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Abstract
Integrating high performance and real-time demands on multi-processor systems is a challenging
task. We present our concept of isolating processes from a general-purpose operating system
without deeply invading modifications. This allows executing code on dedicated CPUs with
minimum latency and jitter like bare-metal on micro-controllers. The unbounded execution of
mixed critical processes on the same system induces performance interference in real-time tasks.
We present the implementation of isolated partitions on multi-processor x86 systems running
Linux and describe challenges restoring operating system stability. This work also presents our
experience with Non-Uniform Memory Access architectures that allow to partition the system in
a way that the impact to memory and I/O transfers of other partitions is minimized.

1998 ACM Subject Classification D.4.7 Real-time systems and embedded systems

Keywords and phrases hard real-time system, high-performance computing, non-uniform mem-
ory access, bare-metal execution

Digital Object Identifier 10.4230/OASIcs.WCET.2015.75

1 Introduction

Today, multi-processor systems are commonplace from High-Performance Computing (HPC)
to small embedded systems. The shift from faster CPUs to multi-processors is more radical
than any other architectural change of the last decades [22] because it requires the software
paradigm to care for concurrency. This problem is split in two challenges: Firstly to
synchronize correctly to avoid in order races and to get a correct result in every execution
and secondly to avoid pitfalls that slow down the performance. HPC has a long head start in
designing and optimizing concurrent software but this is mainly reserved to domain-specific
experts [10, 11]. Evidently, multi-processor systems are also utilized for real-time applications
and a large amount of research concentrates on improving the predictability of concurrent tasks
in such systems. Various approaches exist that cover a range of applications from completely
controlled to a mix of real-time and general-purpose loads. New implementation methods
and tool kits are searched for to ease the development of efficient and race-free software.
This is especially true for real-time systems, where the additional goal of predictability must
be met.

Multi-processor systems generally include multiple CPUs that have access to the entire
memory via a global address range. Multi-core processors are CPUs integrated in the
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same package, usually sharing the Last-Level Cache (LLC). If all processors have the same
distance to the memory, the system is a Uniform Memory Access (UMA) architecture. In
contrast, the Non-Uniform Memory Access (NUMA) architecture places multiple memory
regions directly at groups of processors. These nodes have a lower latency and a higher
throughput to their local memory but still can access the remote memory. This does not
require special programming since all memory regions are laid out in a linear address range,
but the performance can be greatly increased if the data is partitioned accordingly [5, 14].

Real-time systems generally require not only a correct result, but also have a timing
requirement, usually a deadline after which the value of the result either vanishes abruptly
or declines. We define hard real-time tasks to require absolutely no missed deadlines and
soft real-time as more tolerant, e. g. to a certain percentage of missed deadlines. The former
demand can only be proved by a formal verification while soft real-time tasks can usually
be evaluated practically [17]. The design and verification is split into the path analysis of
tasks, conditions and loops in a Control Flow Graph (CFG) and the run-time estimation of
basic blocks [24]. The former includes the schedulability analysis of multiple tasks and must
regard dependencies and communication. On multi-processor systems, the effort increases but
solutions do exist. In contrast, the run-time estimation of small, linear parts of code – basic
blocks – must regard architectural features that are often hardly documented or complexly
interweaved on powerful commodity processors with multiple levels of caches. So far, this
results either in the requirement of simplified models or in an overly pessimistic estimation.

1.1 Contributions
We consider homogeneous processors with a partitioning approach. This usually means
either executing multiple OS instances in an Asymmetric Multi-Processing (AMP) layout or
binding certain tasks to dedicated processors in a Bound Multi-Processing (BMP) concept.
We present our implementation to provide hard real-time capabilities on a single instance
of the general-purpose operating system Linux by completely isolating single processes
on dedicated CPUs while the other processes are executed unaffected on the remaining
CPUs. We extend our basic concept [23] and present detailed experience implementing
benchmarks and demonstration applications. We share our experience with partitioning
on NUMA systems. This architecture is well established in HPC but – in our opinion –
under-represented in recent real-time research. The main contribution of this work is a
demonstration of a NUMA system that allows to execute hard real-time tasks with very
low jitter as well as compute-intensive applications on the same system. The architecture
naturally minimizes the performance interference which simplifies the design and verification.

1.2 Structure
The next Section introduces to our partitioning concept, explains how we implemented
fundamental services and presents our demonstration application. Section 3 explains how
we use the NUMA architecture and presents the evaluation of memory access patterns. In
Sec. 4, we transfer those findings to non-uniform I/O. Section 5 comments on related work
and Sec. 6 concludes and provides and outlook to future work.

2 System Architecture

The term hard real-time is defined to guarantee a reaction below a defined maximum latency
in every possible situation. A program or system can only be proved to comply to this
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constraint by a formal analysis of all possible code paths. Besides the code of the real-time
tasks, there is other software competing for the processors, foremost the operating system’s
interrupts and system calls. The analysis of all possible code paths in the OS is beyond
practicability for a current general-purpose operating system.

Therefore, we isolate a single hard real-time process on each dedicated CPU. By avoiding
system services, we implemented a bare-metal execution that relieves the time-sensitive code
from external influences. The usability is restored by providing user-mode communication
and device access that allows to interact between isolated tasks and usual processes without
introducing new timing dependencies. The remaining influence of hardware effects will be
analyzed in the following Sections.

2.1 Application
The isolation concept was implemented by adhering to implementation rules, configuring the
base system properly and finally deactivating all interrupts on the isolated CPU. The following
system-wide configuration settings are reasonable to support all real-time applications. These
settings are available on the x86 architecture, but similar effects are present on other hardware
and can usually be addressed by similar means. In our evaluation, some settings can be done
in the firmware configuration (BIOS or UEFI setup), others are selected at the Linux boot
command line or configured as runtime settings.

Symmetric Multi-Threading (Intel HyperThreading) is deactivated because the logical
processors share some execution resources and the local cache in an unpredictable way [6].
The System Management Mode is a special feature of x86 processors to enable the firmware
to execute routines for power management, security, etc. It executes at the highest privilege
level and can not be influenced or deactivated by the operating system [9]. Experiments on
various systems have revealed a duration of System Management Interrupts between 5µs
and 250ms on all CPUs concurrently. Their use depends on the firmware that may use them
frequently. Some can be configured, e. g. by deactivating the legacy keyboard support but
every system must be assessed for its acceptability in this regard. The CPU frequency can be
adapted by the operating system or the processor itself. These features must be configured
to remain at a constant rate. Linux provides an NMI Watchdog that sends non-maskable
interrupts to non-responsive CPUs. This feature must be deactivated. Like every real-time
and embedded system, all services of the operating system should be evaluated and those
not required should be deactivated.

To isolate hard real-time tasks on their dedicated CPUs and guarantee the servicing
of all remaining processes, a partitioning concept based on CPU Affinity or the CPU-Set
feature was used. CPU-Sets are a convenient mechanism to create groups of CPUs and assign
processes to them. That way, isolated partitions can be created for each task. An application
partition allows a BMP layout for soft real-time execution of other, less time-critical or
best-effort tasks and a system partition gathers all remaining processes and services. To
ensure the execution of interrupts, they are assigned either to the CPU of the system partition
or to several dedicated CPUs by the means of IRQ Affinity.

The real-time process must be implemented according to the usual recommendations using
preallocated buffers and memory locking to avoid page faults and the proper distribution of
jobs and the implementation of algorithms suited for real-time. Of course, the application
must be correct and error free. The isolated real-time tasks finally clear the interrupt flag
to avoid all interruptions. Further, they must avoid all system calls during the real-time
operation because those are of unpredictable timing in a General-Purpose Operating System
(GPOS).

WCET’15
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2.2 Services
For the described approach of isolated tasks on bare-metal processors, the applicability is
restored by providing user-mode communication and device access. To interact with the
physical world, many real-time applications require reading sensor data and controlling actors.
These can be directly connected to I/O adapters that convert analog voltage to digital values
and vice-versa. Operating system drivers are not allowed to be used by isolated tasks because
their latency would be too large and too unpredictable. But as adapters are controlled either
by I/O instructions or by memory-mapping their configuration registers, these devices can
also be operated directly by user-mode processes. Devices for real-time applications usually
provide libraries for low latency user-mode access.

The initialization and allocation of resources can remain under the control of the operating
system and should be done before the time sensitive phase of the program begins. During
run-time, the reading and writing of values must then be done directly. Given that interrupts
are deactivated, the programming can not follow the event-based paradigm but must use
polling. Real-time capable libraries provided by hardware vendors must be assessed for not
using system calls during run-time. Network drivers could also be realized in user-space.
Shared buffers must be mapped at initialization time and the event-based processing of
incoming data must be converted to a polling realization. Further, the network stack must
be made real-time capable and running in user-space.

We used shared memory for lightweight communication between threads and processes.
During the initialization phase, page-table entries directing to the same physical page frames
are created. This hardware based method does not require any operating system support
after set-up. The caches are coherent by hardware design. As in all concurrent applications,
shared resources must be protected from simultaneous access to avoid using invalid data. If
a shared variable (flag) is written always by the same task, no synchronization is required.
For complex data structures and message queues, the synchronization could be realized with
atomic operations. But hard real-time tasks could be blocked by mutexes held in lower
prioritized tasks (priority inversion). This can be solved by applying wait-free algorithms
[12].

To simplify application development, we implemented a communication and synchroniza-
tion library based on shared memory. During the start of a process, the shared memory
segment is set up using SystemV shared memory. This is part of the UNIX specification
and available on POSIX compliant operating systems. Within that shared segment, the
needed synchronization primitives such as flags and message queues are allocated. The shared
resources are protected by atomic operations for mutual exclusion and wait-free algorithms.
The design of wait-free message queues is possible [19] and provides a Worst-Case Execution
Time (WCET) that is limited independently from other users of the object. This restores
the communication capabilities of the isolated process under hard real-time terms.

2.3 Operating System Modification
The deactivation of all interrupts on some CPUs leads to the instability of the underlying
Linux system. Among the observed problems are other CPUs locking up due to synchronous
inter-processor callbacks, unreliable system wall clock time, and increasing kernel memory
consumption. We modified the Linux kernel 3.9 imitating the CPU hotplugging to deactivate
all subsystems on a CPU to isolate a task. With this modification, the task does not need
to clear the interrupt flag to ensure uninterrupted operation. On x86 systems, clearing the
interrupt flag can only be done by the code running on the CPU itself, while our mechanism
can be triggered externally. This allows to reactivate a non-responsive isolated CPU.
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Figure 1 Example application architecture with bare-metal tasks.

2.4 Example
An example application partitioning is shown in Fig. 1. The GPOS with its system services
is executed in a dedicated partition. The application partition is used for the main part of
the application to execute Graphical User Interface (GUI), compute-intensive tasks and data
management. These two partitions can also be combined or split into multiple dedicated
partitions depending on the requirements. It is important to create a single hard real-time
partition or even dedicated isolated partitions for each CPU where hard real-time tasks are
isolated from the compute-intensive loads.

The system and application partitions execute arbitrary services based on standard
libraries and use the OS drivers to access devices that have lower timing requirements or that
are throughput bound. The isolated partitions use shared memory and wait-free algorithms
[12] to communicate with the other partitions and to access their peripheral devices directly
using on user-mode drivers or direct I/O. This ensures the lowest latency and the least
impact of the GPOS and the remaining application onto the isolated tasks. The isolated
tasks can be executed bare-metal or in an embedded Real-Time Operating System (RTOS)
implementing user-mode threads.

We implemented this concept on a twelve processor machine with two NUMA nodes.
The System and Application partitions are assigned to the processors of the first NUMA
node and three isolated partitions are set up on the second node. The remaining CPUs on
that node are left idle. This application was developed with an industry partner and is in
successfully used in production. The benchmarks described in the following Sections are
implemented using the same architecture.

3 Non-Uniform Memory Access

All processors in a Uniform Memory Access (UMA) system share the system bus and the
Memory Controller (MC). Cores sharing the inclusive LLC of a multi-core package may
even cause the eviction of cache lines from other core’s local caches [13]. In contrast, a Non-
Uniform Memory Access (NUMA) system has multiple memory partitions attached directly
to MCs located in the multi-core packages. These packages are connected by Interconnect

WCET’15
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Figure 2 NUMA system architecture of Tyan S7025 main board with two CPU sockets and two
I/O bridges.

Controllers (ICCs) that forward memory requests for remote addresses. With the practical
knowledge, that shared functional units are potential contention points, we designed the
partitioning of the real-time application respecting the NUMA nodes. The system and (soft
real-time) applications are executed on different nodes than the isolated tasks.

Our example system (Fig. 2) has two processor sockets each equipped with a six core
Intel Xeon E5645 processor. The example application introduced in Fig. 1 maps the system
services to core C0 and the main application to the remaining cores C1 to C5 of the first
NUMA node. The hard real-time tasks are executed in isolation on dedicated cores of the
other NUMA node (C6 to C11). By default, new memory allocations are placed locally so
that the system and the application access mainly the memory node M0 while the memory
regions of the isolated partitions are placed on the other node. Only a small Inter-Process
Communication (IPC) buffer is accessed across the interconnect link between ICC0 and
ICC1.

The benchmark application records the loop execution time for accessing a memory
buffer of varying size. At the same time, the main application generates different loads
on the other partition. The isolated tasks communicate their state and current timing via
wait-free message queues to the main application and watch for a termination signal like in a
real application. Figure 3 shows the jitter experienced by the isolated task. The result is
independent from the load range as displayed exemplarily for 16KiB (L1$), 8MiB (LLC)
and 512MiB as long as the isolated task has a memory usage well below the cache size. Only
the memory usage of the isolated task itself increases its own maximum latency if it uses a
large part of the LLC. The load does not cause any performance interference on this NUMA
system.

The increasing jitter caused by using large parts of the LLC matches the experience on
UMA systems. Since every NUMA node is a multi-core processor, their cores impact each
other in the same way as all processors in a UMA system do. Therefore, the isolated tasks
should restrict themselves as much as possible to the private Second-Level Cache (L2$) of
256KiB. In this case their maximum latency remains reliably low. Even occasional cache
misses compulsorily caused by shared IPC buffers do not interfere fatally. The worst latency
of main memory accesses is in the order of 106 CPU cycles (Millisecond range) but occurs
very seldom and only if the isolation writes very large memory buffers. Minimum and average
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Figure 3 Jitter caused by load on other NUMA node.

latency are not impacted by those events. Our experiments have shown, that the number of
events in the range of the maximum latency increases linearly with the isolation buffer size.

4 Non-Uniform I/O

Many hard real-time systems with high frequency and low latency requirements are pro-
grammable logic controllers that require direct interaction with physical signals. This can be
accomplished on the x86 architecture with data acquisition expansion cards. Their access
time in the order of several thousand CPU cycles (Microsecond range) is low compared to
what the processor could calculate in this period. But similarly to memory access, the jitter
caused by device access is even worse on multi-processor systems because of system bus
contention [21]. To solve the problem of unpredictable jitter, co-scheduling of tasks [16]
and hardware extensions [1] have been proposed. Since we aim for unrestricted concurrent
execution on available systems, these approaches are inapplicable.

Analogous to the memory transfers, in UMA systems all I/O traffic uses the same system
bus. In the same way that NUMA architectures are capable of separating contending memory
transfers of system applications and time-critical tasks, they also offer a solution for predictable
I/O transfers. Additionally, PCI-Express (PCIe) offers prioritized data streams that can be
transferred concurrently over switched point-to-point connections without interfering [2]. Like
the NUMA architecture’s natural partitioning capabilities improving the timing predictability
of memory accesses, we expect that the PCIe connections in NUMA architectures are better
suited for hard real-time systems than PCI and UMA.

The main board architecture shown in Fig. 2 has two I/O bridges (IOH) that are connected
to the CPU sockets in a QuickPath interconnect forming a ring. We therefore connect the
peripheral devices used by the real-time tasks to the PCIe slots connected to the right-side
IOH. The system partition controls the standard devices (graphics adapter, USB, Ethernet)
that are provided by the ICH which is connected to the left IOH. The only data transfers
crossing the partition border are still the memory transfers to the IPC buffers.

The test series uses memory-mapped I/O accesses to different devices that are connected
to the built-in PCI slot managed by the ICH and to a PCIe slot of the real-time partition.
We also measured a PCIe to PCI bridge installed in the real-time partition and one of the
PCIe slots assigned to the system partition but those gave similar results as the real-time
partition PCIe connection. The benchmark was executed in isolated tasks and recorded a
statistic of latencies during high memory and I/O loads executed in the system partition.

The results are displayed in Fig. 4. The large I/O overhead of the x86 architecture in
the range of 2000 to 5000 CPU cycles (1–2µs) covers outliers and jitter of I/O transfers.

WCET’15
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The PCI device connected to the chipset’s ICH has access latencies up to 6µs under high
system load while the access to the PCIe devices is more predictable between 1.2 and 2µs.
The results of the other PCIe partition and a PCIe to PCI bridge in the real-time partition
are very close to the lower histogram with a constant offset of approx. 0.2µs. The PCIe
devices are not influenced by the load. The transfers using the PCIe interconnect can be
completed in bounded time while the ICH (former south bridge) is easily contended. It
remains as future work to verify the interconnect architectures and to evaluate more systems
and more recent CPU architectures. However, we have completed extensive test series with
uninterrupted execution times up to 72 hours that support these results on our test system.

5 Related Work

Real-time systems with multiple processors have been researched thoroughly [4, 18]. Current
approaches [25] to tightly estimate the execution time on multi-processor systems either
simplify the architecture [3] or restrict the execution on the entire system by strictly controlling
all tasks [15]. In contrast, we aim for allowing arbitrary applications in the system partition
and present a method to restrict performance interference. A very deep analysis of the causes
of jitter in x86 systems is presented by Dasari et. al. including the memory bus and caches
[8] as well as I/O [7]. Some publications mention NUMA systems in their plans for future
work [7, Sect. IV.C] or just explain theoretical foundations [20] but they do not analyze the
opportunities of such systems. All evaluations of multi-processor I/O so far only regard
UMA systems and the older PCI bus. Stohr includes PCIe in his analysis of using the x86
architecture for real-time systems [20] but does not cover NUMA and non-uniform I/O.
Despite an extensive literature review, these works cover only UMA systems and even if
mentioning NUMA systems, those are only briefly touched and either dismissed or left for
future work. To the best of our knowledge, no publications present experience with hard
real-time applications on current NUMA systems do exist so far.



G. Wassen and S. Lankes 83

6 Conclusion

We demonstrated the value of the NUMA architecture that is underrepresented in hard
real-time systems research, so far. With the spacial partitioning of AMP and BMP real-time
systems to distinct processors, NUMA systems allow to also partition both memory and
I/O transfers. Extensive test series fortified the assumptions derived from HPC experience
and architectural analyzes. However, this is only shown for the used CPU architecture
(Intel Westmere) and main board (Tyan S7025). Nevertheless, it indicates that a careful
design which considers the NUMA architecture is in fact capable to reduce the performance
interference and to provide hard real-time guarantees on commodity x86 systems without
restricting the load in the system partition.

This concept was implemented in a Hardware-in-the-Loop simulator for industrial inte-
gration testing. Compute-intensive high-frequency hard real-time tasks could successfully be
ported from special micro-controllers to a standard x86 server system. Other application
fields are FPGA codes, that could be integrated easier with existing complex applications to
create mixed critical systems.
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