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To my family in the Canary Islands and Barcelona.
Specially to David, Alex, Paula and Marcos (a natural-born fighter!).





Welcome to WCET 2015

It has been my pleasure to serve as the PC Chair of the WCET Analysis Workshop 2015
(WCET 2015). I want to start by expressing my gratitude to the authors, the PC members
and the external reviewers for their effort. You have made possible to have an excellent
program for WCET 2015!

WCET 2015 continues to be the reference forum for academics, practitioners and in-
dustrialists in the field of timing analysis for hard real-time systems. In this edition the
WCET Analysis workshop has tried to broaden its scope to cover any aspect related to
the timing analysis of computer systems. This is motivated by the fact that while in the
past timing analysis has been a topic mainly for real-time systems, recently it has becoming
crucial in other domains dealing with timing guarantees. This includes among other mobile
computing and high-performance computing. Hence, this edition of the WCET workshop,
besides papers targeting traditional WCET analysis, encouraged submissions focused on
less rigorous and mature timing analysis techniques on complex multicore and manycore
heterogeneous, usually COTS, architectures. For such complex architectures Execution Time
Bound (ETB) estimates are derived rather than WCET estimates in the strict sense. ETB
estimates are intrinsically less reliable than WCET estimates.

We received 26 good-quality submissions out of which 10 were selected for presentation
and the proceedings. This has resulted in a solid program for WCET 2015 which is also
strengthened with an excellent keynote by Jon Perez. Jon is the Embedded Systems research
line coordinator at IK4-IKERLAN. His talk will cover aspects related to multicore, WCET
and certification in the context of fail-safe mixed-criticality systems.

WCET 2015 has been also possible thanks to the financial support of the EU COST
Action IC1202 on Timing Analysis on Code-Level (TACLe); the FP7 IP Project PROXIMA
(http://www.proxima-project.eu/) and the FP7 STREP Project P-SOCRATES (http:
//www.p-socrates.eu/). Special thanks also to our supporting institution the HiPEAC
Network of Excellence (http://www.hipeac.net).

I welcome all participants to the WCET 2015 and I encourage them to be active and
enjoy the opportunity for discussion and interaction with other workshop attendees.

See you in Lund!
Francisco J. Cazorla

15th International Workshop on Worst-Case Execution Time Analysis (WCET 2015).
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A Framework to Quantify the Overestimations of
Static WCET Analysis∗

Hugues Cassé, Haluk Ozaktas, and Christine Rochange

University of Toulouse, France
{casse,ozaktas,rochange}@irit.fr

Abstract
To reduce complexity while computing an upper bound on the worst-case execution time, static
WCET analysis performs over-approximations. This feeds the general feeling that static WCET
estimations can be far above the real WCET. This feeling is strengthened when these estimations
are compared to measured execution times: generally, it is very unlikely to capture the worst-
case from observations, then the difference between the highest watermark and the proven WCET
upper bound might be considerable. In this paper, we introduce a framework to quantify the
possible overestimation on WCET upper bounds obtained by static analysis. The objective is to
derive a lower bound on the WCET to complement the upper bound.

1998 ACM Subject Classification C.3 Computer Systems Organization – Special-Purpose and
Application-Based Systems – Real-Time and Embedded Systems

Keywords and phrases static WCET analysis, uncertainty, overestimation, cache analysis

Digital Object Identifier 10.4230/OASIcs.WCET.2015.1

1 Introduction

Tasks in hard real-time systems are subject to strict deadlines and any failure to meet a
deadline might have severe consequences. Many approaches to hard real-time task scheduling
have been proposed in the literature [4]. Based on the knowledge of the worst-case execution
time (WCET) of individual tasks, they compute a task schedule that is valid in the sense
that all deadlines are met.

The correctness of a task schedule relies on the confidence in the estimated WCETs
of tasks. An under-estimated WCET might lead to an unsafe schedule and possibly to a
violation of deadlines at runtime. Therefore, considering reliable techniques to derive those
WCET estimates is crucial. The flexibility of measurement-based techniques is appealing
but they cannot bring strict guarantees that the worst case has been observed or can be
extrapolated. Static analysis techniques instead provide reliable estimates as soon as any
detail on the hardware architecture of the target processor is known and correctly modelled1.

Static analysis approaches determine an upper bound on the WCET based on an over-
approximation of the processor state at any point in the program. For example, usual
strategies to analyse the dynamic behaviour of a cache memory are based on abstract
interpretation techniques that build abstract states of the cache at any program point.

By nature, WCET upper bounds are pessimistic and static WCET analysis techniques
are often blamed for generating excessive overestimation. This feeling is exacerbated when

∗ This work was partially supported by the French research foundation (ANR) through the W-SEPT
project (ANR-12-INSE-0001). See http://wsept.inria.fr.

1 We are aware that this is a strong assumption that is difficult to achieve but this issue is beyond the
scope of this paper.

© Hugues Cassé, Haluk Ozaktas, and Christine Rochange;
licensed under Creative Commons License CC-BY
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2 Impact of Over-approximations in Static WCET Analysis

the largest observed (measured) execution time is compared to the statically-determined
WCET. The difference between the two is often exhibited as an indicator of overestimation
although without any evidence (even any conviction) that the largest observed execution
time was measured on the longest possible path. In the same time, it can generally not be
shown that the estimated WCET value could be really reached. The goal of this paper is
to show how additional numbers could be delivered together with the trustworthy WCET
estimation in order to give better insight into how imprecise it might be.

Three factors can contribute to overestimating the WCET: (a) the analysis identifies a
longest path that is not feasible in practice due to restrictions on input data values which are
unknown (unspecified) to the analysis and/or to the incapacity of the analysis to take such
restrictions correctly into account; (b) the analysis assumes a worst-case initial hardware
state which cannot be observed in practice; (c) the way the analysis is performed generates
overestimation (generally to reduce complexity). In this paper, we focus on factor (c) and
leave the study of the two others for future work.

Our objective is to isolate the part of the estimated WCET that does not result of any
over-approximation. We refer to this value as a lower bound on the real WCET : it represents
an execution time that is feasible (assuming that both the sets of possible paths and initial
hardware states are not over-approximated). The difference between the lower and upper
bounds on the WCET gives an insight into the accuracy of the estimated WCET.

The paper is organised as follows: Section 2 introduces a framework to determine lower
bounds along with upper bounds on the WCET of a task. A possible use of this framework
for the cache analysis is presented in Section 3. Experimental results are reported in Section 4
and Section 5 concludes the paper.

2 A Framework to Quantify Pessimism of Static WCET Estimations

2.1 Static WCET Analysis Techniques

The usual flow for static WCET analysis is a sequence of several steps. The input is the
program to analyse, more precisely its binary code required for low-level analyses. Its source
code can be useful for path analyses.

In the first step (Flow/Path Analysis), possible execution paths are identified and encoded
as a CFG (Control Flow Graph) and a set of flow facts (loop bounds, infeasible paths, etc.).

The next step (Global Low-level Analysis) determines the behaviour of history-based
hardware schemes, such as (instruction and data) caches or branch predictors. These schemes
make use of limited-capacity storage which may engender conflicts between distant parts of
the program. In addition, they have been designed to improve the average execution time
of the program by exploiting the execution history and hence may exhibit highly dynamic
behaviours. These effects are particularly interesting to handle with static analysis approaches
because time-expensive behaviours are relatively rare (but must be considered for safety
reasons) and are particularly difficult to capture through measurements.

The third step (Local Low-level Analysis) takes the global and local behaviours of the
hardware components into account to compute the possible execution times of each basic
block in the CFG.

Finally, an ILP (Integer Linear Programming) system is built [10] for WCET Computation
(IPET method). Its objective is to maximize the task execution time expressed as the sum
of the basic blocks execution times weighted by their respective execution counts. These
execution counts are bounded by a collection of linear constraints that express: (a) restrictions
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on the possible execution paths in the code, and (b) restrictions on the possible occurrences
of some hardware-level behaviours.

2.2 Sources of Overestimation
The overestimation of static WCET analyses is due to three kinds of reasons:

imprecise flow facts: in the absence of full information on possible execution paths, the
WCET analysis might consider infeasible paths and those might happen to exhibit longer
execution times than valid paths. The goal of flow analysis [14] is to eliminate such
infeasible paths but it might fail to identify all of them for several reasons: (a) restrictions
on input data values are under-specified by the user; (b) some information given by
the user cannot be translated into flow facts (this depends on the annotation format
considered by the WCET analysis tool, complex scenarii might be difficult to describe);
(c) some flow facts derived from user annotations or automatically extracted from the
source or binary code cannot be exploited during the analysis (e.g. they cannot be turned
into linear constraints when the WCET is computed using the IPET method). In this
paper, we assume that the applications under analysis do not suffer such issues and
we consider that every relevant information of possible execution flows is known and
taken into account when computing WCETs. We leave the analysis of imprecision due to
incomplete information on input data for future work.
imprecise information on the initial hardware state: the state of the processor (pipeline)
and of the memory hierarchy (cache memories) has an impact on the (worst-case) execution
time of a task. For example, if part of the task code already resides in the instruction
cache, the overall latency of instructions fetches is shorter than if the cache is empty.
In the absence of such information, the WCET analysis systematically assumes the
worst-case situation and this might lead to overestimating execution times [12]. We ignore
this issue in this paper and we assume that the tasks under analysis can effectively start
with the worst-case hardware state.
static analysis techniques do not unroll any possible execution path. Instead, they derive
at each point in the code some properties that hold for any possible execution. This
keeps the complexity of determining the longest path tractable. A consequence is that
these properties might be pessimistic for a particular execution. Here, the pessimism
is generated by the analysis technique and not by incomplete information on possible
execution scenarii. The contribution of this paper is to quantify this overestimation which
is inherent to static WCET analysis.

2.3 Proposed Framework
According to the discussion above, the execution time of an application code running on
a given platform that ensures full isolation (i.e. the execution time of a task cannot be
impacted by any other task or system operation) is a function of the initial hardware state
and of the followed execution path:

ET : H×P → N

where H is the set of possible initial platforms states and P is the set of possible execution
paths in the code.

The WCET of the program is defined as:

WCET = max
(h,p)∈H×P

ET (h, p) .

WCET’15



4 Impact of Over-approximations in Static WCET Analysis

Static WCET analysis aims at determining an upper bound on the execution time. Instead
of running the code with different (h, p) ∈ {H × P} pairs, as measurement-based approaches
would do, it performs abstractions to derive, at each program point, some properties that
hold for any execution path. These abstractions may lead to some undecided local behaviours
which are then over-approximated to compute the final WCET estimation. For example, it
can happen that the latency of an access to a cache is unknown because the cache analysis
can not determine whether it will be a hit or a miss (because this depends on the execution
history). One of these options must be chosen to compute the WCET. We use the term
scenario to refer to a combination of selected options for all the unpredictable behaviors in
the program and C denotes the set of all the possible scenarii.

The estimated (abstract) WCET can then be defined as follows:

WCET# : H×P × C → N .

Each set D, where D stands for H, P or C, can be considered in several flavours:
D> is the set of theoretically possible values.
For example, P> is the set of possible paths expressed by the program control flow graph.
D+ contains all the values that may (but are not guaranteed to) be feasible.
In other words, D+ is a subset of D> that excludes the values that can be proven infeasible.
For example, P+ includes all the execution paths that fulfil the flow constraints (both
those computed by the flow analysis step and those specified by the user). Similarly, C+

is the set of all the scenarii that may occur and is considered by static WCET analysis to
compute a trustworthy upper bound on the WCET.
Dr is the set of all the values that are really feasible.
Usually, this set is unknown or too large to be exhaustively explored.
D− is a set of values that can be guaranteed to be feasible.
To illustrate this, let us consider an access to the cache that cannot be classified as a hit
or a miss by the static cache analysis. If the processor is free of timing anomalies, the
optimistic option is to consider the access as a hit, while the pessimistic assumption is a
miss. Any scenario in C− specifies a hit, and any scenario in C+ specifies a miss.

We have: D− ⊆ Dr ⊆ D+ ⊆ D>.
Usual static WCET analysis techniques produce an upper bound on the real WCET:

WCET+ : H+×P+×C+ → N. Provided H+ and P+ are trustworthy, and assuming that the
low-level analyses are correct (then C+ is trustworthy too), we must have WCETr ≤WCET+

where WCETr is the real (but unknown) WCET of the application.
On the other hand, given that all the values in H−, P− and C− are feasible, it must be

that WCET− ≤WCETr with: WCET− : H− × P− × C− → N.
To summarize, WCET− ≤WCETr ≤WCET+. The possible overestimation on the real

WCET is then quantified by U = (WCET+ −WCET−)/WCET−. We refer to WCET− as the
lower bound on the WCET2 in contrast to WCET+, the upper bound on the WCET. Only
WCET+ is a reliable estimation of the program’s WCET.

Note that computing the WCET from sets of different flavours, e.g. H− × P− × C+, does
not provide any useful estimate: it cannot be ordered with respect to the real WCET.

In this paper, we focus on the computation of C− and C+ for various low-level analyses.

2 Note that this lower bound on the WCET (WCET−) is something different from the best-case execution
time (BCET).
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3 Upper-Bounding the Possible Overestimation of Low-Level
Analyses

3.1 Background on Cache Analysis
Category-Based Approaches

Global low-level analyses account for the impact of history-based hardware schemes. Such
schemes include instruction or data caches, or dynamic branch predictors. They offer either a
fast access (a hit in the usual cache terminology), or a slow access (a miss), and are designed
to maximize the number of hits in the average case.

A common approach to support such schemes is to assign a category to each access to
the device. It has been successfully applied to LRU3 instruction [7] and data [8] caches but
also to branch prediction history tables [3] and flash memory prefetchers [5].

Instruction Cache Analysis

In [7] an analysis for LRU instruction caches introduces three categories: Always-Hit (AH )
– on each access, the instruction block is present in the cache, resulting in a fast access;
Always-Miss (AM ) – the instruction block is never in the cache, always causing a slow
access; and Not Classified (NC ) – the behaviour cannot be predicted at analysis time. These
categories have later been extended in [6, 1] with the Persistence category (PERS) that is
assigned when the first occurrence of an access belonging to a loop body cannot be classified
but the following accesses (in the next iterations) are hits.

The computation of categories is based on Abstract Interpretation (AI) techniques. A
cache state is derived at each point of the program, as a function that assigns an age to each
cache block: S : B → A. The age represents the position of the block in a cache set according
to the LRU replacement policy: it is an integer value between 0 and A, where A is the
associativity of the cache – an age equal to A means that the block is not in the cache. The
Update function expresses the behaviour of the cache: U : S ×B → S (the accessed block gets
age 0, the age of blocks younger than it is incremented by 1, the age of other blocks remains
unchanged). To avoid an explosion of the number of possible cache states at a program
point, abstract interpretation merges states using a Join function J# : S# × S# → S# that
operates on an abstract representation S# of the concrete cache states.

A category is assigned to an access to cache block b ∈ B at any program point p as follows:
(i) if any state s ∈ S contains b whatever the path leading to p, the access always hits (AH );
(ii) if no path leading to p produces an s ∈ S that contains b, then the access always
misses (AM ). Two abstract interpretation analyses are needed to draw such conclusions: (i)
the MUST analysis computes the worst-case age of block b (if the worst-case age of b is less
than A at point p, this means that b is always in the cache at point p) with J#(s1, s2) = s

such that ∀b ∈ B, s[b] = max(s1[b], s2[b]); and (ii) the MAY analysis computes the best-case
age of b (if the best-case age of b is A at point p, this means that b is never in the cache at
point p) with J#(s1, s2) = s such that ∀b ∈ B, s[b] = min(s1[b], s2[b]).

If none of the two previous predicate holds, the access is considered as NC 4. This category
is the main source of overestimation in the WCET estimation.

3 LRU stands for Least Recently Used and refers to the cache block replacement policy. We consider this
policy in the remainder of the paper.

4 As mentioned above, another category for blocks that remains in the cache across the iterations of a
loop but cannot be classified for their first access can be assigned. This analysis is not described here
for the sake of simplicity. The reader may refer to [6, 1] for further details.
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Data Cache Analysis

The analysis of data caches is very similar to that for instruction caches. The additional part
consists in performing a data flow analysis to discover the addresses accessed by load and
store instructions and to determine which cache blocks are used [8].

While an instruction fetch addresses a single memory block (known at analysis time), an
access to data performed within a loop may reference several memory blocks across iterations.
The data flow analysis may find that the target of a memory access has a single value, or a
set or an interval of values. A special value, >, represents the cases where the analysis fails
to determine the possible address values. Such a failure could reflect input-data dependent
addresses or might be due to an imprecise address analysis that makes over-approximations.

The imprecision in the address analysis is also a source of imprecision in the computation
of the abstract cache states used to assign the categories. When a single address value has
been found for a load/store instruction, the cache state is updated in the same way as for an
instruction cache. If the instruction may reference several different addresses, the analysis
accounts for a possible impact on several cache sets (on all cache sets if the predicted address
is >. For the MUST analysis, all blocks are aged by one (whatever the number of possible
address values, only one is accessed at a time); in the MAY analysis, the age of all accessed
blocks is unchanged while other blocks are aged. In the end, an imprecision in the address
analysis directly induces over/underestimation (MUST/ MAY) of ages in the cache states
and hence on the categories: memory access with imprecise address sets are more likely to
be categorized as NC .

Exploitation of Cache Categories to Compute the WCET

A straightforward way to account for the cost of instruction and data cache misses in the
estimated WCET of a program is to add it to the expression of the execution time so that
the ILP solver maximises the number of misses together with the execution time. However,
this solution is reliable only if the execution time of a sequence of instructions experiencing
a cache miss is less than the adding the the cost of that miss to the execution time with
a hit. This is not the case when the program runs on an architecture that enables timing
anomalies [11], i.e. for which the local worst case for the execution time of the sequence
might be a hit.

A more reliable approach is to compute the local WCET of each basic block in the
program CFG as many times as possible combinations of hits and misses for NC accesses
exist. Then the execution count of each of these different WCET values is bounded by a
combination of category-related execution counts in the ILP formulation. This approach
has been implemented in OTAWA [2], the static WCET analysis tool used to carry out
the experiments reported in this paper. In OTAWA, a local WCET is computed for each
sequence of two basic blocks (then related to an edge in the CFG) based on contextual
execution graphs [13]. It considers an optimistic or pessimistic context (availability of
hardware resources) for the first and second block in the sequence, respectively, thus ensuring
that an upper bound is found.

3.2 Contribution to the Lower Bound on the WCET (WCET−)
Approximation in category-based instruction cache analysis clearly comes from the join
operator J#: even if the input cache states are precise, the result may be imprecise. In data
cache analysis, another source of approximation is the address analysis that sometimes fails
to derive precise address values, which leads to additional inaccuracy in the computation of
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Table 1 Benchmarks.

benchmark # accesses to I$ # loads
cjpeg_jpeg6b_wrbmp 37,328 6,187

gsm 4,2319,41 895,605
gsm_decode 1,739,854 211,854
gsm_encode 2,378,890 681,917

h264dec_ldecode_block 11,942 1,802
h264dec_ldecode_macroblock 51,373 51,373

cache states. Imprecise cache states lead to imprecise categories (NC , and PERS to a lesser
extent) then to possibly overestimating WCET+.

A simplistic approach to estimate WCET− would consist in considering each NC access to
the cache as a hit (similarly, each PERS access as a hit in the first loop iteration). However,
to account for possible timing anomalies, both options must still be considered (as explained
in Section 3.1). More precisely, an opposite assumption is taken for each basic block in a
sequence. For example, all NC accesses in the first block are accounted for as misses, while
those in the second block are considered as hits. This way, the local WCET of the second
block is minimized (assuming no timing anomaly can occur). At the end, when all possible
scenarii have been explored, the lowest local WCET is kept for each basic block.

4 Experimental Study and Discussions

4.1 Methodology

All the experiments reported here have been done using our OTAWA toolset [2] in which we
implemented support for the analysis of the possible overestimation.

We considered a microprocessor architecture with a 7-stage in-order pipeline similar to
that of the MPC5554 from Freescale. We assumed a single level of separated instruction
and data caches with the following parameters: 4KB of size, 4-way associative with LRU
replacement, with 16B cache lines and a write-allocate policy. A memory latency (for cache
misses) of 20 cycles was considered. We considered an infinite-capacity write buffer, then
only loads are considered in the experiments.

We have analysed several benchmarks from the MediaBench suite [9]: cjpeg_jpeg6b_wrbmp
is a JPEG image bitmap writing code; gsm, gsm_decode and gsm_encode are respectively a
GSM 06.10 provisional standard codec, decoder and encoder; h264dec_ldecode_block and
h264dec_ldecode_macroblock are H.264 block and macroblock decoding functions. The
dynamic numbers of accesses to the instruction cache and loads of these benchmarks (i.e.
counts on the worst-case path) are given in Table 1.

We assume that each execution path that fulfils the flow facts specified to the WCET
analysis tool and converted into constraints in the ILP formulation is feasible (i.e. no
overestimation comes from the flow analysis). Similarly, we assume that any initial hardware
state is feasible.

WCET’15
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Table 2 Possible overestimation on WCET+.

benchmark U = (WCET+ − WCET−)/WCET−

cjpeg_jpeg6b_wrbmp 36.25%
gsm 161.95%

gsm_decode 96.33%
gsm_encode 216.00%

h264dec_ldecode_block 126.11%
h264dec_ldecode_macroblock 144.41%

Table 3 Possible overestimation in instruction cache analysis.

benchmark PERS NC Ui$

cjpeg_jpeg6b_wrbmp 25.0% 5.1% 0.54%
gsm 34.9% 19.6% 2.36%

gsm_decode 38.4% 29.3% 1.83%
gsm_encode 31.5% 18.7% 2.29%

h264dec_ldecode_block 52.6% 18.8% 4.84%
h264dec_ldecode_macroblock 57.7% 1.8% 0.32%

4.2 Results

Table 2 shows the possible overestimation on (WCET+). For cjpeg_jpeg6b_wrbmp), the
maximum overestimation on WCET+ is small (36.25%), meaning that the analysis is precise
in this case. The other benchmarks exhibit much larger potential overestimation, ranging
from 96.33% to 216%. As we will see below, this is mainly due to the weakness of the data
cache analysis we considered, which fails to compute the targets of load instructions.

In the following, we try to isolate the respective contributions of the instruction and data
cache analyses to the possible overestimation of the WCET upper bound. For that purpose,
we compute Ui$ (resp. Ud$) considering pessimistic results for the other analysis.

Table 3 shows the contribution to the overestimation by the instruction cache analysis
(Ui$). These low numbers (less than 5%) show how instruction caches can be taken into
account with much accuracy in WCET analysis. There are two reasons for this. First, the
instruction cache analysis generates relatively precise results: columns 2 and 3 show how
many accesses are classified as PERS (Persistent, generating a hit for all loop iterations
but the first one) or NC (Not Classified, then considered as a hit to be optimistic and as a
miss to be pessimistic). Except for one benchmark, the number of instruction fetches that
cannot be classified is less than 20%. Second, the impact of a miss on an instruction fetch
can sometimes be partly hidden by stalls generated by instructions inter-dependencies, and
this is captured by our pipeline analysis.

The major part of the possible overestimation on the static WCET comes from the data
cache analysis, as shown in Table 4. Contrarily to the instruction cache, many accesses (from
46% to more than 80%) are categorized as NC . This is due to the basic address analysis
implemented in OTAWA, that only handles global and stack data. Addresses of accesses to
array elements are not determined by this analysis. As reported in column 4, the precise
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Table 4 Possible overestimation in data cache analysis.

benchmark PERS NC unknown @ Ud$

cjpeg_jpeg6b_wrbmp 9.2% 46.1% 33.8% 35.29%
gsm 0.0% 55.8% 38.4% 66.25%

gsm_decode 0.0% 69.4% 52.6% 143.66%
gsm_encode 0.0% 51.7% 34.1% 190.01%

h264dec_ldecode_block 0.0% 80.5% 64.4% 82.51%
h264dec_ldecode_macroblock 0.0% 54.4% 22.1% 141.90%

target address could not be determined by the data analysis for a considerable amount of load
instructions (from 22% up to 64%). An unknown target address impacts the load instruction
itself, since it cannot be determined whether it hits or misses in the cache, but it also impacts
subsequent loads by producing a destructing effect on the abstract cache state. Clearly, the
address analysis can be identified as the weakest link here.

4.3 Possible Interpretations of the Lower Bound on the WCET
Several uses of the overestimation metric (U) – difference between the upper and lower
bounds on the WCET – can be envisioned:

An obvious application is the qualification of a particular estimated WCET. If U is small,
then the estimated WCET can be considered as precise. This means that WCET+ is not
far above the real WCET (even if measured execution times look much lower). Then the
estimated WCET will not drive to oversize the hardware required to meet deadlines, nor
break irrelevantly the real-time constraints verification. Instead, if U is large, this may
mean either that the WCET computation approach does not fit the particular profile of
application under analysis, or that the way the application is coded drives too many non
predictable behaviours.
Local contributions to overestimation could also be used to implement an adaptive WCET
analysis. For example, a first fast analysis could be performed with a very simple (but
imprecise) method. Then the program parts exhibiting the largest overestimation could
be processed again with a more precise but also more time-consuming method. Abstract
interpretation is well adapted to support such an approach: to enhance accuracy, the
analysis could choose which states would be merged and which would be kept separate
by the Join operator.
Finally, the overestimation metric could also be considered as a basis to compare different
analyses with respect to the precision they can achieve.

5 Conclusion

Static WCET analysis has the reputation of overestimating WCET, which is not completely
false since it is designed to compute upper bounds on the real WCET. However the size of the
gap between the real and estimated WCETs is unknown (since the real WCET cannot usually
be determined). Comparison of static WCET estimates to measured execution times often
shows large discrepancies but nobody can tell whether the upper bound is too pessimistic or
if the measured execution time was observed under particularly favourable conditions.

WCET’15
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Our objective in this paper was to propose a framework to evaluate the possible overes-
timation of static WCETs. We defined a lower bound on the real WCET (WCET−). This
value can been seen as a complement to the traditional upper bound, WCET+. It represents
an execution time that can be reached, provided all information on infeasible paths and
initial hardware states were known and taken into account at analysis time. The real WCET
is guaranteed to be between the lower and upper bounds. We envision that these information
could be useful not only to increase confidence in the static WCET analysis but also to guide
code optimisations to enhance precision. It could also be used to compare analysis techniques.
Note that any observed execution time that would be greater than WCET− could be used to
tighten the interval in which the real WCET falls, and thus to improve precision.

As future work, we plan to apply the proposed approach to other hardware components in
single- and multi-core architectures. We will also investigate how it can be used to evaluate
the precision of flow analysis techniques.
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Abstract
The advent of multicore processors complicates timing analysis owing to the need to account for
the interference between cores accessing shared resources, which is not always easy to characterize
in a safe and tight way. Solutions have been proposed that take two distinct but complementary
directions: on the one hand, complex analysis techniques have been developed to provide safe
and tight bounds to contention; on the other hand, sophisticated arbitration policies (hardware
or software) have been proposed to limit or control inter-core interference. In this paper we
propose a software-based TDMA-like arbitration of accesses to a shared interconnect (e.g. a
bus) that prevents inter-core interference. A more flexible arbitration scheme is also proposed
to reserve more bandwidth to selected cores while still avoiding contention. A proof-of-concept
implementation on an AURIX TC277TU processor shows that our approach can apply to COTS
processors, thus not relying on dedicated hardware arbiters, while introducing little overhead.
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Embedded Systems

Keywords and phrases multicore, resource arbitration, interference, mixed-criticality
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1 Introduction

An extraordinary growth in the complexity of software systems has occurred in the last decades.
This complexity growth also entailed an increase in the computational demand [6] that could
only be sustained by the adoption of advanced and powerful multicore and manycore systems,
which have become the de-facto reference standard for computing platforms. This unrelenting
transition to multicore systems also involves the application domain of real-time embedded
applications (avionics, automotive, aerospace, etc.), where predictability and analyzability
in the time domain are stringent requirements. The coexistence of multiple applications
running in parallel on distinct cores in the same platform, however, complicates the analysis
of the worst-case execution time (WCET) behavior of programs running on such systems,
due to the inter-core timing interference caused by contention on access to shared hardware
resources. The WCET, in turn, is the main input to schedulability analysis, which is a
mandatory test for real-time systems to guarantee that tasks will meet deadlines at run time.

Notable effort has been devoted in the last few years to analyze the WCET behavior
of systems deployed on modern multicore platforms. Two main research paths have been
followed to cope with the inter-core interference problem [4]. One class of approaches
[17, 5, 8, 14] aims at precisely analyzing the timing interference to provide safe and tight
bounds, to be fed into schedulability analysis as an additive factor. However, besides the
inherent complexity of deriving trustworthy bounds on complex architectures, the worst-case
inter-core interference thereby computed is likely to be too large to be usable. The second
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class of approaches [16, 18, 21, 9] attacks this problem by carefully limiting/controlling the
sources of inter-core interference in the system to make it more analyzable. This can be
achieved by partitioning the shared hardware resources in a system either spatially (physical
partitioning) or temporally (e.g., through a hypervisor or arbitration schemes). Resource
partitioning is particularly interesting when dealing with mixed-criticality systems (MCS)
[20] where the computational power guaranteed by multicore platforms allows hosting on
the same target applications that are classified at different criticality levels, according to the
applicable certification and qualification standard [13]. In the MCS scenario, we need to avoid
high criticality tasks to be interfered by lower criticality ones in a possibly uncontrollable
way.

Time and space partitioning are well-known concepts also in singlecore settings and
are advocated, for example, by the ARINC-653[2] standard to provide isolation across
applications running on the same core. On a multicore architecture, however, interference
not only occurs between tasks running on the same core but can also arise when tasks on
different cores access platform resources (e.g. shared memory, cache), often through a shared
interconnect. Concurrent accesses of different criticality applications to a shared interconnect
may heavily affect the performance of high criticality ones. This performance impact is often
complex to quantify as it depends on the number of applications running in parallel as well as
on the specific hardware arbitration policy employed. A task spending only 10% of its time
fetching shared memory may suffer up to 300% interference on an eight core processor[15].

To mitigate the problem of interference and achieve analyzability, statically arbitrated
interconnects are often used. Time division multiple access (TDMA) policy, amongst other,
allows ruling out inter-core interference by means of temporal isolation [17]. However, the
hardware support provided in Commercial Off The Shelf (COTS) multicores to arbitration
policies, regulating accesses to shared interconnects, is typically oriented to achieve better
average performance rather than system analyzability. Relying on specific hardware-enforced
policies is, therefore, not always possible without recurring to (often unaffordable) custom
hardware solutions. In this paper we propose an approach to the arbitration of hardware
shared resources that relies solely on system software, without posing particular requirements
on the hardware platform. Our solution applies to partitioned multicore systems where inter-
core communication is regulated by the real-time operating system (RTOS). This is the case,
for example, of automotive systems abiding by the OSEK/AUTOSAR[3] standards where a
specific inter-core message-passing API is provided. Our approach consists in deploying a
flexible software-arbitration layer through a specific API implementation, while, of course,
preserving the API semantics. We exploit the inherent flexibility of software approach to
enforce both a pure TDMA arbitration policy and a bandwidth-reservation flavour of TDMA,
which is better equipped to meet mixed-criticality application requirements. We show that
our technique manages to control the interference by construction and provides timing
guarantees for all accesses to the interconnect. We also show that our approach is hardware
agnostic as it can be applied to complex interconnects employing either priority-driven or
round-robin policies (or a combination of the two).

This paper is organized as follows: Section 2 contextualizes our work, Section 3 intro-
duces both the base and bandwidth-reservation versions of our software-based TDMA. An
experimental evaluation is given in Section 4. Finally, Section 5 draws some conclusions.

2 Related Work

The reduction of inter-core interference on shared resources is widely recognized as an enabler
of timing analysis of multicore systems. Both hardware- and software-based solutions have
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been considered as a means to achieve better analyzability without compromising performance.
Shared interconnects, as a main source of inter-core interference, have captured the attention
of the timing analysis community. From the timing analysis standpoint, inter-core interference
is generally studied under the umbrella of Worst-Case Response Time (WCRT) analysis
where the focus is set on using bounds on the inter-core interference in increasingly complex
response time analysis equations. Analysis techniques for several arbitration schemes on
COTS or custom hardware can be found in the literature, based on more or less complex
models, such as arrival curves [17], event models [5] or timed automata[8]. Generally, however,
the more complex the arbiter, the more pessimistic the WCRT bounds.

A classic solution to cope with contention is TDMA, where clients accessing a shared
resource are served according to a fixed-time slots scheme. TDMA is widely used to manage
shared interconnects on the account that it provides guaranteed bandwidth and predictable
latency, regardless of the the number of contenders. Predictability, however, comes at the cost
of a relative reduction in the interconnect utilization. A Round-Robin (RR) scheme can be
used to improve on this aspect of TDMA: time slots are rotated only across active contenders.
In comparison to TDMA, RR guarantees better utilization at the risk of being unfair to
certain contenders, depending on specific access patterns [18]. An alternative approach to
improve utilization consists in using a TDMA-based arbiter that varies core-to-slot allocation
and slot size, and loads the bus schedule from memory[16]. Adaptive resource arbiters, such
as FlexRay [1], have been recently studied in the context of mixed-criticality automotive
software [10]. These arbiters combine static approaches as TDMA with dynamic ones, such
as RR. Tough effective, hardware-based approaches are not generally implementable on
COTS hardware and are inherently less flexible than their software-based counterparts.

Our approach is more related to software-based approaches, which allow abstracting away
from the actual platform, and promise easy reconfigurability in response, for example, to
run-time events. A software-enforced arbitration scheme for mixed-criticality systems is
discussed in [21], where a memory throttling controller with variable budget assignment is
exploited to limit the memory request rate of cores running non-critical tasks. This technique,
however, is quite intrusive as it requires periodic checks of performance counters to monitor
budget consumption. Moreover, critical tasks are only allocated to one processor and the
number of supported interfering cores is limited. Our work, instead, does not pose any
constraint in the assignment of critical tasks, and guarantees timing isolation regardless
of the number of contenders. However, we do not account for all accesses to the shared
interconnect, but only for those caused by inter-task communication. A Time-Triggered and
Synchronisation-based (TTS) scheduling strategy that targets partitioned mixed-criticality
systems with periodic task sets has been recently presented in [9]. TTS isolates tasks at
different criticality levels and accounts for the effect of memory contention on task execution
by relying on synchronization mechanisms (barriers) and fixed preemption points. Scheduling
decisions are global, even though the algorithm enforced partitioning, which may incur
non-negligible overheads [19]. Our approach relies on a relatively simple implementation and
does not assume any specific task scheduling algorithm.

3 Software-enforced Resource Arbitration

It is not unusual for a typical embedded system RTOS to be responsible for inter-task
and inter-core communication. Software specifications as, for instance, ARINC-653[2] and
AUTOSAR [3] offer a communication scheme based on message-passing abstractions: two
tasks are not allowed to share memory, and all communication taking place between them
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must be performed via messages sent through the RTOS API. The RTOS, in fact, exposes
APIs for the creation of different kinds of communication channels (e.g. ports in ARINC-653
and Inter-OS Application Communication IOC buffers in AUTOSAR) and for their use,
according to the respective semantics. The intuition behind our work is that, since the
operating system is the mediator of all communication across applications, then it can also
act as a request arbiter when such communication involves accessing a shared medium. We
extend the RTOS implementation of the message-passing API to enforce a configurable
TDMA arbitration policy: this is done by splitting exchanged messages into chunks and
arbitrate each chunk transfer in TDMA-like time slots. TDMA frame, slots and chunk size
can be configured to better meet the application requirements. To address specific needs
of mixed-criticality systems, a more flexible TDMA-based arbitration is also proposed that
allows reserving more than one communication slot to selected cores. This version of TDMA
enables the provision of better bandwidth levels to cores running high-criticality applications.

The so-enforced software-based TDMA arbitration mechanism (SW-TDMA) has several
advantages. First of all, the combination of message-passing API and TDMA enforces
isolation between tasks running on different cores and makes the effects of bus contention
completely predictable. Moreover, the adoption of software-based arbitrations is transparent
to user applications as the arbitration mechanism is implemented at kernel level and does
not affect either the syntax or the semantics of message passing APIs. Finally, the ability to
reserve more than one arbitration slot to selected cores enables more complex arbitration
policies to be designed without the need for expensive hardware. As an improvement over
system flexibility, bandwidth levels can also change at run time in reaction to specific events or
changes in the mode of operation. In the following we present our approach to enforce flexible
TDMA-based arbitration schemes for inter-core communication on a shared interconnect.
Before entering into details, we introduce our model and notation.

3.1 Assumptions and Model
We consider a multicore processor architecture with n cores {C0, ..., Cn−1}, each one equipped
with its own local memory (e.g. cache and/or scratchpad). Cores also share a global memory
that can be accessed via a simple system bus or more complex interconnects as, for instance,
crossbars. We assume that all cores share a common time source TS. We consider partitioned
systems, where each application is statically assigned to one of the n cores. An application
allocated to core Ci comprises a set of tasks (schedulable on Ci) and is granted exclusive use
of a local memory area, separated from other applications, for storing its code and data.

Communication across tasks is only allowed through the RTOS, which becomes responsible
for all memory transfers. To that extent, the RTOS API exposes a pair of procedures to
read/write data from/to a communication channel shared across tasks:
(i) receive_message: copies a message (sequence of bytes) from a communication channel

to the calling task’s memory;
(ii) send_message: copies a message (sequence of bytes) from the task’s memory to a

communication channel.
Inter-task communication between tasks running on the same core Ci does not follow this
scheme as message channels are stored directly in Ci’s local memory. We assume the
RTOS is able to distinguish between local and global communications in order to avoid
unnecessary arbitrations. It is worth noting that these assumptions on the software stack are
general enough to allow our technique to be used underneath the inter-task communication
mechanisms provided by specifications such as ARINC-653 and AUTOSAR.

In the following we adopt the standard TDMA naming convention. On a TDMA bus
each of the n contenders is assigned a time slot. We use the symbol ss to indicate the
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Table 1 Notation.

fs Size of a frame in clock cycles with respect to T S
ss Size of a slot in clock cycles with respect to T S
cs Size of a chunk: amount of bytes transferred in one slot
ms Size of a message in bytes
fb(ti) Start time of the current frame at time ti

sb(Ci, ti) Start time of the first slot assigned to core Ci following ti

duration of a slot in clock cycles. A set of n time slots is called a frame. Similarly to slots,
we use the symbol fs to indicate the duration of a frame in clock cycles. Inside a frame each
contender is granted a dedicated slot to access the interconnect and transfer data: a chunk
is the largest portion of memory that a task can transfer to/from global memory inside a
TDMA slot when run in isolation. We call cs the size of a chunk expressed in bytes. Since
a conveyed message may consist of several chunks we use ms to address the message size
in bytes. Accordingly, fb(ti) refers to the start time of the current frame at time ti (with
respect to TS) and sb(Ci, ti) refers to the start time of the first available slot to core Ci after
time ti. Table 1 summarizes the notation used in the paper.

3.2 Software-enforced TDMA
The actual operation and efficiency of a SW-TDMA scheme depend on how frame, slot and
chunk size, as defined in the previous section, are configured. We start from defining the size
of a chunk as it affects the other two parameters. On hardware implementations of TDMA,
the value cs and the size of a slot in clock cycles (ss) are part of platform’s design choices
along with other hardware characteristics (e.g. the bus operating frequency). Under these
circumstances, the size of a slot is subject only to physical constraints and is designed so that
the maximum bandwidth is achieved: the smaller possible size that permits the transmission
of exactly cs bytes. On SW-TDMA, however, other sources of overhead have to be taken
into account. The value ss, expressed in clock cycles with respect to the shared time source
TS, must in fact consider (i) the cost of transferring cs bytes to global memory (with no
contenders), and (ii) the cost of arbitrating the request. The exact value of ss can be either
computed via static analysis or derived by means of extensive measurements. Once ss is
known, the size of a frame fs is straightforwardly computed as n · ss. As in standard TDMA,
each core is allocated one slot inside a frame. We call slot[Ci] the slot allocated to core Ci.
As TDMA divides time into frames, in order to select the slot in which each core is allowed
to transfer, the RTOS must be able to identify, at each time ti, the start time of the current
frame. At every time ti the current frame as the frame starting at time fb(ti), where fb(ti)
is such that ti ≥ fb(ti) and ti < fb(ti) + fs. Equation 1 can be used to compute fb(ti).

fb(ti) = fs · (bti/fsc) (1)

It is worth noting that if the size of a frame is a power of 2 (fs = 2bits) the above operation
has a blazingly fast implementation using bit-shifts: fb(ti) = (ti � bits)� bits.

Consider now an inter-core communication request issued by task τj running on core Ci

(either a receive_message or send_message). Since a core is allowed to transfer data only
inside its slot in the frame and since each slot can only hold cs bytes, the RTOS divides the
data into dms/cse chunks of up to cs bytes and operates each chunk transfer separately (see
Figure 1). When a chunk transfer is issued on core Ci, its issuing time treq is captured and
the current frame’s start time fb is derived using Equation 1. To correctly mimic TDMA,

WCET’15



16 Software-enforced Interconnect Arbitration for COTS Multicores
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RTOS

message size (ms)

chunk1 chunkk

chunk1

chunkk

...
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copy chunk
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Figure 1 At the RTOS level, a message is split into k = dms/cse − 1 chunks of size cs and one
chunk of size ms− k · cs. Each chunk transfer will take place inside a TDMA slot assigned to Ci.
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(a) Request fit inside current frame.
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fb(treq) = start of current frame

(b) Request shifted to following frame.

Figure 2 SW-TDMA arbitration examples where a request either (a) arrives before its slot – and
served in the current frame – or (b) misses the corresponding slot in the current frame.

the requested transfer is deferred until the beginning of the next slot assigned to core Ci.
We refer to such time as sb(Ci, treq) and we define it as:

sb(Ci, treq) =
{
fb(treq) + slot[Ci] · ss if treq ≤ fb(treq) + slot[Ci] · ss
fb(treq) + fs+ slot[Ci] · ss otherwise

(2)

If the request arrived before the beginning of the corresponding core’s slot inside the
current frame then sb(Ci, treq) is set to such value. Otherwise, the request missed its slot in
the current frame and has therefore to wait until its slot in the next frame. The meaning of
Equation 2 is graphically represented in Figure 2. Two alternative approaches are possible to
intercept time sb(Ci, treq): we may either poll on a cycle counter until it reaches sb(Ci, treq),
or use a timer interrupt. Polling is simple to implement but requires a time source to be
locally available to each core (no interference in accessing it). The alarm-based solution
avoids polling and works well even if no core-local time source is available but introduces
additional delays due to interrupt handling.

3.3 Bandwidth Reservation TDMA
A more flexible arbitration scheme can be defined on top of the baseline SW-TDMA arbitra-
tion, to provide higher bandwidth guarantees to a selected subset of cores. When standard
TDMA is used, a frame is divided into n slots, where n is the number of contenders (cores,
in our SW-TDMA): to allocate more bandwidth to some of the cores a frame is divided into
m slots, with m > n. Once each core is associated to a slot, the remaining m− n slots can
be used to reserve more bandwidth to selected contenders. Let us call core[j] the core that
has been allocated to the j-th slot, with j ∈ [0,m− 1].
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0

copy chunk

C0

treq

wait until fb(treq) + first·ss

1 02 3 0 1 20 3

fb(treq) = start of current frame

Figure 3 A chunk transfer request is assigned to the first available slot for core C0.

Once a chunk request is issued on core Ci, the request time treq is saved and the start
time of the current frame, fb(treq), is computed following exactly Equation 1. Then, the
starting time sb(Ci, treq) of the first slot at which core Ci is allowed to transfer data must
be selected similarly to the basic TDMA case, with the only difference that more than one
slot may be allocated to the same core within a given frame. This difference is reported in
Equation 3 where the term first stands for the first slot granted to core Ci.

sb(Ci, treq) =

fb(treq) + first · ss if ∃first | first = min
j∈[0,m−1]

{
core[j]=Ci ∧

treq≤fb(treq)+j·ss

}
fb(treq) + fs + first · ss otherwise (first = min

j∈[0,m−1]
core[j] = Ci)

(3)

Figure 3 illustrates the first case of Equation 3: a slot first allocated to Ci exists in the
current frame and its start time follows treq. Otherwise, the message transfer is deferred to
the Ci’s first allocated slot in the next frame.

It is worth noting that the bandwidth-reservation SW-TDMA scheme can also support
run-time changes of the slot allocation policy. The RTOS, in fact, might decide to do so in
reaction to certain events or changes in the operational mode.

4 Proof-of-Concept Evaluation

We now evaluate how well our software-based arbitration scheme is able to enforce TDMA
arbitration via software on top of interconnects employing different hardware arbitrations (e.g.
round-robin). We want to demonstrate that our SW-TDMA suffers no variable interference
depending on the number of contenders. Finally, we want to prove that bandwidth reservation
TDMA can be used to provide different bandwidth guarantees to different cores. We
developed a proof of concept implementation of our approach on a realistic scenario within
the automotive application domain, where silicon vendors already provide multicore solutions
[11] and the AUTOSAR standard advocates partitioned multicore RTOS[3]. We run our
experiments on an Infineon AURIX TC277TU [12] equipped with three TriCore CPUs.
Each core has local data and instruction scratchpads. The TC277TU comes with a Shared
Resource Interconnection (SRI), a crossbar that connects all cores to the Local Memory
Unit (LMU) and to the Program Memory Unit (PMU). The LMU controls a shared 32KB
SRAM while the PMU controls three banks of flash memory. The SRI crossbar implements
both priority-driven and round robin arbitrations. Priority levels from 0 to 7 are provided.
Only levels 2 and 5 can be assigned to more than one core, arbitrated according to standard
round-robin policy. In our experimental setup all cores are in the same round-robin group. In
addition, the crossbar employs separate hardware channels for each slave resource connected
to it. That is, different SW-TDMA arbitrations can be implemented on each crossbar’s slave.
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(a) Standard SRI hardware arbitration.
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(b) SW-TDMA with 1024-cycles frames
and 32-bytes chunks.
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(c) SW-TDMA with 1024-cycles frames
and 48-bytes chunks.
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(d) Bandwidth-reservation SW-TDMA
with 1024-cycles frames of 4 slots (2

allocated to CPU0) and 32-bytes chunks.

Figure 4 Execution times in clock cycles (100MHz) for message send primitives with messages of
size 128 and 512 bytes. Figures 4a, 4b and 4c report the cost for sending a message in isolation or
with one or two contenders respectively; min and max are the absolute values observed on any of
the cores. In Figure 4d all cores run a task sending messages, min and max values are per-core.

Our SW-TDMA arbitration has been implemented in ERIKA Enterprise [7], an OS-
EK/VDX compliant RTOS. Test applications are developed on top of ERIKA and make
use of a user-level library implementing the AUTOSAR IOC communication layer. Tasks’
data and instructions are placed on cores scratchpads while IOC buffers are located inside
the shared SRAM. Test applications are designed to measure the cost of sending messages
of different sizes under different workloads: a single task runs on each core and all three
tasks send messages of the same size to different buffers (no mutual exclusion across tasks is
required). Tasks share the same period and are synchronized through a barrier so that to
produce maximum interference. Measurements are collected via the on-core cycle counter
running at 100MHz and are stored in the scratchpad (low latency tracing with no contention).
As a first experiment, we evaluated the cost of accessing the SRAM through the crossbar
as-is, with no modification. Results observed for sending messages of 128 and 512 bytes are
reported in Figure 4a. The cost of sending a message evidently grows with the number of
contenders. We witnessed an increase of 27% and 22% in the maximum observed execution
time (MOET) when two tasks try sending a message (of 128 and 512 bytes respectively)
at the same time, with respect to performing the same activity in isolation. Adding one
more contender causes the MOET to become 93% and 86% bigger than in isolation, for
messages of 128 and 512 bytes. This non-linear growth of interference can be explained by
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the very structure of the SRI. The AURIX crossbar, in fact, divides a transaction into two
phases:
(i) a request phase where the address is sent and the request is arbitrated, and
(ii) a data phase where actual data is transmitted.
No more than one request can be arbitrated at a time, however, data and request phases of
different transactions can be pipelined. This also explains why the MOET is only ∼ 90%
higher when all the cores access the crossbar. Different access patters, however, may cause
more interference to occur.

In Figure 4b we report the execution times observed when sending messages of 128 and
512 bytes under SW-TDMA, with frames of 1024 clock cycles and chunks of 32 bytes. The
graph shows that the cost for sending a message does not depend any more on the number of
contenders, which is exactly what we were after. It is worth understanding which portion of
a slot is wasted to take software arbitration decisions. Under the above configuration a slot
is approximately 342 clock cycles. By means of extensive measurements, we observed that
a core in isolation is capable of transferring up to 57 bytes in 342 clock cycles. Therefore,
if software arbitration with chunks of 32 bytes is employed, the throughput of a core is
reduced by a 44%. In Figure 4c, however, we show that throughput can be enhanced while
maintaining isolation across cores. The graph reports a different configuration in which
frames are still of 1024 clock cycles but chunks are now of 48 bytes. The cost of sending a
message is still constant irrespective of the number of contenders while the throughput is
increased and execution times decreased. Under this configuration SW-TDMA reduces the
throughput of a core in a slot only by a 16%. As expected, when comparing our approach to
the original SRI crossbar we notice that the average cost of sending a message is increased
by almost 80%, for messages of 128 bytes. The magnitude of this result is explained by the
fact that the AURIX SRI crossbar also allows some degree of pipelining. A fair comparison
would require to evaluate our SW-TDMA against pure TDMA or RR interconnects with
no splitting. In particular, the results obtained for SW-TDMA are extremely near to the
theoretical performance offered by hardware TDMA. From the mixed-criticality standpoint,
SW-TDMA caters for isolation among criticality levels, regardless of bus access patterns.

The results we observed on bandwidth-reservation TDMA are shown in Figure 4d. The
frame is again set to 1024 cycles but divided into 4 slots for chunks of 32 bytes. Slot 0 and
slot 2 are both allocated to core 0. Results show that, as expected, sending a message on
core 1 and core 2 costs exactly as in Figure 4b where a frame of 1024 was divided into 3 slots
each for a chunk of 32 bytes. Core 0 instead executes twice as fast, as it is granted two slots.
Our evaluation highlights that bandwidth-reservation SW-TDMA allows assigning larger
portions of the shared interconnect to a selection of cores while still preserving isolation, in
keeping with mixed-criticality requirements.

5 Conclusion

In this paper we propose a solution to enforce isolation among cores accessing shared resources
that does not rely on the availability of specific hardware. SW-TDMA is particularly
interesting in the context of mixed-criticality applications where critical tasks must not be
interfered by lower criticality tasks. We provided experimental evidence that SW-TDMA
ensures isolation while introducing only a 16% throughput drop due to software arbitration.
A more flexible scheme, named bandwidth reservation TDMA, has been also introduced
and evaluated. The latter technique provides selected cores with more bandwidth without
affecting isolation and is much suited to guarantee a better quality of service to critical
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tasks. As future work we plan to investigate more complex schemes as, for instance, random
permutation. We also plan to further reduce the overhead introduced by software arbitration.
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Abstract
Accurately estimating the worst-case execution time (WCET) of real-time event-driven software is
crucial. For example, NASA’s study of unintended acceleration in Toyota vehicles highlights poor
support in timing analysis for event-driven code, which could put human life in danger. WCET
occurs during the longest possible execution path in a program. Static analysis produces safe
but overestimated measurements. Dynamic analysis, on other hand, measures actual execution
times of code under a test suite. Its performance depends on the branch coverage, which itself
is sensitive to scheduling of events. Thus dynamic analysis often underestimates the WCET. We
present a new dynamic approach called event-driven directed testing. Our approach combines
aspects of prior random-testing techniques devised for event-driven code with the directed testing
method applied to sequential code. The aim is to come up with complex event sequences and
choices of parameters for individual events that might result in execution times closer to the
true WCET. Our experiments show that, compared to random testing, genetic algorithms, and
traditional directed testing, we achieve significantly better branch coverage and longer WCET.
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1 Introduction

Real-time event-driven systems have become ubiquitous, from high performance servers to
smart devices. The correctness of such systems becomes of utmost importance when human
safety is concerned. Testing and analyzing real-time event-driven programs is notoriously hard,
mainly due to the non-linear control flow in the execution of event handlers. Dependencies
are complicated to track in event-driven code, leading to subtle bugs that can go unnoticed
with traditional event-driven testing. For example, since 2002 more than 89 people have
been killed and 60 injured, due to the unintended acceleration of Toyota cars, which has
made the corporation recall more than 1 million cars due to safety issues. The 2011 NASA
study of unintended acceleration in Toyota vehicles [12] highlights poor support in timing
analysis for event driven code as a contributor to the safety holes.

Thus a precise calculation of the worst-case execution time (WCET) of real-time event-
driven software is crucial. WCET is a much studied problem for event-driven software. For
time-critical embedded systems, designers must avoid excessive over-provisioning of task
deadlines, because it wastes processor’s availability that could otherwise be used for other
functions. Designers shall also avoid under-provisioning as it can undermine the validity of
the computation or lead to partial or complete loss of functionality.

The exact WCET in a program happens during the longest possible execution path
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among all processes.1 In an event-driven code events can be fired at arbitrary times and
a scheduler may interrupt the execution of one event handler to yield to another new or
unfinished event handler. The choice of scheduling for the execution of handler codes affects
the executed paths, since there can be shared state and exclusivity requirements among
events. Thus WCET can only be precisely computed by checking the execution times of
all possible execution paths over every possible schedule for the execution of every possible
combination of triggered event handlers.

Static analysis can find an upper-bound on the true WCET [18] without executing the
program, yet it is necessarily conservative and can be difficult or currently impossible to
perform on arbitrary code. Dynamic approaches [18], on the other hand, are easier to perform
since they measure a program’s WCET by executing it on a test suite and tracking the
longest execution time. Thus the accuracy of dynamic WCET calculation depends on the
percentage of all possible execution paths covered. A straightforward way to estimate a
program’s WCET is to sum up the WCET calculations of individual handlers when executed
in isolation. Yet this estimate will necessarily be conservative and an upper-bound for the
true WCET. This is because the WCET of one event may not occur on conditions that
would cause the WCET of another event due to intra-dependencies among event handlers.
The tested WCET is a lower-bound on the true WCET that occurs during some run of the
program. In slogan form:

tested WCET ≤ true WCET ≤ static WCET

Therefore the success of a dynamic approach is closely tied to the branch coverage of the
test suite used. Building a test suite with high coverage is a known challenge, and is even
harder for event-driven software. Not only a tester must choose appropriate inputs to guide
the execution to unexplored paths, she must devise a suite of event sequences (schedule of
events fired) that dictate the execution context switches between concurrent processes. For
creating an event sequence, a tester must decide on the number of events, the types of events,
the argument values for each event, as well as a concrete timing schedule for the interrupts.

Previous work on testing event-driven software uses event sequences that are generated
randomly [2] or by genetic algorithms [1]. In the domain of sequential software, the idea of
directed testing with concolic execution (hybrid concrete and symbolic) has been receiving
much attention in both research and practice. The idea is to execute the code concretely to
explore one possible execution path, yet simultaneously employ symbolic execution to collect
path constraints from each condition on the control-flow. Those constraints will be modified
and solved iteratively, in order to find input values for subsequent runs, aiming to force
the execution to unseen paths and increase the coverage. However, we showed previously
[4, 5] that using the classical directed testing on concurrent and event-driven programming
paradigms is not as successful, because the scheduling of concurrent processes is a factor.

The challenge. Improve the accuracy of WCET measurement of dynamic test-based ap-
proaches by devising a method that achieves higher branch coverages.

Our approach. We present a new technique called event-based directed testing for testing
of event-driven software. Our technique combines good features of random testing of event-
driven software with the idea of directed testing for sequential code. Similar to directed

1 ignoring per-statement execution time which depends on the underlying machine architecture.
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testing, after each round of concolic execution we generate a new scenario for further testing.
Unlike directed testing where the scenario is uniquely described by input values, here we
need to generate an event sequence. An event sequence not only provides input values for
individual events, it provides a scheduling for the set of events that execute concurrently.

We have implemented our technique in an existing tool called VICE [4]. This approach,
implemented by VICE, was previously used for maximum stack size analysis, and we have
augmented it to automatically test event-driven software without a human in the loop. Our
experiments show that compared to random testing, genetic algorithms, and traditional
directed testing, we achieve significantly better branch coverage, and subsequently longer
WCET. For 8 out of 11 benchmarks, we achieve more than 70% branch coverage. Compare
to random testing, genetic algorithm, and traditional directed testing we improve WCET by
203%, 176% , and 97%, respectively.

The rest of this paper. In the next section we illustrate our approach via an example. in
Sec. 3 we formalize our approach, and in Sec. 4 we show our experimental results.

2 Example

We now explain our approach through an example program shown in Listing 1—a simplified
version of our antenna benchmark. There are two event handlers: main and alt. The program
has three if-statements, hence six branches. The aim is to estimate the WCET for the entire
program, represented by the main event, under a bounded number of possible interrupts.

An event sequence of a bounded length (here we pick four) is used to impose a particular
scheduling of interrupts that occur during the execution of main. Each event in the sequence is
a 4-tuple 〈id, name, args, timeout〉. Each named event must be fired with the given arguments
and maximum allotted time specified by the timeout value. If the identifier is seen before,
this means rather to resume the execution of an earlier interrupt. Whether the event handler
is finished or interrupted by the scheduler due to a timeout, the scheduler proceeds to fire
the next event in the sequence. Once the sequence is finished, the scheduler is left alone to
let all unfinished interrupts run their course one by one. Our objective is to produce new
sequences that will lead us to new paths in search of longer execution times.

Testing proceeds in rounds. In each round we choose a new event sequence to execute.
For each tuple, we pick randomly either a new or old identifier, and, in the former case, the
name of the event. We use concolic execution to determine the arguments. It is possible to
generate invalid sequences, since the interrupt mask register follows interrupt rules (e.g., a
handler cannot interrupt itself), in which case we move onto the next round. During the
execution of each round, we monitor the branch coverage so far, as well the execution time
of the main interrupt, which will be used to determine the WCET thus far.

Round one. In the first round, the arguments too are chosen randomly so we might begin
with this event sequence (we omit the timeouts and show names and ids together):

[〈main, (723452)〉, 〈alt1, (−10038)〉, 〈main,_〉, 〈alt1,_〉]

The concolic execution will fire the first event. main’s execution continues with calling
dispatch_data in line 4 and we collect the constraint data1 = msg, which maps the actual
parameter (line 4) to the formal (line 6). We use data1 to represent the symbolic value of
data_1, and likewise for msg and msg. main’s execution reaches the second if-statement of
line 9. Assuming only arithmetic equations from conditionals are collected as constraints,
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Listing 1 Example program.
1 program Sample { entrypoint main = antenna .main , alt = antenna .alt; }
2 component test_antenna {
3 field sending :bool = false ;
4 method main( data_1 :int ): void { dispatch_data ( data_1 ); // code ... }
5 method alt( data_2 :int ): void { dispatch_data ( data_2 ); }
6 method dispatch_data (msg:int ): void {
7 local res:int , tmp:int = random (100)
8 if ( sending ) return ; else sending = true;
9 if ( -2048 < msg && msg < 1024) res = check_and_send (msg ,tmp );

10 sending = false ;
11 return ;
12 }
13 method check_and_send (s:int , t:int ): int {
14 if (s ==512)
15 return 1;
16 // send ...
17 return 0;
18 }
19 }

we proceed to collect −2048 < msg ∧msg < 1024 at line 9. Since msg ’s concrete value is
723452, the conditional evaluates to false. Let us assume this handler gets interrupted before
resetting the sending flag. alt1 is launched now, which proceeds to calling dispatch_data,
and the constraint data2 = msg is collected. The alt1 event terminates early at line 8, due
the sending flag being set. main now resumes and runs to completion. The fourth event in
the sequence is skipped since alt1 is already terminated. During the first round, the path (of
statements visited in all handlers) and the elapsed time for the execution are recorded. The
branch coverage was 50% (two false branches and one true branch out of six). The execution
never reached any farther than line 12.

After the completion of the first round, a new sequence of event ids and names is generated
randomly. Each event in the sequence will be paired with argument values obtained by
solving for all three constraints that we collected above. For example, for the next round we
may produce the event sequence:

[〈main, (−338)〉, 〈alt1, (1001)〉, 〈alt2, (6)〉, 〈main,_〉]

where the solution set for the first element was data1 = data2 = msg = −338, and so on.

Round two. This time main’s execution takes the true branch in line 9 and goes on to invoke
the check_and_send routine. Consequently we collect new constraints msg = s∧ tmp = t. Let’s
assume at this point main’s handler times out. The second and third handlers—alt1 and
alt2—will run and terminate early one at a time, again due to boolean flag. The last event
in the sequence is main, which resumes in the body of check_and_send. It encounters a new
constraint at line 14: s = 512, which evaluates to false on the current argument value. The
handler runs more code at line 16 and finishes. At this round, a longer execution is found
due to a better branch coverage, when the handler’s execution reached into deeper parts of
the program. The total branch coverage over the first two rounds is 83% (5 / 6).

Round three. Suppose in the third round we use the same sequence as before, yet timeouts
are set differently, so that both main and alt1 handlers proceed to invoke the routine and
terminate at line 12. We note that while branch coverage wasn’t improved, a longer WCET so
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far was measured. Upon the completion of the execution of this round all collected constraints
are sent to the constraint solver to generate arguments for each event in a new sequence,
getting the solution data1 = data2 = msg = s = 512. Thus, the new event sequence for the
next round might be:

[〈main, (512)〉, 〈alt1, (512)〉, 〈main,_〉, 〈alt1,_〉]

Round four. In the fourth round, let us assume main’s timeout is small and it quickly gets
interrupted by alt1, after executing the first statement. alt1’s handlers proceeds to calling
check_and_send and this time will take the true branch of the if-statement. Again, before
resetting the sending flag, the execution may yield back to main which will terminate early
at line 8. During this round, we achieved 100% coverage, yet we observe that the longest
execution hence the largest WCET so far occurred during the previous round.

More rounds. New rounds will be carried out until we measure no improvement in both
WCET and the branch coverage. At this point, the algorithm terminates.

Discussion. The example illustrates several strengths of our approach. First, the combined
monitoring of WCET and branch coverage as the terminating condition for the algorithm
leads to a more accurate estimate of WCET, as opposed to relying on one of them only.
Second, the combination of a randomly chosen sequence of interrupts, with arguments for
each obtained by constraint solving leads to the exploration of a diverse set of control-flow
paths. For example, the chance of reaching line 15 with input sequences generated randomly
or by genetic algorithms is very small. Third, we get good branch coverage with a fairly
short number of event sequences, each with a small length, as a direct benefit of directed
testing method. In our example, a length of two would have sufficed.

3 Approach

Each tested program is a V irgilProgram (see http://compilers.cs.ucla.edu/virgil);
we compile each to machineCode, that is, AVR assembly code. A key input to each execution
is an eventSequence—a list of tuples—where each tuple consists of an event-handler name
(an identifier), a unique ID for each call to a handler (an int), a list of event argument values
(as ints), and a timeout—the maximum time given for the execution of the event—measured
in milliseconds. Each of our constraints is a Virgil arithmetic or logical expression, and a
solution maps each relevant program variable (identifier) to an int, or is otherwise None.
Our approach uses a data structure of type state that is a tuple of five values. If s is of
type state, the first component (s.wcet) is the WCET found so far. The second (s.coverage)
is the highest branch coverage found so far. The third (s.eventSeq) is the event sequence
that led to WCET, and the fourth (s.constraints) the collected constraints during such
pass. Finally the fifth component (s.noChange) is the number of consecutive rounds without
improvements to either the WCET or branch coverage.

Tools. Our approach uses 7 tools, whose types are shown in Fig. 1: Compiler is an
open-source Virgil compiler [16] that generates AVR machine-code. The tool avrora is an
open-source simulator for AVR machine code [17]. The tool random takes no inputs and
produces a random event sequence. The tool timeoutCombos takes an event sequence with
undefined timeouts and duplicates the sequence for all possible combinations of timeout
values for each event in the sequence. The tool concolic is a concolic execution engine for
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compiler : V irgilP rogram→ machineCode

avrora : machineCode× eventSequence→ wcet

random : ()→ eventSequence

timeoutCombos : eventSequence→ (eventSequence list)
concolic : (V irgilP rogram× eventSequence)→ (wcet× branchCoverage× constraints)
solver : constraints→ solution

generator : solution→ eventSequence

Figure 1 VICE tools.

Input: p: VirgilProgram
Output: wcet × branchCoverage × eventSequence
Local: a: machineCode = compiler(p), s: state = (0, 0.0, ( ), 0) , roundId: int = 0

seqs: eventSequence = timeoutCombos(random())
Method: while (s.noChange < 2) {

foreach (seq in seqs) {
let (wcet, bc, c) = concolic(p, seq) in
s = update(s, wcet, bc, c, roundId)

}
roundId++
seqs = timeoutCombos(generator(solver(s.constraints)))

}
return (s.wcet, s.coverage, s.eventSeq)

Figure 2 Event-based directed testing (EBDT) algorithm.

Virgil that takes a Virgil program and an event sequence. Concolic will run avrora to fire
the events from the event sequence with the given set of timeout choices. The result of a run
of concolic is a measurement of WCET, of the branch coverage achieved, plus a collection of
constraints. Solver is a constraint solver used for the directed-testing approach. The tool
generator takes a mapping of variable names to values and generates an event sequence.

Event-Based Directed Testing. Fig. 2 lists our algorithm. We compile each Virgil program
to AVR assembly code. The algorithm starts from a randomly generated event sequence, and
generates all combinations of timeout choices (sweeping a range) to produce a list of event
sequences. For each sequence (which now has a particular choice for timeouts), it executes
concolic on the Virgil program to get new values for the branch coverage, new constraints,
as well as WCET on the assembly code by running avrora. The solver and generator will
convert the constraints into a new event sequence to be used in the next round. After each
run, we invoke an update function (omitted for brevity) which updates the state variable s

to reflect the latest information of the WCET, branch coverage, and path constraints that
led to WCET, found so far. We also update s.noChange to reflect how many recent unique
rounds with no change to either WCET or the branch overage have occurred. This is used
as the terminating condition for the algorithm.

4 Experimental Results

We compare EBDT to random testing, genetic algorithms, and traditional directed testing.
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4.1 Methodology

To have fair comparisons, we implemented random testing, a genetic algorithm, and traditional
directed testing for Virgil. Our implementation of event-based directed testing—VICE2—is
written in Java. We used an existing Virgil interpreter as the basis for our concolic execution
engine, which tracks symbolic expressions alongside concrete values. For constraint solving,
we use the open-source solver Choco [13]. We implemented the genetic algorithm on top
of the Java genetic algorithm package (JGAP). In order to perform traditional directed
testing with VICE, we ran our algorithm on each event in isolation and summed up the
individual WCET estimates. For timeout values, we exhaustively sweep a range from the
smallest allowed interval between context switches (measured 8 ms, empirically) up to the
full execution time of the event handler when run without any interruptions.

4.2 Benchmarks

The following table shows some statistics about our eleven benchmarks that test device
drivers for Berkeley Motes, including the Virgil and translated C lines of code counts. The C
code is compiled into AVR assembly. The table also shows the number of event handlers.

Benchmark LOC LOC #handlers Description
(Virgil) (C)

BinaryTree 114 167 1 a simple (unbalanced) binary tree
LinkedList 124 181 1 a simple doubly-linked list
BubbleSort 55 519 3 the common but slow bubblesort algorithm
Decoder 772 1015 3 decode instructions and other binary data
Oscilloscope 920 1338 11 a visualizer for sensor readings
Fannkuch 422 605 3 measures impact of compiler optimizations on runtime

performance.
MsgKernel 773 1519 2 adaptation of the core message-passing mechanism from

SOS operating system
TestRadio 1695 2833 6 tests the functionality of the Radio (wireless signal) driver.
TestUSART 1,226 1,737 5 tests the Universal Synchronous Asynchronous Receiver

Transmitter driver.
TestSPI 859 1,109 3 tests the Serial Peripheral Interface driver.
TestADC 605 1,055 4 tests the Analog to Digital Converter driver.

4.3 Measurements

We performed our experiments on a 2.3 GHz Intel Core i7 iMac, with Sun Java2 SDK 1.5.
All time measurements are in milliseconds. We used event sequences with 100 events for all
experiments, except for traditional directed testing where each event sequence consists of
a single event. In runs of the genetic algorithm, each generation has 500 event sequences.
The genetic algorithm stops after two generations result in no improvement to the branch
coverage or the WCET. We use the same number of event sequences for random testing
and the genetic algorithm, for a fair comparison. Tab. 1 compares the results of EBDT and
existing solutions, while Tab. 2 lists the timing of the runs. We also report the WCET found
by Avrora’s static deadline analyzer.

2 VICE source with all benchmarks can be found at https://github.com/Mah-D/VICE.
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Table 1 Experimental results: EBDT, plus static WCET.

Random GA DSE VICE Static
Benchmark #ES WCET BC #ES WCET BC #ES WCET BC #ES WCET BC WCET
BinaryTree 2000 14 26% 2000 15 41% 55 24 45% 1 25 45% 118
LinkedList 2000 20 29% 2000 20 48% 70 30 55% 1 30 55% 91
BubbleSort 1500 8 22% 1500 8 30% 13 13 43% 104 69 80% 153
Decoder 7000 21 20% 7000 24 34% 194 29 50% 499 62 73% 88
Oscilloscope 17500 39 7% 175000 47 19% 502 61 39% 1019 90 65% 555
Fannkuch 9000 15 18% 9000 19 29% 322 27 51% 717 81 76% 304
MsgKernel 7000 38 26% 7000 48 52% 172 50 63% 315 82 92% 218
TestRadio 11500 44 13% 11500 51 28% 249 63 40% 293 74 63% 323
TestUSART 8500 53 28% 8500 66 52% 279 73 72% 411 94 100% 176
TestSPI 9500 25 35% 9500 28 31% 44 37 43% 107 39 51% 401
TestADC 7000 14 33% 7000 22 65% 18 30 58% 336 41 97% 102

Table 2 Testing time: EBDT testing.

Benchmark Random Genetic DSE VICE Benchmark Random Genetic DSE VICE
BinaryTree 8220 4187 40 2079 MsgKernel 7341 5710 48 1463
LinkedList 12641 8347 55 3753 TestRadio 6291 22080 40 928
BubbleSort 463 219 13 176 TestUSART 7812 4189 33 314
Decoder 10686 9118 64 2325 TestSPI 14432 11729 19 3271
Oscilloscope 41785 15959 66 7295 TestADC 6803 2460 11 893
Fannkuch 16804 12012 37 2104

4.4 Assessment

WCET. Results are shown in Tab. 1. VICE found the longest WCET across random
testing, genetic algorithm, and the traditional single event directed testing(DSE). Compare
to random testing, genetic algorithm, and traditional directed testing VICE improves WCET
by 203%, 176% , and 97%, respectively. Big differences are seen in BubbleSort and Fannkuch
because of several nested conditional structures of these benchmarks. VICE’s estimates were
closest to the static (over-estimate) computation of WCETs in all benchmarks. None of the
other testing approaches come close to match VICE’s results consistently.

Branch coverage (BC). Tab. 1 also illustrates branch coverage results. For all benchmarks
VICE gives the best result. For one benchmarks VICE gives 100% branch coverage, and in
seven others VICE covered more than 70% of branches. BinaryTree shows the lowest coverage.
This benchmark has numerous non-numeric conditionals which VICE cannot currently handle.
None of the other approaches come close to match VICE’s results consistently.

Number of event sequences (#ES). VICE achieves its results with significantly fewer
event sequences than random testing and the genetic algorithm. For two benchmarks, the
difference is about 4X, while for nine benchmarks, the difference is more than 10X. In
contrast, VICE uses about 3X more event sequences on average than traditional directed
testing with a single event per event sequence. These results show that VICE achieves good
results with a fairly low number of event sequences.
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Testing time. In almost all cases, VICE is significantly faster than random testing and the
genetic algorithm, and slower than DSE.

The constraint solver. We found that CHOCO does a good job with number types while
has poor support for other types and operations, e.g., array and bit operations, user types.
Therefore, path constraints that aren’t boolean or arithmetic were not collected by our
concolic tool, hurting the branch coverage and subsequently WCET estimates.

Single event versus VICE. Traditional directed testing can be employed for finding WCET,
by computing WCETs for each event in isolation and adding them as the total WCET of
the program. Yet result are inaccurate and overly conservative. The conditions that result
in WCET of individual event handlers may be impossible to have at the same time, since
handlers can interrupt each other and interact indirectly via shared state. Our choice of
event sequences of length 100 was chosen based on experience with the benchmarks. The
more event handlers we have, the longer event sequences are needed for good testing. Finding
suitable lengths of event sequences for each application is a subject of future work.

5 Related Work

In Sec. 4, we mentioned four event sequence generation techniques for WCET analysis:
random technique [2], genetic algorithm [1], traditional directed testing [15, 7], and static
analysis [3]. Here we highlight some of the notable techniques and tools in the area of WCET.

Static techniques examine the source code without running it and return an upper-bound
for the true WCET. Different static techniques have been used to find WCET. aiT WCET [6],
Bound-T [11], and SWEET [8] use value analysis, in which register and memory values
are approximated, without running the program, at every program point. The results are
necessarily conservative. For example, they perform poorly when loop structures are present.
Control-flow analysis can be used (e.g., [9]) to determine possible execution paths, which
aids WCET calculation. In control-flow analysis a superset of all execution paths is created
with a control-flow graph. An input range and tasks will be passed as an input to the CFG,
and the worst timing is computed. Performing control-flow analysis on source code is simpler
than on machine code. However, compilation, code optimization, and linkage may change
program control flow and make the analysis cumbersome. Processor-behavior analysis, where
exact behaviors of a processor, as in memory accesses, caching, and pipelining, are mimicked,
is employed by [10] for WCET calculation. In practice these tools’ calculations related to the
processor, memory hierarchies, buses, and peripherals are all approximates and thus their
timing results are conservative.

Dynamic techniques , in which the program is executed, have been discussed in the previous
section. These use a variety of ways to generate inputs, e.g., random and probabilistic
techniques [2], genetic algorithms [1], or other heuristics [14]. The closest work to ours is
pathcrawler [19], which is very similar to the single event traditional directed testing.

6 Conclusion

Testing of event-driven software is difficult because of the need for event sequences rather
than single inputs. We have shown that a combination of random testing and directed
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testing can be used to automatically produce effective event sequences that are challenging
to produce manually. We presented our approach—event-driven directed testing—as a major
improvement over traditional directed testing, which also generally produces better results
than random testing and genetic algorithms.

There are many opportunities for future work. More general classes of path constraints
need to be supported. Constraint solving may also be useful for both generating schedules (we
currently use randomly generated sequences), as well as effectively finding suitable interrupt
timeout values. These improvements will make coverage and WCET estimates more accurate,
while reducing analysis times.
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Abstract
The fact that many benchmarks for evaluating worst-case execution time (WCET) analysis tools
are based on real-world applications greatly increases the value of their results. However, at the
same time, the complexity of these programs makes it difficult, sometimes even impossible, to
obtain all corresponding flow facts (i.e., loop bounds, infeasible paths, and input values triggering
the WCET), which are essential for a comprehensive evaluation. In this paper, we address this
problem by presenting GenE, a benchmark generator that in addition to source code also provides
the flow facts of the benchmarks created. To generate a new benchmark, the tool combines
code patterns that are commonly found in real-time applications and are challenging for WCET
analyzers. By keeping track of how patterns are put together, GenE is able to determine the
flow facts of the resulting benchmark based on the known flow facts of the patterns used. Using
this information, it is straightforward to synthesize the accurate WCET, which can then serve
as a baseline for the evaluation of WCET analyzers.
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1 Introduction

Benchmarks such as Mälardalen [11], DEBIE-1 [13], or PapaBench [19] play an important
role in the evaluation of WCET analyzers as they allow to assess the individual strengths
and weaknesses of different tools, for example, in the context of the WCET Tool Challenge.
If the focus of such an evaluation lies on the comparison of two or more WCET analyzers,
having the source code and/or binaries of a benchmark available is usually sufficient to
achieve meaningful results. However, for a comprehensive investigation, additional questions
about the properties of the program under test need to be answered in order to be able to
objectively assess the quality of a particular WCET analyzer:
1. What are the loop bounds?
2. What are the feasible paths?
3. What are the recursion depths?
4. What are the concrete input values triggering the WCET?

Throughout this paper, we refer to such information as the flow facts of a benchmark.
Their significance stems from the fact that flow facts can serve as an absolute baseline for
the validation of WCET-analyzer results, thereby enabling evaluations that go beyond the
relative comparison of multiple tools. Note that depending on the analysis approach used,
some flow facts are more important than others: while loop bounds, feasible paths, and
recursion depths are especially relevant in the context of a static timing analysis, having
available concrete input values triggering the WCET, for example, is of major importance for
measurement-based timing analysis. With knowledge about the concrete worst-case input
values, which also take hardware features (e.g., caching) into account, the actual WCET of a
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benchmark can be determined by concretely executing it on a cycle-accurate simulator or on
the specific target platform while measuring its execution time.

Unfortunately, extracting all possible flow facts from existing benchmarks is inherently
difficult, in some cases even impossible: From a theoretical point of view, non-trivial properties
of program code are not automatically decidable [22]. This applies also to existing benchmark
suites [11, 13, 19] written in high-level programming languages.

Knowledge about all existing flow facts requires knowledge about all existing program
paths, which makes it necessary to explicitly enumerate these paths. Such an explicit path
enumeration is infeasible for most real-world programs due to the myriad of possible paths [17].
Furthermore, manually determining all possible flow facts of programs is labor-intensive and
error-prone [3].

In this paper, we address the problem of determining flow facts for WCET benchmarks
by presenting GenE1, a tool that provides both WCET benchmarks as well as their flow
facts. GenE is able to achieve this, because instead of analyzing existing programs, the tool
generates new benchmarks by relying on small building blocks (for which the flow facts are
known) and combining them in a way that allows the tool to automatically determine the
flow facts of the resulting complex benchmark. In order to create realistic benchmarks, the
building blocks used by GenE are typical design and implementation patterns that have
been extracted from existing real-world applications and WCET benchmark suites.

In particular, the contributions of this paper are:
GenE, a tool to automatically generate benchmarks, enabling users to conduct compre-
hensive evaluations of WCET analyzers.
An algorithm to create complex WCET benchmarks from program patterns that allows
to keep track of flow facts.
A discussion of how the flow facts provided by GenE can be used to determine the
WCET of a generated benchmark for both static and measurement-based timing analysis.

The remainder of this paper is structured as follows: Section 2 discusses a number of
general principles by which the evaluation of a WCET analyzer should be guided. Section 3
presents details of GenE and explains how our tool enables users to meet these principles.
Section 4 provides an overview of related work, and Section 5 concludes and gives an outlook
on future work.

2 A Vision for the Comprehensive Evaluation of WCET Analyzers

Conducting a comprehensive evaluation of WCET analyzers is a challenging task. In the
following, we identify a number of requirements that are crucial in this context and discuss
whether, and if so to which extent, they are met by existing approaches.

Large Number of Benchmarks. In order to get stable and comparable results, WCET
analyzers should be evaluated using a large set of different benchmarks. This minimizes the
risk that a few poorly-selected benchmarks lead to false conclusions.

In practice, the evaluation of WCET analyzers is usually performed based on an existing
benchmark suite [11, 12, 19, 20] or a set of manually-selected programs. As a consequence,
the number of benchmarks used typically ranges between one and around twenty. While this
may be sufficient for some use cases, in general it is desirable to have a greater number of

1 The name GenE originates from the term genie and the idea of Generating Evaluation sets.
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benchmarks. Considering the effort it takes to select/implement a benchmark, we argue that
this goal can only be achieved by generating benchmarks automatically.

Realistic Benchmarks. WCET analyzers should be evaluated under real-world conditions.
In consequence, in the optimal case, the benchmarks used are actual applications or at least
closely resemble them.

Many benchmark suites available have been composed with a focus on real-world programs
and consequently meet this requirement. Of course, this is also implicitly true for evaluations
that are performed based on actual applications.

Wide Spectrum of Benchmarks. An evaluation should take into account that different
applications have different characteristics, in particular, with regard to complexity and
program structure. For example, while state-machine-like applications are usually built
around a central control loop, signal-processing applications in contrast often consist of a
static input array and nested loops. Introducing variety into the set of benchmarks offers the
possibility to properly reflect such differences. Furthermore, it allows to better compare the
individual strengths and weaknesses of the WCET analyzers evaluated.

The state-of-the-art Mälardalen WCET benchmarks [11] and the TCAS benchmark [9],
which was used at the WCET Tool Challenge 2014, cover both of the categories mentioned
above: state-machine-like applications (i.e., statemate, tcas) as well as signal-/image-
processing programs (i.e., fir, edn, jfdctint).

Preservation of Benchmark Properties. The selection procedure must take into account
that compiler optimizations may have significant impact on programs. As a result, the
timing analysis either needs to be performed on an already optimized representation of the
benchmark or needs to ensure that the benchmark properties are preserved by the compiler
across code transformations.

Having investigated several publicly-available benchmarks, we found that without further
modifications a significant number of Mälardalen WCET benchmarks is not resistant to
compiler optimizations, by default, without setting additional preprocessor definitions: For ex-
ample, Clang optimizes five of these benchmarks (i.e., bs, expint, fibcall, janne_complex,
ns) to a single return statement. This is due to values stored in variables that have no effect
on the output enabling compilers to decisively change the structure of the program.

Availability of Benchmark Flow Facts. In order to be able to independently assess the
quality of a WCET analyzer, the flow facts of a benchmark should be known prior to the
evaluation. This way, a WCET analyzer can be rated based on how close its outputs are to
the actual results of a benchmark.

In general, there is a tradeoff between the demand to have realistic benchmarks and the
requirement to obtain flow facts, as precise numbers are usually not available for real-world
applications for reasons of complexity (see Section 1). As a consequence of the fact that,
as discussed above, many existing benchmarks focus on realistic use cases, evaluations are
therefore mostly based on a comparison of results, or rely on an absolute baseline that is
either determined manually or an over-approximation [3, 17]. That is, in order to evaluate
the impact of a novel feature, the WCET analysis is performed twice: once with the feature
enabled and once with the feature disabled. Although such an approach allows to assess the
relative improvement achieved by the feature, it is not suitable to determine the benefit of
the feature on a global scale.
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Figure 1 GenE automatically generates benchmarks by combining existing program patterns.

3 GenE

In this section, we present GenE, an approach and tool to address the problem of providing
benchmarks for the evaluation of WCET analyzers. GenE generates benchmarks automati-
cally and therefore allows a large number of benchmarks to be used, as they no longer
have to be selected or implemented manually. In order to provide realistic benchmarks,
the tool combines common building blocks (e.g., conditional statements and nested loops) we
extracted from real-world applications. By varying the selection and composition of patterns,
GenE supports the creation of a wide spectrum of benchmarks. To assemble a new
program, GenE relies on a deterministic procedure designed to ensure the preservation
of benchmark properties. In addition, this procedure also allows the tool to determine
the flow facts of a benchmark based on knowledge about its structure, enabling GenE to
guarantee the availability of benchmark flow facts for all programs created.

Figure 1 shows an overview of the GenE workflow: When a user requests the tool to
create a benchmark with certain characteristics (e.g., those of a signal-processing application),
the tool first selects suitable programs patterns from a set of pattern pools (see Section 3.1).
In the next step, GenE composes the actual benchmark by weaving the selected patterns
into a program (see Section 3.2). Based on the information which patterns have been selected
as well as knowledge about how they have been put together, the tool is then able to track
the flow facts for the generated benchmark (see Section 3.3).

3.1 Patterns and Pattern Selection
When generating a new benchmark, the first step performed by GenE is to automatically
select different building blocks, which in a later step are then combined to a complex program.
In order to enable the tool to create realistic benchmarks, we conducted a study of existing
programs used for the evaluation of WCET analyzers to identify recurring patterns. The
results of this analysis are a combination of design and implementation patterns described in
literature [7] as well as patterns directly extracted from the code of state-of-the-art benchmark
suites such as Mälardalen [11]. Listings 1 and 2 present two simple examples of patterns used
by GenE: a path pattern including a conditional branch and a parameterizable nested-loop
pattern. As shown in the listings, both patterns comprise a number of insertion points, which
allows GenE to combine them with other patterns during the benchmark-weaving step (see
Section 3.2).

GenE manages the building blocks of benchmarks in a set of pattern pools, thereby
grouping together patterns with similar structure (e.g., array accesses in loops). Users are able
to implement new patterns and add them to existing pools; in addition, the tool also offers
the possibility to introduce new pattern pools. Pattern pools play an important role during
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Listing 1 Example of a path pattern.
1 if( condition ){
2 // insertion_point_1
3 } else {
4 // insertion_point_2
5 }
6 // insertion_point_3

Listing 2 Example of a loop pattern.
1 for(i = n -1; i >= 1; i--){
2 for(j = 0; j < i; j++){
3 // insertion_point_1
4 }
5 }
6 // insertion_point_2

the pattern-selection step: By assigning different weights to different pools, GenE ensures
that the benchmark generated matches the properties specified by the user. For example, if a
user requests a program matching the characteristics of a digital-signal-processing application,
the tool favors the selection of loop patterns operating on arrays, as such patterns are typical
for this category of use cases.

3.2 Benchmark Weaving
After the patterns have been selected, they are combined during the benchmark-weaving
phase to create new complex benchmarks. To address the problem of tracking flow facts (see
Section 3.3), GenE uses a formal grammar G that is considered by the weaving algorithm.
The grammar G contains the start symbol (S) and the empty string (ε). A point in the
control-flow graph of the generated benchmark where further expansions through state-
ments (e.g., assignments, loops, branches) are possible is called an insertion point (inp) (see
Listing 1 and 2). The following list is an excerpt of the production rules of G:

1. S 7→ FunctionBegin · inp · FunctionEnd

2. inp 7→ ε

3. inp 7→ Statement · inp

4. Statement 7→ Assignment

5. Statement 7→ IfBegin · inp · ElseBegin · inp · EndIf

6. Statement 7→ LoopHead · inp · LoopEnd
... (Additional production rules)

The start symbol is mapped to exactly one insertion point (1), which is surrounded by the
begin and end of the main function. Each insertion point can produce an empty element (2)
or a statement followed by a further insertion point. Production rule 3 ensures the sequential
creation of patterns. The nonterminal Statement symbols can produce assignments, branches,
or loops (4–6).

The grammar describes what benchmarks can be produced whereas the weaving algorithm
presented in Listing 3 exemplarily illustrates how GenE uses this grammar to create a
benchmark. The weaving algorithm recursively inserts new patterns into insertion points.
The core concept of the algorithm is to bound the timing cost for inserted patterns from top
to bottom. There can be program paths through this pattern that are less expensive than
the worst-case path2, but the worst-case path must exactly lead to the predefined cost. All
operations in Listing 3 based on a seed value are prefixed with select_, concrete insertions
of code into the current selected insertion point are prefixed with emit_, and the costof()
function returns the cost of sequential statements. While descending the tree, the costs are
subdivided and used for further productions.

2 It is assumed that the worst-case path is defined only through its concrete input values and no other
effects like concurrency or non-deterministic input/output operations.
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Listing 3 The recursive algorithm of GenE inserts patterns top-down into the benchmark.
1 function GenE(vars , cost)
2 if(cost == 0) return vars
3

4 switch ( select_production (cost ))
5 case Statement · inp:
6 statement_cost ← select_cost ∈ [0, cost]
7 new_vars ← GenE(vars , statement_cost )
8 new_vars ← GenE(new_vars , cost - statement_cost )
9 case Assignment:

10 (new_vars , operation ) ← select_assignment (vars)
11 emit_Assignment( operation )
12 case IfBegin · inp · ElseBegin · inp · EndIf :
13 condition ← select_condition (vars)
14 emit_IfBegin( condition )
15 if_cost ← cost - costof ( condition ) // if -case is worst case here
16 else_cost ← if_cost - ( select_cost ∈ [0, if_cost])
17 if_vars ← GenE(vars , if_cost )
18 emit_ElseBegin()
19 else_vars ← GenE(vars , else_cost )
20 emit_EndIf ()
21 new_vars ← merge_variables (if_vars , else_vars )
22 case LoopHead · inp · LoopEnd:
23 ...
24 return new_vars // return updated variables including value ranges

The algorithm receives a list of available variables and the timing cost that must be
produced by the emitted code for the respective call of the function (Line 1). If no cost
is available for productions, the algorithm returns the current variables including their
values (Line 2), which is the termination criterion for the algorithm. Otherwise, a production
is selected based on the distributable cost (Line 4).

Cost Distribution. The cost is subdivided into parts based on the seed. The parts are used
for generating a statement followed by an insertion point (Line 5–8). The concrete cost
modeling, which is necessary for determining worst-case paths including their input values,
is discussed in Paragraph 3.3.1.

Recursive Application. After determining the cost for the statement, GenE is recursively
applied (Line 7) with the respective cost. The rest of the distributable cost is used for a
second recursive call of the GenE function enabling sequences of pattern insertions.

Value Tracking. For computed values that are used, for example, for branch conditions, the
values of all variables and their availability must be tracked. For example, the Assignment

production can introduce a new variable that is computed from two further variables (Line 10).
Consequently, the updated variables are returned at the current insertion point during the
code-generation process.

3.3 Flow-Facts Tracking
Tracking the value ranges of variables is an essential mechanism for the flow-facts tracking
that takes place during the benchmark-weaving phase. These flow-facts include, for example,
feasible paths, loop bounds, or values triggering the most expensive path. The concrete input
value leading to the WCET is determined prior to the first call of the GenE function based
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on the seed value. Consequently, all costs of feasible branches in the control flow must be
modeled according to the input variable taking computations on the input into consideration.

Reconsidering Listing 3, when selecting the branch condition during the application of the
If -Else production (Line 13), the current values of the used variables are taken into account
and the costs of the branches (Line 15–16) are set according to the worst-case input. The cost
of each branch is again exactly bounded through the recursive calls of GenE (Line 17, 19).
The possible values of the variables are merged after emitting the If -Else pattern and the
values for the worst-case path are stored (Line 21).

The patterns hold their own (parameterizable) flow facts, for example, as formulas
that must be determined when the pattern is manually constructed. These formulas are
considered when inserting the pattern and combined with the existing flow facts. For example,
reconsidering the parameterizable loop pattern shown in Listing 2, the loop bound of the
outer loop is n-1 whereas the parametric formula for the inner body is n*(n-1)/2. These
formulas are used when the pattern is woven into the code and the concrete flow facts are
determined with the concrete value of the variable n.

3.3.1 Cost Modeling
WCET analysis is typically split into two parts: a high-level analysis of flow facts and a
low-level analysis of the processor (i.e., instruction execution times, cache modeling). GenE
focuses on generating benchmarks with challenging, high-level flow facts and not on difficult
access patterns for cache analysis for a specific architecture. However, to distribute cost for
patterns, knowledge on timing costs of the target platform is necessary. GenE addresses the
cost-modeling problem through relatively modeling timing costs [23] and overweighting the
branches of determined worst-case paths with these relative costs of instructions.

Reconsidering the If -Else path pattern shown in Listing 1, the branch of the If case
is overweighted by a large factor. This factor for overweighting worst-case branches must
ensure that even if the Else branch only creates cache misses, the If branch is still more
time consuming. Furthermore, since GenE is implemented on a low-level intermediate
representation of program code (see Section 3.4), this representation can be attributed with
concrete cost information [6, 10] to further refine the cost model through target-specific
knowledge allowing smaller factors for overweighting the worst-case path.

However, for comparing the precision of WCET-analysis tools, an absolute WCET value
must be known for the generated path conditions. A discussion of how the flow facts provided
by GenE can be used to determine the WCET is described in the following paragraph.

3.3.2 Determination of the WCET
Detailed knowledge about the input values triggering the worst-case path is stored through
the value and flow-facts tracking. Consequently, the generated benchmark can be concretely
executed with the determined worst-case input leading to the actual WCET when measuring
the time of this execution. The concrete execution and precise measurement can be achieved
through two approaches. First, modern processors are equipped with highly accurate internal
time-stamp counters that allow precise time measurements without the need of external
measurement hardware. Second, if a cycle-accurate simulator for the targeted processor is
available, the actual WCET can be derived through a simulation, without requiring the
target hardware. Once the actual WCET of the generated program is determined, it serves
in combination with the known flow facts as a baseline for the evaluation of both static and
measurement-based timing analyzers. Precisely modeling the behavior of the processor is
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not mandatory in such an input-oriented approach as long as the determined input values
lead to the WCET when executing the program with them, which is achieved through the
relative overweighting of branches. Consequently, complex hardware features (e.g., caching)
are implicitly respected through the concrete execution.

3.4 Implementation
GenE is implemented with the framework of the Low Level Virtual Machine (LLVM) [18]
using its intermediate representation (LLVM-IR) for the following reasons:

The generated benchmarks are independent from specific processors to generate machine
code for various targets. The cost modeling is performed on basis of the LLVM and is
further improvable through target-specific knowledge [6, 10].
Although the LLVM-IR is independent of specific target machines, it can be precisely
mapped to machine code through control-flow relation graphs [14]. Using such graphs,
the knowledge of flow facts can be transformed from the LLVM-IR level to machine code.
If the language of the generated benchmarks is implemented on a higher abstraction
level, it is more difficult to track the control-flow relations during optimizing source-to-
source transformations. However, GenE focuses on generating benchmarks that look like
optimized code, since such code facilitates timeliness and unoptimized code is unrealistic
for real-world scenarios. To handle this problem, GenE uses optimized patterns that
are further combined. During lowering the LLVM-IR to machine code, the generated
benchmark must not be optimized further and must not change its control flow.

GenE implements several challenging program patterns taken from [7, 11] and is extensible
through the integration of additional patterns. Further benchmark suites, where patterns
with different characteristics are extractable for weaving new benchmarks, are MiBench [12],
BEEBS [20], or PapaBench [19].

To evaluate the effectiveness of our benchmark-generation algorithm, we run GenE with
different initial seeds and maximum distributable cost leading to different execution times.
With this configuration, GenE is able to generate 10,000 benchmarks within four minutes
on an Intel Core-i7 (8GB RAM). Although using a single integer input value with 32 bits,
232 control flows through the generated benchmark can be produced. This input space is
considered to be sufficiently large for WCET benchmarking.

4 Related Work

GenE is the first approach to automatically generate benchmark programs specifically
targeting the evaluation of WCET-analysis tools. However, the development of this benchmark
generator is strongly inspired by the Csmith [24] benchmark generator. Csmith targets the
domain of testing compilers for their correctness, for example, through generating complex
branch expressions. The concept of inserting patterns into existing code recursively top-down
and thereby creating new insertion points is similar to the recursive expansion process of
Dujmović [8] for generating performance benchmarks. Additionally to this approach, GenE
tracks low-level flow facts and worst-case input values targeting the WCET domain. In
the domain of high-performance computing, the MicroProbe framework [2] is an automated
approach to micro-benchmark generation. The generated benchmarks are, for example,
utilized for energy-related characterization of a specific target architecture. We consider
benchmarks generated by GenE as suitable source for comparing the effectiveness of existing
WCET-analysis tools [1, 5, 16, 21].
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To compare best the flow facts found by WCET analyzers, GenE must support to output
flow facts in a format that analyzers under evaluation can process, which is considered future
work. An example for such a flow-fact language is FFX [4]. Further discussions on suitable
annotation languages to provide flow facts are found in [15].

5 Conclusion and Outlook

Comparing WCET-analysis tools through benchmarking is a challenging task since many as-
pects must be considered, such as providing a wide spectrum and large number of benchmarks
for which the flow facts are available. We therefore propose the GenE benchmark generator
that is able to automatically generate benchmarks with diverse characteristics including
their flow facts. With knowledge about these flow facts and input values, a precise WCET
value can be determined of the generated benchmark, which serves as a common baseline for
timing-analysis tools. Therefore, we consider to use benchmarks built by GenE together
with generated flow facts, the input assignment, and the WCET as a suitable evaluation
scenario for upcoming WCET Tool Challenges, in addition to existing benchmarks.

Especially for the upcoming challenges in multi-core WCET analysis of complex concur-
rency patterns, the GenE approach is useful to create a known baseline. This is due to
the fact that these benchmarks are more complex compared to benchmarks on single-core
processors. Consequently, manually determining the WCET of multi-core benchmarks is
inherently more labor-intensive than of single-core benchmarks. An incremental process is
imaginable where new challenging concurrency patterns are progressively integrated into
GenE and WCET tools catch up with the analysis of these patterns. To improve the existing
prototype of GenE and to make it applicable for use, GenE will be made available after
incorporating feedback from the WCET community.
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Abstract
Precise estimation of the Worst-Case Execution Time (WCET) of embedded software is a neces-
sary precondition in safety critical systems. Static methods for WCET analysis rely on precise
models of the target processor’s micro-architecture. Measurement-based methods, in contrast,
rely on exhaustive measurements performed on the real hardware. The rise of the multicore pro-
cessors often renders static WCET analysis infeasible, either due to the computational complexity
or due the lack of necessary documentation. Current approaches for (hybrid) measurement-based
WCET estimation process the trace data offline and thus need to store large amounts of data.
In this contribution, we present a novel approach that performs continuous online aggregation
of timing measurements. This enables long observation periods and increases the possibility to
catch rare circumstances. Moreover, we incorporate the execution contexts of basic blocks. We
can therefore account for typical cache behaviour, without being overly pessimistic.
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1 Introduction

Today, embedded systems are a central part of almost all technical systems. In safety critical
systems, proper function does not only rely on correct internal sequence of operations, but
also on the timing of the operations. Particularly in real-time systems, upper bounds for the
computation of system responses must be given.

Traditionally, the term “Worst-Case Execution Time (WCET)” is used to describe the
timing properties of the code under scrutiny. In general, however, the WCET cannot be
computed precisely but must be estimated. Such an estimate is only safe if the estimation
process is guaranteed to never underestimates the execution time.

One method to compute safe upper bounds of the execution time is the abstract inter-
pretation of the code in question. Each and every instruction is simulated on the basis of a
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precise processor model. This type of estimation gives very good results, if the features of
the processor are known and predictable.

Unfortunately, modern processors often contain features with unpredictable behaviour,
and sometimes the documentation of the architecture is not precise enough. This can yield
overly pessimistic estimations. One source of such uncertainties are bus arbitration policies.
These are particularly difficult for multicore processors, where several cores share the same
memory. Prominent examples of such processors include the P4080 from Freescale (eight
cores, 1.3 GHz each) and systems based on the ARM Cortex A9. Recent research (e.g. [11])
investigates approaches to mitigate these problems, but no general solution exists so far to
perform static WCET analysis for multicore processors.

Other methods to estimate the execution time use measurements. Their safety depends
on the premise that the worst-case is actually observed. Current measurement-based ap-
proaches either rely on instrumentation or on the offline analysis of execution traces. Code
instrumentation is usually not considered [12], as it causes the probe effect. Offline analysis
of the trace data requires a sufficiently long recording of the traces to hit all relevant cases
and system situations. Hence such systems are limited. Even if the recording depth is large,
the offline processing time is high.

In this contribution, we show that continuous aggregation of execution time data per
basic block can be achieved, relieving us of the tedious task of offline analysis. The statistics
created by our approach can even account for cache effects by telling apart initial and
subsequent executions of loop bodies. Together with an ILP-based path analysis, we achieve
precise execution time estimates for complex multicore processors where existing approaches
failed so far.

2 Related Work

For the sake of brevity, we focus on measurement-based and hybrid methods. We refer to
[16] for a more complete overview of existing methods and tools.

The most basic version of measurement-based execution time analysis, namely end-to-end
measurements, is still in frequent industrial use [12]. However, the problems with this
approach are manifold. Not only it is unable to produce safe estimates, as in general not all
possible scenarios can be measured, but the results are hard to interpret, too, as they are
not related to particular parts of the code but only to the whole program.

To overcome this, more structured approaches have been proposed, e.g. by Betts et
al. in [4], which combine the measured execution times of small code snippets to form an
overall execution time estimate. Their use of software instrumentation leads to the probe
effect, i.e. the timing behaviour of the program under observation changes due to the used
observation technique. Moreover, their method does not account for typical cache behaviour
and may be overly conservative.

In a more recent publication [5], they use the non-intrusive tracing mechanisms of state-
of-the-art debugging hardware. The main obstacle of their method is the limited size of trace
buffers and/or the huge amount of trace data. According to their estimates, around half a
terabyte of data would be generated in an hour of testing.

Stattelmann et al. [13] propose the use of context information in order to account for
cache effects. Their work shows that the inclusion of context information leads to more
precise execution time results. However, their approach is limited to processors with very
sophisticated tracing mechanisms. Moreover, their approach faces the same challenge as the
ones above due to its offline analysis of trace data.
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Figure 1 The workflow of our proposed method.

Other works have been done in order to overcome the obstacle of exhaustive measurements,
e.g. [10, 17, 6]. They either generate input data [10, 17] to stimulate high path coverage or
try to reduce the timing variability of a program [6].

There are many more publications on measurement-based execution time analysis which
we do not list here. Overall, they either address the problem of generating suitable input
data (which is out of scope of this paper) or they have one or several major disadvantages:

The measurements are not fine-grained enough and hard to interpret.
The use of software instrumentation leads to the probe effect.
Huge amounts of trace data is generated for offline analysis.
Disregarding the execution context leads to overly conservative results because cache
effects cannot be exploited.
The use of sophisticated tracing mechanisms limits the applicability to few selected
processors.

Our method, in contrast, circumvents these drawbacks:
We measure the timing of basic blocks. This allows to see where time is spent.
We use non-intrusive hardware tracing mechanisms of state-of-the-art processors to
produce timestamps. The probe effect is avoided.
We process the trace events online. There is no need to store huge amounts of trace data.
We process the trace events continuously. The aggregation can literally run for weeks.
The possibilities to catch rare circumstances are increased.
We incorporate the execution context of a basic block and account for typical cache
behaviour. The results are thus much more precise.
Due to the use of an FPGA, we can adapt the hardware part of our method to lots of
different processors as long as they have some rudimentary tracing support.

3 Proposed Method

This section presents a novel approach for hybrid measurement-based timing analysis. The
basic idea is to use an FPGA to perform online aggregation of trace data. Our method
works on the object code level and is split into three main parts: a pre-processing phase,
the continuous online aggregation phase and a post-processing phase. The workflow of our
method is shown in figure 1. Parts are re-used from the aiT tool chain [1], in particular
the control flow reconstruction and the ILP-based path analysis. Other parts, like the
FPGA-based continuous online aggregation of measurements, are – to our knowledge – novel.
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First, in the pre-processing phase, we reconstruct the interprocedural control flow graph
(CFG) of the program under analysis. Then, we extract crucial information like loop nesting
levels, call relations and basic block boundaries from the CFG. This information is used to
compile a configuration for the trace extraction module which is then loaded into memory
that is connected to the FPGA.

During the program’s execution, the trace extraction module emits events according to its
configuration. A possible event is, for example, the entering of a basic block. All events have
an associated timestamp. The measurement module interprets these events and calculates
the execution time of each basic block. It uses the precalculated information to keep track of
the execution contexts of the basic blocks. Various statistics (minimum runtime, maximum
runtime, sum of the individual runtimes, count of executions) are updated each time after a
basic block timing measurement has been completed.

After the program has finished (or the test engineer has collected enough data), the
post-processing phase is started by downloading the basic block statistics from the statistics
module. Subsequently, the CFG together with the basic block timing statistics are used
to construct an integer linear program (ILP). Solving this ILP gives then a path with the
longest execution time (and consequently, an estimate of the worst-case execution time).

We assume that a set of tasks is distributed over the cores of a multicore processor such
that each task runs on exactly one core. Each task uses its own continuous aggregation
module. Hence it suffices to describe the method for a single core.

3.1 Control Flow Reconstruction and Pre-Processing
The starting point of our analysis is a fully linked binary executable. A parser reads the
output of a compiler and disassembles the individual instructions. Architecture specific
patterns decide whether an instruction is a call, branch, return or just an ordinary instruction.
With this knowledge, the binary reader forms the basic blocks of the CFG. A basic block
(BB) is a sequence of instructions, where each instruction except the first and the last has
exactly one predecessor and one successor.

Then, the control flow between the basic blocks is reconstructed. In most cases, this is done
completely automatically. However, if a target of a call or branch cannot be statically resolved,
then the user needs to write some annotations to guide the control flow reconstruction.

The final result is an interprocedural control flow graph, as shown in figure 2. It consists
of the basic blocks, some meta blocks to emphasise call/return relations and the edges that
describe the control flow. [15] contains a detailed description of the control flow reconstruction
process.

In a second step, we extract the information from the CFG that is needed for the
configuration of the trace extraction module. To do so, we construct the set of trace points T.

Besides the information needed to keep track of the execution contexts of the basic
blocks, we also need to create unique identifiers for each basic block that are used to address
the statistics in memory. Using the address of a block is not suitable, because we need to
compact the address range of the statistics storage because memory is scarce. A collision-free
hash function T-ID : T→ {1, . . . , n} with n ∈ N is used for this purpose. It should be fast
computable in hardware.

Each trace point (first, tag, level, distinctor , call, entry, exit, return) ∈ T represents a
basic block in the CFG and consists of the following data fields:

first, the address of the BB’s first instruction;
tag, a custom field that can be used by function T-ID to calculate the ID of that trace
point;
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level, the loop nesting level of the loop to which the BB belongs (level = 0 iff the BB
does not belong to a loop);
distinctor , a value used to distinguish two loops with the same nesting level that occur
directly after another, without any code in between that does not belong to one of the
two loops;
call, a flag that indicates whether the BB is the predecessor of a call block;
entry, a flag that indicates whether the BB is the successor of a routine’s entry block;
exit, a flag that indicates whether the BB is the predecessor of a routine’s exit block;
return, a flag that indicates whether the BB is the successor of a return block.

Moreover, due to the restricted bandwidth of the event stream, the fields of a trace point
need to fulfill the following size limitations:

∀p = (first, tag, level, distinctor , . . . ) ∈ T : 0 ≤ first ≤ (232 − 1)
∧ 0 ≤ tag ≤ (26 − 1)
∧ 0 ≤ level ≤ (23 − 1)
∧ 0 ≤ distinctor ≤ (23 − 1)

Those data fields that have not been explicitly mentioned are boolean flags and use therefore
exactly one bit.

3.2 Trace Extraction
Trace data messages are generated in so-called “embedded trace” units. These special
hardware units observe the internal states of the SoC and emit compressed runtime information
via a dedicated trace port. Amongst the information that an “embedded trace” unit outputs
is the information whether a branch has been taken or not. Optionally, this information can
be supplemented by the amount of clock cycles (cycle accurate trace) or timestamps.

There are several “embedded trace” implementations available. The most important are
Nexus 5001™ [9] based implementations (for instance within the Freescale™ Qorriva/QorIQ
[7] devices) and the ARM Coresight™ architecture [3]. The latter consists of different variants
of program execution observers. We will explain the solution presented in this paper on the
base of the Program Flow Trace (PFT) architecture [2] which is implemented in most ARM
Cortex A series processors.

The PFT unit outputs various message types. Most relevant for detailed execution time
measurement purposes are the cycle-accurate atom packets (Atom), the branch address
packets (Branch) and the instruction synchronization packets (I-Sync). An Atom message
indicates whether a branch instruction passed or failed its condition code check and outputs
an explicit cycle count indicating the number of cycles since the last cycle count output. A
Branch message indicates a change in the program flow when an exception or a processor
security state change occurs or when the CPU executes an indirect branch instruction that
passes its condition code check. I-Sync messages output periodically the current instruction
address and a cycle count.

Traditional trace processing devices record the trace data stream and forward the data
to a workstation for decompression and processing. Unfortunately, there is a discrepancy
between trace data output bandwidth and trace data processing bandwidth, which is usually
several orders of magnitude slower. This results in very short observation periods and long
trace data processing times. Consequently, the statistical relevance of the execution time
measurements is deteriorated due to the limited observation period.
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Our solution does not store the whole received trace data stream for later offline pro-
cessing. Instead, the trace data is processed online by FPGA logic. This new approach
enables an arbitrary observation time while still enabling precise and detailed execution time
measurements from “embedded trace” implementations.

The FPGA-based online processing of the trace data stream consists of three processing
steps: First, we extract the source specific information (data from the CPU to be observed)
from the trace data stream. In a second step we process the message boundaries and detect
the periodic I-Sync messages. Finally, we distribute the trace data stream segments (between
two consecutive I-Sync messages) into a multiplicity of parallel operating processing units
which reconstruct the program execution. We are starting from the address transmitted by the
I-Sync message and reconstruct the program execution by processing the subsequent Branch
and Atom messages. For this purpose, we use pre-processed lookup tables which contain the
distances (address offsets) between the individual jumps. This instruction reconstruction
unit outputs trace point events containing the pre-processed trace point data together with
the corresponding cycle counts i.e. timestamps. These events are being processed by the
measurements module introduced in 3.3.

Both the online processing of the trace data and the reconstruction of the executed
instructions are very resource-consuming, highly parallelized and partly speculative processes
which require specialized hardware modules with high-end FPGAs (Xilinx Virtex®-7 /
Ultrascale™ series) and large amounts of high performance external memory providing
the lookup table content. But the effort is well spent – the system produces a continuous
stream of trace point events, the corresponding amount of clock cycles and the associated
pre-processed data as a base for basic block WCET analysis within the next processing stage.

3.3 Continuous Context-Sensitive Aggregation

The next processing stage computes the aggregated timing statistics for each basic block.
To achieve precise results, it is important that the aggregation module accounts for cache

effects. Typically, the first iteration of a loop needs more time than the subsequent iterations
because the instruction cache is not yet filled. Simply aggregating all loop iterations in the
same statistics record would thus most probably overestimate the time spend in all iterations
but the first. For well-formed loops, we thus compute two statistics records for each basic
block in a loop body, one that aggregates the execution times in the first iteration and
another that aggregates the execution times in all subsequent iterations, i.e. we take the
execution context into account. This resembles some kind of virtual loop unrolling.

If a basic block is part of nested loops, we only discriminate the iterations of the innermost
loop. This is done due to limited storage for the statistics records.

The continuous aggregation stage is split into three parts: the measurement module, the
loop module and the statistics module.

We start the description of these modules by introducing some notation. We denote the
stream of trace point events E by the sequence e0, e1, . . . , en, n ∈ N of individual events.
Each event ei = (pi, ti) consists of a trace point pi ∈ T (see section 3.1) and a timestamp
ti ∈ {0, . . . , 264 − 1}. Moreover, we compute an unique identifier idi = T-ID(pi) for each
trace point.

Measurement Module. The measurement module computes the execution time τ of a basic
block by taking the timestamp of the corresponding trace point event and subtracting the
timestamp of the predecessor event. If no predecessor event has been emitted yet, then τ = 0.
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Loop Module. The loop module decides whether the first or the second statistics record
should be updated. It uses its internal state machine to interpret the stream of trace point
events emitted by the trace extraction stage.

A state S = (p, r0, r1, . . . , rk) is a stack-like data structure that consists of k rows and a
pointer p to the topmost row in use. The value of k is implementation defined.
A row r is a record that consists of the data fields valid, id and index. The valid bit
denotes whether the row is already in use. The id field identifies a loop or routine. The
index field is used to decide which statistics record will be updated.
We call the row to which p points the active row. The special row (0, 0, 0) is denoted by
rzero. The initial state (0, rzero, rzero, . . . , rzero) is denoted by S0.

We define two basic state-manipulation operations called “up” and “down”. Let S be
some state with

S = (p, r0, r1, . . . , rp+m−1, rp+m, rp+m+1, . . . )

then the operation “up” which inserts a record rnew m rows above the active row is defined
as:

S[↑,m, rnew] := (p+m, r0, r1, . . . , rp+m−1, rnew, rp+m+1, . . . )

Let S be some state with

S = (p, r0, r1, . . . , rp−m−1, rp−m, rp−m+1, . . . , rp−1, rp, rp+1, . . . )

then the operation “down” which conditionally inserts a record rnew m rows below the active
row is defined as:

S[↓,m, rnew] := (p−m, r0, r1, . . . , rp−m−1, f(rp−m, rnew), rzero, . . . , rzero, rzero, rp+1, . . . )

with the function

f(rold, rnew) :=
{
rold rold.valid = 1
rnew otherwise

that only returns the new record rnew if the old record is not valid.
We can now define the state transition relation of the loop module’s state machine. Let

S be some state and ei, ei+1 two subsequent trace point events. For the sake of readability,
we use three additional propositions:

α = calli ∧ entryi+1 denotes that a routine call occurred.
β = exiti ∧ returni+1 denotes that a routine’s return to its caller happened.
γ = distinctor i+1 6= distinctor i denotes that the loop body changed.

The state transition operation is then defined as:

S[., ei, ei+1] :=



S[↑, leveli+1 − leveli, (1, idi+1, 0)] ¬α ∧ ¬β ∧ (leveli+1 > leveli)
S[↓, leveli − leveli+1, (1, idi+1, 0)] ¬α ∧ ¬β ∧ (leveli+1 < leveli)
S[↑, 0, (1, idi+1, 0)] ¬α ∧ ¬β ∧ γ ∧ (leveli+1 = leveli)
S[↑, 0, (1, idi+1, 1)] ¬α ∧ ¬β ∧ (idi+1 = rp.id)
S[↑, leveli+1 + 1, (1, idi+1, 0)] α

S[↓, leveli + 1, (1, idi+1, 0)] β

S otherwise
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Statistics Module. The statistics module updates the execution time statistics. The
statistics of each basic block bi are kept in memory organized as recordsmi = (min=1,max=1,

total=1, count=1,min>1,max>1, total>1, count>1) that contains the minimum, maximum
and total measured execution time as well as the number of executions separately for the
first (=1) or additional (>1) iterations of the loop that directly surrounds it. The record used
for first iterations is also used if a block does not belong to a loop. (The record used for
additional iterations is ignored in this case.)

During the initialisation of the statistics module, the memory is initialised such that each
record contains the neutral element, i.e. (+∞, 0, 0, 0,+∞, 0, 0, 0). During the runtime of the
program, when the execution time τ of a basic block has been measured, the corresponding
memory recordmi is updated bymin← min(min, τ),max← max(max, τ), total← total+τ
and count← count+ 1. Depending on the index of the active row, either the =1-part or the
>1-part is updated.

Example. Consider figure 2. It shows a C program snippet together with the reconstructed
CFG of its binary. Moreover, it shows a possible sequence of trace point events and the state
of the loop module after a particular event has been processed. We have used the function
T-ID(p) = p.tag to index the basic block statistics. The WCET estimate of our method is
191 cycles. If we apply context-insensitive maximisation, the estimate would be 258 cycles.
Our method is thus very precise due to the distinction of loop contexts.

3.4 Post-Processing and Path Analysis
After the testing cycle has been completed, an execution time statistics is stored in memory
for each basic block that has been covered by tests. These statistics are downloaded in the
first post-processing step and annotated to the CFG’s basic blocks. A basic block is marked
infeasible if no statistics have been created for it. This information can be used to detect
dead code.

Then, an implicit path enumeration technique is used to find a path with the maximal
execution time in the CFG. Our implementation constructs an instance of a maximisation
problem expressed via an integer linear program. We refer to [14] for a detailed description
of the construction. Afterwards, an ILP solver is used to solve the maximisation instance.
Its result is the WCET estimate together with a path in the CFG that induces the estimate.

This path is then used to visualise the WCET contribution of the individual parts of the
program. That way, the test engineer can see where in the program the hot spots are. This
is particularly useful if the program is the target of performance optimisations.

4 Conclusion and Future Work

In this contribution, we have shown a new hybrid approach to estimate the WCET for
modern multicore processors. Our approach uses an FPGA to continuously aggregate the
execution time measurements of basic blocks. Moreover, it discriminates between first and
further iterations of a loop. This notion of context-sensitivity reflects the typical cache
behaviour better than methods that maximise over all executions of a basic block. In our
example, the WCET bound is reduced by more than 25%.

Our approach is especially appropriate for those architectures for which a good analytical
model cannot be derived, for example due to missing or incomplete documentation. The
implementation of the approach is highly scalable and thus applicable to even the fastest
processors.
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Figure 2 Exemplary application of our method. The figure shows a C program snippet (left
upper corner), the reconstructed CFG (right upper corner), a sequence of trace point events (bottom
left corner), the states of the loop module (bottom middle) and the continuous aggregation of the
maximum execution time (bottom right corner). Basic blocks are shown with the address of their
first and last instruction. Colors have been used to show which event belongs to which basic block.
The active row is highlighted in grey.

We are currently building a prototype hardware implementation as part of the research
project CONIRAS. As soon as the prototype is completed, our approach will be validated
with some typical embedded real-time applications, e.g. the set of WCET benchmarks [8].

The statistics computed by our method are rather simple. The question whether more
advanced ones could be performed online as well needs further investigation.
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Abstract
In this paper, we propose a WCET analysis that focuses on two aspects. First, it supports context-
sensitive hardware and software timing effects, meaning that it is sensitive to the execution
history of the program and thus can account for effects like cache persistence, triangular loop, etc.
Second, it supports the introduction of parameters in both the software model (e.g. parametric
loop bounds) and the hardware model (e.g. number of cache misses). WCET computation by
static analysis is traditionally handled by the Implicit Path Enumeration Technique (IPET),
using an Integer Linear Program (ILP) that is difficult to resolve parametrically. We suggest
an alternative tree-based approach. We define a context-sensitive CFG format to express these
effects, and we provide an efficient method to process it, giving a parametric WCET formula.
Experimental results show that this new method is significantly faster and more accurate than
existing parametric approaches.
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1 Introduction

In static WCET analysis methods, an upper bound to the WCET of a task is traditionally
computed in three steps. First, the task code is statically analyzed to model the set of possible
execution paths. Then, the hardware is taken into account by modeling the architectural
effects: local effects (timings of basic blocks) and global effects (interactions between basic
blocks). Finally, the WCET computation takes as input a program and its environment
(hardware and software), and produces the WCET. A popular technique for doing this last
step is IPET [14], in which the WCET computation is represented as an ILP problem solving.

With traditional WCET computation, if the program, input values, software environment
or hardware platform changes, it is necessary to re-run the entire analysis. On the opposite,
parametric WCET analysis takes a parametrized input, and produces a formula that depends
on those parameters. If the parametric values change, it is possible to compute a new WCET
simply by evaluating the formula on the new values. This offers several benefits, which we
detail below.

First, parametric WCET avoids re-running the entire WCET computation each time there
is a minor change to the program or hardware configuration. This is an important aspect, due
to the increasing size of real-time systems and to the non-linear complexity of WCET analyses.
Similarly, parametric WCET simplifies the analysis process when third-party software is
involved, since the developer can provide a parametric WCET that can be adapted to the
target system (software and hardware).

Second, many system parameters are only known at run-time: loop bounds that depend
on input values, software and hardware state changes, operating system interference, etc.
Using a parametric WCET, it is possible to evaluate the WCET formula at run-time and
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take better decisions accordingly. For instance, tighter WCET evaluation at run-time could
benefit energy-aware scheduling techniques based on Dynamic Voltage and Frequency Scaling
(DVFS) [12].

Finally, large execution time values may happen only very rarely, for instance for unlikely
combinations of input data. By using parametric WCET, it is possible to design the system
according to an upper bound that is safe for the vast majority of executions of the system,
and then evaluate a parametric WCET formula at run-time to trigger an alternate less
time-consuming computation when the formula returns a value exceeding the safe bound
(and thus remain under the safe bound).

In this work we present a novel approach to parametric WCET analysis. Unlike the
majority of existing approaches, our methodology is not based on ILP. To the best of our
knowledge, it is the first to benefit from (1) a reasonable computing time, since it runs in
polynomial time, and (2) a good precision thanks to the support of context-sensitive effects
(persistent cache blocks, non-rectangular loops, branch prediction, etc.). Furthermore, in our
approach the trade-off between computation time and precision is configurable: it is possible
to increase (or decrease) the context sensitivity to improve the precision (or speed up the
computation time).

2 Related works

In [1], a technique is presented to perform a partial, composable WCET analysis. This
work addresses mostly the software and hardware modeling that occurs before the WCET
computation proper. Results are presented for the instruction cache and branch prediction
analysis, and loop bounds estimation. However, no solution is provided to perform the ILP
computation parametrically.

Feautrier [8] presented a method for parametric ILP computation. A traditional ILP
solver takes an ILP system as input, and provides a numerical solution corresponding to the
maximization (or minimization) of an objective function. The ILP solver presented in [8]
(called PIPLib), takes a parametrized ILP system as input, and produces a quast (quasi-
affine selection tree). Once computed, this tree can be evaluated for any valid parameter
values, without having to re-run the solver. However, this approach is computationally very
expensive. In contrast, our approach has polynomial complexity, and it is therefore scalable,
whereas the introduced pessimism is very small, as it will be shown in Section 6.

In theory, PIPLib could be applied for solving parametrically the ILP systems produced
in the context of the IPET method [14]. However, experimentations [4] have shown that
it does not scale well: the parametric ILP solving may become intractable for medium to
large size programs. The MPA (Minimum Propagation Algorithm) [5, 4] attempts to address
the shortcomings of PIPLib in the context of the IPET method. MPA takes as input the
results of the software and hardware modeling analysis, and produces directly a parametric
WCET formula. Compared with MPA, our method is significantly tighter because it takes
into account various context-sensitive software and hardware timing effects.

In the past, many tree-based WCET computation methods have been presented [11].
In [7] the authors suggest a method to compute the WCET parametrically using a tree-based
approach. Our parametric approach is also tree-based, but unlike the one presented in [7], it
can work directly on the binary target (no source code needed). Furthermore, our method can
model timing effects in a more generic and accurate way than existing tree-based approaches,
and the trade-off between accuracy and computation time can be configured.

ParaScale [12] is an approach to exploit variability in execution time to save energy. By
statically analyzing the tasks, a parametric WCET formula is given for loops in terms of the
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loop iteration count. At run-time, before entering a loop, the formula is evaluated and the
system dynamically scales the voltage and frequency of the processor. In comparison, our
parametrization is not limited to loop bounds, but can be used for anything influencing the
WCET (such as cache misses, branch predictor states, etc.). Furthermore our approach uses
a more refined model for loops.

Finally, note that our method provides an alternative to the time-consuming ILP solving,
thus our method is competitive even compared to non-parametric WCET analysis based on
ILP.

3 Context-sensitive model

Our algorithm takes as input a context-sensitive Control Flow Graph (CFG) and produces as
output a parametric formula. Let us motivate the need for the context-sensitive CFG as our
algorithm input by using two examples.

First we consider the instruction cache analysis by categorization. In this approach,
blocks can be categorized as persistent with respect to a loop (for the sake of simplicity, we
assume that each basic block matches exactly a cache block), meaning that the block will
stay in the cache during the whole execution of the loop (only the first execution results in a
cache miss). In the CFG shown in Figure 1(a), if we assume that Block 3 is persistent, its
execution time depends on whether it has already been executed or not. With IPET-based
approaches, this information would be stored as an ILP constraint, but since we do not use
IPET, we need to store it in the CFG itself.

As a second example, let us consider a triangular loop: a for loop i = 1..10, containing an
inner for loop j = i..10. The maximum iteration count for each loop is 10, but the inner loop
body can be executed at most

∑10
i=1 i times. Once again, this cannot be expressed with the

traditional CFG. In both examples, there is a block of code whose execution time depends
on the number of times this block was executed after entering some loop containing it: this
is what we call the execution context.

3.1 Context-sensitive CFG
In IPET-based WCET analyses, the various preliminary analyses (such as cache block
categorization) produce ILP constraints. In our approach, instead we transform the program
CFG into a context-sensitive CFG (and possibly make other graph transformations such as
block duplication).

The context-sensitive CFG extends the standard CFG by allowing an (optional) context
annotation associated with each node. For any CFG G, let LG denote the set of its loops. A
loop is defined as the set of cycles in the CFG sharing the same loop header. A loop header
is defined as a node n having a predecessor p such that n dominates p. For any header h,
we will note Lh the loop having the header h, and for any node n, we will note Ln the loop
immediately containing n (i.e. Ln is the loop containing n such that there is no other loop
containing n, and whose header is inside Ln). Furthermore, let us define a partial order on
loops: ∀(L1, L2) ∈ LG × LG, L2 < L1 if (and only if) L2 is contained in L1 (i.e. if there
exists a path from the header of L1 to itself, going through the header of L2).

A context-sensitive CFG G is defined by G =< BG, EG,AG >, where BG is the set of
nodes (basic blocks), EG is the set of edges, and AG = LG × BG × N is the set of context
annotations. We will note Tb the execution time of basic block b.

A context annotation a = (al, ab, an) represents a restriction on the set of feasible paths
in the CFG: the basic block ab (inside al) may be executed at most an times each time the
loop al is entered.

WCET’15
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(a) Standard CFG. (b) Context-sensitive CFG. (c) Expression tree.

Figure 1 Program representations.

To model our first example (cache persistence), we split Block 3 from Figure 1(a) as
two (virtual) blocks 3h and 3m, representing respectively the hit and miss. Then we add a
context annotation to Block 3m, as shown in Figure 1(b). This represents the fact that 3m
can be executed only once per execution of the loop. To model the triangular loop example,
we can add Annotation (Louter, body,

∑10
j=1 j), where Louter represents the outer loop, and

body is the block inside the inner loop.
These annotations are intended to be a generic tool to model many WCET-related effects

(hardware, and software), therefore the exact way to generate those annotations will depend
on the effect we want to model (and on the underlying analysis). However, the algorithm
evaluating the context-sensitive CFG is generic and does not need to know which types of
effects are represented by the annotations.

If a CFG node contains no annotation, its execution time is context insensitive (i.e. it
is the same for all contexts). In this trivial case, its WCET is an integer. Otherwise, its
execution time depends on the context. We define the context of a node n as the history of
context events happening before the execution of n. The set of context events is defined as
V = {exec(n)|n ∈ BG} ∪ {loop(l)|l ∈ LG}, where exec(n) represents the execution of node n,
and loop(l) represents the entrance in loop l containing (not necessarily directly) n. Then, a
context is defined as a list of context events. We denote an empty context as ε. We also use
the classical list notation head · tail to denote a context whose first element is head, followed
by list tail. For any context c and any integer k we note ck the repetition k times of sequence
c. We note range[L1, Ln] the sequence loop(L1) · ... · loop(Ln) where ∀i, L1 < Li < Ln.
Similarly, the notation range[L1, Ln[ corresponds to loop(L1) · ... · loop(Ln−1). Finally, the
set of contexts is noted C. For instance, the context of the third execution of the block 3m
(in loop body) in Figure 1(a) would be loop(L2) · exec(3m) · exec(3m) (the loop represented
in the figure is noted L2, as its header is the basic block 2).

3.2 Expression tree
The execution time of a node depends on the node itself and on the context. Therefore, it
is possible to compute an unique execution time for any (context, node) pair. To provide a
practical and easily computable approach, we will first convert the context-sensitive CFG into
an expression tree, then evaluate this tree to produce the WCET. To perform this conversion,
an algorithm similar to the one presented in [6] can be used. An expression contains a
set T of tree nodes which can be of type alt, seq, loop and leaf. A leaf node n represents
a single basic block, and has an attribute storing the basic block execution time (noted
ntime). A seq node represents a sequence of child nodes, and an alt node represents a choice
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(alternative) between child nodes. A loop node represents a loop in the program, has exactly
one child node (representing the loop body), and has an attribute (noted nb) representing
the maximum iteration count. In addition, each context annotation in the original CFG is
copied to the corresponding leaf node in the tree1. Figure 1(c) shows the tree that would be
generated from the context-sensitive CFG represented in Figure 1(b).

3.3 Abstract WCET values
An abstract WCET represents a set of possible execution times for a tree node, along with
conditions required for that execution time to occur. In our cache example, the abstract
WCET value computed for the alt node would contain two execution times (miss case, and
hit case) and indicate that the miss case can occur only the first time Block 3 is accessed.

First, we introduce the concept of context mapping. A context mappingm = (mloop,mtime)
is a pair whose first element (mloop) represents a loop, and second element (mtime) represents
an execution time. The set of context mappings is noted M = LG × N. We define a total
non-strict order on M such that ∀(m,n) ∈M ×M,m ≥ n ⇐⇒ mtime ≥ ntime. An abstract
WCET α = (αmap, αother) is a pair, in which the first element (αmap) is a multiset over M ,
and the second element (αother) is an execution time. The set of abstract WCETs is noted
A = M# × N, where M# is the sets of multisets over M . For any multiset m over M , we
note 1m : M → N its multiplicity function. Furthermore, we define the maxk : M# →M#

function, returning the k greatest elements of M# (context mappings with same time but
different loop are considered equivalent by this function).

An abstract WCET α is computed for each node in the tree. Informally, the presence of
a context mapping m in αmap means that the node may have an execution time of mtime,
but only once each time mloop is entered. The αother value represents the default execution
time of the node (used whenever no other time can be used due to context). We lift the
concept of context over CFG nodes to tree nodes. The new set of contexts is defined as
V ′ = {exec(n)|n ∈ T } ∪ {loop(l)|l ∈ LG}.

The abstract WCET of a tree node n provides a mapping from contexts to execution
times. We define two functions, eval : C × A × T → N, and next : C × A × T → N. Let
n be a tree node, α its associated abstract WCET, and c a context for the tree node n.
The expression eval(c, α, n) gives the WCET corresponding to the execution of the event
sequence (loop entrances, and executions of n) represented by c, while next(c, α, n) gives the
WCET increase caused by a subsequent execution of n after the event sequence represented
by c (which is not necessarily equal to the WCET of this last execution of n). The function
next is defined such that ∀α, next(c, α, n) = eval(c · exec(n), α, n)− eval(c, α, n), and eval
is defined as follows:

eval(c, α, n) = αother ×max(0, i− |Θ|) +
∑

t
t∈maxn(Θ)

where i is the number of exec(n) present in c, and Θ is such that ∀m ∈ M, 1Θ(m) =
1αmap

(m)× |{k|ck = loop(mloop)}|. The general idea behind the eval function is to account
for the execution time of n for each exec(n) present in the context, while ensuring that
each context mapping is not used more times than the number of times its corresponding
loop is entered, and using αother to provide a time for n when no context mapping can be

1 It is possible to extend the CFG annotations to sub-graphs representing if or loop structures (as opposed
to single blocks), this is not described here for the sake of brevity.
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used. The eval function may compute an over-approximation for some contexts, however
this representation is quite compact, with many contexts (leading to the same execution
time) described by a single context mapping value.

4 WCET computation

Let us define some notations that we will use in this section. The binary operator ] is
defined such that for any multiset pair (m,n), ∀x, 1m]n(x) = 1m(x) + 1n(x). Similarly to the
set-builder notation, we define the multiset-builder notation [n|n ∈ m∧pred(n)], representing
the multiset containing all the elements in m satisfying pred(n). For any element e in a
multiset, and any n ∈ N, we will note e⊗ n the multiset containing only the element e, with
a multiplicity of n.

4.1 Node evaluation
We note ω the evaluation function, taking as input a tree node and producing an abstract
WCET. Once the tree evaluation is finished, and we have the abstract WCET corresponding
to the root node root, the concrete WCET is ω(root)other. We detail below a simple way to
compute function ω.

For a leaf node n, if the node has no context annotation then ω(n) = (∅, ntime), otherwise,
ω(n) = ({(al, ntime)} ⊗ an, 0), where (al, ab, an) ∈ A is the context annotation associated
with the leaf node (ab is the basic block represented by leaf node n).

For a seq node n with two children n1, n2 (this can be extended to an arbitrary number
of children, since the operation is associative), we have ω(n) = (map, other) such that:

other = ω(n1)other + ω(n2)other map =
⊎
l≥Ln

S(ω(n1), ω(n2), range[l;Ln])

with S(α, α′, c) =
m−1⊎
i=0

(l, next(c · exec(n1)i, α, n1) + next(c · exec(n2)i, α′, n2))

and m = max(|αmap|, |α′map|) .

The general idea is to match context mappings from both children, and add their times.
For example, if ω(n1) = ([(L1, 10), (L1, 8)], 5) and ω(n2) = ([(L2, 4)], 3), and L2 < L1, then
ω(n) = ([(L1, 10 + 4), (L1, 8 + 3), (L2, 5 + 4)], 5 + 3).

For a alt node n with two children n1, n2 (this can be generalized in the same way as the
seq node), ω(n) = (map, other), such that:

other = max(ω(n1)other, ω(n2)other)
map = [m|m ∈ (ω(n1)map ] ω(n2)map) ∧mtime > other]

For any loop node n representing loop l, with body n1, ω(n) = (map, other) such that:

other = eval(σ(l, n1, nb), ω(n1), n1) map =
⊎
l′>l

j⊎
i=1

(l′, τ(i, n1, nb, range[l′; l[))

with τ(i, n, b, c) = eval(c · σ(l, n, b)i, ω(n), n)− eval(c · σ(l, n, b)n−1, ω(n), n)
and σ(l, n, k) = loop(l) · exec(n)k, j = min({i|τ(i, α, n1, b, c) ≤ other}) .

For example, if we consider a loop l having a body with abstract WCET ω(n1) = ([(L1, 8),
(L1, 7)], 6) and loop bound 5, inside an outer loop L1, then ω(n) = ([(L1, 8+ 7+6×3)], 6×5).
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The abstract WCET value corresponding to the seq node of Figure 1(c) is ([(L2, T2 +
T3m + T4)], T2 + T3h + T4): the first time the seq node is executed after entering loop 2, its
WCET value is T2 + T3m + T4, however for subsequent executions it is T2 + T3h + T4. The
abstract WCET value corresponding to the loop node is (∅, 10× (T2 + T4) + 9× T3h + T3m):
each time we enter the loop, a miss will occur at most once (Block 3m) and other iterations
will be hits (Block 3h). Note that, since there is no context mapping in the abstract WCET
(the multiset is empty), it is equivalent to a static WCET.

4.2 Approximations
In the presence of many context annotations, tree nodes can have many possible execution
times, thus the evaluation can produce very large context mappings. Using measurement
results from various experiments, we have observed that most of the time, the function that
maps iteration counts to execution times can be tightly over-approximated by a much simpler
piecewise linear function. The presence of a straight-line section in this piecewise linear
function means that there is a group of context mappings in the corresponding abstract
WCET value, with a time approximately equal to the slope of the straight-line section. Such
a group of i context mappings can be merged into one context mapping with a multiplicity
of i, and a time equal to the maximum time of the former group.

Using such an approximation, we lose some precision but we reduce the amount of data
we will have to process. We can only merge context mappings referring to the same loop.
Therefore, in order to increase the merging possibilities, for any context mapping (L1, t) ∈M ,
it is possible to replace it safely by (L2, t), with L2 < L1. Of course this would cause a loss
of precision, but it allows more merging and reduce the complexity of the evaluation.

The greater the number of context mappings we use, the greater the precision and the
analysis time. Therefore, when evaluating the tree, at each node we may need to use heuristics
to decide when and how to perform an approximation. For the experiments performed in this
paper, we use a simple (yet quite effective) strategy: we perform an approximation whenever
the number of distinct context mappings exceeds a certain (user-configurable) threshold.

5 Parametric WCET computation

Our tree-based computation is the first step for parametric computation. It can be made
parametric in a much easier way than an ILP computation (while it is true that ILP solving
can be done parametrically, it is way more costly than our method), as we will show in this
section. For instance, considering the example of Figure 2 and assuming that the loop bound
is not known statically, we will show how to create a parametric WCET in terms of the loop
bound value and how to obtain the concrete WCET once the loop bound value is known.

We extend our expression tree model, to enable the introduction of parameters that
represent information unknown at static analysis time:

We introduce a new node type: a param node n has an attribute nparam representing
a parameter identifier. Such a node can represent any type of (statically unknown)
expression sub-tree. It can be used to perform modular analysis (to represent the abstract
WCET for a separately-analyzed library call for which we do not have the code).
In loop nodes, the maximum iteration count, which was previously stored as an integer,
can now be a parameter identifier, to represent a statically unknown loop bound.
In any context annotation (al, ab, an) associated to a node, the values al and an can now
be parameter identifiers. This could be used to support parametric cache categories.
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Figure 2 Partial evaluation.

5.1 Partial evaluation
The parametric WCET computation starts with a partial evaluation phase, which precomputes
as much as possible from the parametric tree, and produces a simplified parametric tree.

We introduce two separated kinds of leaf nodes: a leaf node n can either be concrete
(associated with a basic block), or abstract (with an attribute nprecomp of type A, abstract
WCET). The abstract leaf node holds the result of a precomputed sub-tree. The evaluation
function ω for an abstract leaf node is defined such that ω(n) = nprecomp.

A node is parametric if it (or any of its descendants) contains a parameter. To partially
evaluate the parametric tree, we select any non-parametric non-abstract node n, remove it
(and its descendants), and replace it by an abstract leaf node n′ such that n′precomp = ω(n).
This is repeated until the tree contains only parametric nodes, and abstract leaf nodes. Some
optimizations can also be applied (not detailed here) to remove unneeded nodes.

In our example, the result of the partial evaluation is shown in the right side of Figure 2,
containing only one parametric loop node, and an abstract leaf node holding the abstract
WCET corresponding to the loop body: the first time the loop body is executed, its time is
T3m + T2 + T4, subsequently its time is T3h + T2 + T4.

5.2 Parameter instantiation
The next step is the parameter instantiation, which takes as input a simplified parametric
tree and parameter values. To do the parametric instantiation, we replace, in the parametric
tree, each param node n by the value of nparam, and each parameter p present in a loop bound
or in a context annotation by their value. Once the resulting tree contains no parametric
node, it can be evaluated using the method from Section 4, producing the WCET.

In our example, if we want to instantiate the simplified tree with a loop bound of 10 for
L2, we replace < param > with 10. Let us call r this partial result after replacement. We
can evaluate it, giving the abstract WCET ω(r), from which we can get the concrete WCET:
ω(r)other = T3m + T3h × 9 + 10× (T2 + T4).

6 Experiments

To evaluate the performance of our approach, we compared it to existing IPET-based WCET
analysis. The target hardware is an ARM processor with a set-associative LRU instruction
cache (the data cache is not taken into account). The processor pipeline is analyzed with the
exegraph method [13] and the instruction cache is modeled using cache categorization [9].
We perform our analysis on a subset of the Mälardalen benchmarks [10], used as standalone
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(a) Analysis time comparison. (b) Pessimism measurement.

Figure 3 Experimental results.

tasks, without any modeling of the operating system. To perform the preliminary steps of
the WCET analysis (program path analysis, CFG building, loop bounds estimation, pipeline
and cache modeling), we used OTAWA, an open source WCET computation tool [2]. Then,
we compare our approach with an ILP approach (using the GNU lp_solve ILP solver [3]), by
running both on the result produced by OTAWA.

We first compare the ILP solving time and the time taken by our tree evaluation
(Figure 3(a)). The times are normalized so that the ILP time is always 100. The measurements
do not include the preliminary WCET analyses (performed by OTAWA) as they are common
to both approaches. On average, our approach reduces the analysis time by a factor of 15.7.
The running time of our approach is polynomial in the tree size as long as we merge context
mapping groups once their size exceeds a fixed threshold.

Our approach uses simplifications that discard information, which introduces pessimism.
To quantify it, we choose a large loop in each benchmark, and create a parameter representing
its iteration count. We run our parametric analysis on each benchmark, instantiate the result
for each possible parameter value, and we evaluate the pessimism by comparing the result
to the value obtained by IPET. Figure 3(b) shows the average WCET increase for each
benchmark. We can see that the pessimism increase is very reasonable (on average 0.25%).

The pessimism can be attributed to two main causes: (1) the reduced expressiveness
of our annotated CFG format (as opposed to an ILP system), and (2) the approximations
performed during our computation (such as the simplification by merging context mappings
presented in Section 4.2). We cannot express all types of infeasible paths, such as mutually
exclusive paths, although we plan to support this in the future.

7 Conclusion

In this paper, we have presented a new approach to perform the final step of WCET
computation, which replaces the ILP solving phase of the IPET method. Instead of computing
a single, fixed WCET value, our method computes a WCET formula that may depend on
parameters, such as, for instance, loop bounds, architectural entry states (cache or branch
predictor state), or system environment (for example, preemption count). The WCET
formula can be evaluated once the parameter values are known. Additionally, it has a
significantly faster computation time, even compared to non-parametric WCET computation
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methods, while retaining good precision, and supports various WCET features such as branch
prediction, cache analysis, and non-rectangular loops.

The main limitation of our method is the diminished expressiveness (compared to ILP
approaches), for instance in presence of certain types of infeasible paths. In future works,
we plan to work on this issue, and enable our context-sensitive CFG format to represent all
characteristics found in modern WCET analyses.
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Abstract
Mixed-criticality systems integrate components of different criticality. Different criticality levels
require different levels of confidence in the correct behavior of a component. One aspect of
correctness is timing.

Confidence in worst-case execution time (WCET) estimates depends on the process by which
they have been obtained. A somewhat naive view is that static WCET analyses determines
safe bounds in which we can have absolute confidence, while measurement-based approaches are
inherently unreliable. In this paper, we refine this view by exploring sources of doubt in the
correctness of both static and measurement-based WCET analysis.

1998 ACM Subject Classification C.3 Computer Systems Organization – Real-Time and Em-
bedded Systems

Keywords and phrases mixed criticality, WCET analysis, confidence in WCET estimates

Digital Object Identifier 10.4230/OASIcs.WCET.2015.65

1 Introduction

Due the integration of multiple safety levels (A to E in DO178B for certification in avionics,
or A to D in ISO 26262, a functional safety standard for automotive), tasks of different
criticality may be executed on a shared platform. A naive approach to certifying such a
mixed-criticality system is to apply the certification methods corresponding to the highest
present level of criticality to all tasks. The drawback of this approach is that low-criticality
tasks become unnecessarily costly to validate and the system analysis potentially pessimistic.

Research in mixed-criticality scheduling targets the validation of these system assuming the
certification requirements are reflected in the execution time bounds, which vary depending
on the associated criticality. The original model by Vestal [35] suggests two levels of timing
estimations:
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C(HI) is a high-confidence WCET estimate, and
C(LO) is a lower confidence estimate of the WCET,

but there may be as many WCET estimations as safety levels.
The rationale behind this model is to guarantee schedulability of all tasks with their

C(LO) bounds, while ensuring that if a task exceeds its low criticality execution time bound,
the highly-critical tasks are able complete their execution within their deadlines as long as
their execution times do not exceed their C(HI) bounds. Intuitively, C(LO) ≤ C(HI) as
it is assumed in Vestal’s model. However, a more reliable WCET analysis provides higher
confidence in the validity of its estimation, but does not necessarily result in a greater bound.
Also, increasing the effort to analyse a task does not necessarily increase the bound, but may
even reduce it.

In this paper, we present our point of view on the sources of these different levels of
confidence in the WCET estimations. Our aim is to discuss the sources of doubt in the
correctness of WCET estimations. In contrast to [10], where confidence in WCET estimations
and monotonicity of WCET estimations with respect to the different certification levels have
already been shortly discussed, we highlight the problem from the perspective of timing
analysis. We first discuss confidence in static and measurement-based WCET analysis
methods, then focus on the impact of multi-core platforms on these sources of doubts and
specifically on the interferences on shared resources. We conclude with a discussion of open
problems.

Please note that we restrict our attention in this paper to deterministic approaches
currently used in industry (due to limited space). As future work, we plan to enlarge our
study to recently introduced probabilistic approaches.

2 On Confidence in Static WCET Analysis

2.1 Structure of Static WCET Analysis Tools
Static timing analyses compute bounds on a task’s execution time by analysing the task
characteristics and determining its behaviour on the target machine statically, i.e, without
executing the task on the target platform. The techniques employed by static timing analyses,
such as abstract interpretation or model checking, are borrowed from the related fields
compiler construction and verification and are meant to be sound by construction.

A static timing analysis typically consists of three phases, ISA-level analysis, microar-
chitectural analysis and path analysis. ISA-level analysis derives flow information of the
task, such as loop bounds, effective memory addresses of memory read or write and pointer
addresses. Microarchitectural analysis derives bounds on the execution times of each basic
block. Path analysis combines the information of the previous steps and determines the
longest execution path through the program.

Microarchitectural analysis has to resort to the level of the binary as only on this level
complete information about the task behaviour is available. ISA-level analysis can operate on
both, the high-level and on the binary, yet requires a control-flow graph representation of the
program. Consequently, additional steps are needed to bridge the gap between the different
representations and to establish a connection between the main phases of the analysis.

2.2 ISA-level Analysis
Some important supporting analyses depend only on the untimed, “functional” semantics
of the code. This includes program flow analysis, which attempts to find program flow
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constraints such as loop bounds, or infeasible path constraints. Also a conventional value
analysis is often needed, for purposes like bounding the possible addresses for memory
accesses.

There are several sources of uncertainty regarding these analyses. We focus mainly on
three points: uncertainty due to user annotations, uncertainty due to the analysis method,
and uncertainty due to the traceability of information from source level to binary level.

One concern are the assumptions that often have to be made about the environment in
which the code runs. Analysis tools typically allow the user to specify properties that can
affect the outcome of the analysis, like limitations on value ranges for inputs, or whether some
variables should be considered volatile. There is always a risk that such manually-specified
properties are false.

Another potential source of uncertainty is if the analysis is indeed unsound. A value- or
program-flow analysis must always rely on some assumptions on the semantics of the code:
if there are situations where these are not fulfilled, then value ranges or program flows may
be underestimated which in turn can yield an unsafe WCET estimate. For instance it is not
uncommon that analyses consider numbers to be unbounded, “mathematical” numbers when
indeed they have a finite representation in the software. Fig. 1 shows an example where a
loop bounds analysis that rests on this assumption will fail. Such an analysis will find that
the loop body can be executed only one time, whereas in reality i, which is an 8-bit unsigned
number, will wrap around from 254 to 0 when incremented by 2 causing a non-terminating
loop.

unsigned char i;
i = 254;
while (i <= 255) do {

i = i + 2;
}

Figure 1 A simple example of a
code with wrap-around.

Analyses that involve floating-point numbers can suffer
from unsoundness since it may be hard for a tool to support
all the varieties of floating-point arithmetics that different
processors use. It is therefore common that analysis tools
use some standard floating-point arithmetics such as IEEE
floating-point arithmetics, or the native arithmetics of the
computer where the tool executes. However, this may not
be the arithmetics used by the target machine, which then
can yield an unsound analysis.

In a similar fashion, if low-level code is analysed, the analysis can become unsound if it
assumes the wrong endianness of the target architecture.

A final potential source of unsound analysis are pointers. If the analysis cannot bound a
pointer in a program point where the pointer yields the address for a write, then a sound
analysis must assume (very pessimistically) that the write may occur anywhere in the memory
(possibly including, for instance, the program code). Thus, after such a write, basically all
information about what may happen next in the program is lost. It is therefore common that
analyses assume that writes using such unbounded pointers cannot be more than “reasonably”
out of bounds: for instance, it is commonly assumed that they cannot modify the program
code.

For maximal confidence, value- and program flow analyses must be performed on the
linked binary code. However, analyses can be hard to perform on this level due to lack
of information about types, syntactic structure, etc. Therefore it is not uncommon that
these analyses are attempted at the source code level instead, with the results subsequently
being mapped to the binary level with the aid of debug information or alike. However,
even the results of an analysis that is sound on the source level may not be sound for the
compiled binary due to compiler optimisations changing the structure of the code. Even
if optimisations are turned off, some compilers may still perform code transformations like
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turning while-do loops into do-while loops. Work has been done how to trace program
flow constraints through compiler optimisations [16, 24], but production compilers do not
implement these solutions.

2.3 Microarchitectural Timing Models

The low-level analysis step computes the worst-case execution times of code fragments, such
as basic blocks. It is based on a cycle-accurate model of the target platform which specifies
the hardware behavior when executing a sequence of instructions. There exist several ways
to build such a model:

The hardware timing model can be specified by the tool designer or by the end-user from
the processor manual that is usually publicly available from the processor manufacturer.
As mentioned in [27], this task is both time-consuming and error-prone due to: (a)
missing or even incorrect documentation (user manuals generally focus on specifying the
programming models but do not provide a detailed view of the processor internals nor
accurate instruction timings), and (b) human errors when translating the natural-language
description of the processor architecture given by the manual into a formal model. The
reliability of such hand-crafted timing models is difficult to assess and this is even more
true when the processor features complex hardware mechanisms, which are usually poorly
documented.
Measurement techniques can also be used to reverse engineer hardware parameters. In [14],
monitoring registers are used while running specifically-designed micro-benchmarks to
identify the processor’s write and cache replacement policies. Similar techniques are used
in [5] to investigate translation look-aside buffers (TLBs). New variants of the pseudo-LRU
replacement policy implemented in the Intel Atom D525, the Intel Core 2 Duo E6750, and
the Intel Core 2 Duo 8400 but not publicly documented could be discovered by application
of automata learning [1] in case of of the Intel Atom and a combination of automatic
measurements and human insight [2] in the other two cases. In [36], micro-benchmarking
is used to discover the behavior of various components of an Nvidia GPU architecture,
such as the warp scheduling policy. Note that all these approaches need manual work
to (a) design micro-benchmarks that can exhibit hardware parameters, which might
be particularly difficult in the presence of a totally original scheme that would not be
described in the literature, and (b) interpret the results to determine how the processor
or memory hierarchy works. In that sense, such techniques cannot provide fully reliable
models but they can confirm, deny or complement the processor’s description provided in
the manual. In the first case, confidence in the model is increased.
The timing model can be derived (semi-)automatically from a formal description of the
hardware in a hardware description language, i.e., the microarchitecture’s VHDL or
Verilog model [28]. This hardware description contains the complete information required
to build the microarchitectural timing model for timing analysis. Then, cumbersome and
often error-prone reverse engineering is not required. Correctness of the timing model
relative to the VHDL or Verilog model can be achieved and shown with comparably little
effort. Due to the complexity of the hardware description and the various abstraction
levels used to describe the microarchitecture, a completely automatic derivation is not
possible. The timing model must be tight so as not to inflate the complexity of the
microarchitectural analysis. The main obstacle remains the availability of the hardware
description. Processor manufacturers are very reluctant to provide detailed hardware
descriptions out of fear of plagiarism.
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2.4 Microarchitectural Analysis
Given a microarchitectural timing model and a program, the task of microarchitectural
analysis is to determine bounds on the execution times of program fragments. The main
challenge for modern processors is that execution times of individual instructions strongly
depend on the state of the microarchitecture. As an example, a memory instruction that
causes a cache miss may easily take 100 times as long as one that causes a cache hit.

To correctly estimate the execution time of a program fragment, microarchitectural
analysis thus needs to determine the set of states that the microarchitecture can be in
when executing the program fragment. To do so microarchitectural analysis needs to take
into account all possible program executions and initial states that may lead to a program
fragment. To cope with the potentially very large number of cases, abstraction is employed
where possible. Precise and efficient abstractions have been found for caches [8], whereas less
structured components such as pipelines are mostly analyzed concretely, often leading to
a very large number of states to be explored. Such analyses can be proven correct relative
to a concrete model using the theory of Abstract Interpretation [7]. Such proofs have been
carried out in paper and pencil proofs for caches and branch target buffers. Due to the lack
of “strong” abstractions, beyond abstracting register and memory values, such proofs have
been omitted for pipeline analyses.

To counter state-space explosion in microarchitectural analysis, it is tempting to only
consider the local worst cases. Due to timing anomalies [20, 25], however, this is generally
unsafe. It is an open problem to prove freedom of timing anomalies for models of realistic
microarchitectures, while some success has been achieved in simplified scenarios [26].

Another approach to reduce analysis cost and possibly even improve precision is to analyze
different components separately. For instance, one might attempt to analyze the pipeline
separately from the cache. In the case of multicores a common approach is to separate
the analysis of the bus blocking from the WCET analysis. Such approaches assume timing
compositionality [11], i.e., that execution time can be safely decomposed into contributions
from different components. As is the case with timing anomalies, some microarchitectures
are conjectured to be timing-compositional [38], but none has formally been proven so.

A number of projects have focused on designs of or design principles for timing-predictable
microarchitectures. This includes CompSOC [12], JOP [29], MERASA [33], Predator [38],
and PRET [19]. Timing models for microarchitectures developed based on the principles
identified in these projects are often simpler than those for commercial microarchitectures.
This enables more precise and efficient analysis, and it also increases confidence in their
correctness.

2.5 Path Analysis
Path analysis is the final step in WCET analysis. In this step, the results of microarchitectural
analysis and ISA-level analysis are combined to reason about all possible program executions
and their timing. Often, a program’s control-flow graph (CFG) is used to bridge the gap
between the two analysis levels:

Microarchitectural analysis delivers bounds on the execution times of program fragments
like the basic blocks of the CFG.
ISA-level analysis delivers constraints on the possible paths that can be taken through
the CFG, such as loop bounds.

The goal of path analysis is then to identify the worst-case execution path given the constraints
obtained by ISA-level and microarchitectural analysis. Instead of explicitly exploring all
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paths, state-of-the-art WCET analyzers rely on an Implicit Path Enumeration Technique
(IPET). Possible paths and their execution time bounds are expressed as the solutions of a
set of integer linear constraints. The solution maximizing the execution time can then be
found by an integer-linear programming (ILP) solver. Other path analysis approaches that
have been considered are based upon SAT modulo theory or model checking.

The main source of doubt in path analysis comes from the fact that execution time is
estimated in numbers of machine cycles. This is an integer value that is estimated by solvers
using finite number representations. Some research verified the solution for LP and/or SMT
solvers: the main idea is to verify the certificate corresponding to the optimum [9, 4]. As far
as we know, these studies have not yet been extended to ILP: such a verification appears
possible, but the problem to solve is larger.

2.6 Confidence in Tool Implementations

A potential source of uncertainty, which is common to more or less all analysis stages, is the
possibility of bugs in the tool implementations. One way to reduce the uncertainty stemming
from this is to make a formal verification of the algorithm, or the code of the implementation,
using a proof assistant. By reducing the trusted code base, i.e., the part of the code that is
not verified and thus has to be trusted, confidence can be gained.

One such effort has been done in the context of the CompCert certified compiler. Ma-
roneze [22] developed a static WCET analysis tool, using previously known techniques, in
the CompCert environment and provided a formal proof of correctness for those parts of
this tool that correspond to ISA-level analysis and path analysis. Correctness proofs for the
microarchitectural analysis were left as future work. This work demonstrates that this kind
of formal verification is within reach also for complex WCET analysis tools.

3 On Confidence in Measurement-based WCET Analysis

Measuring a task’s execution time is an alternative approach towards timing verification. It
provides a simple and straightforward method to derive execution time estimates. Besides
the simplicity of the measurement-based approach – which is in contrast to static timing
analysis – no microarchitectural model is required. Measurements can be derived for the
actual binary running directly on the target architecture, thus eliminating a prominent source
of uncertainty. The very same hardware used in the embedded system can also be used for
the measurement.

A fundamental drawback reduces the overall confidence in measurement-based approaches:
It is practically infeasible to obtain measurements that cover the complete input space and
the complete set of initial processor states, let alone interferences occurring during run-time.
Exhaustive measurements are simply not possible for realistically-sized tasks and modern
microarchitectures.

3.1 End-to-end Measurements

End-to-end measurements represent the most naive approach towards measurement-based
timing verification. The execution time from task dispatch to completion is measured for
a set of program inputs and initial processor states, and based on the highest measured
execution times, WCET bounds are derived. These bounds are then multiplied by a safety
margin to account for potential optimism in the measurements. This safety margin was
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the original motivation for mixed-criticality systems. A higher safety margin increases the
WCET bound and so, also the confidence in it.

Path coverage techniques [39] are traditionally used to increase confidence in end-to-end
measurements by automatically generating the set of test-cases. The automatically generated
test vector is claimed to either cover all paths, or to cover at least the worst-case path. As
these methods only treat the task input and not the initial processor states, doubt remains.

3.2 Hybrid Approach
Hybrid approaches [37, 17, 18, 31] use measurements to obtain estimates of the worst-case
timing of program fragments. These are then combined during path analysis as in static
WCET analysis tools to obtain an estimate of the WCET. There are two main approaches
to obtain the timing of program fragments by measurements:

By instrumenting the program code to obtain timestamps before and after executing each
program fragment [37].
By performing end-to-end measurements through different program paths, from which
the execution time of each fragment can then be estimated [17, 18, 31].

Both approaches require the generation of inputs that drive execution through a given
program point. Any unreachable code needs to be proven to be so, which may be difficult
for deeply nested code.

The first approach may not deliver faithful execution-time estimates on pipelined pro-
cessors, because timing is distorted through instrumentation. A too fine-grained instru-
mentation may also be impossible due to the large amount of trace data that must be
captured at high pace. The second approach avoids these problems since it identifies the
fine-grained timing models from end-to-end measurements. The approach in [18] works also
for complex architectures, and can identify timing models with context-dependent costs
for better precision. Both approaches may underestimate the WCET whenever execution
times of program fragments depend on input data values or on the execution history, as
the measurements will usually only cover strict subsets of the possible cases. On modern
processors with deep pipelines, branch predictors, and caches this is the case. Exceptions are
highly timing-predictable microarchitectures such as PRET machines [19].

While hybrid approaches are not guaranteed to be sound, and it is hard to quantify
confidence in its results, they can also be pessimistic. The path analysis phase may combine
observed worst-case timings of program fragments which may not occur together during a
single program execution, which may be avoided in static analysis [32].

4 Beyond WCET Analysis – The Impact of Interference on Shared
Resources

The WCET analysis exposed in previous sections considers a task that runs in isolation on
the platform: its execution time is assumed not to be impacted by any external source. In
practice, this assumption is rarely true: the task might be interrupted, or preempted by the
scheduler for the benefit of a concurrent task, and the hardware state (e.g. cache contents)
might be changed by the interrupt service routine or the preempting task; it may also be
delayed by a hardware-level operation (e.g. a DMA transfer) or a task running on another
core (in a multicore platform) that compete for shared resources (bus, memory, etc.). These
last years, several approaches have been proposed to account for such interferences.

Techniques to estimate the cache-related preemption delay (CRPD), i.e. the number
of additional cache misses due to context switching or periodic/sporadic interrupts, have
received much attention recently [3, 6]. Most of the approaches use static code analysis
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techniques and suffer the same confidence issues as static WCET analysis: the model and/or
its implementation might be flawed.

Multithreaded/multicore platforms raise additional issues: a task can experience increased
latencies upon accesses to shared resources, due to conflicts with simultaneously running
tasks; and the contents of shared storage resources, such as shared L2 caches, can be evicted
by co-running tasks all along the task’s execution, not only at preemption points. Evicted
cache contents may result in additional delays to reload information that is still in use
by the task. To estimate additional latencies due to interferences from other tasks, two
strategies are possible: the blind approach assumes the worst possible co-running task set
and considers absolute worst-case latencies [23, 15]; the scheduling-aware approach restricts
the analysis of possible conflicts to the set of tasks that can effectively run together with the
task under analysis [13, 21]. Both approaches require that the sharing control policy allow
upper bounding delays; this is the case for a round-robin bus arbiter, for example. In the
same way as for single-core architectures, the documentation of COTS multicores might not
provide enough guarantees in the sharing scheme description to be fully confident in estimated
delays. For this reason, designs for time-predictable multicores have been developed in recent
projects, such as T-CREST [30] or parMERASA [34]. Note that a common assumption for
most of the works on this topic is that the system features timing compositionality [11],
which allows analysing each component separately. Unfortunately, this property is not easy
to prove.

5 Discussion and Open questions

We have discussed possible sources of errors in different WCET analysis methods: static,
measurement-based, and hybrid methods, and how the potential for such errors will affect
the confidence in the result. The motivation comes from the need to quantify the confidence
in WCET estimates for safety-critical systems, e.g., to select C(HI) and C(LO) in Vestal’s
model for scheduling of mixed-criticality systems.

All WCET analysis methods have potential sources of errors. For methods like static and
probabilistic analysis, which rely on mathematical models, the risk that the models do not
comply with reality must be taken into account. For methods that include measurements
an additional source of uncertainty is the quality of the test vectors, and the ability of the
method to find inputs provoking the longest execution traces with the highest instruction
execution times.

Identifying sources of reduced confidence in WCET estimates is not difficult. Quantifying
the confidence is much harder, and we do not attempt to make any detailed assessment of
the different techniques in this regard. Having said that, we do believe that static analysis
methods have an edge as regards the potential to obtain high confidence in that (1) given that
the underlying models are correct, the methods are provably safe, and (2) since the methods
are not based on measured data, confidence can be obtained by a thorough validation of
the models against the real systems, and by verifying the correctness of the algorithms
and tool implementations that build on the models. The latter can be done either by a
formal verification, or by a run-time verification where checking of correctness certificates is
integrated in the tools.

For methods that rely on measurements, confidence also rests on the quality of the test
data. Better criteria are needed to assess this quality with respect to timing. Traditional
coverage criteria, like path coverage, do not consider hardware effects on timing: we would
need more refined coverage criteria that take hardware states, like cache contents, into
account.
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However, although hard, quantified confidence in WCET analysis methods is essential if
models like Vestal’s model are to be applied in the design of mixed-criticality systems. Our
aim is to start a discussion on how this can be done.
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Abstract
Integrating high performance and real-time demands on multi-processor systems is a challenging
task. We present our concept of isolating processes from a general-purpose operating system
without deeply invading modifications. This allows executing code on dedicated CPUs with
minimum latency and jitter like bare-metal on micro-controllers. The unbounded execution of
mixed critical processes on the same system induces performance interference in real-time tasks.
We present the implementation of isolated partitions on multi-processor x86 systems running
Linux and describe challenges restoring operating system stability. This work also presents our
experience with Non-Uniform Memory Access architectures that allow to partition the system in
a way that the impact to memory and I/O transfers of other partitions is minimized.

1998 ACM Subject Classification D.4.7 Real-time systems and embedded systems

Keywords and phrases hard real-time system, high-performance computing, non-uniform mem-
ory access, bare-metal execution

Digital Object Identifier 10.4230/OASIcs.WCET.2015.75

1 Introduction

Today, multi-processor systems are commonplace from High-Performance Computing (HPC)
to small embedded systems. The shift from faster CPUs to multi-processors is more radical
than any other architectural change of the last decades [22] because it requires the software
paradigm to care for concurrency. This problem is split in two challenges: Firstly to
synchronize correctly to avoid in order races and to get a correct result in every execution
and secondly to avoid pitfalls that slow down the performance. HPC has a long head start in
designing and optimizing concurrent software but this is mainly reserved to domain-specific
experts [10, 11]. Evidently, multi-processor systems are also utilized for real-time applications
and a large amount of research concentrates on improving the predictability of concurrent tasks
in such systems. Various approaches exist that cover a range of applications from completely
controlled to a mix of real-time and general-purpose loads. New implementation methods
and tool kits are searched for to ease the development of efficient and race-free software.
This is especially true for real-time systems, where the additional goal of predictability must
be met.

Multi-processor systems generally include multiple CPUs that have access to the entire
memory via a global address range. Multi-core processors are CPUs integrated in the

© Georg Wassen and Stefan Lankes;
licensed under Creative Commons License CC-BY

15th International Workshop on Worst-Case Execution Time Analysis (WCET 2015).
Editor: Francisco J. Cazorla; pp. 75–84

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2015.75
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/


76 Bare-Metal Execution in General-Purpose Operating Systems

same package, usually sharing the Last-Level Cache (LLC). If all processors have the same
distance to the memory, the system is a Uniform Memory Access (UMA) architecture. In
contrast, the Non-Uniform Memory Access (NUMA) architecture places multiple memory
regions directly at groups of processors. These nodes have a lower latency and a higher
throughput to their local memory but still can access the remote memory. This does not
require special programming since all memory regions are laid out in a linear address range,
but the performance can be greatly increased if the data is partitioned accordingly [5, 14].

Real-time systems generally require not only a correct result, but also have a timing
requirement, usually a deadline after which the value of the result either vanishes abruptly
or declines. We define hard real-time tasks to require absolutely no missed deadlines and
soft real-time as more tolerant, e. g. to a certain percentage of missed deadlines. The former
demand can only be proved by a formal verification while soft real-time tasks can usually
be evaluated practically [17]. The design and verification is split into the path analysis of
tasks, conditions and loops in a Control Flow Graph (CFG) and the run-time estimation of
basic blocks [24]. The former includes the schedulability analysis of multiple tasks and must
regard dependencies and communication. On multi-processor systems, the effort increases but
solutions do exist. In contrast, the run-time estimation of small, linear parts of code – basic
blocks – must regard architectural features that are often hardly documented or complexly
interweaved on powerful commodity processors with multiple levels of caches. So far, this
results either in the requirement of simplified models or in an overly pessimistic estimation.

1.1 Contributions
We consider homogeneous processors with a partitioning approach. This usually means
either executing multiple OS instances in an Asymmetric Multi-Processing (AMP) layout or
binding certain tasks to dedicated processors in a Bound Multi-Processing (BMP) concept.
We present our implementation to provide hard real-time capabilities on a single instance
of the general-purpose operating system Linux by completely isolating single processes
on dedicated CPUs while the other processes are executed unaffected on the remaining
CPUs. We extend our basic concept [23] and present detailed experience implementing
benchmarks and demonstration applications. We share our experience with partitioning
on NUMA systems. This architecture is well established in HPC but – in our opinion –
under-represented in recent real-time research. The main contribution of this work is a
demonstration of a NUMA system that allows to execute hard real-time tasks with very
low jitter as well as compute-intensive applications on the same system. The architecture
naturally minimizes the performance interference which simplifies the design and verification.

1.2 Structure
The next Section introduces to our partitioning concept, explains how we implemented
fundamental services and presents our demonstration application. Section 3 explains how
we use the NUMA architecture and presents the evaluation of memory access patterns. In
Sec. 4, we transfer those findings to non-uniform I/O. Section 5 comments on related work
and Sec. 6 concludes and provides and outlook to future work.

2 System Architecture

The term hard real-time is defined to guarantee a reaction below a defined maximum latency
in every possible situation. A program or system can only be proved to comply to this
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constraint by a formal analysis of all possible code paths. Besides the code of the real-time
tasks, there is other software competing for the processors, foremost the operating system’s
interrupts and system calls. The analysis of all possible code paths in the OS is beyond
practicability for a current general-purpose operating system.

Therefore, we isolate a single hard real-time process on each dedicated CPU. By avoiding
system services, we implemented a bare-metal execution that relieves the time-sensitive code
from external influences. The usability is restored by providing user-mode communication
and device access that allows to interact between isolated tasks and usual processes without
introducing new timing dependencies. The remaining influence of hardware effects will be
analyzed in the following Sections.

2.1 Application
The isolation concept was implemented by adhering to implementation rules, configuring the
base system properly and finally deactivating all interrupts on the isolated CPU. The following
system-wide configuration settings are reasonable to support all real-time applications. These
settings are available on the x86 architecture, but similar effects are present on other hardware
and can usually be addressed by similar means. In our evaluation, some settings can be done
in the firmware configuration (BIOS or UEFI setup), others are selected at the Linux boot
command line or configured as runtime settings.

Symmetric Multi-Threading (Intel HyperThreading) is deactivated because the logical
processors share some execution resources and the local cache in an unpredictable way [6].
The System Management Mode is a special feature of x86 processors to enable the firmware
to execute routines for power management, security, etc. It executes at the highest privilege
level and can not be influenced or deactivated by the operating system [9]. Experiments on
various systems have revealed a duration of System Management Interrupts between 5µs
and 250ms on all CPUs concurrently. Their use depends on the firmware that may use them
frequently. Some can be configured, e. g. by deactivating the legacy keyboard support but
every system must be assessed for its acceptability in this regard. The CPU frequency can be
adapted by the operating system or the processor itself. These features must be configured
to remain at a constant rate. Linux provides an NMI Watchdog that sends non-maskable
interrupts to non-responsive CPUs. This feature must be deactivated. Like every real-time
and embedded system, all services of the operating system should be evaluated and those
not required should be deactivated.

To isolate hard real-time tasks on their dedicated CPUs and guarantee the servicing
of all remaining processes, a partitioning concept based on CPU Affinity or the CPU-Set
feature was used. CPU-Sets are a convenient mechanism to create groups of CPUs and assign
processes to them. That way, isolated partitions can be created for each task. An application
partition allows a BMP layout for soft real-time execution of other, less time-critical or
best-effort tasks and a system partition gathers all remaining processes and services. To
ensure the execution of interrupts, they are assigned either to the CPU of the system partition
or to several dedicated CPUs by the means of IRQ Affinity.

The real-time process must be implemented according to the usual recommendations using
preallocated buffers and memory locking to avoid page faults and the proper distribution of
jobs and the implementation of algorithms suited for real-time. Of course, the application
must be correct and error free. The isolated real-time tasks finally clear the interrupt flag
to avoid all interruptions. Further, they must avoid all system calls during the real-time
operation because those are of unpredictable timing in a General-Purpose Operating System
(GPOS).
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2.2 Services
For the described approach of isolated tasks on bare-metal processors, the applicability is
restored by providing user-mode communication and device access. To interact with the
physical world, many real-time applications require reading sensor data and controlling actors.
These can be directly connected to I/O adapters that convert analog voltage to digital values
and vice-versa. Operating system drivers are not allowed to be used by isolated tasks because
their latency would be too large and too unpredictable. But as adapters are controlled either
by I/O instructions or by memory-mapping their configuration registers, these devices can
also be operated directly by user-mode processes. Devices for real-time applications usually
provide libraries for low latency user-mode access.

The initialization and allocation of resources can remain under the control of the operating
system and should be done before the time sensitive phase of the program begins. During
run-time, the reading and writing of values must then be done directly. Given that interrupts
are deactivated, the programming can not follow the event-based paradigm but must use
polling. Real-time capable libraries provided by hardware vendors must be assessed for not
using system calls during run-time. Network drivers could also be realized in user-space.
Shared buffers must be mapped at initialization time and the event-based processing of
incoming data must be converted to a polling realization. Further, the network stack must
be made real-time capable and running in user-space.

We used shared memory for lightweight communication between threads and processes.
During the initialization phase, page-table entries directing to the same physical page frames
are created. This hardware based method does not require any operating system support
after set-up. The caches are coherent by hardware design. As in all concurrent applications,
shared resources must be protected from simultaneous access to avoid using invalid data. If
a shared variable (flag) is written always by the same task, no synchronization is required.
For complex data structures and message queues, the synchronization could be realized with
atomic operations. But hard real-time tasks could be blocked by mutexes held in lower
prioritized tasks (priority inversion). This can be solved by applying wait-free algorithms
[12].

To simplify application development, we implemented a communication and synchroniza-
tion library based on shared memory. During the start of a process, the shared memory
segment is set up using SystemV shared memory. This is part of the UNIX specification
and available on POSIX compliant operating systems. Within that shared segment, the
needed synchronization primitives such as flags and message queues are allocated. The shared
resources are protected by atomic operations for mutual exclusion and wait-free algorithms.
The design of wait-free message queues is possible [19] and provides a Worst-Case Execution
Time (WCET) that is limited independently from other users of the object. This restores
the communication capabilities of the isolated process under hard real-time terms.

2.3 Operating System Modification
The deactivation of all interrupts on some CPUs leads to the instability of the underlying
Linux system. Among the observed problems are other CPUs locking up due to synchronous
inter-processor callbacks, unreliable system wall clock time, and increasing kernel memory
consumption. We modified the Linux kernel 3.9 imitating the CPU hotplugging to deactivate
all subsystems on a CPU to isolate a task. With this modification, the task does not need
to clear the interrupt flag to ensure uninterrupted operation. On x86 systems, clearing the
interrupt flag can only be done by the code running on the CPU itself, while our mechanism
can be triggered externally. This allows to reactivate a non-responsive isolated CPU.
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Figure 1 Example application architecture with bare-metal tasks.

2.4 Example
An example application partitioning is shown in Fig. 1. The GPOS with its system services
is executed in a dedicated partition. The application partition is used for the main part of
the application to execute Graphical User Interface (GUI), compute-intensive tasks and data
management. These two partitions can also be combined or split into multiple dedicated
partitions depending on the requirements. It is important to create a single hard real-time
partition or even dedicated isolated partitions for each CPU where hard real-time tasks are
isolated from the compute-intensive loads.

The system and application partitions execute arbitrary services based on standard
libraries and use the OS drivers to access devices that have lower timing requirements or that
are throughput bound. The isolated partitions use shared memory and wait-free algorithms
[12] to communicate with the other partitions and to access their peripheral devices directly
using on user-mode drivers or direct I/O. This ensures the lowest latency and the least
impact of the GPOS and the remaining application onto the isolated tasks. The isolated
tasks can be executed bare-metal or in an embedded Real-Time Operating System (RTOS)
implementing user-mode threads.

We implemented this concept on a twelve processor machine with two NUMA nodes.
The System and Application partitions are assigned to the processors of the first NUMA
node and three isolated partitions are set up on the second node. The remaining CPUs on
that node are left idle. This application was developed with an industry partner and is in
successfully used in production. The benchmarks described in the following Sections are
implemented using the same architecture.

3 Non-Uniform Memory Access

All processors in a Uniform Memory Access (UMA) system share the system bus and the
Memory Controller (MC). Cores sharing the inclusive LLC of a multi-core package may
even cause the eviction of cache lines from other core’s local caches [13]. In contrast, a Non-
Uniform Memory Access (NUMA) system has multiple memory partitions attached directly
to MCs located in the multi-core packages. These packages are connected by Interconnect
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Figure 2 NUMA system architecture of Tyan S7025 main board with two CPU sockets and two
I/O bridges.

Controllers (ICCs) that forward memory requests for remote addresses. With the practical
knowledge, that shared functional units are potential contention points, we designed the
partitioning of the real-time application respecting the NUMA nodes. The system and (soft
real-time) applications are executed on different nodes than the isolated tasks.

Our example system (Fig. 2) has two processor sockets each equipped with a six core
Intel Xeon E5645 processor. The example application introduced in Fig. 1 maps the system
services to core C0 and the main application to the remaining cores C1 to C5 of the first
NUMA node. The hard real-time tasks are executed in isolation on dedicated cores of the
other NUMA node (C6 to C11). By default, new memory allocations are placed locally so
that the system and the application access mainly the memory node M0 while the memory
regions of the isolated partitions are placed on the other node. Only a small Inter-Process
Communication (IPC) buffer is accessed across the interconnect link between ICC0 and
ICC1.

The benchmark application records the loop execution time for accessing a memory
buffer of varying size. At the same time, the main application generates different loads
on the other partition. The isolated tasks communicate their state and current timing via
wait-free message queues to the main application and watch for a termination signal like in a
real application. Figure 3 shows the jitter experienced by the isolated task. The result is
independent from the load range as displayed exemplarily for 16KiB (L1$), 8MiB (LLC)
and 512MiB as long as the isolated task has a memory usage well below the cache size. Only
the memory usage of the isolated task itself increases its own maximum latency if it uses a
large part of the LLC. The load does not cause any performance interference on this NUMA
system.

The increasing jitter caused by using large parts of the LLC matches the experience on
UMA systems. Since every NUMA node is a multi-core processor, their cores impact each
other in the same way as all processors in a UMA system do. Therefore, the isolated tasks
should restrict themselves as much as possible to the private Second-Level Cache (L2$) of
256KiB. In this case their maximum latency remains reliably low. Even occasional cache
misses compulsorily caused by shared IPC buffers do not interfere fatally. The worst latency
of main memory accesses is in the order of 106 CPU cycles (Millisecond range) but occurs
very seldom and only if the isolation writes very large memory buffers. Minimum and average
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Figure 3 Jitter caused by load on other NUMA node.

latency are not impacted by those events. Our experiments have shown, that the number of
events in the range of the maximum latency increases linearly with the isolation buffer size.

4 Non-Uniform I/O

Many hard real-time systems with high frequency and low latency requirements are pro-
grammable logic controllers that require direct interaction with physical signals. This can be
accomplished on the x86 architecture with data acquisition expansion cards. Their access
time in the order of several thousand CPU cycles (Microsecond range) is low compared to
what the processor could calculate in this period. But similarly to memory access, the jitter
caused by device access is even worse on multi-processor systems because of system bus
contention [21]. To solve the problem of unpredictable jitter, co-scheduling of tasks [16]
and hardware extensions [1] have been proposed. Since we aim for unrestricted concurrent
execution on available systems, these approaches are inapplicable.

Analogous to the memory transfers, in UMA systems all I/O traffic uses the same system
bus. In the same way that NUMA architectures are capable of separating contending memory
transfers of system applications and time-critical tasks, they also offer a solution for predictable
I/O transfers. Additionally, PCI-Express (PCIe) offers prioritized data streams that can be
transferred concurrently over switched point-to-point connections without interfering [2]. Like
the NUMA architecture’s natural partitioning capabilities improving the timing predictability
of memory accesses, we expect that the PCIe connections in NUMA architectures are better
suited for hard real-time systems than PCI and UMA.

The main board architecture shown in Fig. 2 has two I/O bridges (IOH) that are connected
to the CPU sockets in a QuickPath interconnect forming a ring. We therefore connect the
peripheral devices used by the real-time tasks to the PCIe slots connected to the right-side
IOH. The system partition controls the standard devices (graphics adapter, USB, Ethernet)
that are provided by the ICH which is connected to the left IOH. The only data transfers
crossing the partition border are still the memory transfers to the IPC buffers.

The test series uses memory-mapped I/O accesses to different devices that are connected
to the built-in PCI slot managed by the ICH and to a PCIe slot of the real-time partition.
We also measured a PCIe to PCI bridge installed in the real-time partition and one of the
PCIe slots assigned to the system partition but those gave similar results as the real-time
partition PCIe connection. The benchmark was executed in isolated tasks and recorded a
statistic of latencies during high memory and I/O loads executed in the system partition.

The results are displayed in Fig. 4. The large I/O overhead of the x86 architecture in
the range of 2000 to 5000 CPU cycles (1–2µs) covers outliers and jitter of I/O transfers.
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The PCI device connected to the chipset’s ICH has access latencies up to 6µs under high
system load while the access to the PCIe devices is more predictable between 1.2 and 2µs.
The results of the other PCIe partition and a PCIe to PCI bridge in the real-time partition
are very close to the lower histogram with a constant offset of approx. 0.2µs. The PCIe
devices are not influenced by the load. The transfers using the PCIe interconnect can be
completed in bounded time while the ICH (former south bridge) is easily contended. It
remains as future work to verify the interconnect architectures and to evaluate more systems
and more recent CPU architectures. However, we have completed extensive test series with
uninterrupted execution times up to 72 hours that support these results on our test system.

5 Related Work

Real-time systems with multiple processors have been researched thoroughly [4, 18]. Current
approaches [25] to tightly estimate the execution time on multi-processor systems either
simplify the architecture [3] or restrict the execution on the entire system by strictly controlling
all tasks [15]. In contrast, we aim for allowing arbitrary applications in the system partition
and present a method to restrict performance interference. A very deep analysis of the causes
of jitter in x86 systems is presented by Dasari et. al. including the memory bus and caches
[8] as well as I/O [7]. Some publications mention NUMA systems in their plans for future
work [7, Sect. IV.C] or just explain theoretical foundations [20] but they do not analyze the
opportunities of such systems. All evaluations of multi-processor I/O so far only regard
UMA systems and the older PCI bus. Stohr includes PCIe in his analysis of using the x86
architecture for real-time systems [20] but does not cover NUMA and non-uniform I/O.
Despite an extensive literature review, these works cover only UMA systems and even if
mentioning NUMA systems, those are only briefly touched and either dismissed or left for
future work. To the best of our knowledge, no publications present experience with hard
real-time applications on current NUMA systems do exist so far.
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6 Conclusion

We demonstrated the value of the NUMA architecture that is underrepresented in hard
real-time systems research, so far. With the spacial partitioning of AMP and BMP real-time
systems to distinct processors, NUMA systems allow to also partition both memory and
I/O transfers. Extensive test series fortified the assumptions derived from HPC experience
and architectural analyzes. However, this is only shown for the used CPU architecture
(Intel Westmere) and main board (Tyan S7025). Nevertheless, it indicates that a careful
design which considers the NUMA architecture is in fact capable to reduce the performance
interference and to provide hard real-time guarantees on commodity x86 systems without
restricting the load in the system partition.

This concept was implemented in a Hardware-in-the-Loop simulator for industrial inte-
gration testing. Compute-intensive high-frequency hard real-time tasks could successfully be
ported from special micro-controllers to a standard x86 server system. Other application
fields are FPGA codes, that could be integrated easier with existing complex applications to
create mixed critical systems.
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Abstract
Constructing the control-flow graph (CFG) of machine code is made difficult by dynamic transfers
of control (DTC), where the address of the next instruction is computed at run-time. Switch-
case statements make compilers generate a large variety of machine-code forms with DTC. Two
analysis approaches are commonly used: pattern-matching methods identify predefined instruc-
tion patterns to extract the target addresses, while analytical methods try to compute the set of
target addresses using a general value-analysis. We tested the abstract execution method of the
SWEET tool as a value analysis for switch-case code. SWEET is here used as a plugin to the
Bound-T tool: thus our work can also be seen as an experiment in modular tool design, where a
general value-analysis tool is used to aid the CFG construction in a WCET analysis tool. We find
that the abstract-execution analysis works at least as well as the switch-case analyses in Bound-T
itself, which are mostly based on pattern-matching. However, there are still some weaknesses:
the abstract domains available in SWEET are not well suited to representing sets of DTC target
addresses, which are small but sparse and irregular. Also, in some cases the abstract-execution
analysis fails because the used domain is not relational, that is, does not model arithmetic re-
lationships between the values of different variables. Future work will be directed towards the
design of abstract domains eliminating these weaknesses.
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control (DTC) instructions often result from switch-case statements. Other reasons for DTC
include function pointers, virtual function calls in object-oriented languages, and closures in
functional languages.

This paper focuses on DTC from switch-case statements. This analysis is typically
local and intra-procedural, while function-pointer analysis is a global value analysis and
assumes that the CFGs of all procedures are already known. The switch-case statement in
languages such as C or Ada is a very flexible control structure. The programmer can choose
the type of the switch index, for example an 8-bit or a 32-bit number; whether the cases
are numbered densely 1 .. n or are a sparse subset of a large range; whether each case is
reached by a unique index value or by a set or range of values; and whether there is a default
case or not. Compilers often generate quite different kinds of code to implement different
kinds of switch-case statements. Moreover, hand-written assembly code (still often found
in run-time libraries) can have quite tricky switch-like structures. Switch-case statements
are also common in real programs and a failure to analyse even one of them can prevent
the analysis of the whole program. Of course, the compiler knows all the targets of each
switch-case DTC, and in principle could make this information available to a WCET analyzer,
but in practice we cannot expect to get this information from all the industrial compilers,
and especially not for manually coded assembler subprograms – even debugging information
is sometimes unavailable for those.

On the surface, analysing a DTC instruction is just value-analysis: we need to know
the possible run-time values of the variable or register that holds the final target address.
However, in practice we have more requirements – the analysis of the DTC generated from a
switch-case statement should:

produce the precise value-set, because any over-estimation will introduce false execution
paths, which can make a mess of the rest of the analysis,
produce the sequence of instructions that leads to each case, so that later steps in the
analysis can find an accurate WCET for each case,
connect each case with the corresponding values of the switch index, again for use in
later analysis steps (for example to find bounds for a loop that is nested in a case and
depends on the switch index),
apply uniformly to most types of code for most kinds of switch-case statements, and be
robust to changes in the code as the compilers evolve or manually written code is revised.
Adding new patterns or other special cases for every new version of every compiler for
every supported processor is cumbersome and expensive.

The more general analysis-based methods have a larger chance of satisfying the last point,
while more specialized pattern-based methods will suit the first three points better.

How can a value-analysis method meet these requirements, in particular a method
using abstract interpretation? Firstly, for high precision a very suitable and accurate
abstract domain must be used, and imprecision induced by merging abstract values must be
limited. Secondly, because switch-case code is often optimized and quirky, the “smooth” and
theoretically appealing abstract domains such as intervals or polyhedra may not work well.
Thirdly, this code often uses memory-resident tables, so the analysis must model memory
values as well as registers. However, these tables usually contain constants, so a model of
indexed access to constant memory data may be enough, and mutable memory data need
not be modelled.

Here, we apply the abstract-execution method of the SWEET tool to switch-case code, and
compare it to the switch-case analyses in the Bound-T tool, which are in part pattern-based.
This is also an experiment in modular tool design where a general value analysis tool is used
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as a plugin to a WCET analysis tool. Indeed, this scheme should also be applicable to other
value- and WCET analysis tools if they are provided with suitable interfaces.

SWEET requires ALF code [5] as input, not machine code. Thus, we needed a front-end
to translate machine-code into ALF. We implemented this function in Bound-T, which in
the future will let users of Bound-T benefit also from other SWEET analysis results like
loop bounds and other flow-facts. However, so far we have implemented the link between
Bound-T and SWEET only for DTC analysis.

The rest of this paper is organized as follows. Section 2 introduces our tools and methods:
abstract execution, SWEET, Bound-T, and the coupling of Bound-T and SWEET to use
abstract execution for DTC analysis. Section 3 describes the test programs we used, in
particular the machine-code form of their switch-case statements. Section 4 discusses the
results of the analysis of the test programs, tracing the reasons for successes and failures.
Section 5 briefly surveys some related work on analysing DTC. Section 6 draws some
conclusions for future development of SWEET and Bound-T.

2 Tools and methods

2.1 SWEET and Abstract Execution

SWEET [10] was originally aimed at WCET analysis. The current version of SWEET
focuses on value-analysis and control-flow analysis. SWEET analyses programs represented
in the ALF language [5]. ALF is a textual language, similar to a compiler’s intermediate
representation, and is designed to represent code on both low- and high level (like machine
code, or C) faithfully. An ALF program consists of global data declarations and functions.
A function consists of local data declarations and a sequence of assignment statements
interleaved with branch statements, where any statement can be labelled for use as branch
target.

In addition to the conventional value analyses based on abstract interpretation with
widening, SWEET provides Abstract Execution (AE) [6]. This can be seen as a very
context-sensitive value analysis without widening, where different loop iterations are analysed
separately. This makes the analysis resemble a symbolic execution where the program is
executed with abstract states, in the abstract domain, rather than in the concrete domain.
This yields a more precise value-analysis, but has the draw-back that it may not terminate.

During the AE, several abstract states may appear. When the AE reaches a control-
flow join, it may or may not merge the abstract states from the incoming paths using the
least upper bound operator in the abstract domain. The merging is controlled by several
command-line options and can even be completely shut off. Disabling merging has the effect
that the abstract states that provide the result of the value analysis are not merged, which
effectively turns the abstract domain into its powerset domain. This makes it possible to
obtain sparse value sets from the AE even when a regular abstract domain such as intervals
is used. This matters because DTC target addresses often form sparse sets.

The current version of SWEET supports both intervals and Circular Linear Progressions
(CLP) [13] as abstract domains. CLP combines the well-known intervals with congruences [4]:
the latter can represent non-unit address strides, which is important for DTC analysis.

Our aim is to use AE, with no merging, to compute the possible values of the target
addresses of the DTC instructions in the machine-language program under analysis. The
question then arises how DTC instructions can be represented in an ALF program.
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2.2 Dynamic control flow in ALF
ALF statements can have labels which have a symbolic part and a numeric offset part. Such
statement references are first-class ALF values and can be computed dynamically by selecting
a value for the symbolic part from those existing in the program, and/or by numerically
computing a value for the offset part. The computed statement reference can then be used
in a jump statement – an ALF DTC. SWEET’s analysis can produce a safe (i.e. possibly
over-estimated) set of possible DTC targets, as ALF statement references.

However, when the ALF code is generated from machine code, modelling a DTC with
ALF statement references would require the ALF code to include all the ALF statements
representing the instructions that may be the targets of the DTC. Therefore these instructions
would have to be found and translated into ALF, before the ALF representation of the DTC
could be subjected to analysis. In effect, this would require the ALF generator itself to
resolve the DTC, before generating the ALF program.

The reader may ask, why not translate all of the machine code, as found in the code-
memory image, into ALF statements? Then all possible DTC targets would be present in the
ALF program. However, the presence of data intermixed with the code, and the existence of
variable-length instructions and the consequent ambiguity of where instructions start, and
the possible presence of more than one instruction set or encoding in the same program
mean that this approach could generate a very large ALF program, much of which would be
nonsense because it would not represent real instructions. Furthermore, an ALF program is
syntactically divided into functions (subprograms), and an ALF DTC jump is permitted only
within an ALF function, not across functions. A translation of the whole program into ALF
would have to group the instructions into functions, which is impossible without resolving the
DTCs in the machine code, or without some meta-information on function boundaries in the
machine code. Similar reasons prompted Theiling’s use of bottom-up CFG reconstruction
[14] as opposed to the top-down, decode-all-the-image approch used by some earlier work.

Therefore, we allow ALF programs to be incomplete. We make the ALF program end at
the point of an unresolved DTC, and analyse the incomplete program to discover the values
of the numerical variables on which the DTC target depends. The analysis results are then
used to compute the DTC target addresses. These addresses are passed back to Bound-T,
which in turn generates a new ALF program that includes code reachable from the resolved
DTC’s. This iteration goes on until all DTC’s are resolved – see Section 2.4.

2.3 Bound-T and its analyses of dynamic control flow
Bound-T is a WCET and stack-usage analyser using pure static analysis of linked, executable
machine-code programs [11]. Bound-T’s DTC analyses are always implemented or initiated by
processor-specific and sometimes compiler-specific analysis procedures, triggered by specific
code patterns. Still, the specific DTC analyses build on and use the general analyses in
Bound-T. The DTC analyses fall into two groups:

Abstraction-based analyses. Here, the target-specific part of the analysis models the DTC
in a form that is amenable to one of the abstraction-based analyses in Bound-T: constant
propagation, value-origin (def –use) analysis, and Presburger-arithmetic analysis. The
latter is incidentally described in [8] and is based on the Omega Calculator [16].
Partial-evaluation analyses [7]. Here, the target-specific part of the analysis is responsible
for starting, stopping and parametrizing the partial evaluation.

The main limitation of the abstraction-based analyses is that the Presburger-arithmetic
analysis cannot model dynamically addressed memories, only statically identified variables.
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Figure 1 Overall analysis flow.

If the DTC involves a table of some form, the Presburger-arithmetic analysis must be focused
on the addresses of the table elements, while the reading and interpretation of the data in
the table must be done separely and depends on the DTC type.

The main limitation of the partial-evaluation analyses is the need to detect where and
how the evaluation should be started – typically on entry to specific library functions (“switch
handlers”). Some manual reverse engineering of these functions is needed, to understand
how they access the “switch-tables” encoding the switch-case statements.

2.4 Coupling SWEET and Bound-T
To evaluate abstract execution for DTC analysis, we extended Bound-T to export its internal
program model into ALF and to run SWEET on that ALF program, asking for AE using
either the interval domain (which is sensitive to variable bit-widths and wrap-arounds) or the
CLP domain, no merging, and output of the abstract values of the variables which determine
the targets of the DTC’s. (However, when merging is disabled, the values produced are sets
of concrete values rather than abstract values.) Bound-T then reads the SWEET output,
computes the corresponding DTC target addresses, and adds those instructions and their
static successors to its internal program model, if necessary fetching and decoding more
code from the executable under analysis. The extended program model may contain new
DTC’s. This process (ALF generation — SWEET analysis — completion of program model)
is iterated until it stabilizes. Fig. 1 illustrates the data flow in this process. The iterative
construction and extension of program models involving DTC was already implemented
in Bound-T for its own DTC analyses, so essentially we only added SWEET as a further
method of DTC analysis. For technical details see [9].
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We implemented this coupling for the Atmel AVR 8-bit processor architecture, a widely
used microcontroller family [1]. The AVR is a difficult subject for DTC analysis because
it implements mostly 8-bit operations and no general base + index addressing. The AVR
has a Harvard architecture with separate instructions for reading data from code memory.
Code addresses are 16 or 22 bits wide (depending on the AVR device) and are manipulated
as pairs or triples of 8-bit data. Some of the 32 general 8-bit registers can be paired and
used as 16-bit registers, but the set of 16-bit operations is quite limited. The AVR machine
code generated for switch-case DTC is complex and varied. This makes pattern-matching
analyses unreliable and favours semantically based analyses, such as AE.

3 Test programs

We selected 6 programs from the Bound-T test suite and added one new program to the
suite, giving a total of 7 test programs (P1 – P7 below). The programs can be provided on
request without IP restrictions. The goal was to include many different forms of switch-case
code using DTC. Note that it is the machine-code form of the DTC that is important, not
the source-code form. We did not use the well-known MRTC benchmarks because their
switch-case statements produce simple or no DTC code with the compilers we have tried.
The switch-case structures in our test programs are either extracted from real programs, or
written to be similar to switch-case statements in real programs. The DTC machine codes
are representative of Tidorum’s experience with real programs and several different compilers.
The chosen programs are small, because the prototype implementation of ALF export in
Bound-T cannot yet handle complex parameter-passing confidently. However, analysis of
switch-case code is for the most part local and intra-procedural so the program size is not
important.

P1 A bottom-test loop, which contains a dense switch-case statement implemented by an
indexed dynamic jump into a table which, in turn, contains static jumps to the code
for each case. The loop counter is 8 bits, running from 15 to 19, and the cases are also
numbered 15 to 19 with no default case.

P2 A dense switch-case statement with an 8-bit index, implemented by loading the 16-bit
jump target address from a table in code memory, in two 8-bit parts, and executing an
indirect jump to that address. The cases are numbered 0 to 9 plus a default case.

P3 A sparse switch-case statement with an 8-bit index, four cases plus a default, implemented
by a switch-table and the corresponding switch-handler subprogram. This is a simplified,
artificial switch-table structure from the example in [7].

P4 A sparse switch-case with an 8-bit index, four cases plus a default, implemented with
the real switch-table structure (sparse variant) and real switch handler used in the IAR
Systems C compiler.

P5 A dense switch-case statement with an 8-bit index, ten cases plus a default, implemented
with the real switch-table structure (dense variant) and real switch handler used in the
IAR Systems C compiler.

P6 A 16-case switch, implemented by an indexed jump into a dense table of jumps, in which
the 4-bit index is assembled from two 2-bit pieces using “rotate” followed by “or”. In
effect, this is a 2-dimensional switch-case with two indices of 2 bits each. Jump-table
elements are two addressing units long.

P7 A variant of P6 in which the “rotate” instruction is replaced by a “left shift” instruction
and jump-table elements are one addressing unit long.
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Table 1 Analysis results.

Program Bound-T result SWEET (interval) result SWEET (CLP) result
P1 Exact result, but see note. Exact result. Exact result.
P2 Fails. Fails. Fails.
P3 Fails. Exact result. Exact result.
P4 Exact result. Exact result, but see note. Exact result, but see note.
P5 Exact result. Fails. Fails.
P6 Fails. Fails. Exact result.
P7 Exact result. Exact result. Exact result.

We know of some forms of switch-case code that are not represented in this test set:
tables of code offsets, instead of code addresses, and address (or offset) tables accessed by
hashing the case index, instead of using the case index itself (minus some lower bound) as an
offset into the table. There are probably more strange forms lurking in the code jungle.

4 Analysis results

We compiled the test programs into AVR executables (choosing either the gcc or the IAR
compiler, to generate the desired kind of DTC machine code) and analysed them with
Bound-T alone (disabling the use of SWEET) and with the Bound-T + SWEET combination
(disabling Bound-T’s own DTC analyses) using either the interval domain or the CLP domain,
with no merging over paths. For these small programs, no analysis lasts over 10 seconds on a
MacBook Air with a 2.13 GHz Intel Core 2 Duo processor. Table 1 shows the results. For a
detailed discussion of each success and failure, refer to [9].

For P1, Bound-T alone needs a manual assertion that the switch-case index is non-negative.
The SWEET domains have better models of signedness and wrap-around.

For P2, Bound-T alone fails because the arithmetic analysis cannot model general
addressable memories, and because a specific pattern for this “load-address-from-table” idiom
is not implemented. The interval domain fails because lack of congruence information leads
to over-estimation of the octet pointer into the address table, which causes such huge over-
estimation of the DTC targets that Bound-T rejects the solution. The CLP domain gives
the exact set of strided octet pointers into the address table, but the set of address values
cannot be exactly merged into a single CLP value (such merging of table values cannot be
disabled in SWEET). This causes significant over-estimation of the DTC targets, which in
the third iteration leads to such an over-estimated CFG that SWEET’s AE fails to terminate
in a reasonable time, probably because a spurious eternal loop was introduced.

For P3, Bound-T alone fails because this switch handler is an artificial one for which
Bound-T has no detector. Otherwise the partial evaluation method would work here.

For P4, SWEET with either domain gives the exact result for the DTC, but the WCET
is overestimated. Bound-T’s partial-evaluation method fully unrolls the search loop in the
switch-handler, letting Bound-T find the exact worst-case path. The analysis with SWEET
retains the loop and Bound-T then calculates the WCET under the normal assumption that
all loop iterations use the worst-case path through the loop body. This WCET overestimation
could be avoided either by transporting more flow-facts from SWEET to Bound-T, or by
letting SWEET compute the WCET as a program variable [8].

For P5, the interval domain fails because it is not relational and does not include
congruence. The CLP domain fails because it, too, is not relational, and because it does not
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see repeated additions of the same value (for example x + x) as equivalent to multiplication
(2x) and therefore loses congruence information.

For P6, Bound-T alone fails because the carry-out from the “rotate” operation is not
well modelled in the arithmetic analysis. SWEET with the interval domain fails because
lack of congruence leads to over-estimation of the pointer into the jump table, leading
to over-estimation of the DTC targets. However, in this contrived and simple case, the
over-estimation only doubles the set of targets, so Bound-T accepts the result, leading to an
apparently successful analysis but an over-estimated CFG and WCET. The CLP domain
succeeds because the jump instructions in the jump table lie at regularly spaced addresses,
which can be represented exactly in a single CLP value.

For P7, the exact result from Bound-T alone depends on some unsound assumptions in
modelling left-shifts. SWEET succeeds with the interval domain because the unit stride of
the jump-table elements makes congruence analysis unnecessary.

In total, Bound-T alone succeeds on 4 and fails on 3 programs. SWEET’s analyses
succeed on 5 and fail on 2 programs. If the analyses are combined, only P2 is left as a failure.
Further patterns and special cases could easily be added to Bound-T to correct the failures,
including P2, but that would just be one more step on the endless trail of special cases.

The results show that the abstract-execution method is very promising, working in essence
as well as and in some cases better than the set of processor- and compiler-specific and
manually constructed pattern-based methods in Bound-T. Comparing the two numerical
abstract domains, the CLP domain succeeds in one case (P6) where the interval domain
fails. We expected that CLP would yield a larger improvement, but its benefits are often
masked by the direct translation from machine instruction semantics into ALF code, which
hides congruence information when, for example, a C source instruction such as y=2*x
is translated into two AVR instructions that do y=x; y=y+x. The Presburger-arithmetic
analysis in Bound-T, being relational, is able to combine the two instructions and conclude
that y = 2x. When Sen and Srikant introduced the CLP domain [13], they combined it with
the domain of affine equalities, perhaps to counter this sort of problem.

Some of Bound-T’s failures are due to poor modelling of signedness and wrap-arounds.
The Presburger-arithmetic formalism considers all variables to be signed, unbounded integers.
Wrap-around can be modelled with conditional (disjunctive) formulae, but if that is done
systematically the time and space requirements explode. In contrast, SWEET’s interval and
CLP domains handle wrap-around gracefully (but not always exactly). However, because we
disable merges in SWEET, it may also run into scalability problems for large programs.

The failure of SWEET on P5 is interesting. P5 computes the address of the table element
for the DTC target address in three steps. Step 1 computes an intermediate value from
the switch index. Step 2 compares the switch index to the range of case numbers. If the
switch index is in range, step 3 computes the final address using the switch index and the
intermediate value. Because the intermediate value is computed before the switch index is
known to be in range, and because the domains are not relational, SWEET can put no useful
bounds on the intermediate value, and so the final address is also unbounded.

5 Related work

Our work follows the “bottom-up” CFG reconstruction approach as also described by
Theiling [14]. However, it seems that Theiling does not expect strong value-analysis to be
used for switch-case code, saying that the “decoders may use pattern matching and code
slicing to detect switch tables”. Cifuentes and Van Emmerik [3] use slicing and symbolic
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expression substitution to simplify switch-case code so that it can be matched to a library
of “normal forms”, an advanced and flexible form of code-pattern matching. However, their
experiments use wide-word, powerful processors of the SPARC and Pentium class, avoiding
the complications of 8-bit microcontrollers such as the AVR.

The CodeSurfer/x86 tool described by Balakrishnan and Reps [2] has many similarities
with SWEET and some with Bound-T. CodeSurfer/x86 analyses Intel-x86 machine code.
The initial control-flow and call-graphs are generated by the commercial IDAPro disassembler
[12], which may leave some switch-case DTCs unresolved. A value-analysis based on abstract
interpretation, using a domain of intervals with strides (congruence), provides possible DTC
targets for an iterative extension of the CFG, as in our method. However, CodeSurfer/x86 is
at present limited to the Intel-x86 instruction set and some of the decisions made during the
analysis seem specific to this architecture. The value-analysis uses only 32-bit quantities,
and it is not clear how well it models unsigned computation. The basic model is signed.

Balakrishnan and Reps [2] agree with two of our conclusions: that a domain modelling
non-unit strides is necessary for this analysis, and that non-relational domains can cause
important loss of precision. However, as we have seen, quite many DTCs have sets of target
addresses which cannot be represented exactly as strided intervals. When merging is disabled,
AE can produce more precise results.

6 Summary and conclusions

Focusing on the analysis of switch-case code using DTC, we compared SWEET’s AE (with
no merging) to the set of special, pattern-based analyses in Bound-T, on seven programs
expressed in Atmel AVR machine code. AE won, on average, but failed for some programs
because the numerical domain we used (CLP) is not relational. Other failures are due to the
inability of intervals, even with congruence, to model sparse integer sets precisely.

Tidorum Ltd aims to make the SWEET-based DTC analysis a standard feature of
Bound-T. This will also let Bound-T use other SWEET results such as flow facts. The main
challenge is to make Bound-T’s data-memory model, and its translation to ALF, sound
with respect to aliasing. We also found weaknesses in Bound-T’s handling of signedness and
wrap-around. Tidorum aims to improve this, but the problem is complex if the model should
be relational (as the current Presburger-arithmetic model is).

This work was partly responsible for prompting the implementation of the CLP domain
in SWEET. Future work on SWEET, to better support the analysis of DTC’s, includes
the design of light-weight relational domains that can capture enough of the dependencies
between variable values to gain the necessary precision. It also seems interesting for this
purpose to have an abstract domain that can represent sparse sets of integers up to some
predefined size of the set.

A more general question is whether it is possible and desirable to perform abstract
interpretation with different domains, for different variables or different parts of the program.
The DTC problem requires high precision, but usually deals with small sets of values, so the
optimal domain for DTC analysis is different from that for problems which can do with less
precision but cover huge ranges or sets of values. For maximal precision, one possibility is to
convert abstract states into sets of concrete states, compute with transfer functions on these
sets formed by applying the concrete transfer functions elementwise, and converting back to
the original abstract domain when suitable. If the sets of concrete states do not grow too
big, then this is tractable. Cofibered domains [15] provide a theoretical framework for this
kind of use of multiple abstract domains.
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Abstract
Worst-Case Execution Time (WCET) is a key component to check temporal constraints of real-
time systems. WCET by static analysis provides a safe upper bound. While hardware modelling
is now efficient, loss of precision stems mainly in the inclusion of infeasible execution paths in
the WCET calculation. This paper proposes a new method to detect such paths based on static
analysis of machine code and the feasibility test of conditions using Satisfiability Modulo Theory
(SMT) solvers. The experimentation shows promising results although the expected precision
was slightly lowered due to clamping operations needed to cope with complexity explosion. An
important point is that the implementation has been performed in the OTAWA framework and
is independent of any instruction set thanks to its semantic instructions.
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1 Introduction

Temporal properties verification is utterly important for critical embedded systems like
avionics, automotive or any system involving real-time constraints. Such verification is
usually performed in two steps: first, the Worst-Case Execution Time (WCET) of each task
composing the system is computed and, second, this WCET is used to check if the set of tasks
is schedulable according to the system real-time constraints. Hence, the WCET determination
must be (a) safe (higher than the real worst-case execution) to ensure soundness of the
scheduling and (b) tight or precise to minimize the hardware required to run the system.

This paper addresses the computation of WCET by static analysis that ensures safety
of WCET by construction at the price of tightness: an overestimation of the WCET is
produced without guaranty about precision. A successful and widely used approach to
compute statically WCET is Implicit Execution Path Technique or IPET. It models the
execution paths of the program and the host hardware (that induces execution time) as an
Integer Linear System, ILP, whose maximization function is the estimated WCET. Lots of
work has been devoted to model the hardware and, for some classes of microprocessor parts
(LRU caches, pipeline, etc.), provides precise results.

Yet, modelling the execution paths seems to remain a challenge and could be an important
source of precision improvement. Basically, IPET models the execution paths by a Control
Flow Graph, CFG, where vertices represent blocks of instructions1 and edges, execution flow
between blocks. The CFG is usually derivated from a program by a basic analysis examining
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the branch targets of control instructions. Therefore, the set of paths represented by the
CFG (potentially unbounded if the program contains loops) includes (a) all actual paths of
the program and (b) other paths that are infeasible because of the program internal logic.

Applying the IPET approach to the CFG model of execution paths is consistent (as long
as a maximum bound is provided for loops) because it consists in computing the maximum
of execution paths. Adding infeasible paths to the set of actual execution paths will, in the
worst case, produce an estimated WCET higher than the actual WCET. Yet, the added
execution paths may cause a loss of tightness (distance between real WCET and estimated
WCET) that is difficult to evaluate. In practice, separating feasible and infeasible paths
faces the complexity issue of the number of paths in the program and in the CFG.

This paper proposes a new approach to detect infeasible paths in machine language
programs based on (a) the representation of program states as labelled sets of predicates and
(b) the detection of unsatisfiable conditions using a Satisfiability Modulo Theories (SMT)
solver. The result is a mostly minimal list of infeasible paths or families of paths that may be
used in WCET computation like IPET. The experimentation shows that our approach on
the Mälardalen benchmark [4] is promising. It does not allow capturing all infeasible paths
of the program but it should help improving precision of the estimated WCET.

The next section presents works related to infeasible path detection or execution path
validation. Section 3 gives an overview of the proposed method and of its context while
section 4 enters into details of the proposed analysis. Section 5 exposes the experimentation
results and we conclude and propose future development in the last section.

2 Related Works

Several works already exist on this topic and are surveyed here.
Suhendra et al. [6] present an integrated approach to compute the WCET while excluding

infeasible paths. The program is expressed as a Direct Acyclic Graph (DAG) and traversed
in a bottom-up way. Throughout the analysis, the worst-case execution time is computed by
accumulating block time and selecting the maximum time. During this traversal, predicates
are built reflecting assignments and conditions, and paths with unsatisfiable set of predicates
are discarded. This approach uses a very limited set of predicates that reduces analysis time
but also the amount of infeasible paths found. In addition, there is no plan to cope with
hardware effects.

Henry et al. [5] propose another integrated solution that represents as an SMT the
semantic of execution paths and the time consumed by a particular path. To determine the
WCET, one has to propose an upper bound, to add the matching predicate and to check
the feasibility of the system. Main drawbacks of this approach are the computation time,
the need for unrolling loops and the lack of support for non-scalar memory structures like
arrays. In addition, there is no clear solution to cope with hardware effects except adding
constant access time to instruction blocks. Unlike our approach, this approach determines
the set of feasible paths and uses it to compute WCET.

The PathCrawler [7] tool generates disjunctions of conjunctions for any control point
of the CFG, then proceeds to do constraint solving in order to rigorously verify properties.
However, it runs on source code, and while we use a similar approach, our final goal differs:
the detection of infeasible paths. In the next section, we present our approach that (a) is
applied to machine code and (b) tries to preserve precision of predicates.
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3 Proposed Method

3.1 Source of infeasible paths
3.1.1 Infeasible path patterns
We have identified three common types of infeasible paths found by our analysis. This list
is not exhaustive and we sometimes find more complex infeasible paths but these are rarer.
The first type of infeasible path simply comes from two mutually exclusive conditions in the
source code, tested in sequential order:

if(x == 1)
/*...*/

if(x == 2)

This can look like a mistake from the programmer, but there may be a lot of code between
the two conditions, making the infeasible path much less obvious to see, and/or difficult to
remove.

Some other infeasible paths are due to the restriction of the function parameters domain
at a particular call and require interprocedural analysis to be identified. The if(x) condition
will never be taken in the case of a call from main() in the following example:

void icrc(int x) {
if(x)

/*...*/
}
int main () {

icrc (0);

The last type of common infeasible path is due to short-circuit condition evaluation
during the compilation:

if(x && a)
/* ... */

if(x && b)

In this case, the binary program may include an infeasible path because if(x && a) will be
broken down into if(x) { if(a) by the compiler, unless smart optimizations are performed.

3.1.2 Analysis on Machine Language
Working on machine code allows precisely understanding the work of the program in the
hardware and improving the WCET tightness. Yet, the analysis of the machine code suffers
from (a) the lack of expressivity of machine instructions, (b) the size of the program and
(c) the implementation complexity of data flow analyses. For example, registers are loosely
typed and the structure of data in memory is not explicit.

Even though finding infeasible paths is easier on programs in high-level languages, an
additional pass is required to map and exploit this information on binary programs. This pass
is even more difficult if the optimizations of the compiler are activated. Even worse, analysis
of the high-level language requires different analysers for each language, the complete sources
to be available and prevents the processing of low-level subprograms written in assembly.

Hence, we choose to work at the machine code level but, as the real-time embedded
domain uses lots of different microprocessors, we have to cope with as many instruction
sets. Fortunately, the OTAWA C++ framework provides an abstraction of the different
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instruction sets through an independent semantic language [3]. It consists in the translation
of the machine instruction into a sequence of semantic instructions that try to capture as
precisely as possible its semantics. When the instruction cannot be expressed, a special
SCRATCH instruction allows marking the result register as modified in an unspecified way.
This approach has been successfully applied to translate several instruction sets like PowerPC,
ARM, Sparc and Tricore.

Basically, the semantic language looks like a RISC-instruction set and is made of:
three-operand computation instructions: ADD, SUB, CMP, SHL, SHR, etc;
dedicated instructions to load a literal in a register: SETI;
memory access instructions: LOAD, STORE;
branches or assignments to program counter: BRANCH;
conditional execution of the sequence: IF.

Most instructions work only on registers but temporary registers may also be used to
let instructions exchange information without modifying the actual program state. In the
following, we show how the semantic language can be used to perform infeasible path analysis.

3.2 Analysis overview
The lookup of infeasible paths is performed by top to bottom traversal of the program;
all non-cyclic paths are explored, each machine instruction is broken down into one or
several semantic instructions, and an abstract representation of the program state is updated
accordingly for each path. Sets of possible program states are represented as lists of predicates,
initially empty (>), meaning that any state is possible.

3.2.1 Predicate generation
Figure 1 shows several examples of analysis results. (a) is an example of predicate generation,
upon parsing an ARM instruction mov r4, r0. The first bold line is the ARM instruction,
semantic instructions are capitalized, and italic lines are modifications to the list of predicates.
Two predicates are generated (noted with ⊕), and t1 is a temporary register introduced
by OTAWA. While it may look purposeless here, OTAWA automatically chooses to use
this intermediate to handle more complex uses of the mov instructions such as, for example,
mov r0, r1, LSR #2. Here, the instruction mov r4, r0 is translated into two semantic
instructions, SET t1, r0 and SET r4, t1. In turn, their interpretation generates two
predicates, t1 = r0 and r4 = t1.

3.2.2 Predicate update
The predicates can be modified either because the instruction we are parsing requires us to
or because we wish to and believe it will be beneficial.

Extending the example (a), there are cases where modifying predicates is unnecessary
but useful (b) because of the ephemerality of the temporary register t1, whereas sometimes
updating the predicate is required by the instruction (c). In (b), [r4 replaces t1] means
that every occurrence of the temporary register t1 will be replaced by register r4. The
predicate r4 = t1 becomes identity (r4 = r4), so we only keep r4 = r0 as a result of this
mov.

In the example (c) initially containing “r3 = [SP− 12]”, in order for our predicate list to
remain a valid abstract representation of the program state, this instruction that adds 1 to r3
requires replacing every r3 occurrence with r3 − 1, hence the [r3 - 1 replaces r3] line.
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mov r4, r0
SET t1, r0
⊕ t1 = r0

SET r4, t1
⊕ r4 = t1

(a) An addition.

{ r3 = [SP-12] }
add r3, r3, #1

SETI t1, 1
⊕ t1 = 1

ADD r3, r3, t1
[r3 - 1 replaces r3]
	 r3 = [SP-12]
⊕ r3 - 1 = [SP-12]

(c) A necessary update.

mov r4, r0
SET t1, r0
⊕ t1 = r0

SET r4, t1
⊕ r4 = t1

[r4 replaces t1]
	 t1 = r0
⊕ r4 = r0

(b) A useful update.

[...]
SET r13, t3
	 r13 = SP - 4
⊕ r13 = SP + 0
	 tempvars t1, t2, t3

(d) A removal.

Figure 1 Example of operations on the predicates.

3.2.3 Predicate removal

Instructions may force us to remove predicates from our list. For instance, if we set to r13 a
new value, we must remove any predicate mentioning r13 as it will no longer be valid. In the
example (d), the previously generated r13 = SP - 4 predicate must be removed (noted with
	). In this case, the analysis identifies t3 to the constant SP + 0 (value of the stack pointer
at the start of the program), so it chooses to generate r13 = SP + 0 in place of r13 = t3.

Also, temporary registers are always deleted at the end of every semantic instruction
block (matching an assembly instruction), thus we should remove all predicates containing
them, hence the 	 tempvars t1, t2, t3 in the example.

4 Analysis Definition

4.1 Abstract domain

The goal of this analysis is to build a function L→M# that gives, at any control point L,
an abstract state M# : ∨i(∧j(φi,j(R,Mh,Ms))) where:

R ∼= Zn is the set of registers, n being the amount of available registers on the architecture;
Mh represents the heap memory, Mh

∼= ZZ;
Ms represents the stack memory, Ms

∼= ZZ.
φi,j are predicates defined as:

φ : Operand×Opr ×Operand
Opr : = | 6= | ≤ | <
Operand : Operand ω Operand | −Operand
ω : + | − | × | / | mod

Each conjunction of predicates represents a set of possible program states for one or
several execution paths up to a given control point. A control point may contain information
coming from several paths: we do not merge the conjunctions of predicates but instead
keep them in a set, this way M# is actually a disjunction of conjunction of predicates, and
overestimates the set of possible program states.
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In order to show this, we define M as a concrete program state, that is, the set of values
of the registers and of the memory, and the following concretisation function γ : M# → 2M:

γ(
∨
i

∧
j

φi,j(R,Mh,Ms)) :=
⋃
i

⋂
j

γ′(φi,j(R,Mh,Ms))

where for any p : Predicate, γ′(p) := {m ∈M | p(m)} and the analysis is sound if

γ(f#(s)) w f(γ(s))

with f : M→M being any semantic instruction and f# : M# →M#, also later noted U(f),
the corresponding modifications to be applied on our abstract state.

4.2 Update function
Our update function takes a semantic instruction and an abstract program state as parameters
to return a new abstract state:

U : IM ×M# →M#

where IM = M→M is the set of semantic instructions, which modify the machine state. Let
V ar be the set of variables, including R, Mh, Ms and the temporary registers Temp.

In the first place, we define the following functions to operate on M#:

invalidate : Var ×M# →M#

This function removes any Predicate containing a reference to the provided Var. Before
removing, it computes the transitive closure of the current predicates to avoid unnecessary
loss of information. Importantly, we observe for any s : M#,

γ(sr {p}) w γ(s)

that is, by removing a predicate we lose precision but the result remains sound. It is a
convenient property to handle unsupported operations. We also use variable replacement
mechanics on predicates: for any x : Var, arithmetic expression e and program state s : M#,
the program state in which every occurrence of x has been replaced by e is noted s [e / x].

For any instruction modifying a variable d, if the computation of the new value of d is
independent of its previous value, we remove all predicates containing d as they become
obsolete. If, at the contrary, this computation depends on the previous value of d, we try
to apply to the affected predicates the inverse operation, but this inverse only exists if the
original operation is bijective. For instance, f : d 7→ 3d is not surjective in Z, therefore f−1

does not exist and we will not be able to update our predicates. In this case, we often have
to throw away information about the variable f is applied to, although we can sometimes
keep some properties: for example f preserves the parity in this case.

For any variables d, a, constant k:

U [SETI d, k] s := “d = k” ∪ (invalidate d s)
U [SET d, a]d=a s := s

U [SET d, a]d6=a s := “d = a” ∪ (invalidate d s)

For any variables d, a, b such that d 6= a, d 6= b:

U [ADD d, a, b] s := “d = a+ b” ∪ (invalidate d s)
U [ADD d, a, d] s := s [d− a / d]
U [ADD d, d, b] s := U [ADD d, b, d] s
U [ADD d, d, d] s := “d % 2 = 0” ∪ (s [d/2 / d])
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In the ADD d, d, d case, we lose information when replacing d with d/2, thus we add a
predicate that says that d is even, to strip away the ambiguity.

U [MUL d, a, b] s := “d = a ∗ b” ∪ (invalidate d s)
U [MUL d, a, d] s := “d % a = 0” ∪ (s [d/a / d])
U [MUL d, d, b] s := U [MUL d, b, d] s
U [MUL d, d, d] s := “0 ≤ d” ∪ (invalidate d s)

Again, we add a predicate to avoid the loss of information in the MUL d, a, d case. We
cannot express the square root, so there is not a whole lot to be done for MUL d, d, d.
There is no support for the binary instructions AND, OR, XOR, thus for any d, a′, b′:

U [[AND/OR/XOR] d, a’, b’] s := U [SCRATCH d] s := invalidate d s

This list is incomplete and there are many other semantic instructions to be interpreted
(namely logical arithmetic shifts, memory accesses...), but these are handled in a similar way.

4.3 Flow analysis
Our analysis is applied on a Control Flow Graph (CFG), a directed rooted graph G =
(V,E, ε) composed of lists of sequential instructions grouped in basic blocks which are the
vertices (V ) of said graph, and edges (E = V × V ) between basic blocks that represent the
possible execution paths of the program. These edges can be conditional or not, and the
CFG always includes one entry (ε ∈ V ) as a virtual basic block.

We parse the CFG with a working list algorithm, which general idea is to only process
basic blocks once all the sources of the incoming edges have been processed. Below is a first
version of the flow analysis algorithm for loopless programs:

wl <- {ε};
While wl != ∅

pop bb from wl;
If allIncomingEdgesAreAnnotated (bb)

For edge in bb.ins
sl <- sl ∪ edge. getAnnotation ();

For state in sl
state. processBasicBlock (bb);

For edge in bb.outs
new_sl <- ∅;
For state in sl

new_state <- state. processEdge (edge );
new_sl <- new_sl ∪ new_state ;

edge. annotate ( new_sl );
wl <- wl ∪ edge. target ;

End If
End While

We first initialize our working list wl to the root, then pop basic block elements from it
until it is empty. For each basic block the algorithm is asked to work on, all its incoming
edges are checked for annotations that give an abstraction of the program state at that
control point. If any edge is missing an annotation, we cannot process the basic block yet
and pospone it. Otherwise, we put all the annotations into a list of abstract states named sl
above. Then, we update the states of sl to represent possible program states at the end of
the basic block. Lastly, we annotate all the outgoing edges with this state list, update them
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accordingly if it is a conditional edge and add the block the edge points to the working list if
it is not already in it.

The improved version of this algorithm that supports loops uses one more type of
annotation: on loop headers, we remember the last abstract program state we have computed.
We also keep information in our enhanced program states on whether we have reached a
fixpoint in the most inner loop or not. If not, we follow all the edges except for the loop exit
ones. If we have found a fixpoint, we follow all the edges except for back edges.

We merge the abstract program state list into one state on every loop header. When the
state list becomes too big, we may also choose to merge all paths into one to save analysis
time and prevent combinatorial explosion: this is a tradeoff between execution time and
efficiency of the algorithm. Our merge algorithm is a trivial intersection with a few simple
enhancements. For any conjunctions of predicates p :=

∧
i(φi) and p′ :=

∧
j(φ′j) our merge

operator u : M# →M# is defined as:

p u p′ :=
∧
i

(φi) ⊔∧
j

(φ′j) :=
∧
i,j

(φi u φ′j)

where φi uφ′i := φj if φi ≡ φ′j and > otherwise. “≡” is a custom equivalence relation that is
slightly less strict than the syntactical equality and supports predicate commutativity. There
are many possibilities to improve this semantical equality and keep as much information
as possible. The idea behind using this slightly improved intersection to approximate the
disjunction of conjunctions of predicates is that for any set A, B, (A ∩B) ⊆ (A ∪B).

4.4 Infeasible path identification
We now have to exploit the information we have on the state of the program at the different
control points to find infeasible paths. In order to do this, we use a SMT solver, that is, a
SAT solver enhanced with several theories including integers. This kind of tool allows us to
find inconsistencies in our list of predicates via its C++ API. It may return SAT when it is
able to exhibit a solution to the problem, or UNSAT, what guarantees that the problem has
no solution. The SMT solver is systematically called at the end of the analysis of each basic
block to test the consistency of the predicate list.

We chose CVC4 [1] for its high performance at recent contests such as SMT-COMP [2],
its very open license and its rich API. CVC4 also supports (although partially) “unsat
cores”, a technique that finds a minimal subset of predicates that caused unsatisfiability. For
instance, for such a conjunction of predicates:

(x 6= 2) ∧ (y > z) ∧ (x = y + z) ∧ (z = 1) ∧ (y ≤ 0)

the unsat core module of CVC4 would return {y > z, z = 1, y ≤ 0}.
There may be several minimal unsatisfiable subsets of predicates, in this case CVC4 will

return only one of them. This feature is still being worked on, and we have observed great
improvements in the success rate of this feature in the recent development versions of this
solver. Still, the interface with CVC4 is separate from the rest of our tool and it can be
enhanced with the ability to call other SMT solvers.

Let φi be the set of predicates returned as an unsat core and Eφi
the edges of each

predicate φi. Any path traversing Fp = ∪Eφi
should be infeasible, but because of side-effects

on parallel paths, Fp may include actually feasible paths, so we only consider Fp valid when
there is no feasible path traversing Fp (and we manually check for that). In the worst case,
we will have to use a full, unminimized path, but this will not cause us to miss infeasible
paths, only to get a bigger and less “factorized” output.
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Table 1 Results on the Mälardalen benchmarks.

Inf. paths found with minimization w/o minimization
Benchmark BB (#) Time (s) 1 edge Minimized Non-minimized Non-minimized

Small benchmarks (no merging required)
ndes 57 0.267 0 0 0 0
expint 70 0.748 4 5 5 34
edn 75 0.537 2 0 0 2
prime 118 4.368 2 8 12 43
compress 122 1.801 2 8 0 19
select 136 45.598 0 4 0 8
qsortexam 155 28.201 2 4 2 12
adpcm 323 0.074 3 0 0 3

Large benchmarks (merging required)
ud 153 17.477 3 3 0 23
minver 449 188.339 4 0 0 16
statemate 453 193.849 0 16 0 22
ludcmp 632 143.088 5 6 0 510
nsichneu 754 250.385 0 1352 3234 8620
qurt 2777 773.805 3 0 0 3
lms 3098 915.434 26 22 211 2376
fft1 6123 2223.125 0 25 0 815

5 Experimental Results

We have run our analysis program on the Mälardalen benchmarks, compiled into ARM
binaries by gcc -O1 (minimal optimizations) with non-constant global memory to ensure
multiple paths, performed on a 2.90GHz i7-4600M CPU, 4GB memory. Measuring the
efficiency of such an analysis is tough for multiple reasons: (a) we do not know how many
actual infeasible paths the program contains, (b) since our analysis is targetted to exhibit
infeasible paths, but not to exploit them, any measured improvement on the computed
WCET estimation is also due to the efficiency of the tool that will exploit these infeasible
paths, (c) our infeasible paths are actually sets of infeasible paths, and we do not know how
many paths they include. Even if we stop trying to find minimal sets of edges, the analysis
cuts paths once they are identified as infeasible, and we do not know how many paths have
been cut this way.

Table 1 showcases both the performance of the analysis on this set of benchmark and
the powerfulness of the minimization algorithm. The benchmarks are sorted by number of
basic blocks (after virtual inlining of function calls). The 17 smallest benchmarks with a size
ranging from 2 to 50 basic blocks have been removed, 10 of which gave no results.

The first three result columns show the amount of unique infeasible paths found by the
analysis split in three kinds: paths made of only one edge, successfully minimized paths,
and paths for which the minimization failed. The last column gives the amount of infeasible
paths found when path minimization is disabled. For example, running on “prime” with
minimization, the analysis finds 2 + 8 + 12 = 22 infeasible paths, including 10 successfully
minimized ones. These 10 short-length paths translate into 43− 12 = 31 lengthy infeasible
paths when no minimization work is done. “fft1” is an extreme: 815 paths have been
minimized into 25 paths of an average length of 2.84 edges. We have observed that most of
the computing time is spent on SMT solving.

The results look very promising for the bigger benchmarks and the occasional merges of
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predicates seem enough to tone down the combinatory explosion without hurting results too
much, yet the actual impact on the precision of the computed WCET remains unknown.

6 Conclusion and Future Works

This article proposes a new approach to discover infeasible paths in a binary program. Our
solution is a static analysis of (a) a CFG whose blocks are made of machine instructions
(abstracted by semantic instructions) and (b) of program data states represented by predic-
ates on registers and memories. Unsatisfiability by SMT of predicates allows identifying
infeasible paths. The result is a list of edges of the program CFG that are forbidden on a
feasible execution path. This information is typically used to tighten the precision of the
WCET computation.

Although the proposed approach gives promising results, we feel that some infeasible
paths remain undiscovered because of (a) too coarse states join operator and (b) of time
calculation explosion. Issue (a) is the most important although it means that we have to find
smart fixpoints for our predicates. Polyhedra could be an efficient and well-known alternative
but we would be bound to linear predicates.

The second issue may be solved by reducing the amount of produced predicates. For
example, code slicing would be a good technique to keep only code involved in conditions and
therefore to produce only predicates involved in conditions. As a significant part of analysis
time is spent in SMT solving, another solution might be to reduce the number of calls to
the solver. We have to find a tradeoff during fixpoint computations between the frequency of
SMT calls and the minimization of found paths: an SMT call finds infeasible paths but also
allows reducing the number of states.

Finally, the infeasible paths found by our approach only concern mutual exclusivity
between CFG edges. Our feeling is that quantitative relations, induced by the program
semantics, exist between CFG edges and we wish to investigate this domain deeper afterwards.
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