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Abstract
Various recent events have shown the enormous importance of maritime search-and-rescue mis-
sions. By reducing the time to find floating victims at sea, the number of casualties can be
reduced. A major improvement can be achieved by employing autonomous aerial systems for
autonomous search missions, allowed by the recent rise in technological development. In this
context, the need for efficient search trajectory planning methods arises. The objective is to
maximize the probability of detecting the target at a certain time k, which depends on the es-
timation of the position of the target. For stationary target search, this is a function of the
observation at time k. When considering the target movement, this is a function of all previous
observations up until time k. This is the main difficulty arising in solving moving target search
problems when the duration of the search mission increases. We present an intermediate result
for the single searcher single target case towards an efficient algorithm for longer missions with
multiple aerial vehicles. Our primary aim in the development of this algorithm is to disconnect
the networks of the target and platform, which we have achieved by applying Benders decompos-
ition. Consequently, we solve two much smaller problems sequentially in iterations. Between the
problems, primal and dual information is exchanged. To the best of our knowledge, this is the
first approach utilizing dual information within the category of moving target search problems.
We show the applicability in computational experiments and provide an analysis of the results.
Furthermore, we propose well-founded improvements for further research towards solving real-life
instances with multiple searchers.
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Figure 1 The heterogeneous state spaces
for the target (square grid) and the platform
(hexagonal grid).

Figure 2 Snapshots of a simulation of one
fixed-wing platform searching for one Markovian
target. The contour plot indicates the updated
probability distribution of the target location.

1 Introduction

In the spring of 2015, over 1,000 lifes were lost at sea in a single month after refugee ships
sunk in the Mediterranean. These tragedies led to renewed efforts by governmental and
non-governmental organizations that significantly decreased the numbers of deaths [27].
Search missions are often supported by manned aerial vehicles where individual pilots are
expected to plan their optimal search trajectory by hand, which is tremendously complex; it
is proven to be an NP-complete optimization problem [26] for a single platform searching for
a single stationary target. Planning for moving target search is considerably more complex
in general. Executing such a complex task in a stressful situation is susceptible to result in a
sub-optimal search trajectory. We therefore aim to automatize this task, with the outlook
towards autonomous search missions by unmanned aerial vehicles (UAVs). We refer to an
aerial sensor platform (e.g. UAV) by platform for short in the remainder of this article.

The contribution of this article consists of a Benders decomposition algorithm to solve a
problem of Markovian target search trajectory optimization (see Figure 2). We decompose
an existing mixed integer linear program (MILP) [19] that accounts for a heterogeneous state
space for the target and platform. This concept is shown in Figure 1 and holds two benefits;
a target specific grid allows for a more accurate estimation of the target position, whereas a
platform specific grid allows for modeling more natural flight motion. By applying Benders
decomposition, we are able to disconnect both networks and iteratively solve two much
smaller problems until the desired optimality tolerance has been reached. A diagrammatic
visualization of this decomposition is shown in Figure 3. To the best of our knowledge, this
is the first method utilizing the dual information for solving a moving target search problem.

The remainder of this article is structured as follows: Section 2 provides an overview of
the relevant related literature. In Section 3, the search trajectory problem is stated, followed
by our methodology for solving this problem in Section 4. Computational experiments
in Section 5 show the applicability of the proposed method. Finally, the conclusions are
presented in Section 6.
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Figure 3 The MILP decomposes into a subproblem and a master problem. The master problem
is a constrained shortest path problem on the platform network and the subproblem is a linear
problem to calculate the probability of detection and containment on the target network, given a
fixed search-path provided by the master. In turn, the subproblem provides the dual values to the
master problem. As a result, the networks are disconnected and we solve two much smaller problems
sequentially in iterations.

2 Related Literature

Research initiated by Koopman [13] has led to the interesting field of Search Theory [24, 25].
To apply search theory to real life search missions, efficient planning methods are necessary.
Extensive research has led to several search strategy planning approaches, which can mainly
be classified to two problem types. For the path-constrained search effort allocation problem
[23], the search area is typically divided into subareas to which search effort is allocated over
time. The search effort is expressed in number of platforms of a certain type and duration.
For autonomous search, the kinematical properties of the sensor platform must be taken
into account. The resulting problem is referred to by the search trajectory optimization
problem. A depth-first branch and bound approach was presented in [23], in which lower
bound approximations on the probability of non-detection are obtained by relaxing the
searcher’s path constraints. Most following approaches are of the branch and bound type
[6, 7, 15, 17, 21], where the aim is to find a tightest true lower bound with low computational
costs. Computational experiments of several branch and bound procedures are summarized
in [28]. Despite vast progression over the years, computation remains intractable for larger
instances. This has led to the development of heuristic approaches such as a receding horizon
approach [5], cross entropy optimization [14] and constraint programming [18].

This article describes a Benders decomposition [11, 16] algorithm for a trajectory optim-
ization problem for aerial vehicles. Also various other vehicle routing problems have been
tackled by a Benders decomposition algorithm, i.e. [1, 4]. Algorithms of this type have also
been developed for combined vehicle routing problems with allocation [2, 8], assignment [3, 9],
and scheduling [22].

3 The Moving Target Search Trajectory Problem

We consider the search for a moving target in discrete time on a finite set of cells C. This
is a well known problem in literature and can be formally stated as follows. The target
occupies one unknown cell Ck ∈ C at time step k ∈ K. For the duration of the search mission,
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a probability map pc is maintained, where the probability of containment pck(c) ∈ [0, 1]
represents the probability of the target occupying cell c at time k, without having been
detected prior to time k. Although the initial position of the target is unknown, it is
characterized by a known prior probability distribution pc1. The target path is modeled by
a stochastic process (C1, ..., CK), which we assume to be Markovian. Under this assumption,
the probability map evolves due to the target motion according to

pck+1(c) =
∑
c′∈C

d(c′, c) pck(c′), (1)

where the transition function d(c′, c) ∈ [0, 1] represents the probability that the target moves
from cell c′ to cell c and is assumed to be known for each pair (c′, c) ∈ C × C.

The platform is modeled to move over a finite grid of hexagonal shape. This grid is
represented by a network G = (V, A) with the set of nodes V and binary adjacency matrix A.
Here, an entry av,v′ of A is 1 if node v ∈ V is adjacent to node v′ ∈ V and 0 otherwise. We
assume that the considered aerial sensor platform has a sensor equipped to make observations.
The glimpse probability pgk(vk, c) ∈ [0, 1] represents the probability of target detection, given
target occupancy within cell c and platform position vk ∈ V at time k. When observations
are made, the probability map evolves according to the motion model as in Equation (1) and,
in addition, evolves according to the glimpse probability due to the observations made when
visiting node vk. Therefore, Equation (1) is extended to account for observation results as
follows:

pck+1(c) =
∑
c′∈C

d(c′, c) pck(c′) (1− pgk(vk, c
′)) . (2)

The objective is to determine a sequence of nodes v = (v1, . . . , vK) maximizing the cumulative
probability of detection over time period K, i.e.

max
K∑

k=1

∑
c∈C

pdk(vk, c), (3)

where pdk(vk, c) is the probability of detecting the target at time k from platform position
vk in cell c and is calculated by

pdk(vk, c) = pck(c) pgk(vk, c), (4)

where the probability of containment pck(c) is calculated through Equation (2).

3.1 Mixed Integer Linear Programming Formulation
The model for moving target search trajectory optimization under kinematical constraints
can be stated as the following MILP. Here, let B = {0, 1}. The decision variable zk

v ∈ B is
1 if the platform is at node v at time k and 0 otherwise. The auxiliary decision variable
pdk

c ≥ 0 represents the probability of detection in cell c at time k. The auxiliary decision
variable pck

c ≥ 0 represents the probability of containment in cell c at time k. We use italic
font for all decision variables and normal font for input variables.

Maximize
K∑

k=1

∑
c∈C

pdk
c (5)

subject to

pdk
c − pgk

v,cpc
k
c ≤ 1− zk

v ∀k ∈ K,∀v ∈ V,∀c ∈ C (6)
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pdk
c −

∑
v∈V

pgk
v,cz

k
v ≤ 0 ∀k ∈ K,∀c ∈ C (7)

pck
c −

∑
c′∈C

dc′,cpc
k−1
c′ +

∑
c′∈C

dc′,cpd
k−1
c′ = 0 ∀k ∈ {2, . . . ,K},∀c ∈ C (8)

z ∈ Z (9)
pc1c = pc1

c ∀c ∈ C (10)
zk

v ∈ B ∀k ∈ K,∀v ∈ V (11)
pdk

c , pc
k
c ≥ 0 ∀k ∈ K,∀c ∈ C (12)

The objective function (5) maximizes the cumulative probability of detection. The sets
of constraints in (6) and (7) ensure calculation of pdk

c according to the formula (4). The
set of constraints in (8) ensure calculation of pck

c according to the formula (2) and the set
of constraints in (10) ensure that the initial values of pc1c are set according to the known
prior probability distribution pc1. Let Z be the set of binary vectors for the zk

v variables
that yield feasible trajectories on the network G. We use this abstract notation, so that
feasibility of a trajectory can be defined as desired. The set of constraints (9) ensures the
binary vector z to be a feasible trajectory. The total number of decision variables, including
the auxiliary decision variables pdk

c and pck
c , is of order O(K|V||C|). The number of possible

feasible trajectories on network G is of order O(2K|V|).

4 Solution Methodology

As the number of time steps or the number of nodes increases, the problem becomes more
difficult to solve. In order to decrease the rate in which computation time increases, we
decompose model (5)–(12) into a pair of problems that can be solved more easily by applying
Benders decomposition [10]. The primal and dual subproblem, as well as the Benders master
problem are stated in the following subsections.

4.1 Primal Subproblem
Recall Z to be the set feasible trajectories on the platform network G. When fixing any
binary vector z̄ ∈ Z, the original problem reduces to the following primal subproblem in
the pck

c and pdk
c variables. This linear program contains no integer decision variables and is

therefore very easy to solve.

Maximize
K∑

k=1

∑
c∈C

pdk
c (13)

subject to

pdk
c − pgk

v,cpc
k
c ≤ 1− z̄k

v ∀k ∈ K,∀v ∈ V,∀c ∈ C (14)

pdk
c −

∑
v∈V

pgk
v,cz̄

k
v ≤ 0 ∀k ∈ K,∀c ∈ C (15)

pck
c −

∑
c′∈C

dc′,cpc
k−1
c′ +

∑
c′∈C

dc′,cpd
k−1
c′ = 0 ∀k ∈ {2, ...,K},∀c ∈ C (16)

pc1c = pc1
c ∀c ∈ C (17)

pdk
c , pc

k
c ≥ 0 ∀k ∈ K,∀c ∈ C (18)
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4.2 Dual Subproblem
Let π = (πk

v,c|k ∈ K, v ∈ V, c ∈ C),ρ = (ρk
c |k ∈ K, c ∈ C), σ = (σk

c |k ∈ {2, ...,K}, c ∈ C), and
τ = (τ1

c |c ∈ C) be the dual variables associated with constraints (14), (15), (16), and (17)
respectively. The dual of the primal subproblem (13)-(18) is the following dual subproblem:

Minimize
K∑

k=1

∑
c∈C

∑
v∈V

πk
v,c

(
1− z̄k

v

)
+

K∑
k=1

∑
c∈C

ρk
c

(∑
v∈V

pgk
v,cz̄

k
v

)
+
∑
c∈C

τ1
c pc1

c (19)

subject to ∑
v∈V

πk
v,c + ρk

c + 1{k≤K−1}
∑
c′∈C

σk+1
c′ dc,c′ ≥ 1 ∀k ∈ K,∀c ∈ C (20)∑

v∈V
pgk

v,cπ
k
v,c − 1{k 6=1}σ

k
c + 1{k≤K−1}

∑
c′∈C

σk+1
c′ dc,c′ (21)

−1{k=1}τ
1
c ≤ 0 ∀k ∈ K,∀c ∈ C (22)

πk
v,c, ρ

k
c ≥ 0 ∀k ∈ K,∀v ∈ V,∀c ∈ C (23)

σk
c , τ

1
c ∈ R ∀k ∈ {2, . . . ,K},∀c ∈ C (24)

Here, function 1 denotes the indicator function so that 1{x} = 1 if x is true and 0 otherwise.
Let ∆ be the polyhedron defined by constraints (20)-(23), and let P∆ denote the set of
extreme points of ∆. Polyhedron ∆ contains no rays because the subproblem is feasible for
each z̄ ∈ Z.

4.3 Benders Master Problem
We introduce the free decision variable y0 ∈ R and reformulate the original model (5)-(12) as
the following Benders master problem:

Maximize y0 (25)

subject to

K∑
k=1

∑
c∈C

∑
v∈V

πk
v,c

(
1− z̄k

v

)
+

K∑
k=1

∑
c∈C

ρk
c

(∑
v∈V

pgk
v,cz̄

k
v

)
(26)

+
∑
c∈C

τ1
c pc1

c ≥ y0 ∀(π, ρ, τ ) ∈ P∆ (27)

z ∈ Z (28)
zk

v ∈ B ∀k ∈ K,∀v ∈ V (29)
y0 ∈ R (30)

The set P∆ is very large in general, resulting in many constraints in the Benders master
problem. However, most of these constraints are not active in an optimal solution. We
therefore do not have to include all these constraints, but generate a subset in an iterative
algorithm. In each iteration, a relaxed Benders master problem is solved, which is obtained by
replacing the set P∆ with the subset P t

∆ of extreme points available at iteration t = 0, . . . . At
the start, this subset is empty, i.e. P 0

∆ = ∅. Let (z, y0) be an optimal solution to this problem.
Next, the primal subproblem (13)-(18) is solved with the values of z being fixed. This yields
the dual variables (π, ρ, τ ) associated with constraints (14), (15), and (17) respectively.
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Because the primal subproblem is feasible for each z, the values of the dual variables (π, ρ, τ )
determine an extreme point of P∆ and we add this point to P t+1

∆ . As a consequence, one
constraint is added to the relaxed Benders master problem. This process continues until its
optimal value equals the optimal value of the primal subproblem.

5 Computational Experiment

In this section, we present computational experiments to show the applicability of our
algorithm. First, we present the test instances of our search problem, followed by the results
and a concise analysis thereof.

The experiments were performed on an Intel(R) CoreTM i7-4810MQ CPU processor with
2.80 GHz and a usable memory of 15.6 GB. The instances were generated with our simulation
platform, that is written in Matlab. The original MILP and the Benders decomposition
algorithm were coded in Java and solved using CPLEX with default parameters. We set the
maximum number of iterations in the Benders decomposition algorithm to 3000 to avoid
out-of-memory exceptions.

5.1 Description of the Instances
In the instances generated for our analysis we consider one target and one platform. The
target state space C consists of 60 square cells, over which the initial target position is
normally distributed in two dimensions with its mean in the center and with a standard
deviation of 12. The target moves in north direction with 0.5 probability and in east direction
with 0.5 probability as well, with a speed of one cell per time step. The platform state
space V consists of 20 nodes and its start position is trivial, since we allow the platform
to reach any node in the first time step. It then searches with the speed of one node per
time step. The ratio of the lengths of a square cell and a hexagonal cell is 2 : 1. For sensor
characteristics, we used the typical glimpse probability function [7]:

pgk(vk, c) = 1− exp−ω(v,c,k), (31)

with ω(v, c, k) ≥ 0 being a measure of search effectiveness for cell c. The search effectiveness
decreases with the Euclidean distance ||vk − c|| between cell c and the platform at node vk,
as follows:

ω(v, c, k) = W (||vk − c||)−1
,

where W is some sensor quality indicator. We used W = 0.7 and generated four instances
with these properties, for time periods K = (4, 6, 8, 10).

5.2 Results and Analysis
We optimized the search trajectory on the four instances with the proposed Benders de-
composition (BD) algorithm, and additionally with CPLEX on the original formulation
for benchmarking. An optimal trajectory was found for all instances by both algorithms,
although we noticed differences in computation time. In Table 1, we list for each instance
the time period (K), the optimal value in cumulative probability of detection (PD), the
number of iterations in the BD algorithm, time to solve for the BD algorithm in seconds,
total and average time spend on solving the relaxed Benders master problem (RBMP) and on
the primal subproblem (PSP), and finally the time needed for CPLEX to solve the original
formulation (MILP).

SCOR’16
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Table 1 Test results.

K Optimal value Iterations BD RBMP PSP MILP
(PD) (#) (s) Tot (s) Avg (s) Tot (s) Avg (s) (s)

4 0.2786 352 65.43 62.13 0.18 2.22 0.01 0.77
6 0.3213 884 182.88 152.25 0.17 11.25 0.01 2.22
8 0.3368 1980 1738.19 1535.37 0.78 113.43 0.06 7.97
10 0.3439 3000 8740.82 8171.55 2.72 288.66 0.10 15.46

Figure 4 Convergence profiles of the instances K = 4 shown top-left to K = 10 shown bottom-
right.

As the results in Table 1 show, the proposed BD algorithm is not faster than solving
the original MILP. Even for the instance with K = 10, the cap of 3000 iterations was hit
and the algorithm was terminated before it converged. The optimal solution was found, but
not proved. The results however supply valuable information; the major portion of time is
spend on solving the RBMP, whereas the PSP is very easily optimized. Also the convergence
profiles (see Figure 4) show that many cuts are necessary to move out of local optima, of
which we seem to have (K/2)−1 in each instance. These observations lead us to the following
considerations for further research.

5.3 Considerations for Further Research
There are several improvements to be considered, which show potential to lead to improved
calculation times with respect to solving the original MILP:

One improvement is to utilize local branching for Benders decomposition [20]. The nodes
resulting from a branching step each represent a smaller subregion of the feasible region,
so that cuts are found more easily. This method is applicable to any binary program that
can be solved by BD and may reduce the computation time significantly.



M. Raap, M. Moll, M. Zsifkovits, and S. Pickl 1:9

A major difficulty lies in solving the RBMP, which is a large 0-1 linear program with one
continuous variable. Improvements can be made by decreasing the computation time on
this problem, which is actually a well studied resource constrained longest path problem
on a directed acyclic graph. It can be solved by specific and more efficient algorithms
as described in [12], such as dynamic programming and Lagrangean relaxation. Also
heuristics are applicable, because it is possible to generate new cuts from any feasible
integer solution.
A major strength of our formulation is that the PSP is an easy to solve LP. This may
prove to be necessary when solving the multi-platform case using Benders decomposition.
The multi-platform search trajectory problem can then be decomposed into multiple
RBMPs together with a single PSP providing the dual information for each platform
specific RBMP.

6 Conclusion

We considered the problem of optimizing a Markovian target search trajectory under kinemat-
ical constraints. For this problem, we proposed a novel method that utilizes dual information
by applying Benders decomposition. The aim of this research was to develop a method
that disconnects the networks of the target and platform and thereby solving much smaller
problems in iterations. Results from computational experiments show this accomplishment.
Possibilities for efficiently solving this problem for the multi-platform case arise, because
the master problem decomposes into multiple smaller problems for each platform. This
is of importance because the original formulation grows exponentially in the number of
platforms. All known exact methods for solving the multi-platform case appear intractable
for very small instances already and are therefore not applicable to real-life cooperative search
missions. The network disconnection as accomplished in this work is a first step towards
an exact method for solving the multi-platform case that grows only linearly in the number
of platforms. Therefore, this is a significant step towards automated cooperative search
missions by unmanned aerial vehicles.
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