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Abstract
Interval Markov Chains (IMCs) are the base of a classic probabilistic specification theory by
Larsen and Jonsson in 1991. They are also a popular abstraction for probabilistic systems. In
this paper we introduce and study an extension of Interval Markov Chains with parametric
intervals. In particular, we investigate the consistency problem for such models and propose an
efficient solution for the subclass of parametric IMCs with local parameters only. We also show
that this problem is still decidable for parametric IMCs with global parameters, although more
complex in this case.
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1 Introduction

Interval Markov Chains (IMCs for short) extend Markov Chains, by allowing to specify
intervals of possible probabilities on state transitions instead of precise probabilities. IMCs
have been introduced by Larsen and Jonsson [16] as a specification formalism—a basis
for a stepwise-refinement-like modeling method, where initial designs are very abstract
and underspecified, and then they are made continuously more precise, until they are
concrete. Unlike richer specification models such as Constraint Markov Chains [6] or Abstract
Probabilistic Automata [9], IMCs are difficult to use for compositional specification due to
lack of basic modeling operators. Nevertheless, IMCs have been intensively used in order
to model real-life systems in domains such as systems biology, security or communication
protocols [2, 12, 5, 19, 11].

The extension of Markov Chains into Interval Markov chains was motivated by the fact
that, when modelling real-life systems, the actual exact value of transition probabilities may
not be known precisely. Indeed, in most cases, these values are measured from observations
or experiments which are subject to imprecision. In this case, using intervals of probabilities
that take into account the precision of the measures makes more sense than using an arbitrary
but precise value. We now take this reasoning a step further.

Complex systems are most often built by assembling multiple components. Assume that
one of these components may fail with a given probability that depends on the quality of
the materials involved in its fabrication. In practice, a prototype of the component is built
and the failure probability of this component is measured by experiment with a certain
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imprecision. This failure probability and the subsequent imprecision are then taken into
account in the model of the system by using an interval of probability. When one analyzes
this model, every result will depend on the failure rate of this component, which itself depends
on the choice of the quality of materials. If the conclusions of the analysis are that the failure
probability is too high for the whole system to be viable, then a new prototype of the failing
component is built using different materials and the modeling and analysis phase starts over.
This process is repeated until a satisfactory failing component is identified.

Instead of using this “trial and error” methodology, we propose a new extension of Interval
Markov Chains that allows using parameters in the definition of intervals of probability. In
our example, the failure probability of the failing component is clearly a parameter of the
system. The developer is interested in whether there exists a maximal value of this probability
that will ensure that the whole system is satisfactory. When this value is identified, one can
choose the materials of the failing component accordingly in order to produce a prototype
with a lower maximal failing probability.

Therefore, we introduce in this paper the new formalism called parametric Interval
Markov Chains (pIMCs), which extends IMCs by allowing the use of parameters as lower or
upper endpoints of probability intervals. We also show that the problem of deciding whether
a given pIMC is consistent (i.e. admits a valid implementation) is decidable and propose
algorithms in order to solve this problem. In particular, we identify a subclass of pIMCs –
local pIMCs – for which an efficient algorithm is proposed. In the rest of the paper, we limit
ourselves to closed intervals. Nevertheless, all the results we propose can be extended with
minor modifications to open/semi-open intervals whose lower/upper endpoints contain linear
combinations of parameters and constants.

Related work. To the best of our knowledge, there is no existing work on parametric
probabilistic specification theories as such, where parameters range over probability values.
Still, classes of systems where parameters give some latitude on probability distributions, such
as parametric Markov models [17] have been studied in the literature [18, 13]. The activity
in this domain has yielded decidability results [15], parametric probabilistic model-checking
algorithms [8] and even tools [14]. Continuous-time parametric and probabilistic models
have also been considered in some very restricted settings [7]. Networks of probabilistic
processes where the number of processes is a parameter have also been studied in [3, 4], and
probabilistic timed automata with parameters in clock constraints and invariants have been
studied in [1].

The paper proceeds as follows. In Section 2, we begin by introducing concepts and
notations that will be used throughout the paper. Section 3 introduces the new formalism of
parametric Interval Markov Chains, studies their relations to (Interval) Markov Chains and
discusses what we call the range of parameters. In Section 4, we present original solutions to
the consistency problem for IMCs and pIMCs. Finally, Section 5 concludes the paper and
discusses future work.

2 Background

Throughout the paper, we use the notion of parameters. A parameter p ∈ P is a variable
ranging through the interval [0, 1]. A valuation for P is a function ψ : P → [0, 1] that
associates values with each parameter in P . We write Int[0,1](P ) for the set of all closed
intervals of the form [x, y] with x, y ∈ [0, 1] ∪ P . When P = ∅, we write Int[0,1] = Int[0,1](∅)
to denote closed intervals with real-valued endpoints. Given an interval I of the form



B. Delahaye 19

I = [a, b], Low(I) and Up(I) respectively denote the lower and upper endpoints of I, i.e. a
and b. Given an interval I = [a, b] ∈ Int[0,1], we say that I is well-formed whenever a ≤ b.
In the following, we abuse notations and write ∅ for the empty interval, meaning any not
well-formed interval. Given a finite set S, we write Dist(S) for the set of distributions over
S, i.e. the set of functions ρ : S → [0, 1] such that

∑
s∈S ρ(s) = 1. In the rest of the paper,

we assume that all the states in our structures are equipped with labels taken from a fixed
set of atomic propositions A. A state-labelling function over S is thus a function V : S → 2A
that assigns to each state a set of labels from A.

We recall the notion of Markov Chains (MCs), that will act as models for (parametric)
IMCs. An example of a Markov Chain is given in Figure 1a.

I Definition 1 (Markov Chain). A Markov Chain is a tuple M = (S, s0,M,A, V ), where
S is a finite set of states containing the initial state s0, A is a set of atomic propositions,
V : S → 2A is a labeling function, andM : S×S → [0, 1] is a probabilistic transition function
such that ∀s ∈ S,

∑
t∈SM(s, t) = 1.

We now recall the notion of Interval Markov Chain (IMC), adapted from [10]. IMCs are
a specification formalism that allows one to represent an infinite set of MCs. Roughly, IMCs
extend MCs by replacing exact probability values on transitions with intervals of allowed
probability values. An example of an IMC is given in Figure 1b.

I Definition 2 (Interval Markov Chain [10]). An Interval Markov Chain (IMC) is a tuple
I = (S, s0, ϕ,A, V ), where S, s0, A and V are as for MCs, and ϕ : S × S → Int[0,1] is a
transition constraint that associates with each potential transition an interval of probabilities.

The following definition recalls the notion of satisfaction introduced in [10]. Satisfaction
(also called implementation in some cases) allows to characterize the set of MCs represented
by a given IMC specification. Crucially, satisfaction abstracts from the syntactic structure
of transitions in IMCs: a single transition in the implementation MC can contribute to
satisfaction of more than one transition in the specification IMC, by distributing its probability
mass against several transitions. Similarly many MC transitions can contribute to satisfaction
of just one specification transition.

I Definition 3 (Satisfaction Relation [10]). Let I = (S, s0, ϕ,A, V
I) be an IMC andM =

(T, t0,M,A, VM ) be a MC. A relation R ⊆ T × S is a satisfaction relation if whenever tRs,
1. the valuations of s and t agree: VM (t) = V I(s),
2. there exists a function δ : T → (S → [0, 1]) such that

a. for all t′ ∈ T such that M(t, t′) > 0, δ(t′) is a distribution on S,
b. for all s′ ∈ S, we have (

∑
t′∈T M(t, t′) · δ(t′)(s′)) ∈ ϕ(s, s′), and

c. for all t′ ∈ T and s′ ∈ S, if δ(t′)(s′) > 0, then (t′, s′) ∈ R.
We say that M satisfies I (written M |= I) iff there exists a satisfaction relation
containing (t0, s0).

The set of MCs satisfying a given IMC I is written [[I]]. Formally, [[I]] = {M | M |= I}.
In the rest of the paper, we write ⊥ for the empty IMC, i.e.⊥ = (∅, ∅, ∅, A, ∅). By construction,
we have [[⊥]] = ∅.

The notion of satisfaction between the MC M from Figure 1a and the IMC I from
Figure 1b is illustrated in Figure 1c.

SynCoP’15
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Figure 1 Markov Chain, Interval Markov Chain and satisfaction relation [10].

3 Parametric Interval Markov Chains

In this section, we propose a new formalism, called parametric Interval Markov Chains
(pIMC) that extends IMCs by allowing parameters as the lower/upper endpoints of the
transition intervals. We start by giving the main definitions of pIMCs and their relations
with IMCs and MCs, and then distinguish two subclasses of interest of pIMCs: local and
global pIMCs.

3.1 pIMCs and their relations to IMCs/MCs
We now propose an extension of IMCs that allows using parameters in the definition of
intervals.

I Definition 4 (Parametric Interval Markov Chain). A parametric Interval Markov Chain
(pIMC) is a tuple IP = (S, s0, ϕP , A, V, P ), where S, s0, A and V or as for IMCs, P is a set
of variables (parameters) ranging over [0, 1] and ϕP : S × S → Int[0,1](P ) associates to each
potential transition a (parametric) interval.

In the following, we abuse notations and also write ⊥ for the empty pIMC, i.e. ⊥ =
(∅, ∅, ∅, A, ∅, ∅).

Roughly, an instance of a pIMC IP is a pair (I, ψ), where I is an IMC that respects the
structure and labels of IP and such that its transition constraint is the instantiation of ϕP
according to the valuation for the parameters ψ.

I Definition 5 (Instance of a pIMC). An instance of pIMC IP = (S, s0, ϕP , A, V, P ) is a pair
(I, ψ) (written (I, ψ) ` IP ), where I = (S, s0, ϕ,A, V ) is an IMC respecting the structure
and labels of IP , ψ : P → [0, 1] is a valuation for the parameters, and ϕ ≡ ϕP [p← ψ(p)].

We sometimes write I `ψ IP instead of (I, ψ) ` IP and say that I is an instance of IP
through ψ. We say that I is an instance of IP , written I ` IP , whenever there exists a
valuation ψ such that I `ψ IP .

A MCM = (T, t0,M,A, VM ) implements pIMC IP , writtenM |= IP , iff there exists
an instance I of IP such thatM |= I. We write [[IP ]] for the set of MCs implementing IP .

I Example 6. Consider pIMC IP given in the left of Figure 2. IP represents a family
of dispensable probabilistic beverage machines (dpbm) that have a probability greater or
equal to 0.5 of delivering tea and a probability lower or equal to 0.5 of delivering coffee. In
addition, we use parameter p to model the fact that the machine can fail to deliver anything
with probability at most p. The value of p depends on the quality of a potentially failing
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Figure 2 pIMC IP (left) with one of its instances I (middle) and an implementation M (right).

component. The IMC I given in the middle of Figure 2 depicts the family of dpbm for
which the potentially failing component has a maximal failure probability of 0.1. Finally,
MCM given in the right of Figure 2 depicts a given dpbm of this family, where the actual
probabilities of delivering tea and coffee are fixed to 0.5 and 0.5 respectively, and where the
potentially failing component does not fail.

As for IMCs, one question of interest for pIMCs is to decide whether they admit at
least one implementation – the so-called consistency problem. Given the definition of
implementation, deciding whether a pIMC is consistent amounts to verifying whether it
admits at least one instance that is itself consistent. Nevertheless, we will see in Section 4,
that in the case of local pIMCs, consistency can be decided using a polynomial algorithm on
the pIMC itself without having to go through any of its instances.

3.2 Local VS Global Parameters
We now propose two subclasses that distinguish different trends in the use of parameters
throughout a given structure. Parameters can be used at two different levels in a given pIMC:
either in a local fashion – reflecting small tuning artifacts in a model; or in a global fashion –
reflecting potential design choices. In the following, we formally define these subclasses.

Local parameters. Parameters are said to be local if they only appear in transition probab-
ilities outgoing from a unique state. In this sense they reflect small tuning artifacts because
of their small impact on the structure of the pIMC. The pIMC IP in Figure 2 illustrates this
notion: in IP , parameter p is local as it only appears in transitions outgoing from a single
state (State 1). In essence, p models the failure probability of a single component, only used
once in pIMC IP .

We write Range(p) for the range of a given parameter p, i.e. the set of states s such
that p is either the lower or the upper endpoint of the probability interval associated with
an outgoing transition of s. Formally, given pIMC IP = (S, s0, ϕP , A, V, P ), RangeIP (p) =
{s ∈ S | ∃s′ ∈ S s.t. p ∈ Low(ϕP (s, s′)) ∪ Up(ϕP (s, s′))}. When clear from the context, we
write Range(p) instead of RangeIP (p). We say that a parameter p ∈ P is local in IP iff
|Range(p)| ≤ 1. A pIMC IP = (S, s0, ϕP , A, V, P ) is local iff all its parameters are local.

Since all parameters are local in local pIMCs, it is very easy to check whether the outgoing
transitions of a given state are consistent in the sense that it is possible to find out easily
whether there exist values of the parameters such that the outgoing intervals of a given state
are not empty.

Global parameters. Parameters are global if they are not local, i.e. if they appear in the
outgoing probability intervals of at least two states.

SynCoP’15
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Formally, we say that parameter p ∈ P is global in IP iff |RangeIP (p)| > 1. We say
that pIMC IP = (S, s0, ϕP , A, V, P ) is global iff at least one of its parameters is global.
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I Example 7. pIMC IP2 from Figure 3 depicts a family of beverage
machines in which all modules use the same potentially failing
component. The maximal probability of failure of this component is
modeled using a parameter p. This parameter is global in IP2 as it
appears in the outgoing transitions of several states (States 1, 2, 4).
In IP2 , the choice of a value for p has more impact on the potential
behaviors of the global pIMC than in the case of pIMC IP from
Figure 2, where parameter p was only local.

In the case of global pIMCs, checking whether the outgoing transitions of a given state
are consistent becomes more tricky, since the potential values of the parameters may be
subject to constraints coming from other states.

4 Consistency

As said in Section 3, one question of interest given a pIMC IP is to decide whether it admits
at least one instance that itself admits at least one implementation. This is what we call the
consistency problem. In this section, we start by recalling the consistency problem in the
case of IMCs and solutions to this problem that have been proposed in the literature. We
propose an alternative solution to the consistency problem for IMCs and then extend it to
the case of local pIMCs. Finally, we show that the problem is more complex in the case of
pIMCs with global parameters.

4.1 Consistency of IMCs
The consistency problem for IMCs has already been studied in the literature [10] and it has
been proven that it is decidable and can be solved in polynomial time. We first recall one of
the existing algorithms and then propose an alternative, more direct solution.

In [10], the consistency problem for IMCs has been considered as a special case of
the common implementation problem, which consists in deciding, given a finite number
of IMCs, whether there exists at least one implementation satisfying them all. One can
solve the consistency problem for a given IMC I by deciding whether I admits a common
implementation with itself. The proposed solution to the consistency problem is based on
the notion of consistency relation, also introduced in [10]. It is shown that an IMC I is
consistent iff there exists a consistency relation between I and itself, which can be decided
in polynomial time.

As explained in [10], a consistency relation allows one state of a given IMC to contribute
to the consistency of other states. Although this was justified by the fact that satisfaction
abstracts from the structure of transitions in IMCs, we show in the following theorem that
whenever an IMC is consistent, it admits one implementation with the same structure. As a
consequence, one transition in this implementation only contributes to satisfying the exact
same transition in the specification IMC, which will allow us to avoid the use of consistency
relations in the rest of the paper.

I Theorem 8. An IMC I = (S, s0, ϕ,A, V ) is consistent iff it admits an implementation
of the form M = (S, s0,M,A, V ) where, for all reachable state s in M, it holds that
M(s, s′) ∈ ϕ(s, s′) for all s′.
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Proof. Let I = (S, s0, ϕ,A, V ) be an IMC. One direction of this theorem is trivial: if I
admits an implementation of the formM = (S, s0,M,A, V ) where, for all reachable state
s inM, it holds that M(s, s′) ∈ ϕ(s, s′) for all s′, then I is consistent. We now prove the
other direction.

Assume that I is consistent and letM′ = (T, t0,M ′, A, V ′) be a MC such thatM′ |= I
with satisfaction relation R. FromM′, we build a new implementation of I of the desired
form. Let f : S → T be a function that associates to each state of I one of the states inM′
contributing to its satisfaction, if any. Formally, f is such that for all s ∈ S, if f(s) is defined,
then (f(s), s) ∈ R. Let δ(f(s),s) be the function given by R (item 2 of Definition 3). We now
define the desired implementationM = (S, s0,M,A, V ). Let S′ = {s ∈ S | ∃t ∈ T, (t, s) ∈ R}
and M(s, s′) =

∑
t∈T δf(s),s(t)(s′) ·M ′(f(s), t) if s ∈ S′ and 0 otherwise.

We observe that, by definition of R we have M(s, s′) ∈ ϕ(s, s′) for all (s, s′) ∈ S′ × S.
Moreover, wheneverM(s, s′) > 0, there exists at least one state t ∈ T such that δf(s),s(t)(s′) >
0 and M ′(f(s), t) > 0. Therefore, by definition of δ, we have (t, s′) ∈ R and thus s′ ∈ S′. It
thus follows that only states from S′ can be reachable inM.

Consider the identity relation R′ over S′ and let (s, s) ∈ R′. Let δ′ : S → (S → [0, 1]) be
such that δ′(s′)(s′′) = 1 whenever s′ ∈ S′ and s′′ = s′, and 0 otherwise.

Let s′ ∈ S be such that M(s, s′) > 0. By construction, we have s′ ∈ S′ and thus δ′(s′) is
a distribution on S.
Let s′ ∈ S and consider

∑
s′′∈SM(s, s′′) · δ(s′′)(s′).

If s′ /∈ S′, then
∑
s′′∈SM(s, s′′) · δ′(s′′)(s′) = 0 and we know by R that 0 ∈ ϕ(s, s′)

(because there is no t ∈ T such that δ(t)(s′) > 0).
Otherwise, we have

∑
s′′∈SM(s, s′′) · δ′(s′′)(s′) = M(s, s′) ∈ ϕ(s, s′)

For all s′, s′′ ∈ S such that δ′(s′)(s′′) > 0, we have s′ = s′′ and s′ ∈ S′, therefore
(s′, s′′) ∈ R′.

We conclude that R′ is a satisfaction relation betweenM and I. Moreover, we know by
construction that (t0, s0) ∈ R, thus s0 ∈ S′. J

The fact that a consistent IMC necessarily admits an implementation with the same
structure implies that using a cross-product such as introduced in the notion of consistency
relation in order to prove consistency is not necessary. Therefore, one does not need to search
for local inconsistencies in S × S, as is done in [10], but only needs to check and avoid local
inconsistencies on S.

We thus propose an alternative solution to the consistency problem for IMCs. Our solution
is based on the notion of pruning. The aim of pruning is to detect and remove from a given
structure all the states that cannot contribute to any of its implementations. Such states are
called inconsistent. The algorithm we propose will follow the same principle: it will detect
and propagate local inconsistencies (i.e. states whose transition intervals cannot be satisfied)
through the state-space of the IMC until either the initial state is locally inconsistent – the
IMC is thus inconsistent – or only consistent states are reachable, implying that the IMC is
consistent. Because of Theorem 8, an implementation of the original IMC I can be directly
derived from its pruned version.

A pruning algorithm was also proposed in [10], but it was based on the notion of
consistency relation, therefore using the cross-products we are trying to avoid. In [10], a
quadratic number of iterations is needed in order to build the consistency relation, each
iteration being itself quadratic in the number of states. A linear number of iterations is then
needed in order to prune the consistency relation. In contrast, the algorithm we propose in
the following only needs a linear number of iterations, each iteration being linear itself.

SynCoP’15
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The pruning operator we propose is based on the notion of local state-consistency.

I Definition 9. Given an IMC I = (S, s0, ϕ,A, V ), a state s ∈ S is locally consistent if there
exists a distribution ρ ∈ Dist(S) such that for all s′ ∈ S, ρ(s′) ∈ ϕ(s, s′).

Being able to check whether a given state in an IMC is locally consistent is thus of
paramount importance. Fortunately, this can be done quite easily: checking whether a state
is locally consistent amounts to solving a set of linear inequations. Indeed, assuming that
S = {s0, s1, . . . sn}, checking whether si ∈ S is consistent amounts to deciding whether the
following system of inequations admits a solution.

∃x0, . . . xn, x0 + . . .+ xn = 1 ∧ x0 ∈ ϕ(si, s0) ∧ . . . ∧ xn ∈ ϕ(si, sn)

In fact, one does not need to solve the system in order to decide whether it admits a
solution. If ϕ contains intervals that are not well-formed, then si is trivially inconsistent.
Otherwise, assuming all the intervals in ϕ are well-formed, then one only needs to check
whether the sum of all lower endpoints is below 1 and whether the sum of all upper endpoints
is above 1.

I Proposition 10. Given an IMC I = (S, s0, ϕ,A, V
I), a state s ∈ S is locally consistent

iff ϕ(s, s′) is well-formed for all s′, and
∑
s′∈S Low(ϕ(s, s′)) ≤ 1 ≤

∑
s′∈S Up(ϕ(s, s′)).

Checking whether a state is locally consistent can thus be done in linear time. Once
locally inconsistent states have been identified, they will be made unreachable in I by
iterating the following pruning operator β. In the following, we say that a state s of IMC
I = (S, s0, ϕ,A, V

I) is inconsistent iff there is no implementation of I in which s is satisfied.
In practice, s is inconsistent iff it is locally inconsistent or there are transitions with non-zero
probability leading from s to another inconsistent state s′, i.e. such that 0 /∈ ϕ(s, s′). In
order to keep track of inconsistent states that have already been processed, we equip IMCs
with a marking function λ : S → {0, 1}. States s such that λ(s) = 1 are inconsistent states
that have already been identified and made unreachable in a previous iteration of β. The
notion of satisfaction is not impacted by this marking function.

I Definition 11 (Pruning operator β for IMCs). Let I = (S, s0, ϕ,A, V, λ) be an IMC. The
pruning operator β is defined as follows. Let λ0(S) = {s ∈ S | λ(s) = 0}.
1. If λ0(S) does not contain any locally inconsistent state or if I = ⊥, then β(I) = I.
2. Else, if s0 is locally inconsistent, then β(I) = ⊥.
3. Otherwise, let si ∈ λ0(S) be a new locally inconsistent state in I. We then define β(I) =

(S, s0, ϕ
′, A, V, λ′), with λ′(si) = 1 and λ′(s) = λ(s) for all s 6= si, ϕ′(s, s′) = ϕ(s, s′) if

s′ 6= si, and

ϕ′(s, si) =


ϕ(s, si) if λ(s) = 1
[0, 0] if λ(s) = 0 and 0 ∈ ϕ(s, si)
∅ otherwise

As seen in the above definition, the pruning operator does not remove inconsistent states
but makes them unreachable. When 0 is an allowed probability for incoming transitions, β
enforces this choice by modifying the subsequent intervals to [0, 0]. When 0 is not allowed,
then the only possibility is to modify the interval probabilities to ∅, which propagates local
inconsistency to predecessors. The first application of β should always be done with an
empty marking function, i.e. assigning 0 to all states.

Since pruning potentially propagates local inconsistencies to predecessor states, the
pruning operator β has to be applied iteratively until it converges to a fixpoint. The IMC
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obtained in this fixpoint is either ⊥ or an IMC with no reachable locally inconsistent states
(item 1 of Definition 11 above). Since at least one inconsistent state is detected and made
unreachable at each iteration (items 2 and 3 of Definition 11), the number of iterations
needed in order to converge is bounded by |S|. The complexity of applying pruning to I
until it converges is thus polynomial. The result of this iteration on IMC I is written β∗(I)
in the rest of the document.

I Theorem 12. For all IMC I = (S, s0, ϕ,A, V ) and marking function λ such that λ(s) = 0
for all s ∈ S, it holds that [[β∗((S, s0, ϕ,A, V, λ))]] = [[I]].

Proof. Let I = (S, s0, ϕ,A, V ) be an IMC and let λ be a Marking function such that λ(s) = 0
for all s ∈ S. Let I ′ = (S, s0, ϕ

′, A, V, λ′) = βn((S, s0, ϕ,A, V, λ)) for some n ∈ N. We show
that for all MCM, we haveM |= I ′ ⇐⇒ M |= β(I ′).

If {s ∈ S | λ′(s) = 0} does not contain any inconsistent state or if s0 is inconsistent, then
the result is trivial. We thus assume that an inconsistent state si ∈ {s ∈ S | λ′(s) = 0} is
found and made unreachable by β.

We start by observing that, by construction, all states s ∈ S such that λ′(s) = 1 are such
that for all s′ ∈ S with λ(s′) = 0, we have either ϕ′(s′, s) = [0, 0] or ϕ′(s′, s) = ∅.

⇒ Let M = (T, t0,M,A, VM ) be a MC such that M |= I ′. Let R be the associated
satisfaction relation. We show that R is still a satisfaction relation betweenM and β(I ′) =
(S, s0, ϕ

′′, A, V, λ′′). Let (t, s) ∈ R.
1. Since β has no effect on valuations, we still have VM (t) = V (s).
2. Let δ : T → (S → [0, 1]) be the function given by R. By construction, it holds that

a. for all t′ ∈ T such that M(t, t′) > 0, δ(t′) is a distribution on S,
b. for all s′ ∈ S, we have (

∑
t′∈T M(t, t′) · δ(t′)(s′)) ∈ ϕ′(s, s′), and

c. for all t′ ∈ T and s′ ∈ S, if δ(t′)(s′) > 0, then (t′, s′) ∈ R.

Items 2.a. and 2.c. are not impacted by β. We now show that Item 2.b. still holds.
For all s′ ∈ S such that s′ 6= si, we have ϕ′′(s, s′) = ϕ′(s, s′) and Item 2.b. still holds.

Furthermore, since si is inconsistent in I ′, we necessarily have that for all t′ ∈ T , (t′, si) /∈ R,
and thus δ(t′)(si) = 0. Therefore, we have (

∑
t′∈T M(t, t′) · δ(t′)(si)) = 0.

If s is such that 0 ∈ ϕ′(s, si), then we still have 0 ∈ ϕ′′(s, si) since ϕ′′(s, si) is either
ϕ′(s, si) or [0, 0].
Otherwise, if 0 /∈ ϕ′(s, si), then we have (

∑
t′∈T M(t, t′) · δ(t′)(s′)) /∈ ϕ′(s, s′), which is a

contradiction w.r.t. the definition of R. As a consequence, there exists no t ∈ T such
that (t, s) ∈ R and the modification of ϕ′(s, si) into ϕ′′(s, si) = ∅ has no consequence on
Item 2.b.

Finally, R is still a satisfaction relation betweenM and β(I ′) and thereforeM |= β(I ′).

⇐ LetM = (T, t0,M,A, VM ) be a MC such thatM |= β(I ′) = (S, s0, ϕ
′′, A, V, λ′′). Let

R be the associated satisfaction relation. We show that R is also a satisfaction relation
between M and I ′. Let (t, s) ∈ R and let δ : T → (S → [0, 1]) be the function given by
R. As above, β has no effect on valuations and on Items 2.a. and 2.c. of the definition of a
satisfaction relation. We show that Item 2.b. also holds betweenM and I ′.

For all s′ ∈ S such that s′ 6= si, we have ϕ′′(s, s′) = ϕ′(s, s′) and Item 2.b. trivially holds.
Furthermore, since si is inconsistent in I, it is also inconsistent in I ′. As a consequence, we
necessarily have that for all t′ ∈ T , (t′, si) /∈ R, and thus δ(t′)(si) = 0. Therefore, we have
(
∑
t′∈T M(t, t′) · δ(t′)(si)) = 0.
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(c) β2(I) = β∗(I).

Figure 4 Iterative application of the pruning operator β to IMC I until convergence.

If s is such that 0 ∈ ϕ′(s, si), then (
∑
t′∈T M(t, t′) · δ(t′)(si)) ∈ ϕ′(s, si) and Item 2.b.

holds.
Otherwise, if 0 /∈ ϕ′(s, si), then we have ϕ′′(s, si) = ∅. As a consequence (

∑
t′∈T M(t, t′) ·

δ(t′)(si)) /∈ ϕ′′(s, si), which is a contradiction. Therefore, there exists no t ∈ T such that
(t, s) ∈ R and 0 /∈ ϕ′(s, si).

Finally, R is also a satisfaction relation betweenM and I ′ and thereforeM |= I ′.
J

I Example 13. Figure 4 illustrates the iteration of pruning operator β on an IMC. Consider
IMC I from Figure 4a. Applying β on I consists in two steps: (1) searching for a locally
inconsistent state in I, and (2) modifying I in order to make the selected locally inconsistent
state unreachable. At first, the only locally inconsistent state in I is State 5. As a consequence,
applying β will either reduce all incoming interval transition probabilities to [0, 0] when 0 is
already allowed or to ∅ when this is not the case. The only incoming transition for State
5 is equipped with interval [0.5, 1], therefore it is replaced with ∅. β(I) is then depicted in
Figure 4b. In the second iteration of β, State 3 is identified as locally inconsistent because
it has an outgoing transition equipped with ∅. State 3 only has one incoming transition,
which is equipped with interval [0, 0.5]. Since this interval contains 0, it is replaced with
[0, 0]. β2(I) is represented in Figure 4c. Since β2(I) does not contain any reachable locally
inconsistent state, the fixed point is reached and β∗(I) = β2(I).

4.2 Consistency of pIMCs
We now move to the setting of pIMCs. Recall that a pIMC IP is consistent iff it admits at
least one consistent instance, i.e. ∃I,∃M | M |= I and I ` IP .

As we will see later, the difficulty of deciding whether a given pIMC IP is consistent
highly depends on the nature of the parameters in IP . This is due to the fact that the
notion of local state-consistency only makes sense for states whose transition probability
intervals only contain local parameters. Indeed, in the case of global parameters, the local
consistency of one state might be incompatible with the local consistency of another due to
the incompatible choice of parameter valuations. In the following, we propose an intuitive
and efficient solution for deciding whether a local pIMC is consistent. We then show that
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Figure 5 Global pIMC IP with global parameter p (left) and one of its implementations (right).

consistency is also decidable in the case of global parameters although the algorithm we
propose is more complex.

I Example 14. Consider pIMC IP given on the left of Figure 5. Parameter p in IP is global
as it affects outgoing transitions of States 1, 2 and 3. If one is checking local state-consistency,
it looks like all states in IP are locally consistent. Indeed, outgoing transitions of State 1
can be satisfied with p = 0; outgoing transitions of State 2 can be satisfied with p = 0; and
outgoing transitions of State 3 can be satisfied with p = 1. From a purely local point of
view, it thus seems that IP is consistent. However, it also appears that State 2 requires
that p ≤ 0.4 while State 3 requires that p ≥ 0.5. One could therefore conclude that IP is
inconsistent. Despite of this fact, we claim that IP is consistent: if p is set to 0, then we
can reduce the transition interval from State 1 to State 3 to [0, 0], which makes State 3
unreachable. Therefore, one no longer needs to have p ≥ 0.5 and a correct implementation of
IP can be found. Such an implementation is Given on the right of Figure 5.

Consistency of local pIMCs. In order to check consistency of local pIMCs, a similar
algorithm to the one used for checking consistency of IMCs can be used. In fact, due to
Theorem 8, one does not need to consider particular instances of IP in order to find out
whether IP is consistent: since all instances of IP share the same structure, IP will be
consistent iff there exists an implementation that shares this structure. Since the notion
of local state-consistency makes sense in the case of local pIMCs, we adapt the pruning
algorithm presented in Section 4.1 to local pIMCs.

Let IP = (S, s0, ϕP , A, V, P ) be a local pIMC and let s ∈ S. We write param(s) = {p ∈
P | Range(p) = {s}} for the set of parameters appearing in the outgoing transition intervals
of s. We then say that s is locally consistent iff there exists a valuation ψ over param(s) and
a distribution ρ ∈ Dist(S) such that for all s′ ∈ S, ρ(s′) ∈ ϕP (s, s′)[p← ψ(p)]. Recall that
the only parameters potentially appearing in ϕP (s, s′) are necessarily from param(s).

In a similar fashion to the case of IMCs, local consistency of state si ∈ S can be reduced to
checking whether a system of inequations admits a solution. In order to facilitate presentation,
we assume that S = {s1, . . . , sn} and we use the parameters in param(si) as variables taking
values in [0, 1]. The system is then as follows:∑n

j=1 Low(ϕP (si, sj)) ≤ 1 ∧
∑n
j=1 Up(ϕP (si, sj)) ≥ 1 ∧ Low(ϕP (si, s1)) ≤ Up(ϕP (si, s2))

∧ . . . ∧ Low(ϕP (si, sn)) ≤ Up(ϕP (si, sn))

In this system, the first two inequations reflect the definition of local state-consistency
while the other inequations ensure that all the intervals expressed using parameters are
well-formed. In the case of IMCs, we were able to remove this check by assuming beforehand
that our IMCs were well-formed. In the case of pIMCs, we cannot assume the same as

SynCoP’15



28 Consistency for Parametric Interval Markov Chains

well-formedness will depend on the actual value given to parameters. Nevertheless, solving
such a system of inequations can be done in polynomial time w.r.t. |S| and |P |.

We now propose a pruning algorithm for local pIMCs based on the notion of local
state-consistency. The outline of this algorithm is similar to the algorithm for IMCs, and
only the modification of interval probabilities following the discovery of a new locally
inconsistent state si is slightly modified: We start by identifying the set of parameters
appearing as the lower bound of a transition interval leading to si and then enforce the
value of these parameters to be 0 in order to be able to make si unreachable. Formally, we
write enforce(si) = {p ∈ P | ∃s ∈ S, p = Low(ϕP (s, si))} for this set of parameters. As for
IMCs, we use a marking function λ : S → {0, 1} in order to keep track of locally inconsistent
states that have already been processed. The notions of instantiation and satisfaction are
not impacted by this marking function.

I Definition 15 (Pruning operator β for pIMCs). Let IP = (S, s0, ϕP , A, V, P, λ) be a pIMC.
The pruning operator β for pIMCs is defined as follows. Let λ0(S) = {s ∈ S | λ(s) = 0}.
1. If λ0(S) does not contain any locally inconsistent state or if IP = ⊥ then β(IP ) = (IP ).
2. Else, if s0 is locally inconsistent, then β(IP ) = ⊥.
3. Otherwise, let si ∈ λ0(S) be a new locally inconsistent state in IP . We then define

β(IP ) = (S, s0, ϕ
′
P , A, V, P, λ

′), with λ′(si) = 1 and λ′(s) = λ(s) for all s 6= si, ϕ′P (s, s′) =
ϕP (s, s′)[enforce(si)← 0] if s′ 6= si, and

ϕ′P (s, si) =


ϕP (s, si)[enforce(si)← 0] if λ(s) = 1
[0, 0] if λ(s) = 0 and ϕP (s, si)[enforce(si)← 0] = [0, .]
∅ otherwise

As for IMCs, the pruning operator β for pIMCs propagates local inconsistencies to
predecessor states. Therefore, β has to be applied iteratively until a fixpoint if reached. The
pIMC obtained in this fixpoint is either ⊥ or a pIMC with no reachable locally inconsistent
state (item 1 of Definition 15). Since at least one inconsistent state is identified and made
unreachable at each iteration (items 2 and 3 of Definition 15), the number of iterations
needed in order to converge is bounded by |S|. Therefore, the complexity of applying pruning
to a given local pIMC until convergence is polynomial in |S| and |P |. The result of this
iteration on pIMC IP is written β∗(IP ).

I Example 16. Figure 6 illustrates the pruning operator for local pIMCs. Consider local
pIMC IP given in the left of Figure 6. We start by searching for locally inconsistent states
in IP : State 3 is chosen. The first application of pruning operator β will therefore try to
make State 3 unreachable by forcing all incoming transition intervals to [0, 0]. This can only
be done if either 0 is already the lower bound of the incoming interval or if a parameter p
is the lower bound of the incoming interval and p can be forced to 0 throughout the whole
pIMC. In IP , State 3 only has one incoming transition, which is equipped with interval [p, 1].
Parameter p is thus forced to 0 in all other transitions and the incoming interval to State 3
is reduced to [0, 0]. The result β(IP ) is given in the right of Figure 6. Since there are no
more locally inconsistent states in β(IP ), we have β∗(IP ) = β(IP ).

We now show that the result of iterating β on a given pIMC IP is a pIMC with the same
set of implementations as IP .

I Theorem 17. For all local pIMC IP = (S, s0, ϕP , A, V, P ) and marking function λ

such that λ(s) = 0 for all s ∈ S, it holds that for all MC M, M |= IP iff M |=
β∗((S, s0, ϕP , A, V, P, λ)).
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Figure 6 Iterative application of the pruning operator to pIMC IP (left) until convergence
(right).

Proof. Let IP = (S, s0, ϕP , A, V, P ) be a local pIMC and let λ be a marking function such
that λ(s) = 0 for all s ∈ S. Let IP ′ = (S, s0, ϕ

′
P , A, V, P, λ

′) = βn((S, s0, ϕP , A, V, P, λ)) for
some n ∈ N. We show that for all MCM, we haveM |= IP ′ ⇐⇒ M |= β(IP ′).

If {s ∈ S | λ′(s) = 0} does not contain any locally inconsistent state or if s0 is locally
inconsistent, then the result is trivial. We thus assume that a locally inconsistent state
si ∈ {s ∈ S | λ′(s) = 0} is found and made unreachable by β.

We start by observing that, by construction, all states s ∈ S such that λ′(s) = 1 are such
that for all s′ ∈ S with λ(s′) = 0, we have either ϕ′P (s′, s) = [0, 0] or ϕ′P (s′, s) = ∅.

⇒ Let I = (S, s0, ϕ,A, V, P ) be an IMC and let ψ : P → [0, 1] be a valuation for the
parameters such that I `ψ IP

′. LetM = (T, t0,M,A, VM ) be a MC such that M |= I with
satisfaction relation R ⊆ T × S. We show that there exists an IMC I ′ such that M |= I ′
and I ′ ` β(IP ′).

The proof proceeds in two steps: we first build the IMC I ′ and show that I ′ ` β(IP ′)
and then show thatM |= I ′.

Let ψ′ : P → [0, 1] be a new valuation for the parameters such that ψ′(p) = 0 if
p ∈ enforce(si) and ψ′(p) = ψ(p) otherwise. Let I ′ = (S, s0, ϕ

′, A, V, P ) be such that
ϕ′(s, s′) = ϕP (s, s′)[p ← ψ′(p)] if s′ 6= si or if λ(s) = 1, ϕ′(s, si) = [0, 0] if λ(s) = 0 and
ϕP (s, si)[enforce(si)← 0] = [0, .], and ϕ′(s, si) = ∅ otherwise. By construction, it follows
that I ′ `ψ′ β(IP ′).

We now show that R is a satisfaction relation betweenM and I ′. Let (t, s) ∈ R.

1. Since β has no effect on valuations, we have VM (t) = V (s).
2. Let δ be the function given in item 2 of Definition 3. By construction, it holds that

a. for all t′ ∈ T such that M(t, t′) > 0, δ(t′) is a distribution on S,
b. for all s′ ∈ S, we have (

∑
t′∈T M(t, t′) · δ(t′)(s′)) ∈ ϕ(s, s′), and

c. for all t′ ∈ T and s′ ∈ S, if δ(t′)(s′) > 0, then (t′, s′) ∈ R.

Items 2.a. and 2.c. are not impacted by β. We now show that item 2.b. still holds when
considering ϕ′ instead of ϕ.

Remark that since si is locally inconsistent in I ′, we necessarily have that for all t′ ∈ T ,
(t′, si) /∈ R and therefore δ(t′)(si) = 0. Let s′ ∈ S and consider ϕ′(s, s′).

If s′ 6= si, we have ϕ′(s, s′) = ϕP (s, s′)[p← ψ′(p)]. If ϕP (s, s′) = [x, y] with x ∈ [0, 1]∪P
and y ∈ [0, 1] ∪ (P \ enforce(si)), then either ϕ′(s, s′) = ϕ(s, s′) or ϕ(s, s′) ⊆ ϕ′(s, s′)
and therefore (

∑
t′∈T M(t, t′) · δ(t′)(s′)) ∈ ϕ′(s, s′). The only difficulty appears when

y = p ∈ enforce(si). In this case, there must exist s′′ ∈ S such that ϕP (s′′, si) = [p, .].
Moreover, since IP is local, we must have s = s′′. By R, we know that (

∑
t′∈T M(t, t′) ·
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δ(t′)(si)) ∈ ϕ(s, si). Since δ(t′)(si) = 0 for all t′ ∈ T , we have that 0 ∈ ϕ(s, si) = [ψ(p), .],
thus ψ(p) = ψ′(p) = 0 and ϕ′(s, s′) = ϕ(s, s′). As a consequence, item 2.b. still holds.
If s′ = si, then since si is inconsistent, we have

∑
t′∈T M(t, t′) · δ(t′)(si) = 0 ∈ ϕ(s, si).

As a consequence, we necessarily have ϕ(s, si) = [0, .] and thus ϕP (s, si)[enforce(si)←
0] = [0, .]. Therefore, by construction, we still have 0 ∈ ϕ′(s, si) and item 2.b. holds.

Finally, R is still a satisfaction relation betweenM and I ′ and thereforeM |= I ′.

⇐ The proof of ⇐ is straightforward with symmetric arguments. J

Consistency of global pIMCs. Unfortunately, the pruning algorithm we propose above
cannot be ported to the setting of global pIMCs. Indeed, as illustrated in Example 14, the
notion of local state consistency does not make sense in this setting, as restrictions on the
values of parameters given by the local consistency of a given state can impact the local
consistency of another. Nevertheless, consistency of global pIMCs is decidable: one can
derive another, more complex, pruning algorithm from the one proposed in Definition 15.
Since this algorithm is not optimal and only serves to prove decidability, we only present the
outline of the algorithm without going into too much details.

Since fixing the value of given parameters may impact several states, we propose to
group states that share given parameters and check inter-consistency of this group of states
instead of local consistency of all states taken separately. We thus define groups of states
that share parameters and propose a system of inequations that will decide whether this
group of states is inter-consistent. Formally, given global pIMC IP = (S, s0, ϕP , A, V, P )
and states s1, s2 ∈ S, we say that s1 and s2 are inter-dependent, written s1 ↔ s2 iff either
param(s1) ∩ param(s2) 6= ∅ or there exists s3 such that s1 ↔ s3 and s3 ↔ s2. The groups of
states we consider for the new notion of inter-consistency will thus be equivalence classes
under ↔.

Given such an equivalence class s, we say that s is inter-consistent iff the system of
inequations consisting of all inequations for local consistency of all states in s admits a
solution. When s is not inter-consistent, the pruning algorithm will nondeterministically
choose one of the states in s, try to make it unreachable as in Definition 15 and mark it.
From this point, if pruning goes on until IP is proven consistent, then we can conclude
positively. However, if the initial state is ultimately proven inconsistent, then we cannot
conclude and the algorithm will backtrack and try making another state from s unreachable
instead until all possible combinations of states in s have been considered. Only then can we
conclude that IP is inconsistent. Since there are only finitely many combinations of states
in S, the algorithm will ultimately converge and allow deciding whether global pIMC IP is
consistent.

5 Concluding remarks

In this paper, we have introduced the new formalism of parametric Interval Markov Chains,
that extends Interval Markov Chains by allowing the use of parameters as lower or upper
bounds to the interval probabilities of transitions. We have also shown that the consistency
problem is decidable for pIMCs and proposed an efficient algorithm for checking consistency
of pIMCs with local parameters only. While we limit ourselves to intervals where parameters
can only appear as lower or upper bound, our work can be directly extended to intervals with
linear expressions over parameters and constants. In fact, this change does not impact any of
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the proposed solutions for local or global pIMCs : the systems of inequations we propose for
deciding local or inter-consistency and the subsequent pruning algorithms remain unchanged.

The first direction for future work is to design better-suited algorithms for solving the
consistency problem in the case of global pIMCs. Our second direction for future work is
to consider other problems of interest for pIMCs, e.g. parameter synthesis with respect to
some optimality criterion such as reachability. Finally, as has been argued in the literature,
IMCs are quite limited as a specification theory as they are not closed under compositional
operators such as parallel composition or conjunction. Therefore, we plan to extend our
reasoning to more expressive specification theories such as Constraint Markov Chains [6] or
Abstract Probabilistic Automata [9].
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