown in Algorithm 1.
The oeff-bound used by the algorithm improves the overestimation still present in context-
sensitive reserve analysis. It can be computed by an intra-procedural data-flow analysis,
which considers minimum displacement and the destinations of stack cache stores. For every
point within a function, but most interestingly before calls, oeff represents a local upper
bound on the effective occupancy.

As a pre-requisite for the intra-procedural analysis, minimum displacements for all
functions in the program are computed. This is achieved by several shortest-path searches in
the program’s call graph. The resulting values are bounded by the size of the stack cache
disp(i) = min(|SC |, dmin(i)) and used in the data-flow transfer functions of the analysis:

OUT (i) =


min(IN (i), |SC | − disp(i)) if i = call (1a)
max(IN (i), blocks(n)) if i = sws n (1b)
IN (i) otherwise (1c)

After returning from a call instruction i, the LP cannot have moved upwards with respect to
its location before the call. In fact, a function call can only leave the LP unchanged or move it
downwards. I.e., if stack contents of the current function are spilled, this potentially increases
the coherent region of the stack cache and thus decreases the effective occupancy (1a).
The amount of spilling is represented by the previously computed (worst-case) minimum
displacement disp(i).

Opposite to calls, the LP moves up when i is a store instruction (1b). Since the number
of data words per stack cache block is fixed, the number of blocks that become incoherent
due to a store, only depends on its destination n (in blocks(n) = dn/words-per-blocke).

Note that while an sens instruction can impact the original analysis of occupancy bounds,
it does not influence the effective occupancy and thus plays no role during reserve analysis in
the presence of lazy spilling.

In order to safely initialize the oeff bound and propagate it between instructions (i.e.,
from the OUT -values of the predecessors of an instruction to its IN -value (2b)), we define
the following transfer functions:

IN (i) =
{ |SC | if i is entry (2a)

max
p ∈Preds(i)

(OUT (p)) otherwise (2b)

It is further worth noting that in practice not all stack store instructions need to be analyzed.
As long as the effective occupancy value exceeds the stack cache size reserved by the current
function (i.e., the coherent region does not overlap with the current stack frame), a particular
store has no effect on the analysis state.

I Example 2. Consider the program from Figure 1, where two additional function calls to
function baz are performed. The first call appears right before entering the loop, while the
other appears right after exiting the loop.

The call graph for this program is shown in Figure 2a. This graph also shows the size
of the stack frame reserved by each function on the outgoing call edges. For functions
without calls (baz and foo), call edges to an artificial sink node t are introduced. Using these
annotations, the minimum and maximum displacement of each function can be determined
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stack cache context: name followed by the
context’s effective occupancy level)

Figure 2 Call graph and SCA Graph for the program of Example 2.

using a shortest and longest path search respectively. The minimum displacements for the
three functions are 8, 6, and 4; for foo, bar, and baz respectively.

The analysis of this program results in the SCA graph shown by Figure 2b. The analysis
starts with an empty stack cache and finds that bar allocates 2 words (8 bytes), initializes
the respective stack slots and then calls baz. Since bar’s stack content was not spilled before,
the effective occupancy when entering baz evaluates to 2. Assuming a stack cache size of 8
words, the function can be executed without spilling. The analysis thus can deduce that the
LP was not modified with regard to bar’s stack frame. Propagating this information to the
function call of foo within the loop results in a context for foo with the same occupancy of 2.
Once the program exits the loop, another call to baz is executed. Due to foo displacing the
full stack cache and the lack of relevant stores, the data-flow analysis is able to propagate the
effective occupancy of 0 down to this call. This is reflected in the SCA graph by containing
a node for baz annotated with its effective 0-occupancy.

6 Experiments

We use the Patmos processor [10] to evaluate the impact of lazy spilling on hardware costs,
average program performance, and worst-case spilling bounds. The hardware model of the
processor was extended and statistics were collected on the speed and resource requirements
after synthesis (Altera Quartus II 13.1, for Altera DE2-115). The average performance
measurements were performed using the MiBench [4] benchmarks suite. The programs
were compiled using the Patmos LLVM compiler (version 3.4) with full optimizations (-O3)
and executed on a cycle-accurate simulator. We compare five configurations utilizing (a)
a standard data cache combined with a lazily spilling stack cache having a size of 128 or
256 bytes (LP128, LP256), (b) a standard data cache combined with a standard stack cache
(SC128, SC256), and (c) a standard data cache alone (DC). The stack caches perform spilling
and filling using 4 byte blocks. The data cache is configured to have a size of 2 KB, a 4-way
set-associative organization, with 32 byte cache lines, LRU replacement, and a write-through
strategy (recommended for real-time systems [13]). In addition to data caches, the simulator
is configured to use a 16 KB method cache for code. The main memory is accessed in 16
byte bursts and 7 cycles latency.

6.1 Implementation Overhead
The standard stack cache of Patmos is implemented by a controller, which executes spill and
fill requests, and control instructions (sres, sfree, sens) sending requests to that controller.
The controller is independent from the extensions presented here. It thus suffices to extend the
sres, sfree, and stack store instruction as indicated in Section 5.1. The Patmos processor
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has a five-stage pipeline (fetch, decode, execute, memory access, write back). The stack
cache reads the ST and the MT in the decode stage and immediately computes the amount to
spill/fill. The LP is read in the decode stage as well, which allows us to perform all LP-related
updates in the decode and execute stages. That way additional logic on the critical path in
the memory stage, where the cache is actually accessed, is avoided. This applies in particular
to the store instruction, whose effective address only becomes available in the execute stage.
For lazy spilling, a single additional register is needed (LP). Updating the LP in the sres
instruction adds two multiplexers to the original implementation. The sfree and stack store
instructions each need an additional multiplexer. The area overhead is, therefore, very low.
Moreover, these changes do not affect the processing frequency.

6.2 Average Performance
Table 1 (columns Spill) shows the reduction in the number of blocks spilled in comparison to
the standard stack cache. Note that results for rawcaudio and rawdaudio are not shown, as
they never spill due to their shallow call nesting depth. The best result for LP128 is achieved
for bitcnts, where lazy spilling practically avoids spilling. In the mean, spilling is reduced
to just 17%. The worst result is attained for qsort-small, where 62% of the blocks are
spilled. For LP256 spilling is reduced to 30% in the mean. The best result is observed for
search-large, where essentially all spilling is avoided. For crc-32, drijndael, erijndael,
and sha only marginal improvements are possible, since these benchmarks already spill little
in comparison to the other benchmarks. The worst result of those benchmarks with a relevant
amount of spilling is obtained for qsort-small, where 76% of the blocks are spilled.

Miss rates are not suitable for comparison against standard data caches. We thus compare
the number of bytes accessed by the processor through a cache in relation to the number of
stall cycles it caused, i.e., #RD+#W R

#Stalls . A high value in Table 1 (columns SC and DC) means
that the cache is efficient, as data is frequently accessed without stalling. The data cache
alone gives values up to 3.3 only. Ignoring benchmarks with little spilling, the best result for
SC128 is achieved by dbf (477.4). For SC256, bitcnts gives the best result (17054.7). Lazy

Table 1 Bytes accessed per stall cycle and reduction in spilling for the various configurations.
SC128 LP128 SC256 LP256 DC

Benchmark SC DC Spill LP-SC DC SC DC Spill LP-SC DC
basicmath-tiny 2.3 1.1 0.17 4.0 1.1 26.4 1.1 0.53 34.0 1.1 1.1

bitcnts 4.6 191.6 0.00 12.2 191.6 17054.7 193.7 0.71 19201.4 193.7 1.2
cjpeg-small 116.9 1.0 0.51 148.4 1.0 3470.7 1.0 0.09 6154.4 1.0 1.1

crc-32 9.0 0.9 0.03 21.3 0.9 814.9 0.9 1.00 814.9 0.9 0.9
csusan-small 11.3 2.2 0.16 18.6 2.2 1218.8 2.3 0.72 1430.0 2.3 1.5

dbf 477.4 1.0 0.47 623.0 1.0 – 1.0 – – 1.0 1.0
dijkstra-small 19.5 1.4 0.20 32.8 1.4 335.2 1.4 0.54 433.7 1.4 1.4

djpeg-small 9.0 0.8 0.34 13.5 0.8 293.4 0.8 0.66 361.5 0.8 0.8
drijndael 15.8 0.9 0.20 28.7 0.9 185620.0 0.9 1.00 185620.0 0.9 0.9

ebf 172.5 1.0 0.44 224.6 1.0 – 1.0 – – 1.0 1.0
erijndael 32.6 0.9 0.57 43.3 0.9 258340.0 0.9 1.00 258340.0 0.9 0.9

esusan-small 15.9 3.4 0.25 25.3 3.4 70.7 3.6 0.02 139.5 3.6 1.5
fft-tiny 3.1 1.1 0.08 5.8 1.1 85.0 1.1 0.56 103.4 1.1 1.1

ifft-tiny 3.1 1.2 0.08 5.9 1.2 83.1 1.1 0.56 101.0 1.1 1.1
patricia 2.5 1.0 0.27 4.2 1.0 26.4 1.0 0.55 31.9 1.0 1.0

qsort-small 3.1 1.0 0.62 3.7 1.0 7.8 1.0 0.76 8.6 1.0 1.0
rsynth-tiny 16.0 1.9 0.08 29.9 1.9 1096.1 1.9 0.48 1539.8 1.9 1.3

search-large 2.9 0.8 0.48 3.9 0.8 26.3 0.8 0.00 52.5 0.8 0.9
search-small 2.9 0.8 0.49 3.7 0.8 28.1 0.8 0.02 54.8 0.8 0.9

sha 8.3 1.6 0.20 14.1 1.6 668.7 1.6 0.91 700.6 1.6 1.6
ssusan-small 29.2 17.1 0.20 43.9 17.1 4313.5 17.1 0.80 4678.0 17.1 3.3
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spilling leads to consistent improvements over all benchmarks. An interesting observation is
that for most benchmarks the presence of a stack cache improves the performance of the data
cache. The best example for this is bitcnts, but also csusan and ssusan profit considerably,
where the data cache alone delivers 1.2 bytes per stall cycle. When a stack cache is added to
the system, this value jumps up to 192.4 and 196.1 respectively.

Our measurements show that lazy spilling eliminates most spilling in comparison to a
standard stack cache. Also the efficiency of the standard data cache is improved in many
cases. Due to the low memory latency assumed here, this translates to run-time gains of up
to 21.8% in comparison to a system with a standard stack cache. In the mean, the speedup
amounts to 8% and 9.2% in comparison to a system only equipped with a data cache.

6.3 Static Analysis

We evaluate the impact of lazy spilling on the static analysis by comparing its bounds on
the worst-case spilling with the actual spilling behavior observed during program execution.
In order to be considered safe, the analysis’ bounds always need to be larger or equal to
the observed spilling of an execution run. Apart from a safe result, the analysis should also
provide tight bounds. Note that the observed spilling relates to the average-case behavior of
the programs, which does not necessarily trigger the worst-case stack cache behavior (the
same inputs as in Section 6.2 have been used). However, we still report the estimation gap
between worst case and average case, to show the effect of lazy spilling in the analysis.

We extended the Patmos simulator and first verified that the actual spilling of all sres
instructions executed by a benchmark program is safely bounded by the analysis. We
then measured the maximum difference between statically predicted and observed spilling
(Max-Spilling-∆) for each sres in every of its contexts (i.e., considering all nodes of the
SCA graph reachable by execution). Table 2 shows the results for the 128-byte stack cache
configuration and allows for a comparison between statically predicted and dynamically
observed spill costs. A first look reveals that static spill cost is reduced for all programs in
our benchmark set (down to 12% for rsynth-tiny). Furthermore, when the estimation gap
is initially low, lazy spilling tends to widen the gap between static and dynamic spill cost

Table 2 Analysis precision: static worst-case compared to observations from dynamic execution
(bytes spilled based on maximum spilling per stack cache context)

SC128 Max-Spilling-∆ LP-SC128 Max-Spilling-∆
Benchmark Static Dynamic Gap Static Dynamic Gap

basicmath-tiny 68,128 32,040 2.13× 10,052 8,080 1.24×
bitcnts 892 684 1.30× 768 320 2.40×
crc-32 844 652 1.29× 684 372 1.84×
csusan 5,404 2,592 2.08× 2,420 1,196 2.02×

dbf 684 456 1.50× 564 324 1.74×
dijkstra-small 10,220 5,796 1.76× 6,676 2,608 2.56×

drijndael 1,172 664 1.77× 1,024 488 2.10×
ebf 684 456 1.50× 564 324 1.74×

erijndael 880 400 2.20× 752 292 2.58×
esusan 4,724 1,888 2.50× 2,256 1,024 2.20×
fft-tiny 32,484 9,476 3.43× 5,804 3,712 1.56×

ifft-tiny 32,224 9,256 3.48× 5,620 3,548 1.58×
patricia 1,996 1,672 1.19× 1,804 984 1.83×

qsort-small 3,804 1,492 2.55× 2,432 840 2.90×
rsynth-tiny 109,864 15,320 7.17× 13,504 3,140 4.30×

search-large 840 740 1.14× 668 340 1.96×
search-small 828 728 1.14× 708 312 2.27×

sha 1,160 660 1.76× 1,032 448 2.30×
ssusan 6,608 1,824 3.62× 2,452 1,060 2.31×
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slightly. But for those benchmarks that exhibit large estimation gaps with a standard stack
cache, lazy spilling can even improve analysis precision.

7 Conclusion

From our experiments, we conclude that the benefits of lazy spilling extend from the average
case performance to worst-case behavior, where it can even benefit analysis precision. In
future work, we plan to introduce loop contexts and a limited notion of path-sensitivity to
the analysis, to better capture occupancy states and thus spilling behavior.
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Abstract
Highly-configurable systems usually depend on a large number of parameters imposed by both
hardware and software configuration. Due to the pessimistic assumptions of WCET analysis, if
left unspecified, they deteriorate the quality of WCET analysis. In such a case, supplying the
WCET analyzer with additional information about parameters (a scenario), e.g. possible variable
ranges or values, allows reducing WCET over-estimation, either by improving the estimate, or
by validating the initial estimate for a specific configuration or mode of execution. Nevertheless,
exhaustively specifying constraints on all parameters is usually infeasible and identifying relevant
ones (i.e. those impacting the WCET) is difficult. To address this issue, we propose the branching
statement analysis, which uses a source-based heuristic to compute branch weights and that aims
at listing unbalanced conditionals that correspond to system parameters. The goal is to help
system-experts identify and formulate concise scenarios about modes or configurations that have
a positive impact on the quality of the WCET analysis.
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1 Introduction

At Continental Automotive France SAS and in the automotive industry in general, the reuse
of software is a major source of quality improvement and development cost reduction. Such
reuse is enabled by product-platform approaches, for example by offering a clear decoupling
between generic function development and application project integration. Therefore, the
corresponding software modules are firstly developed in a platform context which makes
them applicable in a large diversity of contexts, such as engine cylinder number, combustion
type or fuel type. Abstraction of the system configuration and the hardware platform results
in a configurable software module solution, for which the worst-case execution time (WCET)
depends on a series of parameters. Additionally, software functions must be frequently
adapted to changes of the configuration or enhanced by new features. Besides scheduling
analysis and timing constraint verification, WCET analysis is applied in various phases of the
development cycle of such an industrial project. In the design phase, it is used to estimate
the computation power required by a brand new functionality in order to properly size the
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hardware configuration. During module development, WCET analysis is applied to verify
the compliance to certain platform rules, like, e.g., the maximum interrupt blocking time.

Due to a huge amount of unspecified settings in such a configurable environment the
pessimistic assumptions of WCET analysis usually leads to a high over-estimation of the
WCET, especially when it is applied in an early development phase.

Supplying precise information about possible values of relevant parameters can thus
improve the quality of the WCET estimate or establish that the WCET estimate for the
particular configuration coincides with the reported unconstrained WCET estimate. Manually
identifying and specifying constraints on all relevant parameters is a tedious task. In order
to assist such a task we propose an approach, branching statement analysis, that focuses on
identifying crucial branching choices at control flow level. To this end, we identify parameters
by analyzing and listing conditionals that are deemed WCET-relevant by our analysis. Then,
a system-expert provides additional information about the particular configuration in form
of input constraints (scenario). WCET analysis of the system under the supplied scenario
either leads to an improvement of the WCET estimate for the analyzed mode, or validates
the accuracy of the (global) analysis for this particular configuration.

The contribution of this work is an approach that makes the task of identifying relevant
parameters in a configurable system less tedious, while gaining on the precision of the WCET
estimate reported for the configuration. Our method relies on a static analysis tool to
compute loop bounds and infeasible path information and can be applied iteratively to
incorporate and refine value specifications of parameters. By relying on a source based timing
heuristic, we identify unbalanced conditionals and guide the system-expert when constructing
and/or refining short and precise scenario specifications about relevant parameters.

The rest of the paper is structured as follows. An overview of the approach is presented
in Sect. 2, followed by an industrial point of view on WCET analysis in Sect. 3. A detailed
description of our method is presented in Sect. 4, while Sect. 5 overviews effects of scenarios
on the WCET analysis precision. We report on experiments in Sect. 6 followed by an overview
of related work, Sect. 7, and we conclude in Sect. 8.

2 Motivating Example

The diagram shown in Figure 1 outlines the setup of our approach. Traditionally, to
compute a WCET estimate, a (possibly empty) scenario and the program source code are
supplied to a control flow analyzer (oRange [7]) that computes flow facts about the program
(FFX [10]). The program binary and the flow facts are supplied as input to the low-level
analyzer (OTAWA [1]) that computes a WCET estimate for the program. We extended the flow
fact computation step by a ∆-computation step. The goal is to find unbalanced conditionals
(in terms of weight, currently a syntactical measure) related to parameter values, such that a
system-expert can focus on specifying parameters that are deemed relevant by the branching
statement analysis. Specifying data constraints for those parameters yields a refined scenario
that can again be supplied to the WCET computation step. The analysis can be re-run
iteratively using the refined scenario.

As stated in Section 1, the WCET estimate usually depends upon a large number of
parameters imposed by outside constraints. Therefore, one often is interested in estimating
the WCET of the program in a specific mode of execution or configuration.

In this paper, we denote as the configuration of the system the hardware and software
environment of a component. A mode of execution describes running the program under
certain assumptions about the environment. Parameters then denote variables that reflect
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scenario C program

oRange

∆ list

binary

FFX

OTAWA WCET
estimate

refined
scenario

expert

oRange

new
∆ list

new
FFX

OTAWA
new

WCET
estimate

expert

Figure 1 Introducing ∆-values to support scenario specification and refinement.

# include " missing .h"
int expensive () { /* ... */ }
int cheap () { /* ... */ }
int main () {

for (int i = 0; i < 100; i++)
if ( max_speed > 250)

expensive ();
else cheap ();

}

Figure 2 A simple example.

Computing the balance information for the main function
Estimated cost of the function : 70804
1 accessible conditional statements
Delta 65000 at rex.c:22 in main (total count =100):

then =704; else =54; // max_speed > 250

Figure 3 Analysis output: ∆-conditions for the example.

the configuration and/or the mode of the system, and by a scenario we denote a set of
constraints on these parameters.

As an example, consider Figure 2 and suppose that max_speed is a variable among many
parameters. Thus, the unbalanced conditional depends on variable values (parameters,
configuration) that are not specified in the analyzed code. A system-expert knows that in a
particular mode of execution or configuration (critical mode, model of vehicle, calibration)
max_speed is less than 250. Restricting possible executions of the program by providing
information about max_speed can therefore improve the WCET estimate for the configuration.
Nevertheless, such a parameter first needs to be identified as relevant.

Figure 3 lists the ∆-conditions for the example, with a weight of 704 for the then-
branch (∆-weight of expensive) and a weight of 54 for the else-branch (∆-weight of cheap).
The conditional branches are executed within a loop, thus their weight needs to be scaled
accordingly, resulting in a ∆-value of 65,000 over all loop iterations. As there is only a
single if-statement present in the source the number of ∆-conditions is 1. The high ∆-value
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indicates that supplying additional annotations about variables involved in the condition have
a high impact on the WCET estimate computed for the function. Therefore, our approach
proposes this variable as a relevant parameter.

Supplying input annotations for those parameters helps determine the program paths
that are valid in the current scenario. For example, assuming a system where max_speed is
known to be < 200 reduces the WCET estimate from 250,033 to 29,933 cycles.

3 The Need for Concise Scenario Specifications

WCET analysis in an industrial context is applied with different aims in a number of
development phases. A regular WCET estimate is often not enough, especially when the
lack of context makes it highly imprecise. We overview these phases to illustrate where
the precision of WCET analysis can be improved by incorporating system-expert supplied
scenarios.

First, the WCET of a piece of code (e.g. a module or a function) is estimated in isolation
of any influence from other modules, be it effects from input or output channels, relations
with other modules, variable interdependencies, interrupts or the system configuration. These
estimations happen soon in the development cycle, by the function developer. Second, in a
module aggregation phase the focus shifts to the aggregation of a number of modules (10 to
40) to form a package suited to be reused in application projects. In this phase, the code is
an assembly of modules and sequences and no more modified.

The tuning of these settings results in exclusive behaviours and can be expressed as
limitations on valid program paths. Therefore, in this phase, information about top level
system integration and other high level system information can be supplied to a WCET
analyzer in order to gain a more realistic view on the WCET on the package level. Finally,
an application project view point on the integration phase that combines a number of, e.g.
70 to 100, aggregates leads to a WCET estimate used for scheduling analysis, as well for
a proper configuration of the task set. At this point, the top level system configuration
is set-up, and execution modes can be defined (including assumptions about engine speed,
coolant temperature, etc.). Specifying such assumptions about a mode in a scenario allows
to infer a tight contextual WCET estimate for the particular mode and configuration.

In a complete automotive system there are up to 40,000 variables, some of them tightly
coupled due to system state inter-dependency and closed loop effect. Scenarios are necessary
in order to model influences on the system. The tool we propose helps the system-expert
identify parameters that are likely to impact the WCET estimate and should thus be specified
in the scenario. This way, the WCET analysis of a module during the aggregation phase, or
of an aggregate during the project integration phase can be provide a value closer to the
WCET in real setting, while only specifying a low number of parameters. Scenarios therefore
include information on parameters such as:

input and internal variables, corresponding to system states, values of acquisitions,
information coming from the network or diagnosis data. For example, the set of active
functions is influenced by the state of the engine system (full load, idle speed).
configuration parameters, influencing arrays sizes, loop bounds, and (de)activate code
branches in runnables, runnables, or even full aggregates. They can be

configured statically, and must be assumed during validation. Those are usually
concerned with “high-level” configuration such as the number of cylinders, cylinder
banks, the type of sensors or the type of combustion.
configured dynamically (calibration parameters) that can be modified later by tuning
engineers and influence computations, like e.g. interpolation- and index-tables.
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4 Branching Statements Analysis

The list of conditional statements shown in Figure 3 is computed by our branching statement
analysis. For each conditional statements of a C program the analysis computes a ∆-value,
i.e. an indicator of how unbalanced its branches are in terms of weights, (currently) a source
based heuristic. Thus, the analysis requires no binary program nor architecture information.
We implemented this analysis on top of the control flow analyser oRange.

Analysis Input. The analysis takes as input a C program, consisting of C source and header
files, together with an entry point and optional input-annotations. User-supplied annotations
may contain information about the program data and the program control flow, that might
not be inferable from the program code.

Analysis Output. The analysis outputs a list of branching statements of the program. Each
branching statement is accompanied by:

information to localize it in the source code;
an upper bound on the number of executions, N ;
a list of its valid branches, together with their branch-weights, wi;
its ∆-value = N×maxi,j(wi−wj); the formula reduces to N×|wthen−welse|, respectively
N × wthen, for if-then-else, respectively if-then, statements.

The list is sorted by ∆-values in decreasing order and outputs the weight of the program.

Control Flow Pre-Analysis. We assume that the branching statements analysis is preceded
by a control flow analysis that computes the following information:

Loop bounds for each loop of the program
Branch validity for each branching statement (if, switch)

This information is deduced from the code and/or supplied in the form of input-annotations
and is used in the weight computation.

Abstract Syntax Trees. The C program is represented as a collection of functions, each
defined by a name and an Abstract Syntax Tree (AST). An AST is composed of statements,
structuring sub-statements and expressions, and expressions composing sub-expressions and
function calls. Figure 4 depicts an example of an AST.

In absence of recursion, linking the function names to their corresponding AST yields a
directed acyclic graph (DAG) which root is the entry point.

Branching Statement Analysis. Attaches the following information to each node:
its weight, which is a pessimistic numerical indicator of the execution time of the function,
statement or expression
a set of conditional statements possibly evaluated during its execution, together with
upper bounds on the number of times they are evaluated.
The information attached to a node is computed from the information carried by its

children. In the example shown in Figure 4, assuming that the control flow analysis infers that
both branches are valid, the weight of the IF statement is defined by (1) we + max(wS1, wS2).
The execution count of conditional statements in e, S1 or S2 are combined applying formula
(1). An entry in the list of ∆-conditions is added for each conditional statement. Additionally,
it lists the execution count and branches S1 and S2 together with their respective weight.
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main()

IF

e

f()

S1 S2

Figure 4 Example of
Abstract Syntax Tree.

Information is computed in a bottom-up manner from (valid)
leaves to the root. We rely on a heuristic assigning integer weights
to nodes representing elementary program operations, e.g. nu-
merical operations or memory accesses. Weights and counts are
updated taking into account inferred or supplied loop bounds,
while branches marked as invalid do not appear in the output.
Branching statement with only one branch are not added to the
list.

Finally, the root node carries the weight of the whole program
and is output together with the set of ∆-conditions of the program.

Limitations. The significance of the ∆-values depends on the constants and formulas used
in the weight computation. Currently, and in our experiments, we use integer constants for
different kinds of AST nodes. Nevertheless, a more complex scheme or using values computed
by a static WCET analyzer is feasible. Statements which break the regular control flow do
not receive a special treatment. As a consequence, a branch like if (x) break; inherently
carries a low ∆-value.

5 Exploiting Scenario Specifications

An expert-supplied scenario, constructed by choosing and specifying values for suggested
parameters, is likely to influence the computed WCET estimate. The control flow analyzer
deduces path infeasibility, i.e. invalid execution under the current assumptions, from the
additional annotations. Effects propagate to the low-level analyzer, as illustrated by the
following example (Figure 5), as well.

In the following, we apply a simple cost heuristic for terminal nodes (cost 0 for numeric
constants and field accesses and 1 for all other nodes) to identify scenarios and then use
oRange and OTAWA to infer execution time estimates for the scenario.

Initially, the example is analyzed without scenario, finding all paths “valid”. A follow-up
low-level analysis computes possible addresses for the pointer access, resulting in > (no
information) after the analysis of the if-statement. The assignment to *p results in a cache
miss assumed by the low-level analysis.

Supplying value information (Figure 6) infers the branch invalid in the scenario and
therefore marks the corresponding edge as not-executed. The low-level analyzer can thus
ignore one of the branch for its analyses and infers an address for the access of *p, decreasing
the original estimate, 95 cycles, to 83 cycles.

Before reporting on our experiments, let us summarize possible effects of utilizing ∆-
conditions to specify concise but relevant scenarios:

The WCET path and estimate change when eliminating a branch on the WCET path. If a
light branch was eliminated, the change is due to increased analysis precision of the following
analyses. For example, when improved cache analysis results allow to infer block execution
times (for previously selected blocks) that are below the execution time of alternative blocks
(that were previously not selected).

The path is unchanged but the estimate is improved when a light branch is eliminated
and the improvement of later analyses does not reduce block execution times of selected
blocks below the execution time of their alternative blocks.

The WCET path changes while the estimate does not improve, in cases when a branch is
eliminated but there exists another execution exhibiting a similar WCET estimate.
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# include " missing .h"
int main ()
{

int a, b;
int *p;
if (ext > 0)

p = &a;
else

p = &b;
*p = i;

}

Figure 5 Cache analysis fails to infer the
address of *p.

// missing .h:
// no scenario , no value value

↪→information
int ext;
(a)

// missing .h:
// scenario , additional value

↪→information
int ext = 0;
(b)

Figure 6 “Invalidating” a path under a scenario
arrows to infer the address of *p.

Finally, both the WCET path and the estimate are unchanged when eliminating a light
branch and the improvement of following analyses does not propagate to blocks on the
WCET path.

6 Experiments

Industrial Use-Case. The use-case is a 700 line C module provided by Continental Auto-
motive France SAS. A system-expert manually identified and provided a list of 85 parameters
and a scenario specification consisting of 30 parameter initializations. Branching statement
analysis on the module reports 54 ∆-conditions, with ∆-values from 0 to 2034.

20 of the 30 parameters initialized in the provided scenario appear in the list of ∆-
conditions, 18 of them exhibiting the highest 10 ∆-values of the list. 19 of the 54 ∆-conditions
have low ∆-values (218 and less than 11) and no correspondence to the parameters in the
scenario. As we rely on the parameter names to appear as operands in the ∆-conditions, a
parameter may be linked to several ∆-conditions and vice versa.

Table 1 shows the result of WCET analysis of the module: column 1 lists the provided
scenario, column 2 lists the number of specified parameters in the scenario and column 3 to
6 list the WCET estimate and improvement compared to the global WCET for an ARM7
lpc2138 platform, without and with a 1KB direct mapped data cache.

WCET analysis of the module without scenario, (1) global, reports 2553 (6883) as WCET
estimate. WCET analysis of the expert-provided scenario, specifying 30 parameters, (2)
full scenario, yields an improvement of 5%. Rows, (3)-(6), list the estimate and gain when
specifying only those parameters involved in the i highest valued ∆-conditions.

To investigate the correspondence between high ∆-values and gain in the WCET estimate
we inverted the scenario that initializes 3 parameters, row (3), thus forcing execution of the
light branches of the corresponding conditionals, in row (7). To validate that specifications
for parameters not contained in the list of ∆-conditions have little impact on the estimate,
we supply the 10 parameter initializations that do not appear in any ∆-conditions, row (8).

Summarizing, branching statement analysis identified 20 of 80 parameters as important
due to their high ∆-values in the list and they coincide with specified values in the expert-
provided scenario. 10 parameters specified in the expert-provided scenario do not appear in
the ∆-condition list and have almost no impact on the WCET estimate, while specifying
only parameters identified in the 10 highest ∆-conditions still improves the estimate.

The experiment shows that our branching statement analysis can help system-experts
focus on the relevant parameters from the vast number of possible parameters.
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Table 1 WCET computation depending on parameters provided in scenarios

scenario # parameters no cache cache
(1) global, no scenario 0 2553 gain 6883 gain
(2) full scenario 30 2426 5% 6486 5.7%
(3) 3 highest ∆ 3 2553 0% 6833 0%
(4) 8 highest ∆ 10 2479 3% 6679 3%
(5) 9 highest ∆ 14 2463 3.5% 6623 3.8%
(6) 10 highest ∆ 18 2448 4% 6568 4.6%

(7) inverted 3 highest ∆ 3 (inverted) 2055 19% 5795 15.8%
(8) none of ∆ 10 2551 0.08% 6831 0.03%

Table 2 Potential for WCET improvement for Mälardalen benchmarks.

program # ∆ highest ∆ overall weight ratio
sqrt 4 4458 4540 98.19

expint 3 35800 38026 94.14
prime 4 12,773,225 86,858,003 14.70
crc 5 6144 49223 10.45
ndes 5 384 43930 0.8
st 4 743 114,137 0.65
fir 2 30 204,371,956 0.00001

Branching Statements Analysis of Mälardalen. Even though our approach is motivated
by industrial need, branching statement analysis provides relevant results when applied to
the Mälardalen benchmark suite [6]. The benchmarks lack scenarios, therefore we target
identifying interesting variables and program points instead of system parameters.

Column # ∆ in Table 2 states the number of unbalanced conditionals found in the
program. Highest ∆ lists the highest ∆-value reported. The last two columns list the weight
of the program and its ratio to the highest ∆-value. The ratio is an indication of potential
improvement when supplying additional information for the conditional is feasible.

In programs like expint or sqrt, the highest ∆-value weighs over 94% of the total weight,
which hints at a relevant program point1. There is potential for improvement in programs
crc and prime, yet they lack the opportunity to specify annotations. The low ∆-values of
the rest of the programs suggest a low potential for improvements.

As expected, the nature of the benchmarks, lacking system parameters, prohibits scenario
specification, but interesting program points can still be identified by the analysis.

7 Related Work

There is a body of work that is related to branching statement analysis.
The weight computation and propagation in the AST is comparable to tree-based WCET

computation, whereas identifying relevant conditionals is related to (static) profiling. In con-
trast to the other approaches, it aims at helping system-experts identify relevant parameters

1 In expint the high weight of the conditional is due to an inner loop with a high execution count, while
it is run only once. In sqrt the condition guards a light special case of the computation.
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by identifying unbalanced conditionals on source level using a simple heuristic for weights.
Tree-based WCET computation can be applied as alternative to IPET [3]. Estimates

are computed by a bottom-up traversal of the parse tree of a program. Leaves represent
basic blocks and are annotated with timing information. The program is traversed and for
each node timing information is computed from the timing information of its child nodes. In
contrast to tree-based WCET computation, branching statement analysis does not rely on
timing information of basic blocks but uses a heuristic to compute timing information from
the syntactic expressions.

In [2] the authors present the criticality metric to express for each statement how important
it is for the global WCET. This allows finding out, for a piece of code, how close the WCET of
paths passing through the piece of code is to the global WCET. The ratio between ∆-values
and the weight of the function indicates a potential for improving the WCET estimate by
supplying a scenario.

Dynamic program profiling usually executes an instrumented program in order to explore
the performance and/or flow [5]. Static approaches generate static profiles, e.g. by computing
probabilities for decisions at branching points [9]. A major problem in profiling is to find
input values that capture the performance profile of the application. Our analysis does not
execute or instrument the program and helps to identify relevant parameters.

The author of [8] sketches the ingredients for a static profiler. The output is an unfolded
inter-procedural control flow graph computed from the results of multiple static analyzers
that identify feasible paths and compute loop bounds. The graph is guaranteed to include the
worst-case behaviour of the program. Static analysis results are used similarly in branching
statement analysis but instead of execution frequencies it computes weights.

Most closely related is a work on scenario detection [4], following a comparable approach,
with a slightly different goal. The influence coefficient is computed for parameter variables,
which are identified as variables or fields that are assigned once and do not change over the
program execution. Scenarios are constructed such that they split and cover the domain of
the parameters, allowing to WCET analyze each scenario. The maximum execution time
among the scenarios is then considered as the WCET of the application. In contrast to [4],
our notion of parameters allows for changes in value, and they might not be assigned in the
code at all. Instead of discovering variables, we match conditions with high ∆-values to a
number of pre-selected parameters. Furthermore, our weight heuristic should be independent
of both the underlying architecture and WCET analysis, in order to be able to apply it in
different phases of development.

8 Conclusion and Outlook

We presented branching statement analysis, an approach to guide system-experts in generating
concise, but relevant, scenarios for the WCET analysis of systems. Such systems are usually
composed of a number of components, influenced and controlled by a vast number of
parameters. The high number of parameters usually results in an overly pessimistic WCET
estimate and prohibits exhaustive specification of scenarios that allow to obtain a more
realistic estimate. Branching statement analysis allows to find unbalanced conditions that
depend on parameters. Additional information about a low number of identified parameters
can already significantly improve the WCET estimate or validate the estimate for the
scenario. To this end, we see branching statement analysis as an important step towards a
more functionally representative (or plausible) WCET, instead of a purely structural one.

We are currently applying part of our approach manually, i.e. we rely on scenarios specified
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by system-experts. To further improve trust, such scenarios could be verified, whenever
possible, by automated tools.

We plan to integrate our approach in a fully automatic setting, where additional informa-
tion is inferred using static analysis. Branching statement analysis could be used to select
program points where counter instrumentation and analysis is applied to infer constraints
between instrumented basic blocks.

Additional effort will be put into a richer set of supported input-annotations in the
scenario, currently restricted to information about variable values and boolean information
about the execution of conditional branches. The system-expert might have at its disposal
information like limits on the number of execution of a statement or contexts in which a
statement must or must not be executed.
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Abstract
Knowledge of the worst-case execution time of software components is essential in safety-critical
hard real-time systems. The analysis thereof is not trivial as the execution time depends on
many factors, including the underlying hardware platform, the program structure, and the code
produced by the compiler. Often, the execution time is variable and highly sensitive to the
input data the program has to process. This paper presents a code transformation applicable in
a compiler backend that produces time-predictable code. The resulting code contains a single
input-data independent execution path, in order to obtain programs of stable timing behaviour.
The transformation technique has been validated by applying it on a number of benchmarks.
Experiments show a reduction of execution time variability, at acceptable costs for the single
execution path.
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1 Introduction

Hard real-time systems are characterised by the fact that their correctness does not only
depend on the computational results but also on the timely delivery thereof – failing to
provide a result in time will potentially have catastrophic consequences. For this reason,
knowledge of the worst-case execution time (WCET) of a software component in the context of
a hard real-time system is essential. Determining the WCET of a program is hard in general,
and implies solving two sub-problems: modelling the timing behaviour of the hardware
components and determining the possible program execution paths. On the software side,
components tend to be highly complex with regard to their behaviour in the presence of
different input data and their context. This makes precise automatic analysis of the possible
program execution paths intractable in general, as the number of paths grows exponentially
in the number of control flow alternatives. These practices are contradictory to at least two
key principles of hard real-time systems design: simple structures and composability.

One proposed solution to get around the complexity of WCET analysis is the single-path
approach [4]. A single-path program is characterised by the fact that it has a singleton
program execution path, which makes path analysis superfluous and reduces the need for
complex timing models. The execution time of the program is stable with respect to varying
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cond := . . .
i f ( ! cond ) goto Le l s e

Lthen :
x := a + 1
goto Lend

Le l s e :
x := b − 2

Lend :
. . .

(a) Update of x by branching code.

cond := . . .
( cond ) x := a + 1
( ! cond ) x := b − 2

. . .

(b) Update of x by predicated assignments.

Figure 1 Whereas 1a has two alternative execution paths, each containing a different assignment
of x, 1b consist of a single linear sequence of instructions containing both assignments of x with
disjoint predicates, such that only one of the two assignments has an effect.

input data, making its temporal behaviour predictable. Ideally, the WCET of a single-path
program should be obtainable by simple measurement of one execution.

A set of rules required to transform a piece of code given in a high-level representation
to a single-path version was presented in [5]. These rules express the translation from a
high-level, well structured source language to predicated statements. While they provide
a clear conceptual understanding, they are not sufficient to implement the single-path
conversion in a compiler backend. In modern state-of-the-art compilers, source languages
are translated to a common intermediate representation (IR), on which optimisations are
performed in a language-independent way. A code generator (compiler backend) then
translates the optimised IR to target-specific machine language. Control flow is explicit
in this representation and typically more general than what can be expressed by a well-
structured programming language. This work describes the single-path transformation from
a low-level perspective, as graph transformation technique on program control flow graphs,
amenable for implementation in a compiler backend. This facilitates automated generation
of predictable machine code from any piece of WCET-analysable code.

The rest of this paper is organised as follows: Section 2 provides the theoretical foundations
of the single-path approach and basic definitions required for the transformation technique.
Section 3 describes the transformation technique with the corresponding execution semantics,
to transform almost arbitrary control flow graphs to graphs yielding a single execution path.
Section 4 documents the validation of the approach by experiments and the effect on the
execution behaviour obtained from these experiments. A short overview of related work is
given in Section 5, before we conclude with Section 6.

2 Background and Preliminaries

2.1 Predicated Execution

The single-path transformation is based on predicated execution. A predicated instruction is
executed conditionally depending on the value of a Boolean predicate, referred to as guard:
if the predicate value is true, the instruction is enabled and executes as expected, otherwise
it is disabled and exposes the behaviour of a no-op, that is, the hardware state (register
file, memory contents) is not altered as a result of the instruction. By means of predicated
instructions it is possible to replace changes in control flow by conditional execution of an
instruction sequence, like the code snippets in Figure 1 suggest. In both variants the contents
of variable x are updated depending on the evaluation of cond, but by different means.
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Predicated execution, as we intend to exploit it, requires certain assumptions about the
target hardware. We assume that all instructions of our target instruction set are predicatable
and that the instruction latencies are independent of the operand values, in particular for
the predicate operand.

2.2 Basic Definitions
Before we detail on the transformation procedure, we briefly give some basic definitions.

A basic block (BB) is a straight-line sequence of instructions with one entry point and
one exit point. A control flow graph (CFG) is a directed graph with basic blocks as nodes
and models possible execution paths through a function. We require that a CFG has a
distinguished entry node and a distinguished exit node. A node v with more than one
successor is associated with a branch condition, condv, a Boolean condition that determines
which successor to take on a path.

A node x dominates a node y (denoted as xdom y) if every path from the start node to
y must go through x. A node x postdominates a node y (denoted as xpdom y) if every path
from y to the exit node must go through x. x strictly (post-)dominates y if xdom y (resp.
xpdom y) and x 6= y. The immediate (post-)dominator x of a node y is the unique node
that strictly (post-)dominates y but does not strictly (post-)dominate any other node that
strictly (post-)dominates y. (Post-)dominator information commonly is presented in form
of a (post-)dominator tree in which the entry (resp. exit) node is the root and each node
(post-)dominates only its descendants in the tree, i.e., the parent node of each node is its
immediate (post-)dominator.

A loop L is a strongly connected set of nodes in the flow graph. A natural loop has a
distinguished entry node, the loop header, which dominates all nodes in the loop, and a back
edge that enters the loop header. Given a back edge (n, d), the natural loop of the edge is
defined as d plus the set of nodes that can reach n without going through d. n is also called
latch. An edge (u, v) is an exit edge of loop L if u ∈ L and v 6∈ L. In a reducible CFG, every
cycle contains a back edge that can be associated with a natural loop. Unless two natural
loops have the same header, they are either disjoint or one is nested within the other. If two
natural loops share the same header, we treat them as a single loop identified by the header.1
Furthermore, every node v has a unique header, denoted as header(v), which is the header
of the innermost loop it is contained in. We consider an entire procedure as pseudo-loop
with the entry node as pseudo-header, such that every node of the CFG except the entry
node has a header. Removing all back edges from a reducible CFG results in an acyclic flow
graph, the forward control flow graph (FCFG).

Given a CFG G = (V,E), nodes u, v, x ∈ V and an edge (u, x) ∈ E, v is control
dependent on u (or on edge (u, x)) if v postdominates x but not u [1]. For any node v ∈ V
the set of its control dependence edges is denoted by CD(v):

CD(v) ≡ {(u, x) | v is control dependent on (u, x)}

The control dependence function induces a partitioning on the nodes of the CFG into
equivalence classes: If two nodes v, w ∈ V are control dependent on the same set of edges,
then on every path π in G from the entry to the exit node, v is on path π if and only if w is
on π.

1 This differs from the common practice that if a loop is a proper subset of another loop, the former is
treated as inner loop and the latter as outer loop.
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We require two properties of the CFG, which can be provided by suitable preprocessing:
We assume that the CFG is reducible, and that every node in the CFG must have an
outdegree of at most two.2 The second requirement implies that we can name the dual edge
of an edge if its source node has more than one successor: Let u ∈ V be a node with two
successors v, w ∈ V . Then, the dual edge of edge (u, v) is (u,w), and the dual edge of (u,w)
is (u, v).

3 The Single-Path Graph Transformation

We describe our technique as a graph transformation from a source CFG to a target CFG
that is extended by predicated execution semantics. In the beginning, we define admissible
executions in the source CFG in the presence of loop bounds and present our model of
predicated execution in a graph.

An execution of a control flow graph G is a path from the entry to the exit node. We
require that every loop header in the CFG is associated with a number, the (local) loop bound,
that limits the number of times the header is (re-)entered on a path before the corresponding
loop is left via an exit edge.

I Definition 1 (Admissible execution of a graph). An admissible execution of a control flow
graph G is a path π in G on which each loop bound for any header h ∈ π is respected.

For predicated execution, every node is associated with a guarding predicate that determ-
ines whether the node is enabled or disabled. Predicates can be seen as part of state which
is altered as nodes are visited along a path. Following semantic actions can be performed by
nodes and edges:

A node may set a predicate to the branch condition or its negation. This action is
predicated itself by the node’s guard.
An edge may set or clear a set of predicates (set them to true/false), unconditionally.
An edge may copy the value of one predicate to another predicate, unconditionally.

I Definition 2 (Single-Path Graph Transformation). Let G = 〈V,E〉 be a graph with local
loop bounds. The Single-Path Graph Transformation obtains a graph GSP extended by
predicated execution, and a path πSP in GSP , such that for any admissible path π in G, the
sequence of nodes along π equals the sequence of enabled nodes along πSP in GSP .

The single-path graph transformation computes a singleton path πSP through GSP

that includes every admissible execution path in the source graph. In the following, we
describe how we compute GSP and πSP . Section 3.1 reviews the computation of predicates
and the conversion of acyclic graphs. In Section 3.2, these ideas are extended to obtain
single-path loops, that is, loops that may contain nested loops and have a fixed iteration
count. Section 3.3 summarises the construction of the single-path graph GSP by composition
of single-path loops.

3.1 From Control-Flow to Predicates
Our transformation technique is based on the RK algorithm of Park and Schlansker [3]. Their
motivation is the ability to speed up the execution of innermost loops by means of a software

2 In practice, this implies that jump tables (e.g. resulting from switch statements) must be replaced by
cascades of two-way alternatives.
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pipelining technique, which requires a linear sequence of instructions without control-flow
changes. As the algorithm is applied to innermost loops only, the CFGs under consideration
are acyclic in nature. We show how to apply the algorithm to transform an acyclic CFG to a
linear sequence of predicated basic blocks.

Given an acyclic graph G = (V,E), the algorithm assigns a unique predicate to each of
the equivalence classes induced by the control dependence relation. The set CD(v) for all
v ∈ V is computed by means of the postdominator tree (PDT) of G [1]: Each node v ∈ V
with two successors is identified. Then, for each successor w of v, the PDT is walked upward,
starting at w, until (excluding) the immediate postdominator of v is reached. As each node
u is visited during the walk, the edge (v, w) ∈ E is added to the set CD(u).

The set of predicates is denoted as P . Each predicate pi ∈ P, i ≥ 0 corresponds to a
set of (control dependence) edges, which is expressed as function K(pi). The function R(v)
associates each v ∈ V with a predicate pi ∈ P such that, for v, w ∈ V ,

CD(v) = CD(w) ⇔ R(v) = R(w) = pi ∧ K(pi) = CD(v) = CD(w)

Control flow is mapped to predicate values in the resulting sequence of guarded blocks
with the following goal: In any execution, for any pi ∈ P , if a control dependence edge
e ∈ K(pi) would have been taken in the original acyclic graph, pi should be true, such
that every node v ∈ V with R(v) = pi is enabled, otherwise pi should be false (and the
corresponding nodes disabled). To this end, following steps need to be performed:

1. For each predicate pi ∈ P and each edge (u, v) ∈ K(pi), add a predicate assignment of
the form pi ← condu as semantic action to node u, if v follows u when condu is true, else
add assignment pi ← ¬condu to u.

2. Guard nodes v ∈ V by predicate R(v).
3. As predicate assignments are potentially disabled in an execution, it is necessary to care

for a correct initialisation of predicates. Therefore, predicates are initialised to false at
an artificial entry edge as necessary.

4. The nodes are reconnected in the order of a topological sort, such that a linear sequence
of predicated nodes is obtained.

3.2 Single-Path Loops
At the beginning of the transformation, we identify loops in the CFG and compute header(v)
for each v ∈ V , e.g, by following the procedure in [8].3 For each loop, we identify back edges
and exit edges.

We now consider a loop of the CFG in isolation. Let Lh be a loop of the CFG with header
h.4 We construct the acyclic FCFG induced by Lh, and augment it by two distinguished
nodes sh and th, and edges (sh, h), (sh, th), and (`, th) for all latches ` of Lh, and (e, th)
for all sources e of exit edges of Lh. Every node in the resulting graph, denoted as Fh, is
dominated by sh and postdominated by th.

A key insight for the extension of the procedure in Section 3.1 is that loops of a reducible
flow graph can be represented compacted into a single node. Consequently, each contained
inner loop is compacted into a single node in Fh, namely its header. As a result, the outgoing
edges of an inner loop header correspond to the exit edges of the inner loop.

3 header(v) is the node into which v is eventually contracted during reduction of the CFG (procedure
REDUCE in [8]).

4 In the following, we use the header h in superscript to denote information specific to a single loop
identified by h, to avoid ambiguities.
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Figure 2 An example to illustrate the single-path graph transformation steps.

I Example 3. The transformation is best illustrated by an example (Figure 2). Figure 2a
shows the CFG, with entry node a and exit node h. Figure 2d depicts the header information
for each v ∈ V as tree: the parent of node v is header(v), and each header is drawn shaded.
Apart from the outermost pseudo-loop La with header a, the CFG contains two loops, loop
Lb with header b and the self-loop Lf consisting of node f . Figure 2b depicts the FCFG for
La, where b and f represent inner loops Lb and Lf compacted into a single node, and the
outgoing edges are labelled with the corresponding exit edges. Figure 2c depicts the FCFGs
for Lb, where the back edges and exit edges are represented by the edges labelled with [be]
and [ee], respectively. The FCFG F f for the self-loop Lf is not shown.

Next, CDh(v) is computed for all v ∈ Fh, with the aid of the postdominator tree of Fh,
as described in Section 3.1. The main difference lies in the inclusion of control dependence
edges: Edges originating from inner loop headers in Fh correspond to exit edges of the inner
loops, and these exit edges have to be added to the respective control dependence sets.

Following the description in Section 3.1, Rh and Kh are computed from CDh, nodes
are guarded according to Rh and predicate assignments are added according to Kh. Rh

maps predicates ph
i ∈ P to each node v ∈ Fh \

{
sh, th

}
. By convention, let Rh(h) = ph

0 .
If v represents an inner loop, Rh(v) is not the final guard of the inner loop header, but a
predicate whose value decides whether the inner loop is enabled at least once. Note that an
edge (u, v) ∈ Kh(ph

i ) may be an exit edge originating from an inner loop, and hence node
u is not necessarily a node in Fh. For edge (sh, h), we add the semantic action to clear all
predicates ph

i ∈ P for i > 0, to provide a correct initialisation of predicates.
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In the acyclic graph Fh, the header h and every node that postdominates h are only
control dependent on the edge (sh, h), which corresponds to the loop entry. If the header
predicate Rh(h) = ph

0 is true, all associated guards of the nodes on any path in Fh from sh

to th are set to true as a result of the semantic actions, while the guards of the nodes that
are not on that path remain false. In the transformed single-path graph, in any execution,
all nodes of Fh \

{
sh, th

}
are visited in the order of a topological sort.

So far, we have dealt with a path through a single iteration of the loop. In the source
CFG, except for the top-level pseudo loop, a loop Lh is entered via its header h up to N times
on an admissible path, where N denotes the local loop bound of Lh. As we want to obtain a
single execution path that contains all admissible paths through the source CFG, this path
must contain the sequence of nodes in Lh at least N times. Therefore, the single-path graph
GSP will contain a back edge from the last node in the sequence of nodes of Lh to the header
h, which is taken exactly N − 1 times in the single execution path πSP . The semantic action
of this edge is, like on (sh, h), to clear all predicates ph

i ∈ P for i > 0.
The semantic actions on predicates need to be extended, otherwise the header predicate

ph
0 is never set to false. If ph

0 is false at the beginning of an iteration, no guard from a loop
member ever becomes true, and all nodes of Lh remain disabled in that iteration. Hence,
on the single execution path, ph

0 must be false starting with the (i+ 1)-th up to the N -th
iteration, if on an admissible path in the source graph the loop iterates i times. Recall that a
loop is left via one of its exit edges. As each exit edge necessarily has a dual edge (otherwise,
the loop header would not be reachable from the edge source, disqualifying the latter as loop
member), we add the dual edge of each exit edge of Lh to Kh(ph

0 ).

I Example 4. Figure 2e depicts the PDT for the computation of CDa in FCFG F a. CDa(x) =
{(s, a)}, ∀x ∈ {a, b, g, h}, and CDa(f) = {(d, f)}. Note that (d, f) is the exit edge of Lb

that corresponds to (b, f) in F a. Consequently, we assign Ra(x) = pa
0 , ∀x ∈ {a, b, g, h} with

Ka(pa
0) = {(s, a)}, and Ra(f) = pa

1 with Ka(pa
1) = {(d, f)}. A topological order of the nodes

is 〈a, b, f, g, h〉.
Figure 2f shows the PDT for F b. CDb(b) = {(s, b)}, CDb(c) = {(b, c)}, CDb(d) = {(b, d)},

and CDb(e) = {(d, e)}. We assign Rb(b) = pb
0, Rb(d) = pb

1, Rb(e) = pb
2, Rb(c) = pb

3. Obtaining
the respective Kb(pb

i) is straightforward, but we have to extend Kb(pb
0) by the dual edges

{(e, b), (d, e)} of the exit edges of Lb. A topological order of the nodes is 〈b, c, d, e〉.
For the single node self loop f , Rf (f) = pf

0 with Kf (pf
0 ) = {(s, f), (f, f)}.

3.3 Composition of the Single-Path Graph

We construct the single-path graph GSP = (V,ESP ) by a preorder traversal of the loop
header tree, visiting the nodes on each level in a topological sort order, and adding edges for
GSP as required. The recursive construction algorithm is sketched in Figure 3. It is invoked
with the entry node of the source CFG.

When a loop header h is visited, we construct Fh, compute Rh, Kh, guard nodes and
add semantic actions, as described in Section 3.2. On the entry edge to an inner loop Lh′ , we
add the semantic actions of (sh′

, h′) (clearing the predicates). Additionally, we add another
semantic action to copy the predicate of h′ in the outer loop to the predicate of h′ in the
inner loop. For the CFG, an artificial entry edge is introduced to initialise all predicates of
the top-level pseudo loop to false and the predicate of the entry node to true.

For our example, the resulting single-path graph is depicted in Figure 4, together with
the guards and semantic actions.
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Function composeSP(h: header node)
1 Compute Rh, Kh

2 Add predicate assignments according to Kh

3 Guard header node h by Rh(h) (= ph
0 )

4 last = h // keep a reference to the last node visited
5 for each n ∈ F h \ {h, sh, th} in topological sort order :
6 ESP = ESP ∪ {(last, n)}
7 if n is a loop header :
8 Add semantic actions to entry edge (last, n): pn

0 ← Rh(n); ∀i > 0 : pn
i ← 0

9 last = composeSP(n) // process inner loop
10 ESP = ESP ∪ {(last, n)} // add back edge to inner loop
11 Add semantic actions to back edge (last, n) of inner loop: ∀i > 0 : pn

i ← 0
12 else :
13 Guard node n by Rh(n)
14 last = n

15 return last

Figure 3 Algorithm for the composition of the single-path graph.
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Figure 4 The complete single-path graph resulting from the transformation. For semantic actions,
0 is false, 1 is true, and condv is the branch condition in node v.

4 Experiments

To validate the single-path graph transformation, we have created a simulation framework,
which serves two purposes. First, it allows for an experimental validation of the transformation
procedure, with arbitrary CFGs as input. Second, it provides means to evaluate the estimated
execution cost of the single-path-transformed graph relative to the original CFG.

In the framework, after a given CFG G is transformed to GSP and extended by semantic
actions on predicates, admissible paths π through G are chosen by random. For one admissible
path, the branch conditions are recorded. Then, the single execution path πSP through GSP

is walked, and predicates are updated according to the recorded branch conditions in π. The
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Table 1 Experiments on the Mälardalen benchmarks. Functions adpcm/decode, fdct/f-
dct, jfdctint/jpeg_fdct_islow, loop3/main, and matmult/Test are omitted because their gener-
ated CFGs already have a single execution path. Functions adpcm/encode, bs/binary_search,
bsort100/BubbleSort, cnt/Test, crc/icrc, duff/duffcopy, and edn/main have almost a single execution
path with a ratio below 1.10.

Benchmark/Function Mean Std.Dev. Min Max SP |P | Ratio
adpcm/upzero 73.21 21.57 53 96 125 3 1.30
compress/compress 1178.13 840.65 451 3589 4200 28 1.17
cover/swi120 1512.05 18.08 1475 1570 2655 7 1.69
expint/expint 1940.28 18.45 1892 1984 2736 4 1.38
fir/fir_filter_int 1704.76 451.32 595 2618 3236 6 1.24
insertsort/main 496.24 109.97 246 750 832 6 1.11
janne_complex/complex 695.98 181.55 215 1135 1381 6 1.22
lcdnum/num_to_lcd 33.94 0.98 30 36 190 45 5.28
lms/main 94794.29 4106.37 86184 103839 150209 32 1.45
ludcmp/ludcmp 301329.73 16345.35 275478 328187 415544 16 1.27
minmax/main 55.21 7.18 48 70 83 7 1.19
minver/minver 135115.74 55424.42 70709 197066 371563 20 1.89
qsort-exam/sort 4609.72 1128.15 908 7253 12004 22 1.66
qurt/qurt 590.77 686.31 44 1838 2208 15 1.20
select/select 4345.63 896.34 2043 7196 11219 16 1.56
statemate/FH_DU 232.39 39.56 157 305 360 25 1.18

sequence of enabled nodes in πSP is compared against the sequence of nodes of π and must
be identical.

Furthermore, we generated the CFGs from functions from the well-established WCET
benchmarks of the Mälardalen WCET research group5, providing a simple cost model and
local loop bounds.6 We recorded the execution cost for 100 randomly generated paths
through each CFG, and obtained the mean cost, the standard deviation, and the minimum
and maximum observed cost. We computed the ratio of the cost of the single-path execution
(SP) to the maximum observed cost (Max). As we are interested in the worst case, we forced
the paths chosen in G to always execute the maximum number of loop iterations. In addition,
we listed the required number of predicates (|P |). The results of this comparison are shown
in Table 1. The ratio SP/Max was mostly below 1.9. In one case (lcdnum/num_to_lcd), the
ratio is about 5.4, which stems from the fact that the function contains a switch statement
that is serialised in the single-path graph.

5 Related Work

Techniques other than the single-path approach have been proposed to make code more
predictable for WCET-analysis. Apart from avoiding problematic code constructs in the
first place (e.g. indirect calls, irreducible and input-data dependent loops, recursion), code
transformations have been suggested to reduce the number of paths required to be analysed
by making infeasible paths explicit or factor out code blocks with constant execution time [2].
Both transformations seem hard to be performed automatically in a compiler and no general

5 Accessible online: http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
6 The cost of executing a block is the number of instructions in the block. We used local loop bounds

bounds recorded by simulation, and for the loops not executed in the simulation, we added a bound of
20.
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solution has been supplied so far. Compiler support to aid WCET analysis by providing
information available during compilation to the timing analysis is an orthogonal approach to
obtain more predictable code [6].

6 Discussion and Outlook

We have presented the single-path graph transformation, a technique to transform any
reducible control-flow graph into a graph with a single execution path of predicated nodes.
The goals of the single-path approach are to minimise control flow complexity and to obtain
code with stable, input-data independent timing behaviour. The here-presented technique
can be implemented as part of a compiler backend to generate time predictable code in an
automated way.

Because the single-path approach serialises control flow, it has been criticised to be
too costly to be applied in practice. In our experiments, the costs stay within reasonable
limits (the ratio is below 1.9 in all but one cases) when the worst case is considered, for a
simple model. Furthermore, the cost could be compensated partially by means of hardware
support particularly suitable for single-path code, e.g., by providing a multiple-issue pipeline,
instruction prefetching, or hardware loops.

We are implementing the single-path transformation as part of a compiler backend for
the Patmos processor, a multi-core processor designed for high performance at high time-
predictability [7], in the T-CREST project (http://www.t-crest.org/). A next logical
step to improve the transformation would be to omit input-data independent regions during
if-conversion, as they do not contribute to input-data induced variability.
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