
Online Train Shunting
Vianney Bœuf and Frédéric Meunier

Université Paris Est, CERMICS
6-8 avenue Blaise Pascal, Cité Descartes, 77455 Marne-la-Vallée, Cedex 2, France
vianney.boeuf@polytechnique.org, frederic.meunier@enpc.fr

Abstract
At the occasion of ATMOS 2012, Tim Nonner and Alexander Souza defined a new train shunting
problem that can roughly be described as follows. We are given a train visiting stations in a
given order and cars located at some source stations. Each car has a target station. During the
trip of the train, the cars are added to the train at their source stations and removed from it at
their target stations. An addition or a removal of a car in the strict interior of the train incurs a
cost higher than when the operation is performed at the end of the train. The problem consists
in minimizing the total cost, and thus, at each source station of a car, the position the car takes
in the train must be carefully decided.

Among other results, Nonner and Souza showed that this problem is polynomially solvable
by reducing the problem to the computation of a minimum independent set in a bipartite graph.
They worked in the offline setting, i.e. the sources and the targets of all cars are known before
the trip of the train starts. We study the online version of the problem, in which cars become
known at their source stations. We derive a 2-competitive algorithm and prove than no better
ratios are achievable. Other related questions are also addressed.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.1.6 Optim-
ization, G.2.1 Combinatorics

Keywords and phrases Bipartite graph, competitive analysis, online algorithm, train shunting
problem, vertex cover

Digital Object Identifier 10.4230/OASIcs.ATMOS.2014.34

1 Introduction

1.1 Context

The Train Shunting Problem, defined by Tim Nonner and Alexander Souza at the
occasion of ATMOS 2012 [11], was motivated by concrete problems met by Deutsche Bahn
AG. The problem goes as follows. We are given a set of cars and a set of stations. Each car
has a source station and a target station. A locomotive visits the stations according to a
predefined order. Once the locomotive passes the source station of a car, this latter is added
to the train, and once the locomotive passes its target station, it is removed from the train.
Adding or removing a car at the end of the train incurs a cost assumed to be smaller than
the cost of adding or removing a car in the interior of the train. Hence, once a car has to
be added to the train, a decision must be taken regarding the position it will take in the
train. The objective of the Train Shunting Problem consists in minimizing the total
cost. Nonner and Souza proved that this problem is polynomially solvable by a reduction to
the problem of finding a maximum-weight independent set in a bipartite graph. They also
propose some extensions they prove to be polynomially solvable as well, with the help of
dynamic programming.

© Vianney Bœuf and Frédéric Meunier;
licensed under Creative Commons License CC-BY

14th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’14).
Editors: Stefan Funke and Matúš Mihalák; pp. 34–45

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.34
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

V. Bœuf and F. Meunier 35

The main assumption they made is that the number of cars, their sources, and their
targets are known before solving the problem. However, due to random events and to new
demands that can occur during the trip of the locomotive, we expect to face a dynamic part
in concrete applications, requiring online decisions. This paper aims to make a step in this
direction by defining and studying an online version of the Train Shunting Problem.

1.2 Model
The stations are numbered 1, 2, . . . and visited in this order. We denote the set of cars by
J = [n] (throughout the paper, the set {1, 2, . . . , a} is denoted [a]). The source station of a
car j is denoted sj and its target station is denoted tj . If a car j is added to or removed
from the exact end of the train, then an outer operation of cost cj is performed. If a car j is
added to or removed from the true interior of the train, then an inner operation of cost c′j is
performed, with c′j > cj . An event is a source or a target station. Nonner and Souza proved
that we can assume that at each station exactly one operation is performed (Lemma 5 in
their paper): when several operations must be performed at the same station, we can split
the station into as many copies as there are operations to perform and easily order them in a
way minimizing the total cost (and which does not depend on future cars). We make the
same assumption throughout the paper.

A train configuration is a sequence of distinct cars, corresponding to the sequence of cars
in the train. A sequence (Ci)i=1,...,m of train configurations is feasible if for each station i the
train configuration Ci is a sequence of cars involving only cars j such that sj ≤ i < tj and the
common cars of Ci and Ci+1 occur in the same order in both configurations. Such a sequence
encodes a feasible solution of the Train Shunting Problem: under the assumption made
above, Ci and Ci+1 differs only by one car, and the corresponding operation is completely
determined. The cost of a sequence (Ci)i=1,...,m is the sum of the costs of these operations.

The problem can be formalized as follows.

Train Shunting Problem

Input. A number m of stations; a set J = [n] of cars; for each car j, two costs cj < c′j and
a source-target pair of stations (sj , tj) with 1 ≤ sj < tj ≤ m.

Output. A feasible sequence of train configurations (Ci)i=1,...,m.

Measure. The cost of (Ci)i=1,...,m.

Nonner and Souza proved that a solution of minimal cost can be computed in polynomial
time and explained its relation with independence set problems in bipartite graphs. While
they worked in the more traditional offline framework, we focus in this work on online
algorithms.

An online algorithm for this problem is an algorithm which computes Ci without taking
into account the cars j such that sj > i. However, at station i, the algorithm can use the
information regarding the target station of a car j when sj ≤ i, even if tj > i. We require
moreover that the online algorithms do not know the number of cars in advance.

Let A be an online algorithm. Denote by SOL(I) the value of the solution it returns
when applied on an input I, and denote by OPT (I) the optimal value of the instance. A is
c-competitive for c ≥ 1 if for some real number b, we have

SOL(I) ≤ c ·OPT (I) + b

for all instances I.

ATMOS’14

36 Online Train Shunting

1.3 Results
Our main results are the existence of a 2-competitive online algorithm (Theorem 11) and the
proof that there is no better competitive ratio (Proposition 12). The core of our 2-competitive
algorithm consists in providing a 2-competitive algorithm for the Vertex Cover Problem
in some special-purpose bipartite graph. While it is known that there is no competitive
algorithms with fixed ratio for the general Vertex Cover Problem in bipartite graphs,
see [6], our study provides a family of restricted but not artificial instances for which there is
such an algorithm. The precise statement of these results, their proofs, and some related
results are given in Section 3. They are based on some properties of vertex covers in bipartite
graphs presented and proved in Section 2.

Section 4 is devoted to a slight relaxation of the problem. Suppose that we are now
allowed to postpone inner operations, by letting cars at the end of the train for some while
before moving them to the interior of the train. Since such an inner operation is decided
when more information is available, we can expect to have in this case a better competitive
ratio. We prove that actually no online algorithms of this type can achieve a ratio smaller
than 4/3. We leave as an open question the existence of an online algorithm achieving this
ratio.

1.4 Related works
Many papers are already devoted to shunting for freight trains. To the best of our knowledge,
except the one introduced by Nonner and Souza, all shunting problems consider the case
when the cars are collected by a train, and then lead to a shunting yard where they are
rearranged in one or several trains. This yard plays the role of a hub from which the cars
starts their final trip to their destinations. Overviews of problems and practices can be found
in [3, 9]. Problems and methods aiming at direct applications are proposed in [2, 4, 10, 12].
When there are only two incoming tracks, the system is often based on a hump. Some papers
have considered this special case, which provides nice combinatorial problems, see [1, 5, 7].

Other related references can be found in the corresponding section in the paper by Nonner
and Souza.

2 Vertex covers in bipartite graphs with positive weights

Let G = (V,E) be a bipartite graph with colour classes S and T . A vertex cover of G is a
subset K ⊆ V such that any edge in E has at least one endpoint in K. A vertex cover is
minimal if it is minimal for inclusion.

Dulmage and Mendelsohn [8] proved several properties on minimal-cardinality vertex
covers in bipartite graphs, especially that they form a lattice. We extend some of their results
to the weighted case. We assume from now on that a weight-function w : V → Q+ is given
with w(v) > 0 for all v ∈ V . As often in combinatorial optimization, given X ⊆ V , we use
w(X) to denote

∑
v∈X w(v).

A vertex cover is minimum if it is of minimal weight. Note that since all weights are
positive, a minimum vertex cover is minimal.

I Proposition 1. Two minimum vertex covers having the same intersection with S are equal.

Proof. Let K and K ′ be two such vertex covers. If T ∩K = ∅, then K = K ′. Suppose that
T ∩K 6= ∅ and let v ∈ T ∩K. Since K is minimal, there exists u ∈ S \K such that uv ∈ E.
We have S \K = S \K ′. Since K ′ is a vertex cover, the edge uv requires v to be in T ∩K ′.
Thus T ∩K ⊆ T ∩K ′. The reverse inclusion is obtained by exchanging K and K ′. J

V. Bœuf and F. Meunier 37

In our 2-competitive algorithm described in Section 3, some minimum vertex covers play
a special role.

I Proposition 2. There exists a unique minimum vertex cover K such that any other
minimum vertex cover K satisfies S ∩ K ⊆ S ∩ K. Moreover, this vertex cover can be
computed in polynomial time.

Proof. Let K and K ′ be two minimum vertex covers. Denote by X (resp. X ′) the subset
S ∩K (resp. S ∩K ′) and by Y (resp. Y ′) the subset T ∩K (resp. T ∩K ′). We claim that
(X ∪X ′) ∪ (Y ∩ Y ′) is also a minimum vertex cover.

Indeed, first note that (X∩X ′)∪(Y ∪Y ′) is a vertex cover. Thus w(X∩X ′)+w(Y ∪Y ′) ≥
w(X)+w(Y), which implies that w(Y ′\Y) ≥ w(X\X ′). Second, note that (X∪X ′)∪(Y ∩Y ′)
is a vertex cover. Its weight is w(X∪X ′)+w(Y ∩Y ′) = w(X ′)+w(Y ′)+w(X\X ′)−w(Y ′\Y).
Using the inequality that has just been proved, we get w(X∪X ′)+w(Y ∩Y ′) ≤ w(X ′)+w(Y ′),
which means that (X ∪X ′) ∪ (Y ∩ Y ′) is a minimum vertex cover.

Thus the sets S ∩K where K is a minimum vertex cover are stable by union, which leads
to the existence of K. Proposition 1 ensures then the uniqueness of K.

It remains to prove the statement about the polynomiality of the computation. K is the
minimum vertex cover that has the largest number of vertices in S. By simply subtracting a
small quantity δ to all weights in S, we reduce the problem of finding K to a minimum vertex
cover problem in a bipartite graph, which is polynomially solvable (see [13] for instance).
Any δ smaller than 1

|V |M is suitable, where M is such that Mw(v) ∈ Z+ for all v ∈ V (such
an M is polynomially computable). J

Such a vertex cover K is source-optimal (it is our terminology). Note that without the
condition w(v) > 0 for all v, the proposition would not hold. The next proposition shows
that while the source-optimal vertex cover is maximal on the source side, it is minimal on
the target side.

I Proposition 3. Let K be the source-optimal vertex cover. Any other minimum vertex
cover K satisfies T ∩K ⊆ T ∩K.

Proof. If T ∩ K = ∅, then the inclusion is obviously satisfied. Suppose that T ∩ K 6= ∅
and let v ∈ T ∩K. Let K be any minimum vertex cover. Since K is minimal, there exists
u ∈ S \K such that uv ∈ E. Since K is source-optimal, we have S \K ⊆ S \K. Since K is
a vertex cover, the edge uv requires v to be in T ∩K. J

3 Competitive algorithms

3.1 Preliminaries
A pair of cars (k, `) is overlapping if sk < s` < tk < t`. It is non-overlapping otherwise.
Nonner and Souza introduced the constraint graph G = (V,E), which encodes the overlaps of
an instance. It is defined as follows. Its vertex set is

⋃
j∈J{sj , tj}. The edges are the s`tk with

(k, `) being overlapping. The graph G is bipartite with the set of sources S = {sj : j ∈ J} as
one of its colour class and the set of targets T = {tj : j ∈ J} as the other colour class.

I Proposition 4 (Nonner and Souza [11]). In a feasible solution, the events having inner
operations form a vertex cover of G.

I Proposition 5 (Nonner and Souza [11]). Let K be a minimal vertex cover in G. Then there
exists a feasible solution whose inner operations are performed precisely on the events in K.
Moreover, K being given, this solution can be computed in O(n2).

ATMOS’14

38 Online Train Shunting

Nonner and Souza actually formulated and proved these propositions with outer operations
instead of inner operations and independent sets instead of vertex covers, but since they are
complement of each others, it is an equivalent point of view.

Defining w(sj) = w(tj) = c′j − cj , the total cost of a feasible solution is w(K) + 2
∑

j∈J cj ,
where K is the vertex cover provided by Proposition 4. The total cost is thus minimum when
w(K) is minimum. For positive weights on the vertices, a minimum vertex cover is minimal.
Since a minimum vertex cover in a bipartite graph can be computed in polynomial time, the
two propositions show that the optimal solution of the Train Shunting Problem can be
computed in polynomial time in the offline setting.

Let us see how we can adapt these considerations in an online context. To ease the
discussion, we assume without loss of generality that sj < sk if j < k: the cars are ordered by
their source stations (recall that we have assumed that at each station exactly one operation
is performed).

We define Gj = (Vj , Ej) to be the constraint graph limited to the cars k ∈ [j]:

Vj =
⋃

k∈[j]

{sk, tk} and Ej = {s`tk : k, ` ∈ [j] and (k, `) is overlapping}.

Note that Gj is a bipartite graph and that Gn = G, where G is still the constraint graph of the
full input. Moreover, Gj is an induced subgraph of Gj+1: we have Vj+1 = Vj ∪ {sj+1, tj+1}
and Ej+1 = Ej ∪ δ(sj+1), where δ(sj+1) is the set of edges incident to sj+1 in G. Using
Proposition 4, we can see that a feasible solution induces a chain K1 ⊆ K2 ⊆ · · · ⊆ Kn where
Kj is a vertex cover of Gj . Indeed, we can for instance set Kj to be the events subject to
inner operations up to station tj .

A counterpart of Proposition 5 is also true, see Proposition 6 below: a chain K1 ⊆ · · · ⊆
Kn, where Kj is a vertex cover of Gj satisfying some condition to be detailed below, provides
the inner operations of some feasible solution. However, this is not a direct consequence of
Proposition 5 – the inner operations programmed up to station sj must be compatible with
the inner operations programmed up to station sj−1 – and deserves a proof. By N(sj), we
denote the set of neighbours of sj , i.e. the set of vertices v of G such that sjv is an edge of
G. Note that it is also the set of neighbours of sj in Gj . By N [sj], we denote the closed
neighbourhood of sj , i.e. the set N(sj) ∪ {sj}.

I Proposition 6. Let K1 ⊆ · · · ⊆ Kn be such that each Kj is a vertex cover of Gj satisfying
N [sj] \Kj 6= ∅. Then there exists a feasible solution such that
• the sources sj subject to inner operations are exactly those sj such that sj ∈ Kj, and
• the targets tj subject to inner operations are such that tj ∈ Kn.
Moreover, we can decide in polynomial time the position each car j must take in the train
using K1, . . . ,Kj.

In Proposition 6, we have a stronger statement for the sources than for the targets.
Anyway, the proposition ensures that we can build a feasible solution online, and allows to
bound from above its cost: w(Kn) + 2

∑
j∈J cj is an upper bound on the cost of this feasible

solution.
To prove Proposition 6, we mimic the proof of Theorem 2 in [11] but several difficulties

related to the online aspect arise. We assume given a chain of vertex covers K1 ⊆ · · · ⊆ Kn

such that each Kj is a vertex cover of Gj satisfying N [sj] \Kj 6= ∅.
For each j ∈ J , we define a directed graph Hj = ([j], Aj), whose vertices are the integers

from 1 to j (the cars up to j). The arcs are defined as follows. For a car k ≤ j and an event
e such that sk < e < tk, with e ∈ {s`, t`} and ` ≤ j, the arc (k, `) is in Aj if e /∈ Kmax(k,`).

V. Bœuf and F. Meunier 39

The definition of the graph Hj resembles the definition of the graph H of the original proof,
but is not completely identical. Note that the sequence of graphs Hj is increasing, Aj ⊆ Aj+1
for all 1 ≤ j ≤ n− 1, and that all arcs in Aj+1 \Aj are incident to j + 1.

I Lemma 7. The graph Hj is acyclic.

Proof. Suppose for a contradiction that there is a directed cycle C = (k1, . . . , kr) in Hj . We
choose C with the minimum number of arcs. Note that we have anyway r ≥ 2. Without loss
of generality, we assume that k1 is the smallest integer on C.

The arc (kr, k1) exists in Hj , thus skr
< tk1 < tkr

and tk1 /∈ Kkr
. As sk1 < skr

, the pair
(k1, kr) is overlapping and Gkr

contains the edge skr
tk1 . Necessarily, skr

∈ Kkr
. Consider

now the arc (kr−1, kr). We prove that skr−1 ∈ Kkr−1 , that tkr /∈ Kkr , and that (kr, kr−1) is
overlapping.

Suppose first that skr−1 < skr
. We necessarily have skr−1 < tkr

< tkr−1 and tkr
/∈ Kkr

because skr
∈ Kkr

. (Note that it implies that r ≥ 3.) Thus skr−1 < tk1 < tkr−1 , and there
should be an arc (kr−1, k1) in Hj since tk1 /∈ Kkr−1 (otherwise we would have tk1 ∈ Kkr

,
in this case kr being larger than kr−1). Such an arc would contradict the minimality of C.
Hence skr−1 > skr

and Kkr
⊆ Kkr−1 . We have skr−1 < tkr

< tkr−1 and tkr
/∈ Kkr−1 and the

pair (kr, kr−1) is overlapping. There is therefore an edge skr−1tkr in Gkr−1 , which implies
that skr−1 ∈ Kkr−1 as required. We also have tkr

/∈ Kkr
since in this case Kkr

⊆ Kkr−1 .
Repeating the argument along the same lines, we get then that skr−i

∈ Kkr−i
, that

tkr−i+1 /∈ Kkr−i+1 , and that (kr−i+1, kr−i) is overlapping for all i ∈ [r − 1]. In particular, for
i = r − 1, we get that sk2 < sk1 , which is a contradiction. J

Since Hj is acyclic, we can define a partial order on [j]: we set k �j ` if there is a directed
path from k to ` in Hj . Since the sequence (Aj) is increasing, k �j ` implies k �j′ ` for all
j′ ≥ j. The converse is actually true.

I Lemma 8. Let k and ` be two integers in [j]. If k and ` are incomparable for �j, they
are incomparable for all �j′ with j′ ≥ j.

Proof. Assume for sake of a contradiction that k and ` are incomparable for �j but not for
some �j′ with j′ > j. We choose j′ as small as possible with this property. Without loss
of generality, we assume that k �j′ `. It means that there is an elementary path from k

to ` in Hj′ that goes through j′ (because of the minimality of j′). Moreover, it means also
that the two neighbours of j′ on this path are incomparable in Hj′−1: if there were a path
between these two neighbours, it would either contradict the acyclicity of Hj′ (Lemma 7), or
the minimality of j′ (the integers k and ` would already have been comparable for Hj′−1),
depending on the direction of the path. The two neighbours of j′ are thus incomparable for
�j′−1 and comparable for �j′ , and they would also contradict the statement of the lemma
we want to prove. We can thus assume without loss of generality that k and ` are the two
neighbours of j′ and that the arcs (k, j′) and (j′, `) exist in Aj′ .

By definition of Aj′ , we have sk < e < tk, with e ∈ {sj′ , tj′} and e /∈ Kj′ , and sj′ < f < tj′ ,
with f ∈ {s`, t`} and f /∈ Kj′ . Since s` < sj′ , we necessarily have f = t`, and (`, j′) is
overlapping. It implies that sj′ ∈ Kj′ , and thus e = tj′ . Therefore, we have sk < t` < tk
with t` /∈ Kj′ , which implies that the arc (k, `) exists in Aj′ , and thus already in Aj . It is in
contradiction with the fact that k and ` are incomparable. J

We are now in position to prove Proposition 6.

ATMOS’14

40 Online Train Shunting

Proof of Proposition 6. We build a sequence of total orders (�tot
j)j∈J , the order �tot

j being
defined on [j] and being compatible with the partial order �j defined above. We build this
sequence so that if k �tot

j ` for k, ` ∈ [j], then k �tot
j′ ` for all j′ ≥ j.

When j = 1, the definition is trivial. Suppose that �tot
j is defined for some j. We explain

how to build �tot
j+1. We consider the tournament induced by �tot

j on [j]. (Recall that a
tournament in graph theory is obtained by giving an orientation to each edge of a complete
graph). The tournament is acyclic. We add a vertex j + 1 to this tournament, as well as
all arcs (k, j + 1) with k �j+1 j + 1 and all arcs (j + 1, k) with j + 1 �j+1 k. Let D′j+1
be this new graph. We claim that D′j+1 is acyclic. Indeed, suppose for a contradiction
that it contains a directed cycle. It necessary goes through j + 1. The two neighbours of
j + 1 on this cycle are comparable according to �j+1. According to Lemma 8, they are
already comparable for �j . As it has been noticed right before the statement of Lemma 8,
these two neighbours should then be ordered in a same way by �j and by �j+1, which is
in contradiction with the acyclicity of the tournament. We can thus complete D′j+1 into
an acyclic tournament, which provides the total order �tot

j+1. To conclude this part of the
proof, note that �tot

j+1 is compatible with �j+1: it is compatible with �j and thus with �j+1
(Lemma 8) for the elements in [j]; since all arcs (k, j + 1) with k �j+1 j + 1 and all arcs
(j + 1, k) with j + 1 �j+1 k are present in D′j+1, the order �tot

j+1 is compatible with �j+1 on
all elements of [j + 1].

Note that this construction is polynomially computable.
We say that a car j is active at station i if sj ≤ i < tj . Now, we define the following

sequence (C̃i) of train configurations: C̃i is the sequence of active cars at station i ordered
from right to left according to �tot

j(i), where j(i) = max{j : sj ≤ i}. We assume that the
end of the train is at the left-most position, the right-most position being the one of the
locomotive. Note that in particular we have the maximal element for the total order at the
end of the train and that the first car after the locomotive is the minimal element for the
total order.

The sequence (C̃i) is feasible: the common cars in C̃i and C̃i+1 occur in the same order
because j(i+ 1) ∈ {j(i), j(i) + 1} and in any case �tot

j(i) and �tot
j(i+1) are compatible. Note

that the operation to perform at station i, and in particular the exact position the car must
take in the train in case i is a source station, can be done in polynomial time using �tot

j(i).
We prove now that sj ∈ Kj if and only if sj is subject to an inner operation in the

sequence (C̃i). Suppose first that sj ∈ Kj . Since, N [sj] \ Kj 6= ∅, there is a car k < j

such that (k, j) is overlapping and tk /∈ Kj . We have thus an arc (j, k) in Hj . Therefore, j
precedes k in �tot

j , which means that j cannot be at the end of the train when the train
leaves station sj . Suppose now that sj /∈ Kj and let k be any active car at station sj distinct
from j. We have sk < sj < tk and thus the arc (k, j) exists in Hj . Since it holds for any
such k, the car j is the maximal element for �tot

j on the subset of active cars and is at the
end of the train when the train leaves sj : the car j has incurred an outer operation.

Finally, we prove that if tj is subject to an inner operation, then tj ∈ Kn. Suppose that
tj /∈ Kn. For any active car k at station tj , i.e. any car such that sk < tj < tk, we have
tj /∈ Kmax(k,j). There is thus an arc (k, j) in Hmax(k,j). Thus at tj , the car j is located at
the end of the train and is subject to an outer operation. J

We end the section with a lemma that will be useful in the next section. It explains how
the source-optimal vertex covers of the sequence of graphs (Gj) are related. For each j, we
denote by Kj the source-optimal vertex cover of Gj .

V. Bœuf and F. Meunier 41

I Lemma 9. For each j ≥ 2, we have T ∩Kj−1 ⊆ T ∩Kj and exactly one of the following
relations is satisfied:
• Kj = Kj−1 ∪ {sj}.
• S ∩Kj−1 ⊇ S ∩Kj.

Proof. Suppose first that sj ∈ Kj . The set Kj \ {sj} is a vertex cover of Gj−1, and
thus w(Kj) − w(sj) ≥ w(Kj−1). The set Kj−1 ∪ {sj} is a vertex cover of Gj , and thus
w(Kj)−w(sj) ≤ w(Kj−1). Combining both inequalities shows that Kj \ {sj} is a minimum
vertex cover of Gj−1 and that Kj−1 ∪ {sj} is a minimum vertex cover of Gj . The vertex
cover Kj−1 being source-optimal, we have S ∩ Kj−1 ⊇ S ∩ (Kj \ {sj}), which implies
S ∩ (Kj−1 ∪ {sj}) ⊇ S ∩ Kj . The vertex cover Kj being source-optimal, we have Kj =
Kj−1∪{sj} by uniqueness of the source-optimal vertex cover, and we have T ∩Kj−1 ⊆ T ∩Kj .

Suppose then that sj /∈ Kj . Let Xk = S ∩ Kk and Yk = T ∩ Kk. The set (Xj−1 ∩
Xj) ∪ (Yj−1 ∪ Yj) is a vertex cover of Gj . Indeed, an edge skt` in Ej with t` /∈ Yj−1 ∪ Yj is
such that sk ∈ Xj because Kj is a vertex cover of Gj , and also such that k 6= j because
we supposed sj /∈ Kj ; it implies that skt` is in Ej−1 as well and that sk ∈ Xj−1. Thus,
w(Xj−1∩Xj)+w(Yj−1∪Yj) ≥ w(Kj), which implies that w(Xj \Xj−1) ≤ w(Yj−1\Yj). Since
w(Xj−1∪Xj)+w(Yj−1∩Yj) = w(Kj−1)−w(Yj−1 \Yj)+w(Xj \Xj−1), the latter inequality
shows that w(Xj−1 ∪Xj) + w(Yj−1 ∩ Yj) ≤ w(Kj−1). The set (Xj−1 ∪Xj) ∪ (Yj−1 ∩ Yj) is
a vertex cover of Gj−1, and thus is a minimum vertex cover of Gj−1. The set Kj−1 being
source-optimal, we get Xj−1 ∪Xj ⊆ Xj−1, which implies S ∩Kj−1 ⊇ S ∩Kj . Moreover,
Proposition 3 implies that Yj−1 ⊆ Yj−1 ∩ Yj , i.e. T ∩Kj−1 ⊆ T ∩Kj . J

3.2 A 2-competitive algorithm
We present in this section an online algorithm with a 2-competitive ratio. Roughly speaking,
the algorithm goes as follows. At each source station, it checks with the help of a computation
of a source-optimal vertex cover whether there is an optimal schedule for the whole known
instance in which this source station is subject to an inner operation. If it is the case, the car
is added at an inner position determined with the help of Proposition 6. Otherwise, the car
is added to the end of the train. In a sense, the algorithm tries to make the inner operations
as soon as possible without worsen the quality of the solution.

The online algorithm goes precisely as follows.
Start with an empty graph G0 and an empty set K̃0; when the train arrives at station sj ,

build Gj as described in Section 3.1, compute a source-optimal vertex cover Kj of Gj for
the weight function w, define K̃j = K̃j−1 ∪Kj .

In other words, the set K̃j is equal to
⋃j

k=1 Kk. We are going to prove that the sequence
of the K̃j satisfies the condition of Proposition 6 and thus the algorithm computes a feasible
solution performing an inner operation at station sj if and only if sj ∈ Kj .

I Proposition 10. Each K̃j is a vertex cover of Gj satisfying N [sj] \ K̃j 6= ∅ and we have
the following chain: K̃1 ⊆ · · · ⊆ K̃n.

Proof. The fact that K̃j is a vertex cover and the inclusion K̃j−1 ⊆ K̃j are obvious.
Suppose that N(sj) ⊆ K̃j . Then necessarily, the elements in N(sj) belong to the union of

some T ∩Kk with k ≤ j. Lemma 9 implies that actually N(sj) ⊆ Kj . Since Kj is minimal,
we have sj /∈ Kj , and thus sj /∈ K̃j . J

Proposition 6 and Proposition 10 show that the online algorithm described above computes
a feasible solution to the Train Shunting Problem. It is polynomial according to

ATMOS’14

42 Online Train Shunting

Proposition 2. We have thus the following theorem, the calculation of the competitive ratio
being done in the proof.

I Theorem 11. There is a polynomial 2-competitive online algorithm for the Train Shunt-
ing Problem.

Proof. The preceding discussion shows that the online algorithm described above is polyno-
mial and computes a feasible solution. It remains to evaluate its competitive ratio. The cost of
the solution computed by the online algorithm is bounded from above by w(K̃n) + 2

∑
j∈J cj

because of Proposition 6. The set Kn is a minimum vertex cover of G = Gn. According to
Nonner-Souza’s result (see discussion in Section 3.1), the optimum of the Train Shunting
Problem is w(Kn) + 2

∑
j∈J cj . The proof strategy consists in bounding w(K̃n) from above

using w(Kn). We set K0 = ∅.
K̃n can also be written Kn ∪

(⋃
j∈J Kj−1 \Kj

)
, and hence

w(S ∩ K̃n) ≤ w(S ∩Kn) +
∑
j∈J

w(S ∩ (Kj−1 \Kj)).

Since Kj contains a vertex cover of Gj−1, we have w(Kj−1) ≤ w(Kj). According to Lemma 9,
we know that T ∩Kj−1 ⊆ T ∩Kj and that if S ∩ (Kj−1 \Kj) 6= ∅, then S ∩Kj−1 ⊇ S ∩Kj .
Therefore w(S ∩ (Kj−1 \Kj)) ≤ w(T ∩Kj)− w(T ∩Kj−1). Hence

w(S ∩ K̃n) ≤ w(S ∩Kn) +
∑
j∈J

(w(T ∩Kj)− w(T ∩Kj−1)).

Therefore w(S ∩ K̃n) ≤ w(S ∩Kn) + w(T ∩Kn) and w(S ∩ K̃n) ≤ w(Kn).
On the other hand, we have w(T ∩ K̃n) = w(T ∩Kn) again because of Lemma 9. Thus

w(T ∩ K̃n) ≤ w(Kn).
The two inequalities lead to w(K̃n) ≤ 2w(Kn). Our algorithm provides thus a solution

of cost bounded from above by w(K̃n) + 2
∑

j∈J cj ≤ 2(w(Kn) + 2
∑

j∈J cj). J

I Remark. No algorithms computing Kj in linear time are known up to now. However,
if cj = 0 and c′j = 1 for all j, it is possible to compute Kj in O(|Ej |) by maintaining a
maximum-cardinality matching of Gj along the algorithm. Nevertheless, we do not know
whether a similar idea can be extended to the case with general costs.

3.3 Lower bound on the competitive ratio
I Proposition 12. No online algorithms computing a solution to the Train Shunting
Problem can have a competitive ratio smaller than 2.

Proof. LetA be an online algorithm computing a solution to the Train Shunting Problem.
The proof consists in describing for any integer q, an instance with at most 3q cars for which
SOL ≥ (2− 1/q) ·OPT , where SOL is the value of the solution computed by A, and OPT is
the optimum. The instance is built dynamically as follows, taking into account the decisions
of A.

All costs cj are set to 0 and all costs c′j are set to 1. For j = 1, . . . , q, define sj = j and
tj = 4q − j + 1. Set sq+1 = q + 1 and tq+1 = 6q. Then, from j = q + 1, we repeat the
following loop:

If the operation performed by A at station j is an outer operation or if j = 3q, then stop.
Otherwise, set j ← j + 1; define sj = j and tj = 7q − j + 1.

V. Bœuf and F. Meunier 43

Denote by r the number of times the loop has been repeated. We have

SOL ≥
{
r + q − 1 if r ≤ 2q − 1
2q if r = 2q.

Indeed, if r ≤ 2q − 1, the r repetitions of the loop correspond to r − 1 inner operations. The
car q + r is added to the end of the train and implies q inner operations to remove from the
train the cars indexed from 1 to q. If r = 2q, no cars between q and 3q − 1 are added to the
end of the train and their addition to the train provides 2q inner operations.

We have OPT = min(q, r). This can be seen by considering the constraint graph of the
instance and by computing a minimum vertex cover of it, see Section 3.1.

If r = 2q, we have SOL/OPT ≥ 2. If q ≤ r ≤ 2q − 1, we have SOL/OPT ≥ 2− 1/q. If
r ≤ q − 1, we have SOL/OPT ≥ 2. J

There are two natural algorithms we can also think of. Unfortunately, they do not even
enjoy a fixed competitive ratio.

The first consists in always introducing the cars at the end of the train. In this case, the
competitive ratio can be arbitrarily large, as shown by the following example. Consider the
instance with sj = j and tj = 2n− j for j = 1, . . . , n− 1, and sn = n and tn = 2n. Take as
costs cj = 0 and c′j = 1 for all j. It is easy to check that the total cost is then n− 1 when
that algorithm is applied, while the optimal cost is 1.

The second algorithm consists in building a sequence of vertex covers, similarly as for the
algorithm of Section 3.2.

Start with an empty graph G0 and an empty set K̃0; when the train arrives at station sj ,
build Gj as described in Section 3.1, compute a vertex cover K̃j of Gj of minimal cost such
that K̃j−1 ⊆ K̃j .

This algorithm can be considered as natural since computing K̃j amounts to choose
K̃j among K̃j−1 ∪ {sj} and K̃j−1 ∪ N(sj), the solution being the one of minimal cost.
Proposition 6 shows that we build in this way a feasible solution. It means that we always
choose an operation that is locally the best solution.

The following example shows that this algorithm can also have an arbitrarily large
competitive ratio. Consider the instance with sj = j for j = 1, . . . , n, t1 = n+ 2, t2 = n+ 1,
and tj = 2n− j + 3 otherwise. Set the costs to be cj = 0 and c′j = 1 for all j. It is easy to
check that the total cost is then n− 3 when this algorithm is applied, while the optimal cost
is 2.

4 Postponing inner operations

Suppose that we modify the Train Shunting Problem in the following sense: at any
station, a car at the end of the train can be moved to the interior and such an operation can
be repeated several times at a same station. The cost of such an operation is assumed to
remain the same, namely c′j for car j.

It does not change the optimal solution of an instance. Indeed, suppose that we have an
optimal solution such that a car j is added to the train at the station sj , and moved to the
interior from the end of the train at some station i ≥ sj . Then the solution consisting in
inserting the car j directly at some inner position so that the train configuration will be the
same at station i will not be of larger cost.

Hence, from an offline point of view, this new possibility does not reduce the best cost
that can be achieved. However, we do not know whether the conclusion is identical in the

ATMOS’14

44 Online Train Shunting

online setting. We were however able to prove the following result, which leaves some hope
for a better ratio.

I Proposition 13. No online algorithms computing a solution to the Train Shunting
Problem in this modified setting can achieve a competitive ratio smaller than 4/3.

Proof. Let A be an online algorithm computing a solution to the Train Shunting Problem
with this additional possibility. Consider the instance where the first five cars are such that

(s1, t1) = (1, 11), (s2, t2) = (2, 10), (s3, t3) = (3, 6), (s4, t4) = (4, 16), (s5, t5) = (5, 15).

Then, if A has chosen an inner removal for car 3, then stop. Otherwise, three cars 6, 7, and
8 are added to the instance with

(s6, t6) = (7, 14), (s7, t7) = (8, 13), (s8, t8) = (9, 12).

If the car 3 is in the interior of the train when it leaves station 5, then the total cost
achieved by the algorithm is 3 at best: the car 3 will be subject to an inner operation, and
the instance reduced to cars 1, 2, 4, and 5 has an optimal cost of 2.

If the car 3 is at the end the train when it leaves station 5, then the cars 4 and 5 have
been added or moved to the interior of the train, and the instance reduced to the cars 1, 2,
3, 6, 7, and 8 has an optimal cost of 2, which gives in total a cost of 4. So, the total cost
achieved by the algorithm is 4 at best, while the optimum is 3. J

References
1 Katharina Beygang, Florian Dahms, and Sven O. Krumke. Train marshalling problem:

Algorithms and bounds. Technical report, 2010.
2 Markus Bohlin, Florian Dahms, Holger Flier, and Sara Gestrelius. Optimal freight

train classification using column generation. In Proceedings of the 12th workshop on
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (AT-
MOS’12), volume 25, pages 10–22, 2012.

3 Nils Boysen, Malte Fliedner, Florian Jaehn, and Erwin Pesch. Shunting yard operations:
Theoretical aspects and applications. European Journal of Operational Research, 220:1–14,
2012.

4 Alberto Ceselli, Michael Gatto, Marco E. Lübbecke, Marc Nunkesser, and Heiko Schilling.
Optimizing the cargo express service of Swiss federal railways. Transportation Science,
42:450–465, 2008.

5 Elias Dahlhaus, Peter Horák, Mirka Miller, and Joseph F. Ryan. The train marshalling
problem. Discrete Applied Mathematics, 103:41–54, 2000.

6 Marc Demange and Vangelis T. Paschos. On-line vertex-covering. Theoretical Computer
Science, 332:83–108, 2005.

7 Gabriele Di Stefano and Magnus Love Koci. A graph theoretical approach to the shunting
problem. Electronic Notes in Theoretical Computer Science, 92:16–33, 2004.

8 Andrew L. Dulmage and Nathan S. Mendelsohn. Coverings of bipartite graphs. Canadian
Journal of Mathematics, 10:517–534, 1958.

9 Michael Gatto, Jens Maue, Matús Mihalák, and Peter Widmayer. Robust and Online Large-
Scale Optimization, chapter Shunting for dummies: An introductory algorithmic survey,
pages 310–337. Springer, 2009.

10 Riko Jacob, Peter Marton, Jens Maue, and Marc Nunkesser. Multistage methods for freight
train classification. Networks, 57:87–105, 2011.

V. Bœuf and F. Meunier 45

11 Tim Nonner and Alexander Souza. Optimal algorithms for train shunting and relaxed
list update problems. In Proceedings of the 12th workshop on Algorithmic Approaches
for Transportation Modelling, Optimization, and Systems (ATMOS’12), volume 25, pages
97–107, 2012.

12 Marc Nunkesser, Michael Gatto, and Riko Jacob. Optimization of a railway hub-and-spoke
system: routing and shunting. In Proceedings of WEA 2005, 2005.

13 Alexandrer Schrijver. Combinatorial Optimization. Springer, 2003.

ATMOS’14

	Introduction
	Context
	Model
	Results
	Related works

	Vertex covers in bipartite graphs with positive weights
	Competitive algorithms
	Preliminaries
	A 2-competitive algorithm
	Lower bound on the competitive ratio

	Postponing inner operations

