
Software-enforced Interconnect Arbitration for
COTS Multicores
Marco Ziccardi, Alessandro Cornaglia, Enrico Mezzetti, and
Tullio Vardanega

University of Padova, Italy
{mziccard,acornagl,emezzett,tullio.vardanega}@math.unipd.it

Abstract
The advent of multicore processors complicates timing analysis owing to the need to account for
the interference between cores accessing shared resources, which is not always easy to characterize
in a safe and tight way. Solutions have been proposed that take two distinct but complementary
directions: on the one hand, complex analysis techniques have been developed to provide safe
and tight bounds to contention; on the other hand, sophisticated arbitration policies (hardware
or software) have been proposed to limit or control inter-core interference. In this paper we
propose a software-based TDMA-like arbitration of accesses to a shared interconnect (e.g. a
bus) that prevents inter-core interference. A more flexible arbitration scheme is also proposed
to reserve more bandwidth to selected cores while still avoiding contention. A proof-of-concept
implementation on an AURIX TC277TU processor shows that our approach can apply to COTS
processors, thus not relying on dedicated hardware arbiters, while introducing little overhead.

1998 ACM Subject Classification D.4.7 Organization and Design – Real-time Systems and
Embedded Systems

Keywords and phrases multicore, resource arbitration, interference, mixed-criticality

Digital Object Identifier 10.4230/OASIcs.WCET.2015.11

1 Introduction

An extraordinary growth in the complexity of software systems has occurred in the last decades.
This complexity growth also entailed an increase in the computational demand [6] that could
only be sustained by the adoption of advanced and powerful multicore and manycore systems,
which have become the de-facto reference standard for computing platforms. This unrelenting
transition to multicore systems also involves the application domain of real-time embedded
applications (avionics, automotive, aerospace, etc.), where predictability and analyzability
in the time domain are stringent requirements. The coexistence of multiple applications
running in parallel on distinct cores in the same platform, however, complicates the analysis
of the worst-case execution time (WCET) behavior of programs running on such systems,
due to the inter-core timing interference caused by contention on access to shared hardware
resources. The WCET, in turn, is the main input to schedulability analysis, which is a
mandatory test for real-time systems to guarantee that tasks will meet deadlines at run time.

Notable effort has been devoted in the last few years to analyze the WCET behavior
of systems deployed on modern multicore platforms. Two main research paths have been
followed to cope with the inter-core interference problem [4]. One class of approaches
[17, 5, 8, 14] aims at precisely analyzing the timing interference to provide safe and tight
bounds, to be fed into schedulability analysis as an additive factor. However, besides the
inherent complexity of deriving trustworthy bounds on complex architectures, the worst-case
inter-core interference thereby computed is likely to be too large to be usable. The second

© Marco Ziccardi, Alessandro Cornaglia, Enrico Mezzetti, and Tullio Vardanega;
licensed under Creative Commons License CC-BY

15th International Workshop on Worst-Case Execution Time Analysis (WCET 2015).
Editor: Francisco J. Cazorla; pp. 11–20

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2015.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


12 Software-enforced Interconnect Arbitration for COTS Multicores

class of approaches [16, 18, 21, 9] attacks this problem by carefully limiting/controlling the
sources of inter-core interference in the system to make it more analyzable. This can be
achieved by partitioning the shared hardware resources in a system either spatially (physical
partitioning) or temporally (e.g., through a hypervisor or arbitration schemes). Resource
partitioning is particularly interesting when dealing with mixed-criticality systems (MCS)
[20] where the computational power guaranteed by multicore platforms allows hosting on
the same target applications that are classified at different criticality levels, according to the
applicable certification and qualification standard [13]. In the MCS scenario, we need to avoid
high criticality tasks to be interfered by lower criticality ones in a possibly uncontrollable
way.

Time and space partitioning are well-known concepts also in singlecore settings and
are advocated, for example, by the ARINC-653[2] standard to provide isolation across
applications running on the same core. On a multicore architecture, however, interference
not only occurs between tasks running on the same core but can also arise when tasks on
different cores access platform resources (e.g. shared memory, cache), often through a shared
interconnect. Concurrent accesses of different criticality applications to a shared interconnect
may heavily affect the performance of high criticality ones. This performance impact is often
complex to quantify as it depends on the number of applications running in parallel as well as
on the specific hardware arbitration policy employed. A task spending only 10% of its time
fetching shared memory may suffer up to 300% interference on an eight core processor[15].

To mitigate the problem of interference and achieve analyzability, statically arbitrated
interconnects are often used. Time division multiple access (TDMA) policy, amongst other,
allows ruling out inter-core interference by means of temporal isolation [17]. However, the
hardware support provided in Commercial Off The Shelf (COTS) multicores to arbitration
policies, regulating accesses to shared interconnects, is typically oriented to achieve better
average performance rather than system analyzability. Relying on specific hardware-enforced
policies is, therefore, not always possible without recurring to (often unaffordable) custom
hardware solutions. In this paper we propose an approach to the arbitration of hardware
shared resources that relies solely on system software, without posing particular requirements
on the hardware platform. Our solution applies to partitioned multicore systems where inter-
core communication is regulated by the real-time operating system (RTOS). This is the case,
for example, of automotive systems abiding by the OSEK/AUTOSAR[3] standards where a
specific inter-core message-passing API is provided. Our approach consists in deploying a
flexible software-arbitration layer through a specific API implementation, while, of course,
preserving the API semantics. We exploit the inherent flexibility of software approach to
enforce both a pure TDMA arbitration policy and a bandwidth-reservation flavour of TDMA,
which is better equipped to meet mixed-criticality application requirements. We show that
our technique manages to control the interference by construction and provides timing
guarantees for all accesses to the interconnect. We also show that our approach is hardware
agnostic as it can be applied to complex interconnects employing either priority-driven or
round-robin policies (or a combination of the two).

This paper is organized as follows: Section 2 contextualizes our work, Section 3 intro-
duces both the base and bandwidth-reservation versions of our software-based TDMA. An
experimental evaluation is given in Section 4. Finally, Section 5 draws some conclusions.

2 Related Work

The reduction of inter-core interference on shared resources is widely recognized as an enabler
of timing analysis of multicore systems. Both hardware- and software-based solutions have



M. Ziccardi, A. Cornaglia, E. Mezzetti, and T. Vardanega 13

been considered as a means to achieve better analyzability without compromising performance.
Shared interconnects, as a main source of inter-core interference, have captured the attention
of the timing analysis community. From the timing analysis standpoint, inter-core interference
is generally studied under the umbrella of Worst-Case Response Time (WCRT) analysis
where the focus is set on using bounds on the inter-core interference in increasingly complex
response time analysis equations. Analysis techniques for several arbitration schemes on
COTS or custom hardware can be found in the literature, based on more or less complex
models, such as arrival curves [17], event models [5] or timed automata[8]. Generally, however,
the more complex the arbiter, the more pessimistic the WCRT bounds.

A classic solution to cope with contention is TDMA, where clients accessing a shared
resource are served according to a fixed-time slots scheme. TDMA is widely used to manage
shared interconnects on the account that it provides guaranteed bandwidth and predictable
latency, regardless of the the number of contenders. Predictability, however, comes at the cost
of a relative reduction in the interconnect utilization. A Round-Robin (RR) scheme can be
used to improve on this aspect of TDMA: time slots are rotated only across active contenders.
In comparison to TDMA, RR guarantees better utilization at the risk of being unfair to
certain contenders, depending on specific access patterns [18]. An alternative approach to
improve utilization consists in using a TDMA-based arbiter that varies core-to-slot allocation
and slot size, and loads the bus schedule from memory[16]. Adaptive resource arbiters, such
as FlexRay [1], have been recently studied in the context of mixed-criticality automotive
software [10]. These arbiters combine static approaches as TDMA with dynamic ones, such
as RR. Tough effective, hardware-based approaches are not generally implementable on
COTS hardware and are inherently less flexible than their software-based counterparts.

Our approach is more related to software-based approaches, which allow abstracting away
from the actual platform, and promise easy reconfigurability in response, for example, to
run-time events. A software-enforced arbitration scheme for mixed-criticality systems is
discussed in [21], where a memory throttling controller with variable budget assignment is
exploited to limit the memory request rate of cores running non-critical tasks. This technique,
however, is quite intrusive as it requires periodic checks of performance counters to monitor
budget consumption. Moreover, critical tasks are only allocated to one processor and the
number of supported interfering cores is limited. Our work, instead, does not pose any
constraint in the assignment of critical tasks, and guarantees timing isolation regardless
of the number of contenders. However, we do not account for all accesses to the shared
interconnect, but only for those caused by inter-task communication. A Time-Triggered and
Synchronisation-based (TTS) scheduling strategy that targets partitioned mixed-criticality
systems with periodic task sets has been recently presented in [9]. TTS isolates tasks at
different criticality levels and accounts for the effect of memory contention on task execution
by relying on synchronization mechanisms (barriers) and fixed preemption points. Scheduling
decisions are global, even though the algorithm enforced partitioning, which may incur
non-negligible overheads [19]. Our approach relies on a relatively simple implementation and
does not assume any specific task scheduling algorithm.

3 Software-enforced Resource Arbitration

It is not unusual for a typical embedded system RTOS to be responsible for inter-task
and inter-core communication. Software specifications as, for instance, ARINC-653[2] and
AUTOSAR [3] offer a communication scheme based on message-passing abstractions: two
tasks are not allowed to share memory, and all communication taking place between them

WCET’15



14 Software-enforced Interconnect Arbitration for COTS Multicores

must be performed via messages sent through the RTOS API. The RTOS, in fact, exposes
APIs for the creation of different kinds of communication channels (e.g. ports in ARINC-653
and Inter-OS Application Communication IOC buffers in AUTOSAR) and for their use,
according to the respective semantics. The intuition behind our work is that, since the
operating system is the mediator of all communication across applications, then it can also
act as a request arbiter when such communication involves accessing a shared medium. We
extend the RTOS implementation of the message-passing API to enforce a configurable
TDMA arbitration policy: this is done by splitting exchanged messages into chunks and
arbitrate each chunk transfer in TDMA-like time slots. TDMA frame, slots and chunk size
can be configured to better meet the application requirements. To address specific needs
of mixed-criticality systems, a more flexible TDMA-based arbitration is also proposed that
allows reserving more than one communication slot to selected cores. This version of TDMA
enables the provision of better bandwidth levels to cores running high-criticality applications.

The so-enforced software-based TDMA arbitration mechanism (SW-TDMA) has several
advantages. First of all, the combination of message-passing API and TDMA enforces
isolation between tasks running on different cores and makes the effects of bus contention
completely predictable. Moreover, the adoption of software-based arbitrations is transparent
to user applications as the arbitration mechanism is implemented at kernel level and does
not affect either the syntax or the semantics of message passing APIs. Finally, the ability to
reserve more than one arbitration slot to selected cores enables more complex arbitration
policies to be designed without the need for expensive hardware. As an improvement over
system flexibility, bandwidth levels can also change at run time in reaction to specific events or
changes in the mode of operation. In the following we present our approach to enforce flexible
TDMA-based arbitration schemes for inter-core communication on a shared interconnect.
Before entering into details, we introduce our model and notation.

3.1 Assumptions and Model
We consider a multicore processor architecture with n cores {C0, ..., Cn−1}, each one equipped
with its own local memory (e.g. cache and/or scratchpad). Cores also share a global memory
that can be accessed via a simple system bus or more complex interconnects as, for instance,
crossbars. We assume that all cores share a common time source TS. We consider partitioned
systems, where each application is statically assigned to one of the n cores. An application
allocated to core Ci comprises a set of tasks (schedulable on Ci) and is granted exclusive use
of a local memory area, separated from other applications, for storing its code and data.

Communication across tasks is only allowed through the RTOS, which becomes responsible
for all memory transfers. To that extent, the RTOS API exposes a pair of procedures to
read/write data from/to a communication channel shared across tasks:
(i) receive_message: copies a message (sequence of bytes) from a communication channel

to the calling task’s memory;
(ii) send_message: copies a message (sequence of bytes) from the task’s memory to a

communication channel.
Inter-task communication between tasks running on the same core Ci does not follow this
scheme as message channels are stored directly in Ci’s local memory. We assume the
RTOS is able to distinguish between local and global communications in order to avoid
unnecessary arbitrations. It is worth noting that these assumptions on the software stack are
general enough to allow our technique to be used underneath the inter-task communication
mechanisms provided by specifications such as ARINC-653 and AUTOSAR.

In the following we adopt the standard TDMA naming convention. On a TDMA bus
each of the n contenders is assigned a time slot. We use the symbol ss to indicate the



M. Ziccardi, A. Cornaglia, E. Mezzetti, and T. Vardanega 15

Table 1 Notation.

fs Size of a frame in clock cycles with respect to T S
ss Size of a slot in clock cycles with respect to T S
cs Size of a chunk: amount of bytes transferred in one slot
ms Size of a message in bytes
fb(ti) Start time of the current frame at time ti

sb(Ci, ti) Start time of the first slot assigned to core Ci following ti

duration of a slot in clock cycles. A set of n time slots is called a frame. Similarly to slots,
we use the symbol fs to indicate the duration of a frame in clock cycles. Inside a frame each
contender is granted a dedicated slot to access the interconnect and transfer data: a chunk
is the largest portion of memory that a task can transfer to/from global memory inside a
TDMA slot when run in isolation. We call cs the size of a chunk expressed in bytes. Since
a conveyed message may consist of several chunks we use ms to address the message size
in bytes. Accordingly, fb(ti) refers to the start time of the current frame at time ti (with
respect to TS) and sb(Ci, ti) refers to the start time of the first available slot to core Ci after
time ti. Table 1 summarizes the notation used in the paper.

3.2 Software-enforced TDMA
The actual operation and efficiency of a SW-TDMA scheme depend on how frame, slot and
chunk size, as defined in the previous section, are configured. We start from defining the size
of a chunk as it affects the other two parameters. On hardware implementations of TDMA,
the value cs and the size of a slot in clock cycles (ss) are part of platform’s design choices
along with other hardware characteristics (e.g. the bus operating frequency). Under these
circumstances, the size of a slot is subject only to physical constraints and is designed so that
the maximum bandwidth is achieved: the smaller possible size that permits the transmission
of exactly cs bytes. On SW-TDMA, however, other sources of overhead have to be taken
into account. The value ss, expressed in clock cycles with respect to the shared time source
TS, must in fact consider (i) the cost of transferring cs bytes to global memory (with no
contenders), and (ii) the cost of arbitrating the request. The exact value of ss can be either
computed via static analysis or derived by means of extensive measurements. Once ss is
known, the size of a frame fs is straightforwardly computed as n · ss. As in standard TDMA,
each core is allocated one slot inside a frame. We call slot[Ci] the slot allocated to core Ci.
As TDMA divides time into frames, in order to select the slot in which each core is allowed
to transfer, the RTOS must be able to identify, at each time ti, the start time of the current
frame. At every time ti the current frame as the frame starting at time fb(ti), where fb(ti)
is such that ti ≥ fb(ti) and ti < fb(ti) + fs. Equation 1 can be used to compute fb(ti).

fb(ti) = fs · (bti/fsc) (1)

It is worth noting that if the size of a frame is a power of 2 (fs = 2bits) the above operation
has a blazingly fast implementation using bit-shifts: fb(ti) = (ti � bits)� bits.

Consider now an inter-core communication request issued by task τj running on core Ci

(either a receive_message or send_message). Since a core is allowed to transfer data only
inside its slot in the frame and since each slot can only hold cs bytes, the RTOS divides the
data into dms/cse chunks of up to cs bytes and operates each chunk transfer separately (see
Figure 1). When a chunk transfer is issued on core Ci, its issuing time treq is captured and
the current frame’s start time fb is derived using Equation 1. To correctly mimic TDMA,

WCET’15



16 Software-enforced Interconnect Arbitration for COTS Multicores

?j

send message

Application

RTOS

message size (ms)

chunk1 chunkk

chunk1

chunkk

...

...
copy chunk

copy chunk

Figure 1 At the RTOS level, a message is split into k = dms/cse − 1 chunks of size cs and one
chunk of size ms− k · cs. Each chunk transfer will take place inside a TDMA slot assigned to Ci.

0

copy chunk

C2

treq

wait until fb(treq) + slot[C2]·ss

1 2 3 0 12 3

fb(treq) = start of current frame

(a) Request fit inside current frame.

0

copy chunk

C2

treq

wait until fb(treq) + fs + slot[C2]·ss

1 2 3 0 1 2 3

fb(treq) = start of current frame

(b) Request shifted to following frame.

Figure 2 SW-TDMA arbitration examples where a request either (a) arrives before its slot – and
served in the current frame – or (b) misses the corresponding slot in the current frame.

the requested transfer is deferred until the beginning of the next slot assigned to core Ci.
We refer to such time as sb(Ci, treq) and we define it as:

sb(Ci, treq) =
{
fb(treq) + slot[Ci] · ss if treq ≤ fb(treq) + slot[Ci] · ss
fb(treq) + fs+ slot[Ci] · ss otherwise

(2)

If the request arrived before the beginning of the corresponding core’s slot inside the
current frame then sb(Ci, treq) is set to such value. Otherwise, the request missed its slot in
the current frame and has therefore to wait until its slot in the next frame. The meaning of
Equation 2 is graphically represented in Figure 2. Two alternative approaches are possible to
intercept time sb(Ci, treq): we may either poll on a cycle counter until it reaches sb(Ci, treq),
or use a timer interrupt. Polling is simple to implement but requires a time source to be
locally available to each core (no interference in accessing it). The alarm-based solution
avoids polling and works well even if no core-local time source is available but introduces
additional delays due to interrupt handling.

3.3 Bandwidth Reservation TDMA
A more flexible arbitration scheme can be defined on top of the baseline SW-TDMA arbitra-
tion, to provide higher bandwidth guarantees to a selected subset of cores. When standard
TDMA is used, a frame is divided into n slots, where n is the number of contenders (cores,
in our SW-TDMA): to allocate more bandwidth to some of the cores a frame is divided into
m slots, with m > n. Once each core is associated to a slot, the remaining m− n slots can
be used to reserve more bandwidth to selected contenders. Let us call core[j] the core that
has been allocated to the j-th slot, with j ∈ [0,m− 1].



M. Ziccardi, A. Cornaglia, E. Mezzetti, and T. Vardanega 17

0

copy chunk

C0

treq

wait until fb(treq) + first·ss

1 02 3 0 1 20 3

fb(treq) = start of current frame

Figure 3 A chunk transfer request is assigned to the first available slot for core C0.

Once a chunk request is issued on core Ci, the request time treq is saved and the start
time of the current frame, fb(treq), is computed following exactly Equation 1. Then, the
starting time sb(Ci, treq) of the first slot at which core Ci is allowed to transfer data must
be selected similarly to the basic TDMA case, with the only difference that more than one
slot may be allocated to the same core within a given frame. This difference is reported in
Equation 3 where the term first stands for the first slot granted to core Ci.

sb(Ci, treq) =

fb(treq) + first · ss if ∃first | first = min
j∈[0,m−1]

{
core[j]=Ci ∧

treq≤fb(treq)+j·ss

}
fb(treq) + fs + first · ss otherwise (first = min

j∈[0,m−1]
core[j] = Ci)

(3)

Figure 3 illustrates the first case of Equation 3: a slot first allocated to Ci exists in the
current frame and its start time follows treq. Otherwise, the message transfer is deferred to
the Ci’s first allocated slot in the next frame.

It is worth noting that the bandwidth-reservation SW-TDMA scheme can also support
run-time changes of the slot allocation policy. The RTOS, in fact, might decide to do so in
reaction to certain events or changes in the operational mode.

4 Proof-of-Concept Evaluation

We now evaluate how well our software-based arbitration scheme is able to enforce TDMA
arbitration via software on top of interconnects employing different hardware arbitrations (e.g.
round-robin). We want to demonstrate that our SW-TDMA suffers no variable interference
depending on the number of contenders. Finally, we want to prove that bandwidth reservation
TDMA can be used to provide different bandwidth guarantees to different cores. We
developed a proof of concept implementation of our approach on a realistic scenario within
the automotive application domain, where silicon vendors already provide multicore solutions
[11] and the AUTOSAR standard advocates partitioned multicore RTOS[3]. We run our
experiments on an Infineon AURIX TC277TU [12] equipped with three TriCore CPUs.
Each core has local data and instruction scratchpads. The TC277TU comes with a Shared
Resource Interconnection (SRI), a crossbar that connects all cores to the Local Memory
Unit (LMU) and to the Program Memory Unit (PMU). The LMU controls a shared 32KB
SRAM while the PMU controls three banks of flash memory. The SRI crossbar implements
both priority-driven and round robin arbitrations. Priority levels from 0 to 7 are provided.
Only levels 2 and 5 can be assigned to more than one core, arbitrated according to standard
round-robin policy. In our experimental setup all cores are in the same round-robin group. In
addition, the crossbar employs separate hardware channels for each slave resource connected
to it. That is, different SW-TDMA arbitrations can be implemented on each crossbar’s slave.

WCET’15



18 Software-enforced Interconnect Arbitration for COTS Multicores

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

Isol. 1 cont. 2 cont. Isol. 1 cont. 2 cont.

Message size: 128 bytes Message size: 512 bytes

C
lo

ck
 c

yc
le

s 
(1

00
 M

H
z)

Min Avg Max

(a) Standard SRI hardware arbitration.
All cores in the same round-robin group.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000
18000

Isol. 1 cont. 2 cont. Isol. 1 cont. 2 cont.

Message size: 128 bytes Message size: 512 bytes

C
lo

ck
 c

yc
le

s 
(1

00
 M

H
z)

Min Avg Max

(b) SW-TDMA with 1024-cycles frames
and 32-bytes chunks.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

Isol. 1 cont. 2 cont. Isol. 1 cont. 2 cont.

Message size: 128 bytes Message size: 512 bytes

C
lo

ck
 c

yc
le

s 
(1

00
 M

H
z)

Min Avg Max

(c) SW-TDMA with 1024-cycles frames
and 48-bytes chunks.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000
14000
15000
16000
17000
18000

core0 core1 core2 core0 core1 core2

Message size: 128 bytes Message size: 512 bytes

C
lo

ck
 c

yc
le

s 
(1

00
 M

H
z)

Min Avg Max

(d) Bandwidth-reservation SW-TDMA
with 1024-cycles frames of 4 slots (2

allocated to CPU0) and 32-bytes chunks.

Figure 4 Execution times in clock cycles (100MHz) for message send primitives with messages of
size 128 and 512 bytes. Figures 4a, 4b and 4c report the cost for sending a message in isolation or
with one or two contenders respectively; min and max are the absolute values observed on any of
the cores. In Figure 4d all cores run a task sending messages, min and max values are per-core.

Our SW-TDMA arbitration has been implemented in ERIKA Enterprise [7], an OS-
EK/VDX compliant RTOS. Test applications are developed on top of ERIKA and make
use of a user-level library implementing the AUTOSAR IOC communication layer. Tasks’
data and instructions are placed on cores scratchpads while IOC buffers are located inside
the shared SRAM. Test applications are designed to measure the cost of sending messages
of different sizes under different workloads: a single task runs on each core and all three
tasks send messages of the same size to different buffers (no mutual exclusion across tasks is
required). Tasks share the same period and are synchronized through a barrier so that to
produce maximum interference. Measurements are collected via the on-core cycle counter
running at 100MHz and are stored in the scratchpad (low latency tracing with no contention).
As a first experiment, we evaluated the cost of accessing the SRAM through the crossbar
as-is, with no modification. Results observed for sending messages of 128 and 512 bytes are
reported in Figure 4a. The cost of sending a message evidently grows with the number of
contenders. We witnessed an increase of 27% and 22% in the maximum observed execution
time (MOET) when two tasks try sending a message (of 128 and 512 bytes respectively)
at the same time, with respect to performing the same activity in isolation. Adding one
more contender causes the MOET to become 93% and 86% bigger than in isolation, for
messages of 128 and 512 bytes. This non-linear growth of interference can be explained by



M. Ziccardi, A. Cornaglia, E. Mezzetti, and T. Vardanega 19

the very structure of the SRI. The AURIX crossbar, in fact, divides a transaction into two
phases:
(i) a request phase where the address is sent and the request is arbitrated, and
(ii) a data phase where actual data is transmitted.
No more than one request can be arbitrated at a time, however, data and request phases of
different transactions can be pipelined. This also explains why the MOET is only ∼ 90%
higher when all the cores access the crossbar. Different access patters, however, may cause
more interference to occur.

In Figure 4b we report the execution times observed when sending messages of 128 and
512 bytes under SW-TDMA, with frames of 1024 clock cycles and chunks of 32 bytes. The
graph shows that the cost for sending a message does not depend any more on the number of
contenders, which is exactly what we were after. It is worth understanding which portion of
a slot is wasted to take software arbitration decisions. Under the above configuration a slot
is approximately 342 clock cycles. By means of extensive measurements, we observed that
a core in isolation is capable of transferring up to 57 bytes in 342 clock cycles. Therefore,
if software arbitration with chunks of 32 bytes is employed, the throughput of a core is
reduced by a 44%. In Figure 4c, however, we show that throughput can be enhanced while
maintaining isolation across cores. The graph reports a different configuration in which
frames are still of 1024 clock cycles but chunks are now of 48 bytes. The cost of sending a
message is still constant irrespective of the number of contenders while the throughput is
increased and execution times decreased. Under this configuration SW-TDMA reduces the
throughput of a core in a slot only by a 16%. As expected, when comparing our approach to
the original SRI crossbar we notice that the average cost of sending a message is increased
by almost 80%, for messages of 128 bytes. The magnitude of this result is explained by the
fact that the AURIX SRI crossbar also allows some degree of pipelining. A fair comparison
would require to evaluate our SW-TDMA against pure TDMA or RR interconnects with
no splitting. In particular, the results obtained for SW-TDMA are extremely near to the
theoretical performance offered by hardware TDMA. From the mixed-criticality standpoint,
SW-TDMA caters for isolation among criticality levels, regardless of bus access patterns.

The results we observed on bandwidth-reservation TDMA are shown in Figure 4d. The
frame is again set to 1024 cycles but divided into 4 slots for chunks of 32 bytes. Slot 0 and
slot 2 are both allocated to core 0. Results show that, as expected, sending a message on
core 1 and core 2 costs exactly as in Figure 4b where a frame of 1024 was divided into 3 slots
each for a chunk of 32 bytes. Core 0 instead executes twice as fast, as it is granted two slots.
Our evaluation highlights that bandwidth-reservation SW-TDMA allows assigning larger
portions of the shared interconnect to a selection of cores while still preserving isolation, in
keeping with mixed-criticality requirements.

5 Conclusion

In this paper we propose a solution to enforce isolation among cores accessing shared resources
that does not rely on the availability of specific hardware. SW-TDMA is particularly
interesting in the context of mixed-criticality applications where critical tasks must not be
interfered by lower criticality tasks. We provided experimental evidence that SW-TDMA
ensures isolation while introducing only a 16% throughput drop due to software arbitration.
A more flexible scheme, named bandwidth reservation TDMA, has been also introduced
and evaluated. The latter technique provides selected cores with more bandwidth without
affecting isolation and is much suited to guarantee a better quality of service to critical

WCET’15



20 Software-enforced Interconnect Arbitration for COTS Multicores

tasks. As future work we plan to investigate more complex schemes as, for instance, random
permutation. We also plan to further reduce the overhead introduced by software arbitration.

Acknowledgments. The work presented in this paper has received funding from the
European Community’s Seventh Framework Programme [FP7/2007-2013] under grant agree-
ment 611085 (PROXIMA, www.proxima-project.eu).

References
1 ISO 17458-1. Road vehicles – FlexRay Communications System – Part 1, 2013.
2 APEX Working Group. Draft 3 of Supplement 1 to ARINC Specification 653: Avionics

Application Software Standard Interface, 2003.
3 AUTOSAR. AUTOSAR Release 4.1. http://www.autosar.org/, 2014.
4 A. Burns and R. Davis. Mixed criticality systems-a review. Department of Computer

Science, University of York, Tech. Rep, 2015.
5 D. Dasari et al. Response time analysis of cots-based multicores considering the contention

on the shared memory bus. In Proc. of IEEE 10th Conference on Trust, Security and
Privacy in Computing and Communications, 2011.

6 R.I. Davis and A. Burns. A survey of hard real-time scheduling for multiprocessor systems.
ACM Comput. Surv., 2011.

7 Evidence. ERIKA Enterprise. http://erika.tuxfamily.org/, 2015.
8 G. Giannopoulou et al. Timed model checking with abstractions: Towards worst-case re-

sponse time analysis in resource-sharing manycore systems. In Proc. of ACM International
Conference on Embedded Software, 2012.

9 G. Giannopoulou et al. Scheduling of mixed-criticality applications on resource-sharing
multicore systems. In Proc. of 11th ACM Intl. Conference on Embedded Software, 2013.

10 D. Goswami et al. Time-triggered implementations of mixed-criticality automotive software.
In Proc. of 13th Design, Automation & Test in Europe Conference, 2012.

11 Infineon Technologies AG. AURIX™ TriCore™. http://www.infineon.com/aurix, 2012.
12 Infineon Technologies AG. TC27x Manual. http://www.infineon.com/aurix, 2014.
13 International Electrotechnical Comission. IEC 61508, Functional Safety of Electrical/Elec-

tronic/Programmable Electronic Safety-related Systems, Edition 2.0, 2009.
14 T. Kelter et al. Evaluation of resource arbitration methods for multi-core real-time systems.

In 13th International Workshop on Worst-Case Execution Time Analysis, 2013.
15 R. Pellizzoni et al. Worst case delay analysis for memory interference in multicore systems.

In Proc. of 13th Conference on Design, Automation and Test in Europe, 2010.
16 J. Rosen et al. Bus access optimization for predictable implementation of real-time ap-

plications on multiprocessor systems-on-chip. In Proc. of 28th IEEE Real-Time Systems
Symposium, 2007.

17 A. Schranzhofer et al. Timing analysis for resource access interference on adaptive resource
arbiters. In Real-Time and Embedded Technology and Applications Symposium, 2011.

18 H. Shah et al. Priority division: A high-speed shared-memory bus arbitration with bounded
latency. In Proc. of Design, Automation & Test in Europe Conference, 2011.

19 L. Sigrist et al. Mixed-criticality runtime mechanisms and evaluation on multicores. In
21st IEEE Real-Time and Embedded Technology and Applications Symposium, 2015.

20 S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of exe-
cution time assurance. In Proc. of 28th IEEE Real-Time Systems Symposium, 2007.

21 H. Yun et al. Memory access control in multiprocessor for real-time systems with mixed
criticality. In Proc. of 24th Euromicro Conference on Real-Time Systems ECRTS, 2012.

http://www.autosar.org/
http://erika.tuxfamily.org/
http://www.infineon.com/aurix
http://www.infineon.com/aurix

	Introduction
	Related Work
	Software-enforced Resource Arbitration
	Assumptions and Model
	Software-enforced TDMA
	Bandwidth Reservation TDMA

	Proof-of-Concept Evaluation
	Conclusion

