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Abstract
Exploiting parallelism of increasingly heterogeneous parallel architectures is challenging due to
the complexity of parallelism management. To achieve high performance portability whilst pre-
serving high productivity, high-level approaches to parallel programming delegate parallelism
management, such as partitioning and work distribution, to the compiler and the run-time sys-
tem. Random work stealing proved efficient for well-structured workloads, but neglects poten-
tially useful context information that can be obtained through static analysis or monitoring at run
time and used to improve load balancing, especially for irregular applications with highly varying
thread granularity and thread creation patterns. We investigate the effectiveness of an adaptive
work distribution scheme to improve load balancing for an extension of Haskell which provides
a deterministic parallel programming model and supports both shared-memory and distributed-
memory architectures. This scheme uses a less random work stealing that takes into account
information on past stealing successes and failures. We quantify run time performance, commu-
nication overhead, and stealing success of four divide-and-conquer and data parallel applications
for three different update intervals on a commodity 64-core Beowulf cluster of multi-cores.
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1 Introduction

In the many-core era parallelism is one of the key sources of application performance [19].
Unfortunately, exploiting parallelism is challenging due to the added complexity of managing
parallelism [2], in particular of partitioning and work distribution across the available
processing elements (PEs). To preserve high programmer productivity, high-level approaches
to structured parallel programming delegate parallelism management to the compiler and the
run-time system (RTS). Moreover, manual adaptation to rapidly evolving and increasingly
heterogeneous and hierarchical parallel architectures is deemed infeasible mandating adaptive
solutions to achieve high performace portability [17, 7]. Furthermore, distribution is required
for scalability beyond one physical machine as often required in important domains such as
Large-Scale Data Analysis, Scientific Computing and Cloud Computing.

A state-of-the-art work distribution scheme is random work stealing where idle workers
attempt to steal from victims chosen uniformly at random. This policy is scalable due to its
decentralised and probabilistic nature and proved efficient for well-structured workloads [6].
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However, due to randomness it neglects information that can be obtained through static
analysis or monitoring at run time and potentially used to improve load balancing and
locality, especially for applications that can be characterised as irregular due to highly
varying thread granularity and thread creation patterns. In this paper, the term thread refers
to a light-weight thread managed in user space, not to a fully-fledged OS-thread.

We investigate the effectiveness of an adaptive work distribution scheme that aims to
improve load balancing in the context of a high-level non-strict functional language – an
extension of Haskell [13] – which provides a deterministic parallel programming model and
supports both shared-memory and distributed-memory architectures whilst dynamically
managing work distribution. This scheme mostly uses a less randomised variant of work
stealing that takes into account information on past stealing successes and failures to improve
workload distribution. We quantify run time performance, communication overhead, and
stealing success of four divide-and-conquer and data parallel functional applications on a
modern 64-core Beowulf-class cluster consisting of 8-core nodes.

2 Background and Related Work

We describe Glasgow parallel Haskell that provides a unified high-level semi-explicit determin-
istic parallel programming model and its RTS that was extended to take additional contextual
information into account when making policy decisions1. Additionally, most important related
work is discussed along with the relevant concepts, policies, and mechanisms.

2.1 Parallel Functional Programming
Glasgow parallel Haskell (GpH) [20] provides the par combinator to express advisory paral-
lelism, which takes two arguments and potentially executes the first argument in parallel
whilst returning the second that is evaluated by the parent thread. Additionally, the pseq
combinator is defined that fixes the evaluation order by evaluating the first argument and
then the second. Lazy polymorphic higher-order functions are used to define Evaluation
Strategies [22, 15] which further raise the level of abstraction by separating coordination from
computation, similar to algorithmic skeletons [11].

Notably, the model is deterministic by design thus preventing the occurrence of race
conditions and deadlocks that are notoriously difficult to detect and correct. For an overview
of parallel programming models refer to recent surveys [4, 10]. GpH delegates most of the
parallelism management to the RTS to provide architecture-independence at language level,
whilst retaining optimisation flexibility at the system level. Below Listing 1 illustrates the
use of the GpH combinators to parallelise the QuickSort algorithm. Note the conciseness
and the close correspondence of the code to the common mathematical notation.

Listing 1 QuickSort Implementation in GpH.
par_qsort :: Ord a => [a] -> [a]
par_qsort [] = []
par_qsort (pivot:xs) = lower ‘par ‘ higher ‘pseq ‘ merge

where lower = par_qsort [y | y <- xs , y < pivot]
higher = par_qsort [y | y <- xs , y >= pivot]
merge = lower ++ (pivot: higher )

1 the source code of this experimental RTS is available upon request
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2.2 Adaptive Run-Time System Policy Control
GUM (Graph Reduction for a Unified Machine Model) [21] is an adaptive RTS for GpH
that implements distributed graph reduction using a virtual shared heap. Figure 1 depicts
the GUM control model which is based on observing system state as well as receiving some
environmental information and controlling the policy decisions based on this information.

Figure 1 GUM Control Model Enables Adaptation.

The emphasis of the control model is on flexible adaptation at run time as opposed to
commonly used static partitioning and work distribution schemes (e.g. in MPI or OpenCL).
For every par, a spark, i.e. a pointer to an unevaluated closure in the shared graph representing
potentially parallel work, is added to the spark pool. Sparks are cheap and can be turned
into light-weight threads for parallel execution, which are more expensive as they store their
state and a stack. A parent thread can subsume a child thread by evaluating the spark
it has created sequentially to reduce thread creation overhead and increase granularity, a
mechanism similar to lazy task creation [16].

Work Stealing Passive work distribution or work stealing is an established mechanism
used in many language run-time systems to balance computational load across PEs [6]. It
is scalable due to its decentralised nature and efficient for well-structured workloads since
stealing efforts are amortised across idle PEs. Once no local threads are available the system
sends a steal request to a PE chosen uniformly at random if the local spark pool is empty. If
a PE receives a steal request (a so-called FISH in GUM terminology), it first looks for work
in the spark pool and if there are sparks available donates the oldest and thus probably large
spark in FIFO fashion [8]. Alternatively, if no work is available it forwards the request to
another randomly chosen PE, unless the message exceeds its time-to-live limit. In that case
the request is sent back to the original PE and is registered as a failed stealing attempt.

Recently, GUM has been ported to computational Grids and results on a heterogeneous
cluster demonstrated benefits of using information such as computational power of the PEs,
load, as well as latency between them [1]. In particular, simply placing main PE on the
most powerful node of the most powerful cluster lead to increased performance. Similarly, a
simulation study of divide-and-conquer applications on heterogeneous clusters comprising
homogeneous PEs, showed that using load information is beneficial in a hybrid locally
centralised and globally distributed scheme, where one PE is chosen to manage information
as cluster head, whereas across clusters the heads communicate in a decentralised fashion [14].
Moreover, language extensions demonstrated the importance of improving locality [3].
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3 Using Historical Information in Work Distribution Decisions

Several complementary policies were identified based on an application characterisation [5].
The key idea is to use monitored RTS-level information to de-randomise work stealing to
increase the flexibility of adaptation to architectural and behavioural system-level changes.
Here we investigate the effectiveness of using dynamic information about past stealing
successes and failures. Additionally, we discuss the importance of selecting a suitable update
interval. To our knowledge the use of this policy has not been previously explored in the
context of a non-strict functional language with a semi-explicit parallel programming model.

3.1 History-Based Stealing

Work stealing is mainly concerned with the following decisions: a) which PE should one steal
from as a thief (i.e. PE with no work); b) to which PE should one forward a FISH as a victim
with no work; c) which of the available sparks should one donate as a victim with work.

Our policy extension is aimed at reducing communication overhead by increasing the
fishing success ratio (i.e. the percentage of sent SCHEDULE messages containing work in
relation to the total number of sent FISH messages requesting some work) by monitoring
and storing information on recent stealing successes and failures. We investigate whether
simply trying to steal from PEs where recent stealing attempts were successful yields any
substantial benefits. If no most suitable PE could be selected due to either lack of successful
stealing attempts or due to stale information, the algorithm falls back to random stealing.
The policy is expected to work best in cases where a set of parallelism generators is fairly
stable over time. The overhead is low as it involves counters and updating cost is amortised
as it happens at garbage collection times and on arrival of FISH or SCHEDULE messages.

The key change to the mechanism is in victim selection: a table is maintained that records
whether last stealing attempt from a given PE was successful. Logically, this can be viewed
as a function f(i :: PEid) → (successInfoi, timeStampi). Table 1 shows how the stored
data is interpreted to select a PE with most consecutive successes, tie-breaking on the index.

Table 1 Overview of the Stored Historical Information.

information table field value = 0 value > 0
history information failed stealing attempt number of consecutive successes
time stamp information is stale time of last update

3.2 Balancing Accuracy and Coverage

We also record a time stamp of the last update for each PE to judge whether the stored
information is reliable and purge stale data at garbage collection times. An RTS flag is set to
select an interval used to invalidate any table entries for PEs for which no update happened
during the last interval.

The main challenge is the choice of a suitable interval such that highest coverage of the
PEs is achieved whilst keeping accurate information. In fact, using stale information can be
misleading and reduce fishing success ratio, which may lead to performance degradation.
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4 Empirical Evaluation

We report application performance from a median run out of three on a cluster of multi-cores
with 64 PEs and focus on relative speedups as we are interested in the behaviour of the
parallel applications. We use CentOS 6.5, GHC 6.12.3, gcc 4.4.7, and PVM 3.4.6. Due
to space limitations the focus is on cluster results as it is a more challenging architecture
because of higher inter-node latency and hence higher associated communication costs.

The Beowulf cluster comprises a mix of 8-core Xeon 5504 nodes with two sockets with
four 2GHz cores, 256 KB L2 cache, 4MB shared L3 cache and 12GB RAM, and 8-core Xeon
5450 nodes with two sockets with four 3GHz cores, 6MB shared L2 cache and 16GB RAM.
The machines are connected via Gigabit Ethernet with an average latency of 150ns.

4.1 Parallel Applications

We use several applications from the nofib suite [18] and from a study of Evaluation
Strategies [15]. The applications employ simple yet expressive divide-and-conquer (D&C)
and data-parallel patterns which are considered representative of a wide range of applica-
tions [11, 9]. Using D&C, the final result is computed by merging the solutions of smaller
problems obtained by recursively sub-dividing and solving the initial problem. A threshold
can be used to increase granularity by limiting spark creation to a specified depth of the tree.
Data-parallel applications exploit the parallelism by applying a function to the elements
of a data structure. Granularity can be tuned by chunking several elements together. We
measure run times, the number of messages sent, and fishing success ratio on up to 64 PEs.

The D&C parfib program computes the Nth Fibonacci number using arbitrary-length
integers; we use N = 50 and a threshold of 23; used to assess thread subsumption
capabilities of the RTS, this benchmark is representative of regular and flat D&C applic-
ations with a single source of parallelism; splitting and the combining phases require two
arithmetic operations on integers of arbitrary length, the sequential work is exponential.
The D&C worpitzky application from the symbolic computation domain checks the
Worpitzky identity for two arbitrary-length integers; we take 19 to the exponent of 27
and use a threshold of 10; at the top level this requires one exponentiation, one equality
comparison, and a sum of n intermediate results, which are computed in parallel and for
the other part requires two arithmetic operations and binomial computation using three
factorial and three arithmetic operations; parallel computations include a single source of
parallelism and three arithmetic operation for both the combine and the split phase.
The D&C coins program computes ways to pay out a specified amount from a set of
coins; in our case the value is 5777; the program is similar to parfib as the split and the
combine phases require one arithmetic operation each, whilst sequential solution requires
finding suitable permutations of coins.
The data-parallel sumeuler program computes the sum over euler totient numbers in a
given integer interval (which plays the role of explicit chunking to control granularity)
by applying a function to each element of the list generated from the given intervals in
parallel, and is fairly irregular; we use interval from 0 to 100000 with a chunk size of
500; all the degree of parallelism with merely 200 sparks is relatively low and all the
parallelism is generated in the beginning of the execution by the main PE.
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4.2 Results and Evaluation
The early results shown below demonstrate the effects of using history-based stealing but are
rather indicative than conclusive. In Figure 2, the left column of graphs shows the run times
(in seconds, note the different scales) of the applications on 2, 4, 16, and 64 PEs and the right
column presents the corresponding fishing success ratios (in percent of total number of FISH
messages). We observe that run times decrease by an order of magnitude for all applications
demonstrating scalability. However, for most applications the benefit from adding more PEs
reduces with the number of PEs due to lack of work and increased overheads. We aim to
reduce communication overhead and improve load balancing by using the enhanced policy.

Figure 2 History-Based Stealing: Execution Times and Fishing Success Ratios.

Each bar for each number of PEs represents the baseline random stealing (leftmost of the
four) or using history with a small (qz100 that stands for 100 ms), medium (qz1000) or large
interval. A small interval leads to rapid invalidation of information so that we ensure high
accuracy but coverage is often low, whereas opposite is the case if the interval is large. As
noted above, the challenge is in finding optimal interval to balance accuracy and coverage.

On 64 PEs the run times for applications using history are consistently decreased by up to
34% (as for sumeuler). We can attribute the effectiveness of the policy for sumeuler to the
fact that all parallelism is generated by the main PE, hence past behaviour appears predictive
of future behaviour during the initial phase of the computation. In particular for low numbers
of PEs the fishing success ratio is mostly higher if history is used. However, it is lower in
most cases for D&C applications as new parallelism sources are created dynamically but
are rather short-lived. There is not much difference in success ratio for sumeuler for higher
PE numbers as there is not enough work available2. By contrast, more work is generated

2 also indicated by the high percentage of FISHes in relation to the total number of messages (cf Table 2)



E. Belikov 9

Table 2 Number of FISH Messages versus Total Sent Messages (on 64 PEs).

interval noqz qz100 qz1000 qz10000
FISHes Total FISHes Total FISHes Total FISHes Total

sumeuler 34968 35714 18650 19451 20395 21200 15190 16004
parfib 5137 12134 3965 9027 4874 12196 4801 10793
coins 7710 28774 10541 27856 12694 30804 38715 63320
worpitzky 73278 153438 71437 125510 74370 125630 82155 139641

throughout a longer phase of the D&C computations. However, history appears misleading
in this case as generators only create few sparks and further sparks are generated elsewhere.

As shown in Table 2, using information on past successes also significantly reduces the
number of FISHes for the data-parallel sumeuler from 34968 (baseline) by 57% to 15190
(qz10000) for the rather regular D&C parfib from 5137 by 23% to 3965 (qz100), contributing
to the reduction of communication overhead which helps reduce execution time. On the
other hand, history does not reflect well the run time behaviour of worpitzky (modest 2.5%
decrease) and coins (a disappointing 37% increase), where the threads are more numerous
and more fine-grained than in the other applications.

5 Conclusion and Future Work

We have investigated the effectiveness of using information on past stealing successes to
improve victim selection of random work stealing to increase stealing success ratio and reduce
communication overhead. We quantify run time performance of four applications on a cluster
of multi-cores and use profiling data to explain application behaviour. We find improved run
time of up to 34% along with increased fishing success rate and reduced number of FISH
messages for data-parallel and for regular D&C applications. However, this heuristic fails in
cases where past application behaviour is not predictive of the future behaviour as it is the
case for more irregular D&C applications with large number of very fine-grained threads.

Ongoing work is focused on investigating automated ways of parameter selection and
tuning as well as on exploring complementary policies such as temporary switching to work-
pushing and using information on the source of the sparks to avoid exporting sparks that
could have been successfully subsumed by the parent and would otherwise cause additional
communication overhead if the results are needed by the parent. In general, predicting the
amount of work associated with a spark proved very challenging [12], hence we aim to use
additional information to co-locate sparks from the same source of parallelism to improve
locality and selection of the spark to donate according to implicit ancestry dependencies.

In the future, we plan to add larger applications to the set of our benchmarks, to enrich
the used information by architectural characteristics and to use cost models as a more
systematic way to adaptively control policies within a RTS to achieve high performance
portability for a high-level non-strict functional parallel programming language.
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