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Abstract
In this paper, we shall explore weak memory models, their insidious effects, and how it could
happen to you! It shall explained how and why both compilers and CPUs rewrite your program
to make it faster, the inevitable fallout of this, and what you can do to protect your code. We
shall craft a lock, building from a naïve and broken implementation up to a safe and correct form,
and study the underlying model that requires these modifications as we go.
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1 A tale of things to come

Once upon a time, life was simple. Compilers were straightforward, CPUs comprehensible.
And things were good, for a time. But then the users’ desire for more speed overwhelmed
them. Deals were made, souls were sold, and so came about the pipeline, and with it
speculation, and instruction level parallelism, and out of order execution. But while the
processor’s hunger grew, memories and buses could not keep up enough to sate the beast.
And so came caching and buffering, more and more levels, towering above the masses. At
this time, compilers also resorted to trickery, performing fiendish transformations, twisting a
program’s natural form to make it a more palatable meal. However, these terrible secrets
below the surface were hidden from the software above, which could go about its day, blissfully
unaware of the madness below the streets.

But then, in our hubris, we wanted multiple threads. And we wanted multiple CPUs
to run our new threads. We even started to shed the locks placed to keep us safe, proudly
declaring ourselves “lock free and scalable”. And so the insanity started to leak.

While many, even most, of the plains and roads above were the same as ever, sometimes
a stray program might stumble into things it should not see. A crunch, a scream. Some are
killed instantly, others stumble on before falling some time later. Yet others, worse, survive
but are “changed”, returning to their daily lives, occasionally finding themselves somewhere
unexpected with no knowledge of how they got there, or why they’re standing, dazed, over
the corpse of a now hideously corrupted file system.

But there are ways to fight back! Barriers, used to help forge the same locks we abandoned,
could save us. With careful understanding and placement, we could keep the unspeakable
out, while still reaping many of the benefits they provided us. And so it comes to me to
warn of the danger, and pass the rites of protection on to you!
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2 In the beginning

Below is a C implementation of Peterson’s mutual exclusion algorithm for two threads, 0
and 1 [10]:

1 unsigned flag [2] = {0 ,0};
2 unsigned turn = 0;
3
4 void lock ( unsigned thread ) {
5 unsigned other_thread = ( thread +1)%2;
6
7 flag[ thread ] = 1;
8 turn = other_thread ;
9 do {

10 // spin
11 } while (flag[ other_thread ] && turn == other_thread );
12 }
13
14 void unlock ( unsigned thread ) {
15 flag[ thread ] = 0;
16 }

Each thread has a flag with which to state its intention to lock (line 1), and there is
a variable to indicate whose turn it is in the event they both want the lock at once (line
2). Upon entering lock(), the thread first sets its associated flag and lets it be the other
thread’s turn (lines 7–8). Then they wait until either the other thread’s flag is unset, or it
becomes their turn (lines 9–11). To unlock, the calling thread unsets its flag (line 15).

This locking mechanism has been proven correct [3], and indeed it is under the assumption
that the code as written is what will be executed. However, as Knuth would remind us,
simply proving code correct can be insufficient, and we shall see what is necessary to maintain
correctness in the face of an actual implementation.

3 The very hungry compiler

Optimizing compilers are very clever machines. They take often-inefficient human-readable
code and transform it into an equivalent program that is much faster. Alas, much of this is
performed under the assumption that the code is either single-threaded, or that nothing will
be shared between threads. Consider the core of the above lock implementation:

1 flag[ thread ] = 1;
2 turn = other_thread ;
3 do {
4 // spin
5 } while (flag[ other_thread ] && turn == other_thread );

The compiler “knows” that turn is equal to other_thread because we set it that way
before the loop, and so can remove that “redundant” part of the while condition:

1 flag[ thread ] = 1;
2 turn = other_thread ;
3 do {
4 // spin
5 } while (flag[ other_thread ]);
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Similarly, flag[other_thread] is never modified by the loop, so is only checked once,
before the loop:

1 flag[ thread ] = 1;
2 turn = other_thread ;
3 if (flag[ other_thread ]) {
4 while (1) {
5 // spin forever
6 }
7 }

And the compiler is totally “safe” to make these transformations — if this code were
single threaded, these are optimizations you would even want your compiler to make. In fact,
here is the control flow graph of the code generated by the Clang C compiler for the naïve
implementation from Section 2 at optimization level O3:

%0:
 %1 = and i32 %tid, 1
 %2 = xor i32 %1, 1
 %3 = zext i32 %tid to i64
 %4 = getelementptr inbounds [2 x i32]* @flag, i64 0, i64 %3
 store i32 1, i32* %4, align 4, !tbaa !1
 store i32 %2, i32* @turn, align 4, !tbaa !1
 %5 = zext i32 %2 to i64
 %6 = getelementptr inbounds [2 x i32]* @flag, i64 0, i64 %5
 %7 = load i32* %6, align 4, !tbaa !1
 %8 = icmp eq i32 %7, 0
 br i1 %8, label %.critedge.split, label %..split_crit_edge

T F

.critedge.split: 
 ret void

..split_crit_edge: 
 br label %..split_crit_edge

entry: 
 
 
 
 
 
 declare our interest in locking 
 
 
 
 
 is the lock free? 

T F

critical 
 success! 

eternal 
 despair 

Figure 1 Control flow graph of LLVM bitcode for lock(), with English translation on the right

This obviously does not work. So what can we do to fix our lock? Some would suggest
declaring the lock variables as volatile, as this provides two guarantees in C:

The compiler may not omit a volatile access
The compiler may not reorder volatile stores

However, we only require the first guarantee; reading flag or turn first is unimportant,
and enforcing the second restricts acceptable optimization. Furthermore, volatile does not
prevent the compiler reordering other accesses [2, 6], including whatever the lock may have
been guarding, rendering the lock useless. Instead of volatile, we should insert a compiler
barrier, which forces the compiler to not omit any reads or re-order accesses around it:

1 flag[ thread ] = 1;
2 turn = other_thread ;
3 do {
4 asm volatile ("":::" memory ");
5 } while (flag[ other_thread ] && turn == other_thread );

The inserted line 4 adds a blank assembly instruction, tells the compiler not to remove
it (volatile), with the "memory" parameter declaring that it can arbitrarily change, or
“clobber” all of memory. This is sufficient for compiler to load flag and turn every iteration,
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while allowing it to optimize the condition itself. It also provides a stronger ordering guarantee
than volatile variables, ensuring that any other code after the barrier stays there.

And to check the control flow graph:

entry:
 %add = and i32 %tid, 1
 %rem = xor i32 %add, 1
 %idxprom = zext i32 %tid to i64
 %arrayidx = getelementptr inbounds [2 x i32]* @flag, i64 0, i64 %idxprom
 store i32 1, i32* %arrayidx, align 4, !tbaa !1
 store i32 %rem, i32* @turn, align 4, !tbaa !1
 %idxprom1 = zext i32 %rem to i64
 %arrayidx2 = getelementptr inbounds [2 x i32]* @flag, i64 0, i64 %idxprom1
 br label %do.body

do.body: 
 tail call void asm sideeffect "", "~{memory},~{dirflag},~{fpsr},~{flags}"()
... #3, !srcloc !5
 %0 = load i32* %arrayidx2, align 4, !tbaa !1
 %tobool = icmp ne i32 %0, 0
 %1 = load i32* @turn, align 4, !tbaa !1
 %cmp = icmp eq i32 %1, %rem
 %or.cond = and i1 %tobool, %cmp
 br i1 %or.cond, label %do.body, label %do.end

T F

do.end: 
 ret void

entry: 
 
 
 
 
 
 
 
 declare our interest in locking 
 

do.body: 
 compiler barrier 
 
 
 
 load flag and turn variables 
 
 
 lock still not free? 

T F

lock- 
 tacular!

Figure 2 Control flow graph for lock() with compiler barrier inserted, with translation on right

Sweet!

4 The Call of Cthoncurrency

Alas, despite bending the compiler to our will, the hardware itself, the very fabric of execution,
will conspire to undo us. This is where the true madness lies.

The increasing gap between CPU and RAM performance has required a number of
solutions to keep the processor fed. As multiprocessor systems become the norm, the
overhead required to maintain coherency between the many component parts spirals. And
so rules were relaxed. Guarantees were loosened. Causality was called into question. And
this is usually OK — like the very hungry compiler, this only matters when threads are
sharing data, and only for those shared locations. For everything else, this speeds execution,
simplifies CPU design, lowers power consumption, and generally makes everyone happy.

However, for those cases of shared data between threads, confusing and seemingly
“impossible” bugs can arise. We shall describe the culprits, how they lead us here, and what
we can do about it.

Sequential consistency The intuitive notion of multi-threaded programming [8], where
instructions execute in the order you wrote them and all processors see memory the same
way at the same time. Under this notion, executing a multi-threaded program on multiple
processors is the same as doing so on a single one, and concurrency is easy to reason about.
A simpler time, when the world made sense.

Instruction reordering Many modern CPUs implement out-of-order execution, meaning
that instructions may not actually happen in program order. This allows many important
performance optimizations, e.g. if a processor encounters a sequence X;Y, has the data for Y
but not X, and Y does not depend upon X, then it can perform Y while waiting. The CPU
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will have a reorder window, within which it can perform dependence analysis and rearrange
instructions for optimal throughput. While some designs (e.g. x86) will ensure external
effects such as writes, are put back in the original order, many do not (e.g. ARM).

Memory buffering In modern computers, memory is very far away and very slow; reading
from cache can be an order of magnitude slower than executing an instruction, with a full
trip to main memory being an order slower again. Rather than stalling waiting for a write to
finish, writes go into a per-core buffer to be resolved later while the core continues executing.
Similarly, rather than waiting for a read to traverse the cache hierarchy, the reorder window
allows the processor to see what locations will be required next and start reading them in
ahead of time to be ready for when the instruction is actually executed.

CPU0 CPU3CPU1 CPU2

RAM x = 2

CPU0 CPU3

RAM

CPU1 CPU2

Cache0   x = 2

x = 3x = 1

x = 2

x = 0

Cache1   x = 0x = 2

Figure 3 Intuitive view of memory in a multiprocessor system (left) vs harsh reality (right)

On the right,

CPU0 read an old value x = 1.
CPU1 just wrote x = 3, and will see that.
Cache0 contains the x = 2 that CPU1 wrote earlier in the program, and is propagating
that to RAM and Cache1.
RAM and Cache1 contain the original x = 0.

As a result of reordering and buffering, each CPU conceptually works in its own discon-
nected time bubble, reading from the distant past, writing to the distant future. Sometimes
their timelines will cross, but, like the time traveller’s wife, they will never know when, or
how far the other has progressed.

Example: x86-TSO A (comparatively) simple example of weak memory is the model
describing Intel and AMD’s x86 and x86-64 processors, known as x86-TSO (Total Store
Order) [9]. It differs from sequential consistency in only two ways: a processor might read
old data, and writes take an unspecified amount of time to be globally visible. In all other
ways, it is sequentially consistent:

Writes from a given processor, while arbitrarily delayed, are always in program order (e.g.
Sparc’s PSO (Partial Store Order) will not ensure this)
Once a value is globally visible, it is immediately globally visible to all others (e.g. ARM
does not provide this, allowing ‘write atomicity relaxation’)
A read cannot have an older value than a prior read to the same location (e.g. DEC
Alpha can do this, known as ‘read-after-read reordering’)
A read cannot violate causality, reading data that no thread wrote (e.g. C++11 and
Java allow ‘out-of-thin-air reads’)

ICCSW’14
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But it still sufficiently deviates from sequential consistency to be problematic.
For example, while we prevented the compiler from discarding memory accesses, the

hardware may yet reorder them. Due to the effects of read and write buffering, it may appear
as though our lock was actually:

1 do {
2 asm volatile ("":::" memory ");
3 } while (flag[ other_thread ] && turn == other_thread );
4 flag[ thread ] = 1;
5 turn = other_thread ;

The reads will have started ahead of time, and the writes will take a while to propagate
down (see Figure 4 for a step-by-step of how this may happen). As a result, both threads can
read stale data, incorrectly see the lock as free, and both proceed into the critical section,
wreaking havoc as they do so.

CPU0 CPU1

flag0 = 0, flag1 = 0, turn = 0

flag1 = 0, turn = 0

State intention

(a) CPU0 states its intention to lock, and starts
loading flag1.

CPU0 CPU1

flag0 = 0, flag1 = 0, turn = 0

flag0 = 1, turn = 1 flag0 = 0, turn= 0

State intention

(b) CPU0’s intention write is in transit. CPU1 also
states intent, and starts loading flag0.

CPU0 CPU1

flag0 = 1, flag1 = 0, turn = 0

flag1 = 1, turn = 0

Lock free!

(c) CPU0 checks the copy of flag1 it read in (a),
sees it clear, progressing into the critical section.
CPU1’s write is in transit.

CPU0 CPU1

flag0 = 1, flag1 = 1, turn = 0

Lock free!

(d) CPU1 checks the copy of flag0 it read in (b),
sees it clear. Both CPUs are now in the critical
section.

Figure 4 Two CPUs entering the lock simultaneously under x86-TSO

So what can we do? Much like the compiler barrier, we can insert a barrier instruction to
tell the processor to leave our program alone. An MFENCE instruction on x86 CPUs will stall
until its write buffer has been fully flushed to memory, and forces it to perform reads after,
rather than loading them up ahead of time. This allows us to regain just enough sequential
consistency to ensure correctness. We can insert one between declaring intent to lock and
checking for lock freedom (see Figure 5 for the step-by-step):

1 flag[ thread ] = 1;
2 turn = other_thread ;
3 asm volatile (" mfence ")
4 do {
5 asm volatile ("":::" memory ");
6 } while (flag[ other_thread ] && turn == other_thread );

x86 also offers SFENCE and LFENCE to only enforce write or read ordering, respectively,
and other architectures with weaker models often provide many more for fine-grained control.
In “hot” or high performance code, it may be preferable to use the weakest possible (barriers
force the CPU to slow down, and stronger means slower), but a full barrier like MFENCE will
always be safe.
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CPU0 CPU1

flag0 = 0, flag1 = 0, turn = 0

State intention

(a) CPU0 states its intention to lock.

CPU0 CPU1

flag0 = 0, flag1 = 0, turn = 0

flag0 = 1, turn = 1

State intention

(b) CPU0’s write is in transit. CPU1 also
states intent.

CPU0 CPU1

flag0 = 1, flag1 = 0, turn = 1

flag1 = 1, turn = 0

Fence

(c) CPU0 fences, waiting for its write to finish.
CPU1’s write is in transit.

CPU0 CPU1

flag0 = 1, flag1 = 1, turn = 0

flag1 = 1, turn = 0

Fence

(d) CPU0 is forced to read fresh copies of the
flags by the prior fence. CPU1 also fences.

CPU0 CPU1

flag0 = 1, flag1 = 1, turn = 0

flag0 = 1, turn = 0

Lock free!

(e) CPU0 sees that it is its turn, proceeds into
the critical section. CPU1 reads fresh copies
of the flags.

CPU0 CPU1

flag0 = 1, flag1 = 1, turn = 0

Wait

(f) CPU1 sees it is not its turn, and waits.

Figure 5 Successful mutual exclusion!

5 The moral of the story

In this paper we have seen the effects of some compiler and hardware optimizations, and how
these can cause unexpected behaviors in concurrent code. The simple take-home message is
to avoid writing your own low-level concurrency primitives or “lock-free” concurrent data
structures where possible. If you must, let paranoia be your guide: check compiler output for
sensitive regions, and read in-depth descriptions of what your compilers and architectures
will do [4]. Tools that assist in detecting where fences are required may also be of help [1, 5].

For some managed platforms, such as Java, the model is consistent between environments
regardless of host architecture, simplifying the conceptual overheadfor managing concurrency
without locks. Additionally, in the case of Java and C#, volatile does behave more like a
barrier without the unintuitive potential for reordering of other accesses [7].

Alas, for C and C++ this is unfortunately both compiler and architecture specific. While
the asm lines used in this paper are specific to GCC and Clang, equivalents exist for other
compilers, such as _ReadWriteBarrier() compiler barrier and MemoryBarrier() hardware
barrier in MSVC. To achieve more portable code, you should wrap these in compile-time
macros, e.g. compiler_barrier and full_barrier [4]. There is also some support for
atomic accesses and barriers introduced in the C11 and C++11 standards, however not all
compilers support these yet, and some never will, and so they are also effectively non-portable.

On the other hand, if you write single-threaded code, or multi-threaded code without
shared data structures, or use the locking mechanisms provided by your environment (e.g.
pthreads), none of the above matters. You can go about your ways, unconcerned and carefree.

ICCSW’14
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