
Formalizing Bialgebraic Semantics in PVS 6.0
Sjaak Smetsers1, Ken Madlener1, and Marko van Eekelen1,2

1 Institute for Computing and Information Sciences, Radboud University
Postbus 9010, 6500 GL Nijmegen, The Netherlands
{S.Smetsers,K.Madlener}@cs.ru.nl

2 School of Computer Science, Open University of the Netherlands
Postbus 2960, 6401 DL Heerlen, The Netherlands
{M.vanEekelen}@cs.ru.nl

Abstract
Both operational and denotational semantics are prominent approaches for reasoning about prop-
erties of programs and programming languages. In the categorical framework developed by Turi
and Plotkin both styles of semantics are unified using a single, syntax independent format, known
as GSOS, in which the operational rules of a language are specified. From this format, the op-
erational and denotational semantics are derived. The approach of Turi and Plotkin is based on
the categorical notion of bialgebras. In this paper we specify this work in the theorem prover
PVS , and prove the adequacy theorem of this formalization. One of our goals is to investigate
whether PVS is adequately suited for formalizing metatheory. Indeed, our experiments show
that the original categorical framework can be formalized conveniently. Additionally, we present
a GSOS specification for the simple imperative programming language While, and execute the
derived semantics for a small example program.

1998 ACM Subject Classification F.4.1 Mathematical Logic, F.3.2 Semantics of Programming
Languages

Keywords and phrases operational semantics, denotational semantics, bialgebras, distributive
laws, adequacy, theorem proving, PVS , While.

Digital Object Identifier 10.4230/OASIcs.WPTE.2015.47

1 Introduction

The formal definition of a real-world programming language is often a monumental under-
taking. The process of verifying metatheory often exceeds human capabilities; due to its
inherent complexity, mechanization time, even for the interesting core facets of the semantics
of real-world programming languages, is prohibitive. The best alternative for complete veri-
fication is to employ well-established methods, such as type systems or the use of mechanized
verification tools. These verification tools are usually based on typed higher-order logic. The
specification languages of these tools often provide automatic code generation, which enables
the execution of specifications. This feature can be used as an additional check of the de-
veloped concepts, before one starts with formally proving properties of these concepts.

In this paper, we present a formalization of both popular styles of semantic specifica-
tions: (structural) operational semantics and denotational semantics. Our main goal is to
experiment with PVS ’s latest feature, so-called declaration parameters, which enable the
specification of polymorphic functions and data structures. The experiments are carried out
with PVS version 6.0, released in February 2013. Previous versions of PVS already offered a
limited form of polymorphism by means of theory level parameters. However, there are situ-

© Sjaak Smetsers and Marko van Eekelen;
licensed under Creative Commons License CC-BY

2nd International Workshop on Rewriting Techniques for Program Transformations and Evaluation (WPTE’15).
Editors: Yuki Chiba, Santiago Escobar, Naoki Nishida, David Sabel, and Manfred Schmidt-Schauß; pp. 47–61

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WPTE.2015.47
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


48 Formalizing Bialgebraic Semantics

ations where these theory parameters are inconvenient, particularly if notions are involved
with a generic nature, such as the categorical concepts used in our formalization.

Our approach is based on a framework developed by Turi and Plotkin [18] unifying both
styles of semantics. By exploiting the language of category theory, they managed to dis-
associate from language-specific details such as concrete syntax and behavior. Given a set
of operational rules, they derived both operational and denotational semantics using the
concept of bialgebras equipped with a distributive law. The format in which these opera-
tional rules are specified is known as the GSOS (Grand Structural Operational Semantics)
format, introduced by [3]. This format originates from the theory of SOS, and has been
given a categorical interpretation by means of bialgebras. Turi and Plotkin prove that the
operational and denotational semantics generated from any set of GSOS rules are consistent
for every input program. Our work is also inspired by previous comparable experiments
with the Coq proof assistant; see [14].

The contribution of our work is threefold. First, we investigate whether PVS 6.0 is
sufficiently expressive for formalizing metatheory. Until now, such PVS developments have
been constrained to only a few metatheoretical experiments. This seems to be a missed
opportunity, because PVS has shown to be very successful in proving properties of com-
puter programs. In our attempt, we extend to a very high abstraction level, namely we
use Turi and Plotkin’s categorical description [18] as the point of inception. Our goal is to
formally prove that their construction is sound, which is expressed in the adequacy theorem.
The second, but not less important contribution is a PVS formalization providing a frame-
work for facilitating both formal reasoning about, and experimentation with semantics of
programming languages1. The setup is such that the user is free to choose between either de-
notational or operational semantics at any point. And third, we illustrate the expressiveness
of our framework with an elaborate example of a standard imperative language specified in
the GSOS format. Until now, concrete applications of GSOS are mostly restricted to process
algebras. The reader is expected to have a modest knowledge of Category Theory. If not,
we recommend [1] as an easy-going starting point.

2 Background

A brief introduction of the basic prerequisite concepts for this paper follows. Let us start
with an example following the approach as, for instance, taken by [9] and [11]. We explain
and illustrate the technicalities using a very simple language of streams (see also [12]). The
operational rules for this stream language are given in Figure 1. These rules inductively
define a transition relation that is a subset of T × L × T, where T, L denote the sets of
closed terms and output labels, respectively. The two basic operations AS and BS generate
constant (infinite) streams of As and Bs whereas the operation Alt yields an alternation of
two streams. The latter operates by repeatedly taking the head of its first argument, and
calling itself recursively on the swapped tails, discarding the head of the second argument.
The first step towards the formalization of such a language is to express both the signature
and behaviour (i.e., the result/effect of an operation) of the operations as functors. In
languages with support for higher-order polymorphism, like the functional language Haskell,
one would express a functor as a type constructor class that is parameterized with the type
(the object map) of the functor. The type class itself contains the corresponding (morphism)

1 All definitions and theorems given in this paper have been formalized and proven. The files of the
development can be obtained via http://www.cs.ru.nl/~sjakie/papers/adequacy/.

http://www.cs.ru.nl/~sjakie/papers/adequacy/


S. Smetsers et. al. 49

AS A−→AS BS B−→BS

x l−→ x ′ y m−→ y′

Alt x y l−→Alt y′ x ′

Figure 1 A simple language for streams.

map. However, PVS only offers first-order type variables which forces us to specify functors
in a slightly more ad hoc way.

Syntax and Σ-algebras
We start with representing the syntax of a language as (open) terms, by introducing the
following datatype:

TER [V : type,F : type, ar : [F → nat ] ] : datatype begin
tvar (var_id : V ) : tvar ?
tapp (op : F , args : [below (ar (op))→ TER ]) : tapp ?

end TER

The datatype is parametric in the type V of variables and the signature which is represented
by the set F of operator symbols and the arity map ar . It has two constructors (tvar and
tapp), and two recognizers (tvar? and tapp?)2. These recognizers are used as predicates to
test whether or not a term starts with the respective constructor. The field names var_id,
op and args are used as accessors to extract these components from a term. It is more
convenient, however, to define operations on inductive datatypes by pattern matching. This
datatype definition also illustrates PVS ’s special typing facility: dependent types, i.e., types
depending on values. For example, below (n) denotes the set of natural numbers between 0
and n.

The signature (F and ar) is encoded as a functor which we will call the signature functor.
The following PVS theory3 defines the notion of Σ-functor (consisting of a type Σ, and a
map function mapΣ), and Σ-algebra (categorically, an algebra is defined as a pair consisting
of an object X , called the carrier of the algebra, and a structure map Σ[X ]→ X)4. In PVS
syntax, a function type T1 → T2 has the form [T1 → T2 ], and tuple types have the form
[T1, ..., Tn ]. Associated with every n-tuple type is a set of projection functions: ‘1, ‘2, ...,
i.e., by t‘i one selects the ith component from t.

ΣAlgebra [F : type, ar : [F → nat ] ] : theory begin
Σ [a : type] : type = [f : F , [below (ar (f ))→ a ] ]
mapΣ [a, b : type] (f : [a → b ]) (sf : Σ [a ]) : Σ [b ] =

(sf ‘1, λ (i : below (ar (sf ‘1))) : f (sf ‘2 (i)))
AlgΣ [a : type] : type = [Σ [a ]→ a ]

end ΣAlgebra

2 PVS allows question marks as constituents of identifiers.
3 PVS uses parameterized theories to organize specifications, i.e, datatypes, function definitions, and
properties.

4 Here, we tacitly omit the fact that the structure map is usually equipped with two so-called functor
laws.

WPTE’15



50 Formalizing Bialgebraic Semantics

In this theory we have used the new feature of PVS 6.0: declaration (level) parameters,
i.e. (type) variables ranging over first-order types. These are comparable to type variables
in, for instance, Haskell and Coq. Combined with the dependent typing facility, these
declaration parameters enable us, for example, to specify the type part of the functor Σ [a ]
as a dependent pair being parametric in the object type a.

To illustrate how to use these notions in combination with the simple stream language,
we introduce the following auxiliary theory:

StreamL : theory begin
SigS : type = {AS ,BS ,Alt}
arS (s : sigS) : nat = cases (s) of AS : 0,BS : 0,Alt : 2 endcases

end StreamL

The enumeration type SigS represents the set of operator symbols, whereas the function
arS assigns arities to each of these symbols. We can now use SigS and arS as actual
parameters for ΣAlgebra theory in order to obtain the concrete signature functor.

The datatype TER introduced earlier is also a functor. To make this more explicit, we
introduce T [v ] as an abbreviation for TER [v,F , ar ]. When PVS typechecks TER then it
automatically generates for TER the corresponding map operation and a folding operation
called reduce. To adhere to standard terminology and to the notation used in the present
paper, we rename these generated operations to mapT and foldT, respectively. Incidentally,
the latter is a standard operation for processing terms that avoids explicit recursion, see also
[16] where this operation is called a catamorphism.

Terms [F : type, ar : [F → nat ] ] : theory begin importing TER,ΣAlgebra [F , ar ]
T [v : type] : type = TER [v,F , ar ]

foldT [v, x : type] (e : [v → x ], a :AlgΣ [x ]) (t :T [v ]) : x = reduce (e, a) (t)
mapT [a, b : type] (f : [a → b ]) (t :T [a ]) :T [b ] = map (f ) (t)

end Terms

The following uniqueness property is based on the categorical fact that tapp (which is an
algebra for the functor Σ) is initial.

I Proposition 1. Let e : V → X and a : AlgΣ [X ]. Then foldT (e, a) is unique in making
the following diagram commute5 :

V tvar //

∀ e
!!

T[V ]

foldT (e,a)
��

Σ[T[V ]]tappoo

Σ (foldT (e,a))
��

X Σ[X ]
∀ a

oo

This propery appears to be very useful as an alternative for structural induction in proofs
of properties on terms. In fact, it allows for a direct translation of diagrammatic proofs
into a PVS formalization. In our experience, these (hand-drawn) diagrammatic proofs are
indispensable as the initial and most important step towards a fully formalized proof. The
‘textual’ PVS version of this proposition is:

5 For the diagrams in this paper we adopted the categorical notation for functors by writing F instead
of mapF , for some functor F .



S. Smetsers et. al. 51

fold_unique [v, x : type] : proposition
∀ (f : [T [v ]→ x ], e : [v → x ], a :AlgΣ [x ]) :

f ◦ tvar = e ∧ f ◦ tapp = a ◦ mapΣ (f ) ⇔ f = foldT (e, a)

Next, we show that T is a monad in the categorical sense, by defining the corresponding
operations (so-called natural transformations) unit (embedding) and join (composition):

TMonad [F : type, ar : [F → nat ] ] : theory begin importing Terms [F , ar ]

unitT [v : type] (vid : v) :T [v ] = tvar (vid)
joinT [v : type] (tt :T [T [v ] ]) :T [v ] = foldT (id, tapp) (tt)

end TMonad

Likewise, from category theory we borrow the notion of T-algebra: A T-algebra (or, more
verbosely, an algebra for the T monad) is a ‘plain’ algebra a with two additional properties:

a ◦ unitT = id (1) a ◦ mapT (a) = a ◦ joinT (2)

Below, these properties are encoded by the predicate TAlg?. Additionally, we introduce a
slightly modified version of foldT, named freeT, taking a T-algebra as argument instead of
a Σ-algebra. In PVS :

TAlgebra [F : type, ar : [F → nat ] ] : theory begin importing TMonad [F , ar ]
AlgT [a : type] : type = [T [a ]→ a ]

freeT [v,w : type] (e : [v → w ], a :AlgT [w ]) : [T [v ]→ w ] = foldT (e, a ◦ tapp ◦ mapΣ (tvar))
TAlg? [w : type] (a :AlgT [w ]) : bool = a ◦ unitT = id ∧ a ◦ mapT (a) = a ◦ joinT

end TAlgebra

We end this section with a proposition supplying freeT with a proof principle.

I Proposition 2. Let e : V → W and a : AlgT [W ] such that TAlg? (a) holds. Then,
freeT (e, a) is unique in making the following diagram commute:

V unitT//

∀ e !!

T[V ]

freeT (e,a)
��

T[T[V ]]joinToo

T (freeT (e,a))
��

W T[W ]
∀ a

oo

Behaviour and B-coalgebras
The operational semantics of a language is given by a transition relation representing the
execution steps of an abstract machine. These transition relations can be modelled in a
categorial manner using coalgebras (e.g., see [10]). A coalgebra is the dual of an algebra:
for a functor B, the coalgebra consists of a carrier C , and a structure map C → B[C ]. We
express a transition relation as a B-coalgebra, with carrier T [V ], more specifically, as a
function with type T [V ]→ B[T[V ]]. We call this coalgebraic formalization the operational
model.

For the stream language, the functor B is defined by B X = (L,X), i.e., B just pairs a
label from L with X . Specifying the operational rules as a coalgebra is straightforward; e.g.,
see [14]. In Section 4 we will give a more elaborate example.

By making the behaviour functor B parametric in X we anticipate the fact that the terms
can be executed according to the operational rules of the language yielding an infinite stream

WPTE’15



52 Formalizing Bialgebraic Semantics

of labels. Categorically, this stream is constructed by taking the greatest fixpoint of B. In
order to express this in PVS , we use PVS ’s capability to introduce co-inductive datatypes.
However, we cannot do this as a general fixpoint construction that is parametric in the
behaviour functor. Incidentally, also Coq forbids such a construction for exactly the same
technical restrictions imposed by its underlying logic, namely, such a construction would
admit instantiations that have no set-theoretic semantics. Instead, we define the output
stream directly as a codatatype, named NB, and extract the functor B from this definition.
In fact, no definitions are required to obtain B: it is automatically generated from the
definition of the codatatype, together with the unfold operation (named coreduce). This
unfolding operation is also know as an anamorphism, see [16].

NB [L : type] : codatatype begin
nb_in (el : L,next : NB) : nb_in ?

end NB

The PVS specification of a coalgebra is as follows:

BCoalgebra [L : type] : theory begin importing NB [L ]
B [x : type] : type = NB_struct [L, x ]
CoalgB [x : type] : type = [x → B [x ] ]

outB : CoalgB [NB ] = λ (nb : NB) : inj_nb_in (el (nb),next (nb))
unfoldB [x : type] (c : CoalgB [x ]) (z : x) : NB = coreduce (c) (z)

end BCoalgebra

The functor B and operation unfoldB coincide with the generated datatype NB_struct
and the (coinductive) function coreduce. As the components of NB_struct (e.g., see the
definition of outB), are also used, we give the definition as is generated by PVS .

NB_struct [L, x : type] : datatype begin
inj_nb_in (inj_el : L, inj_next : x) : inj_nb_in ?

end NB_struct

As said before, the operational model, which represents the transition relation of the
language, is specified as a coalgebra with type CoalgB [T(V )]. The evaluation of a term
(with type T [V ])6 is obtained by unfolding the operational model, using the term as ‘initial
seed’.

The function outB is the (unique) final B-colagebra on NB. The following property is
the dual of Propostion 1.

I Proposition 3. Let c : CoalgB [X ]. Then, unfoldB (c) is unique in making the following
diagram commute:

X
unfoldB (c) //

∀ c
��

(finality)

NB

outB

��
B[X ]

B (unfoldB (c))
// B[NB]

6 Observe that the term might be open, i.e., it is possible to evaluate term containing variables.



S. Smetsers et. al. 53

The proof of this property is done by coinduction on NB. The coinduction principle in PVS
requires the construction of a proper bisimulation relation; e.g., see [8]. This principle is
based on the fact that if two streams are bisimilar, then they are equal.

The “fusion law for anamorphisms” was introduced by [16]. We apply this law in a proof
in Section 3.

unfold_fusion [a, b : type] : lemma
∀ (f : [a → b ], c1 : CoalgB [a ], c2 : CoalgB [b ]) :
mapB (f ) ◦ c1 = c2 ◦ f ⇒ unfoldB (c1 ) = unfoldB (c2 ) ◦ f

This lemma is proven by applying Proposition 3 twice: once to coalgebra c1 , and the other
to c2 .

3 Bialgebraic semantics

In the previous section we already mentioned that the operational model (abbreviated as
om) is specified as a coalgebra. The dual notion, the denotational model (dm), will be
specified as an algebra. Before actually defining both om and dm, we introduce a general
categorical concept, known as a bialgebra, which is used to link om and dm together.

Formally, let N,M be functors. Then, a bialgebra (for N , M) is a triple 〈V, a, c〉 such
that a is a N -algebra and c is aM -coalgebra, sharing V as the common carrier. For two bial-
gebras, a bialgebra homomorphism is a mapping which is both a N -algebra homomorphism
and a M -coalgebra homomorphism.

The concrete functors of our framework are T (for the syntax), and the so-called free
pointed functor D of B, i.e., D[X ] = X × B[X ] (for the behaviour). Furthermore, we
consider two bialgebras with carriers T[V ] and ND (i.e., greatest fixpoint of D), namely,
〈T[V ], joinT, om (Γ)〉 and 〈ND, dm, outD〉. Here, Γ : X → D[X ] represents a behaviour
environment. We explain later how om depends on Γ. The following diagram shows these
two bialgebras together with a connecting homomorphism R.

T[T[V ]]
T (R) //

joinT

��

T[ND]

dm

��
T[V ]

R
//

om (Γ)
��

ND

outD

��
D[T[V ]]

D (R)
// D[ND]

Here, R is an (evaluation) function that maps each term to its execution result which is
a (possibly infinite) value of type ND. From this diagram we infer two different ways of
defining R: (1) by considering the top square and using Proposition 2, or (2) by using the
bottom square in combination with Proposition 3. This leads to the following two cases:

RD (Γ) = freeT (unfoldD (Γ), dm) RO (Γ) = unfoldD (om (Γ))

From their construction it follows that both RD (i.e., execution according to the denotational
model) and RO (i.e., execution according to the operational model) are unique. It remains to
be shown that these functions are equal, which is called the adequacy theorem. Obviously,
this depends on the way om and dm are defined. Now, the essence of the framework of

WPTE’15



54 Formalizing Bialgebraic Semantics

[18] is the following: instead of defining om and dm separately, the operational rules of
the language are described by using a specific syntactic format from which both om and
dm are obtained generically (i.e., syntax-independently). The interrelation between om and
dm is given by a so-called distributed law Λ [v : type] : T[D[v]] → D[T[v]] from which both
models can be derived.7 Formally, a distributive law (between a monad, here T, and an
endofunctor, here D) is a natural transformation for which the following two identities hold
(e.g., see [4]):

law_distributive : lemma
Λ ◦ unitT = mapD (unitT) ∧ Λ ◦ joinT = mapD (joinT) ◦ Λ ◦mapT (Λ)

To be a natural transformation, Λ should satisfy:

law_natural : lemma Λ ◦ mapT (mapD (f )) = mapD (mapT (f )) ◦ Λ

In polymorphic functional languages, the latter property is an example of a so-called theorem
for free; see [19]. In essence, this free theorem formalizes the fact that Λ is genuinely
polymorphic.

As for dm, we observe that the codomain of this operation is ND, calling for a definition
based on unfoldD. This leads to:

dm :AlgT [ND ] = unfoldD (Λ ◦ mapT (outD))

Dually, we define om as a foldT (actually, we use the special variant freeT of foldT):

om (Γ : [V → D[V ] ]) : CoalgD [T(V )] = freeT (mapD (unitT) ◦ Γ,mapD (joinT) ◦ Λ)

For a detailed explanation, see [14].
The proof of the adequacy theorem (stating that RD (Γ) = RO (Γ)) is done by using

Proposition 3 with om (Γ) substituted for c. This will immediately lead to the following
commutation property:

T[V ]
om (Γ)//

RD (Γ)
��

D[T[V ]]

D (RD (Γ))
��

ND outD
// D[ND]

For the proof of this property we apply the alternative proof principle for terms (Propos-
ition 2) using dm as TAlgebra, and thus we need to verify the fact that TAlg? (dm).
The key to this proof is the unfold_fusion lemma. Finally, nowhere in the above proofs it
was required to use any (language-)specific properties of Λ, making the our approach fully
syntax-independent.

4 Semantics of While

We have seen that our treatment of semantics is parametric in the concrete set of opera-
tional rules: the construction of the operational and denotational models did not depend

7 The term distributed law can be explained by considering the type of Λ as a proposition, specifying
that T distributes over D.



S. Smetsers et. al. 55

AJnKs = n

AJxKs = s(x)
AJa1 + a2Ks = AJa1Ks+AJa2Ks
AJa1 − a2Ks = AJa1Ks−AJa2Ks
AJa1 × a2Ks = AJa1Ks×AJa2Ks

Figure 2 Semantics of arithmetic expressions.

〈S1, s〉 ⇒ 〈S′
1, s

′〉
〈S1;S2, s〉 ⇒ 〈S′

1;S2, s
′〉

〈S1, s〉 ⇒ s′

〈S1;S2, s〉 ⇒ 〈S2, s
′〉

〈x := a, s〉 ⇒ s[x 7→ AJaKs] 〈skip, s〉 ⇒ s

〈if c then St else Se, s〉 ⇒ 〈St, s〉 if s(c) 6= 0
〈if c then St else Se, s〉 ⇒ 〈Se, s〉 if s(c) = 0

〈while c do S, s〉 ⇒ 〈if c then (S; while c do S) else skip, s〉

Figure 3 SOS for While.

on language specific properties. As such, our treatment could be classified as ‘meta-meta-
theoretical’.

In this section we demonstrate a paradigmatic example for many concrete (imperative)
programming languages. The language we have chosen is While, appearing in many text-
books on semantics; e.g., see [17]. The standard structural operational semantics is given
as a set of transitions, each of the form 〈S, s〉 ⇒ γ, where γ is either of the form 〈S′, s′〉 or
simply s′.

The complete set of operational rules is given in Figure 3, in small-step style.
This system is based on the evaluation of arithmetic expressions which is defined separ-

ately in Figure 2, in (a sort of) big-step style. Although it is very well possible to specify
both styles of semantics in the bialgebraic framework (for example, see [11]) we will treat
arithmetic expressions differently, by expressing the semantics directly in PVS as a recurs-
ive function; see the PVS proof files. We have simplified the language by omitting boolean
expressions, and restricting conditions to solely (integer) variables. The value 0 will be
interpreted as false; any other value as true.

We specify the operational rules, not directly as a distributive law, but in the so-called
GSOS-format which is more restrictive: the rules given in this format are functions ρ of
type

ρ [v : type] : Σ[D[v]]→ B[T[v]].

As a first step, we introduce appropriate functors for representing the syntax and behaviour.

Syntax
In our PVS formalization, the syntax functor is derived from an enumeration of operator
symbols, and their corresponding arity function. These can subsequently be used as actual
parameters of the Terms theory (see Section 2) to obtain Σ. Concretely,

SigW [V : type] : datatype begin importing Expr [V ]
ass (dst : V , src : Expr) : ass ?
skip : skip ?
seq : seq ?

WPTE’15



56 Formalizing Bialgebraic Semantics

ifs (con : V ) : ifs ?
while (con : V ) : while ?

end SigW

The imported type Expr [V ] represents the arithmetic expressions. Aside from the
function arW , the following theory contains some auxiliary definitions which facilitate the
specification of the operational rules and concrete While programs. The representation of
the syntax by T terms requires that the arity of each operation, as returned by arW , should
correspond to the number of T arguments instead of the real number of arguments. This,
for instance, explains why ifs and while have arities 2 and 1, respectively.

WhileLang [V : type] : theory begin importing SigW [V ],Expr [V ]

arW (s : SigW [V ]) : nat = cases (s) of
ass (v, a) : 0, skip : 0, seq : 2, ifs (c) : 2,while (c) : 1

endcases

importing Terms [SigW [V ], arW ],EmptyFunP
args0 [x : type] : [below (0)→ T [x ] ] = emptyFun [below (0),T [x ] ]
args1 [x : type] (a :T [x ]) (i : below (1)) :T [x ] = a
args2 [x : type] (a1 , a2 :T [x ]) (i : below (2)) :T [x ] = if i = 0 then a1 else a2 endif

assT [x : type] (v : V , src : Expr) : T [x ] = tapp (ass (v, src), args0 )
skipT [x : type] : T [x ] = tapp (skip, args0 )
seqT [x : type] (s1 , s2 :T [x ]) : T [x ] = tapp (seq, args2 (s1 , s2 ))
ifT [x : type] (co : V , t, e :T [x ]) : T [x ] = tapp (ifs (co), args2 (t, e))
whileT [x : type] (co : V , b :T [x ]) :T [x ] = tapp (while (co), args1 (b))
varT [x : type] (v : x) : T [x ] = tvar (v)

end WhileLang

Behaviour
As to the behaviour functor, we must remember that the semantic domain (being the greatest
fixpoint ND of functor D)8, cannot be expressed in terms of D (= X ×B[X ]). Again, we will
define ND as a coinductive data type, and let PVS generate the corresponding functor D.
The behaviour functor for While resembles the behaviour functor for the stream language.
However, instead of using a label set, we now need a state transition function for passing the
(possibly) modified store s. The store itself maps variables to integer values. Furthermore,
to represent the two possibilities for γ in the state transitions, we use the Maybe functor
which is given below. The standard mapMb and foldMb operations are defined in terms of
the corresponding map and reduce functions generated by PVS itself.

MBF : theory begin
Maybe [x : type] : datatype begin

nothing : nothing ?
just (fromJust : x) : just ?

end Maybe

mapMb [a, b : type] (f : [a → b ]) : [Maybe [a ]→ Maybe [b ] ] = map (f )

8 Some other approaches use NB as domain. However, this is not an essential difference since one can
easily show that NB and ND are isomorphic.



S. Smetsers et. al. 57

foldMb [a, b : type] (nf : b, jf : [a → b ]) : [Maybe [a ]→ b ] = reduce (nf , jf )
end MBF

The data types, and basic operations for representing D in PVS are:

BF [ST : type] : theory begin importing MBF
B [x : type] : type = [ST → [ST ,Maybe [x ] ]]

mapB [a, b : type] (f : [a → b ]) (bf : B [a ]) : B [b ] =
λ (s : ST) : let ber = bf (s) in (ber ‘1,mapMb (f ) (ber ‘2))

end BF

ND [ST : type] : codatatype begin
importing BF [ST ]
dz_in (left : ND, right : B [ND ]) : dz_in ?

end ND

DCoalgebra [ST : type] : theory begin importing ND [ST ]
D [x : type] : type = DZ_struct [ST , x ]
CoalgD [x : type] : type = [x → D [x ] ]

injD [a, b : type] (f : [a → b ], g : [a → B [b ] ]) (x : a) :D [b ] = inj_dz_in (f (x), g (x))

outD : CoalgD [ND ] = injD (left, right)

mapD [a, b : type] (f : [a → b ]) : [D [a ]→ D [b ] ] = injD (f ◦ inj_left,mapB (f ) ◦ inj_right)
end DCoalgebra

For the sake of completeness, we also give the definition of DZ_struct as is generated from
ND by PVS .

DZ_struct [ST , x : type] : datatype begin importing BF [ST ]
inj_dz_in (inj_left : x, inj_right : B [x ]) : inj_dz_in ?

end DZ_struct

Before specifying the operational rules, we have a closer look at the GSOS-format itself.
The domain of ρ (i.e., Σ[D[v]]) allows us to pattern-match on the outermost symbol. The
symbol is parameterized (depending on the arity) with a D expression which will provide
access to the premises of the rule. Since only the sequence operator has rules with premises,
we will elaborate on the alternative for ρ that corresponds to this operation. The first com-
ponent of D represents the meta-variable on the left-hand side of the premise, whereas the
second component represents the right-hand side. Since we do not pass the state explicitly,
we have to apply the second component to the state argument of the state transition func-
tion that is yielded as a result. By inspecting the outcome of that application we can decide
which of the two rules for seq applies, and construct the corresponding right-hand side of
the conclusion. For the latter, we use the fold operation for Maybe. In PVS :

WhileGSOS [V : type] : theory begin
STORE : type = [V → int ]

ρ [v : type] (sf : Σ[D[v]]) : B[T[v]] = cases sf ‘1 of
...

seq : let a0 = sf ‘2 (0), a1 = sf ‘2 (1) in
λ (st : STORE) : let rst = inj_right (a0 ) (st) in
foldMb ((rst‘1, just (varT (inj_left (a1 )))),
λ (s1 : x) : (rst‘1, just (seqT (varT (s1 ), varT (inj_left (a1 )))))) (rst‘2),

WPTE’15



58 Formalizing Bialgebraic Semantics

...

endcases
end WhileGSOS

In order to obtain a distributive law of T over D, ρ needs to undergo a two-step trans-
formation. The first step is to expand ρ’s codomain using the auxiliary function injD defined
in the theory DCoalgebra:

τ [v : type] : [Σ[D[v]]→ D[T[v]] ] = injD (tapp ◦mapΣ (tvar ◦ inj_left), ρ)

Adjusting the domain is slightly more involved, and requires an appropriate use of foldT:

Λ [v : type] : [T[D[v]]→ D[T[v]] ] = foldT (mapD (unitT),mapD (joinT) ◦ τ)

This construction does not affect the naturality property (Lemma law_natural). Moreover,
it guarantees that Λ is indeed a distributive law (Lemma law_distributive).

Running a program
There is one discrepancy between our formalization and a standard denotational semantics
for While as, for instance given by [17]. In our case, the mathematical object describing
the effect of executing each construct is the greatest fixed point ND of D. In the standard
case, this is a (possibly partial) state transition function, which is obtained by composing
the functions that correspond to the components of this construct. Moreover, for while
statements, a standard denotational semantics also requires fixed points. The result of
executing a program in our framework, ND, is not a single state transition function, but a
(possibly infinite) stream of functions that still need to be interconnected. In PVS , however,
all functions have to be total. We solve this issue by defining the following total variant9
of a compose function which returns the constructed transition function after N execution
steps.

composeN (N : nat, dz : ND) (ist : STORE) : recursive ST =
if N = 0 then ist
else let res = right (dz) (ist) in
cases res‘2 of nothing : res‘1,

just (x) : composeN (N − 1, x) (res‘1) endcases endif measure N

To illustrate program execution, we use the following program that computes the 12th Fibon-
acci number. It uses 3 variables each identified by a number. Variable 2 will hold the final
result.

PFib10 :T = seqT (assT (0, enum (10)), seqT (assT (1, enum (1)), seqT (assT (2, enum (1)),
(whileT (0, seqT (assT (3, eplus (evar (1), evar (2))), seqT (assT (1, evar (2)),

seqT (assT (2, evar (3)), assT (0, emin (evar (0), enum (1)))))))))))

We execute this program and apply the final store, obtained after 62 steps (just enough for
the while loop to terminate), to variable 2, producing10 the value 144.

9 In Pvs, totality is enforced by a so-called measure specification which is mandatory when defining a
recursive function. This measure is used to guarantee (by generating special proof obligations) that
the function indeed terminates.

10The answer was obtained by executing our specification in the functional language Clean. The current,
so-called, ground evaluator of PVS seems to have difficulties with evaluating expressions containing
infinite codata structures.



S. Smetsers et. al. 59

EXEC : nat = composeN (62, RO (emptyEnv) (PFib10 )) (λ (i : nat) : 0) (2)

Observe that we used RO (based on the operational model) to execute the program. Equi-
valently, we could have used the denotational version RD, obviously leading to the same
result, since we proven that RO and RD equal.

5 PVS formalization

Our main motivation for developing this formalization was to investigate whether or not
implementing abstract categorical concepts in PVS 6.0 is feasible. The case study we per-
formed was based on previous, similar experiments with Coq.

As far as this case study is concerned, the main difference between Coq and PVS is that
Coq is equipped with a rich type class system offering type classes as first class citizens.
Therefore, in Coq, functors, monads, and (co)algebras can be naturally represented. PVS
offers parameterized theories, but using these as a substitute for Coq’s type classes in general
is definitely a setback. Moreover, like PVS , Coq suffers from the same restriction that
polymorphism is only first-order. This definitely reduces the generality of the formalisation,
however, we managed to separate the language-specific components from the more abstract
categorial concepts such that changes in the syntax and/or behaviour of the programming
language hardly affects the description in its entirety.

Additionally, for the most part these aspects of our formalization do not obstruct the
proving process. There were no fundamental problems which could not be resolved due
to restrictions of PVS ’s specification language. The rich support for abstract (co)data
types (including the facility for automatic generation of common theories) has shown to be
adequate.

There was, however, a minor issue obstructing the proving process to some extent. When
importing a parameterized theory, the user must explicitly specify which actual arguments
are required. In a truly polymorphic case this matter would have been solved by the type
checker (as is done in Coq or in Haskell). Unfortunately, PVS lacks the ability to resolve
theory instantiations automatically. To some extent, this is also the case for instantiation
of declaration parameters. We encountered situations in which the type checker was not
capable of determining the correct instance types. However, from the discussions with the
developers of PVS we concluded that this was not a fundamental issue but a temporary
defect of the typing algorithm, that is expected to be repaired in the near future.

Finally, the goal of our experiment was not to compare PVS with Coq. In terms of
development times, for our specific example these were about the same. Of course, we have
to take into account that we first did our experiment with Coq and all theoretical difficulties
were already solved when we started the exercise with PVS . We are convinced that the
time it takes to formalize a relatively complex system, such as the bialgebraic framework,
is mainly determined by the experience of the user. This development process is barely
retarded by (the peculiarities of) the specific proof assistant itself.

6 Related work

This work was inspired by our earlier work on modularity, the formalization of Modular
Structural Operational Semantics (MSOS) [15]. The present paper can be seen as a con-
tribution to field of bialgebraic semantics, starting with Turi and Plotkin’s research [18],
and resulting in a uniform categorical treatment of semantics. They abstracted from con-
crete syntactical and semantical details by characterizing these language-dependent issues

WPTE’15



60 Formalizing Bialgebraic Semantics

by a distributive law between syntax and behaviour. By means of a categorical construct,
both an operational and a denotational model were obtained, and moreover the adequacy
of these models could be proven. Klin [12] gives an introduction to the basics of bialgebras
for operational semantics that was used in the present formalization. He also sketches the
state-of-the-art in this field of research.

The distributive law actually describes a syntactic format for specifying operational rules.
This abstract so-called GSOS format has been applied to several areas of computer science.
For example, in his thesis [2] Bartels gives concrete syntactic rule formats for abstract
GSOS rules in several concrete cases. Variable binding, which is a fundamental issue in, for
example, λ-calculus or name passing π-calculi, is addressed in [6]. The authors show that
name binding fits in the abstract GSOS format. This was refined further in [7].

In [5] a framework is introduced, called MTC, for defining and reasoning about extensible
inductive datatypes which is implemented as a Coq library. It enables modular mechanized
metatheory by allowing language features to be defined as reusable components. Similar to
our work, MTC’s modular reasoning is based on universal property of folds [16], offering an
alternative to structural induction.

A significant contribution to the work on interpreters for programming languages, is
that of the application of monads in order to structure semantics. Liang et al. [13] in-
troduced monad transformers to compose multiple monads and build modular interpreters.
Jaskelioff et al. use [11] as a starting point, and provide monad-based modular implementa-
tion of mathematical operational semantics in Haskell. The authors also give some concrete
examples of small programming languages specified in GSOS-format. Our example in Sec-
tion 2 is inspired by this work. Although, [11] strictly follows the approach of Turi and
Plotkin, there is no formal evidence that their construction is correct, i.e., there are no ‘pen
and paper’ or machine-checked proofs given. The latter issue is addressed by recent work of
[9] who introduce modular proof techniques for equational reasoning about monads.

7 Conclusions

We presented a formalization in PVS version 6.0 of Turi and Plotkin’s work based on cat-
egory theory. Our main goal was to investigate whether this could be done in a conveni-
ent way. Except for some minor flaws in PVS ’s type checker discussed in Section 5, we
did not encountered any fundamental issues that seriously hindered the proving process.
Our experiment also resulted in a PVS framework which can be used for formal reasoning
about programming languages in general, in addition to reasoning about specific programs.
Moreover, it offers the user the possibility to choose between either denotational or opera-
tional semantics at any point in his application.

Our future plans comprise of experimenting with our framework in formal reasoning with
case studies in specific examples of denotational and operational semantics, and to extend
the framework with an axiomatic semantics.

References
1 Michael Barr and Charles Wells. Category theory for computing science, volume 49. Prentice

Hall New York, 1990.
2 Falk Bartels. On generalised coinduction and probabilistic specification formats. PhD thesis,

CWI, Amsterdam, April 2004.
3 Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be traced. J. ACM,

42(1):232–268, January 1995.



S. Smetsers et. al. 61

4 Marcello M Bonsangue, Helle Hvid Hansen, Alexander Kurz, and Jurriaan Rot. Presenting
distributive laws. In Algebra and Coalgebra in Computer Science, LNCS, pages 95–109.
Springer, 2013.

5 Ben Delaware, Bruno C.d.S. Oliveira, and Tom Schrijvers. Meta-theory à la carte. In
Proceedings of the 40th annual ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, POPL ’13, New York, NY, USA, 2013. ACM.

6 Marcelo Fiore, Gordon Plotkin, and Daniele Turi. Abstract syntax and variable binding.
In Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science, LICS
’99, pages 193–202, Washington, DC, USA, 1999. IEEE Computer Society.

7 Marcelo Fiore and Sam Staton. A congruence rule format for name-passing process calculi
from mathematical structural operational semantics. In Proceedings of the 21st Annual
IEEE Symposium on Logic in Computer Science, LICS ’06, pages 49–58, Washington, DC,
USA, 2006. IEEE Computer Society.

8 Ulrich Hensel and Bart Jacobs. Coalgebraic theories of sequences in pvs. J. Log. Comput.,
9(4):463–500, 1999.

9 Ralf Hinze and Daniel W.H. James. Proving the unique fixed-point principle correct: an
adventure with category theory. SIGPLAN Not., 46(9):359–371, September 2011.

10 Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and (co)induction. EATCS Bulletin,
62:62–222, 1997.

11 Mauro Jaskelioff, Neil Ghani, and Graham Hutton. Modularity and implementation of
mathematical operational semantics. Electron. Notes Theor. Comput. Sci., 229(5):75–95,
March 2011.

12 Bartek Klin. Bialgebras for structural operational semantics: An introduction. Theoretical
Computer Science, 412(38):5043–5069, 2011. CMCS Tenth Anniversary Meeting.

13 Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular interpret-
ers. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’95, pages 333–343, New York, NY, USA, 1995. ACM.

14 Ken Madlener and Sjaak Smetsers. GSOS formalized in Coq. In The 7th International
Symposium on Theoretical Aspects of Software Engineering (TASE2013), pages 199–206,
2013. Birmingham, UK, 2013. IEEE.

15 Ken Madlener, Sjaak Smetsers, and Marko C. J. D. van Eekelen. Formal component-based
semantics. In Michel A. Reniers and Pawel Sobocinski, editors, SOS, volume 62 of EPTCS,
pages 17–29, 2011.

16 Erik Meijer, Maarten M. Fokkinga, and Ross Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In Proceedings of the 5th ACM Conference on
Functional Programming Languages and Computer Architecture, pages 124–144, London,
UK, UK, 1991. Springer-Verlag.

17 Hanne Riis Nielson and Flemming Nielson. Semantics with applications: a formal intro-
duction. John Wiley & Sons, Inc., New York, NY, USA, 1992.

18 Daniele Turi and Gordon Plotkin. Towards a mathematical operational semantics. In
Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Science, LICS ’97,
pages 280–291, Washington, DC, USA, 1997. IEEE Computer Society.

19 Philip Wadler. Theorems for free! In Functional Programming Languages And Computer
Architecture, pages 347–359. ACM Press, 1989.

WPTE’15


	Introduction
	Background
	Bialgebraic semantics
	Semantics of While
	PVS formalization
	Related work
	Conclusions

