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—— Abstract

The knowledge of nucleotides chains that compose the double DNA chain of an individual has a
relevant role in detecting diseases and studying populations. However, determining experiment-
ally the single nucleotides chains that, paired, form a certain portion of the DNA is expensive
and time-consuming. Mathematical programming approaches have been proposed instead, e.g.
formulating the Haplotype Inference by Pure Parsimony problem (HIPP). Abstractly, we are
given a set of genotypes (strings over a ternary alphabet {0,1,2}) and we want to determine
the smallest set of haplotypes (binary strings over the set {0,1}) so that each genotype can be
“generated” by some pair of haplotypes, meaning that they are compatible with the genotype
and can fully explain its structure.

A polynomial-sized Integer Programming model was proposed by Catanzaro, Godi and Labbé
(2010), which is highly efficient but hardly scalable to instances with a large number of genotypes.
In order to deal with larger instances, we propose a new model involving an exponential number
of variables to be solved via column generation, where variables are dynamically introduced into
the model by iteratively solving a pricing problem. We compared different ways of solving the
pricing problem, based on integer programming, smart enumeration and local search heuristic.
The efficiency of the approach is improved by stabilization and by a heuristic to provide a good
initial solution. Results show that, with respect to the linear relaxations of both the polynomial
and exponential-size models, our approach yields a tighter formulation and outperforms in both
efficiency and effectiveness the previous model for instances with a large number of genotypes.
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ming, combinatorial optimization
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1 Introduction

One of the most important achievements of the latest years in biology has been the hu-
man genome sequencing, completed in 2001, that has shown how all humans share the
99% of the information contained in the DNA, while all the significant differences are con-
tained in the remaining information. Each site of this 1% portion of the human genome,
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that presents a significant variability among the individuals, is called a Single Nucleotide
Polymorphism (SNP).

Humans are diploid organisms, meaning that the DNA is organized in pairs of chro-
mosomes, each copy coming from one of the two parents. Every single chain in the DNA
is made of a sequence of nucleotides, choosing among the possible four: A, T, C, G. It is
known that, regarding human beings, the DNA sites and so also the SNP sites are almost
always biallelic, meaning that at each site only two of the four nucleotides can be found.
If the nucleotide is equal for both chains, then the SNP is homozygous, otherwise it is
heterozygous. From now on, we denote with haplotype the single chain of SNP values for a
specific portion of a chromosome copy and with genotype the chain providing information
regarding the union of the two chromosome copies, that tells us if each SNP in the chain
is homozygous or heterozygous. Moreover, we say that two haplotypes resolve a certain
genotype if, when paired, the information regarding homozygous and heterozygous sites
they give is the same provided by that genotype. Haplotypes have an important role in
medical and pharmacologic studies, for example to detect diseases or to study the different
behaviour of various individuals to the same therapy. Sequencing them is not practical,
as it is very expensive and time consuming, while it is easier to experimentally obtain the
information stored in genotypes. We are then facing the haplotyping problem, that consists in
determining the two haplotypes that resolve a given genotype. Several approaches have been
used in order to solve this problem, its difficulty consisting in the fact that, once we have k
heterozygous SNPs in the same genotype, we have 2~ possible pairs of haplotypes that
can represent it and we need some criteria to chose the right pair. A classical approach is to
apply the Pure Parsimony criterion, according to which, given a set of genotypes obtained
by a family of individuals, we want to select the minimum number of haplotypes that can
resolve all the genotypes.

This problem is called the Haplotype Inference by Pure Parsimony (HIPP) problem. It is
well known to be NP-hard [13] and different mathematical programming approaches have
been investigated. An exponentially large Integer Programming (IP) formulation with an
exponential number of variables and constraints is proposed in [9], able to tackle only small
size instances. A combinatorial branch-and-bound algorithm is presented in [18], without
great improvements on the efficiency. A different model with an exponential number of
variables and constraints can be found in [14], based on a set-covering formulation: variables
are related to all possible haplotypes and are dynamically generated by a guided enumeration
procedure. Other formulations lead to polynomial-sized models, e.g. [4], where the linear
relaxation is weak, [3], that presents a three-index formulation, and [5], where families of valid
cuts are derived from the formulation in [10] and hybrid models between existing formulations
are proposed. The state-of-the-art polynomial size IP formulation is proposed in [6], which is
largely efficient on small and medium-size instances. More efficient non-exact approaches to
HIPP have been presented, e.g. [17, 11]. This paper investigates an approach for HIPP to
be suitable for large instances. Our contribution consists of a new tighter formulation and
basic solution algorithms that outperform previous models on some classes of instances.

The remainder of this paper is organized as follows. Section 2 presents the notation
and two new formulations: a slight improvement of the model in [6], polynomial in size
and based on class representatives, and a new formulation with an exponential number of
variables associated to pairs of haplotypes and genotype subsets and polynomial number of
constraints. The latter formulation can be solved via a column-generation approach, whose
implementation is detailed in Section 3. Finally, we present computational results showing
that our approach is suitable for instances with a large number of genotypes.
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2 Formulations

The biallelic property of each SNP allows us to describe a haplotype as a sequence of 0 and 1,
where each symbol encodes one of the two possible nucleotides for a specific SNP. A genotype
instead is represented as a sequence of symbols chosen among the set {0, 1,2} where 0 and
1 indicate homozygous SNPs in which that specific nucleotide is present and 2 denotes a
heterozygous site. A genotype g is resolved by two haplotypes h' and h? if, for each position
p, by, # h2 whenever g, = 2, and h), = h2 = g, otherwise. A haplotype h and a genotype g
are compatible if for every homozygous site p of g we have g, = h,,.

In the HIPP, we are given a set of m genotypes with n SNPs, and we want to determine
the least-cardinality set of haplotypes that can be used to resolve all the genotypes.

The two formulations we present in the following stem from the fact that, in a feasible
solution to HIPP, each haplotype induces a subset of genotypes that are partially resolved
by it, and every genotype belongs to exactly two subsets.

The first formulation slightly improves the one in [6], where each genotype subset is
indexed according to the first genotype, in a predefined order, belonging to it. As each
genotype belongs to two sets, it can happen that the same genotype g¢; should identify
two different subsets so that a dummy genotype g; is created and used to identify the
second subset. Thus, we dispose of subsets S; with index i varying in the set K = K U K,
where K = {1,2,...,m} and K’ = {1',2/,...,m'}. We also define an ordering such that
1<1 <2<2 <---<m<m. We then introduce a binary variable z;, i € K, that

takes value 1 if in the solution there is a haplotype that induces a subset S; and 0 otherwise.

Genotype subsets are described by variables yfj, with i,j € K and k € K, taking value 1 if
the k-th genotype belongs to subsets S; and S, 0 otherwise. Further binary variables z;,,
ieK,peP= {1,2,...,n} records the value of the p-th SNP in haplotype i. Taking into
account symmetries and compatibility issues related to genotypes to be explained by the
same haplotype, variables y can be defined on a reduced subset T of triplets (k, ¢, ) [6]. In
particular, if g* is the k-th genotype, we have T = {(k,4,j) E K x K x K | (i < j < kNj #
iifk>i)V(i=kANj=FkK)andVpe P, (g) =gl =gF)V (9 =2Ag} +g)=1)} HIPP
can be formulated as follows.

(PIP) min Y =, (1)
zef(
st oz < xy VieK (2)
Y > 1 Vke K (3)
(k,i,7)€T
Soowk+ > dhi<w VkeK,ick (4)
(k,i,J)€ET (k,j,i)€T
zip <1 — Z ygf Z y;-ci VkEK,iGI_(,pEP:gS:O,g;;él (5)
(kyig)€T (koj,i)€T
Zp> Yyt >l VkeKieKpeP:gh=1g,#0 (6)
(kyi,j)€T (k,j,i)ET
Zip > Yl V (ki j)€T,peP:gy=2,g,#0,g,=0  (7)
Zjp > Yt V (ki j)€T,peP:gy=2g,=0,g,#0  (8)
zip < 1—yp V(ki,j)ET,pEP gy =29y %10, =1  (9)
Zip <1 -y V (ki j)eT,peP:gy=2g,=1,g,#1 (10)
Zip + Zjp > Yt V(k,i,j)€ET,pEP gy =2,gy=29,=2 (11)
Zip + 2ip <2 — Yl V (k,i,j) €T, pE P gy =2,9,=2,g,=2  (12)
i, Yy, zip € {0,1} VieK, (ki j)€T,peP (13)
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Table 1 Summary of the notation used.

Sets and data

Variables

set of genotypes’ indeces

set of dummy genotypes’ indeces
set of indeces K U K’

set of heterozygous genotypes

set of Q-pairs ¢ = (h?, G7)

k-th genotype

haplotype associated to Q-pair ¢
subset of genotypes associated to ¢

© N

=

Qe

T; set with representative ¢° is used

yfj ¢" is in sets represented by ¢¢ and ¢’

zip | record the value of SNPs for haplotype %
A? | Q-pair ¢ is used (or not)

™ dual variables associated to (15)

pk | dual variables associated to (16)

x® | ¢* is in the solution of PP (or not)

(p | value of p-th SNP in PP solution

Constraints (2) force the dummy genotype to be used only if the real one is already used as a
subset’s index, and (3) state that each genotype is resolved. Constraints (4) record whenever
the haplotype induced by S; is used. Constraints (5)-(12) guarantee compatibility issues.
With respect to the formulation in [6], we eliminated two sets of redundant constraints and
we completed the domains of (7), (8), (9) and (10) to correctly set the values of variables
z; p taking into account all the possible cases for the values of g;,, gg and g’;.

The second formulation we propose uses an exponential number of binary variables A4
associated to a pair ¢ = (h?, G?) made of a haplotype h? and a subset of GY, and taking value
1 if the haplotype h? is used to resolve all the genotypes in G?. We denote with @ the set of
all possible pairs and refer to any of its elements as a Q-pair. The formulation is derived
from a compact quadratic IP model based on two-index variables applying a Dantzig-Wolfe
decomposition, as detailed in [8].

We notice that if a genotype has no heterozygous SNPs, it is resolved by taking twice a
haplotype equal to the genotype, which must be in the solution (fixed haplotypes). We thus
focus on the set K C K of the genotypes with at least a heterozygous SNP and define, for
each @Q-pair ¢, a coefficient ¢, equal to 0 if h? is fixed, 1 otherwise, obtaining the following

formulation.
(EIP) min » ¢ A? + (m — |K]) (14)
q€Q
st > A=2 Vike K (15)
q€eQ: gkeGa
> =1 Vke K, peP:gh=2 (16)
qeQ: gFkeGa,hl=1
M€ {0,1} VgeQ (17)

Constraints (15) ensure that each genotype is resolved by two haplotypes, and constraints
(16) ensure that for each heterozygous site of the k-th genotype, only one of the haplotypes
used to resolve it has a value 1 in that position, forcing in this way the other haplotype
to have a value 0 so that the genotype is correctly resolved. A summary of the notation
introduced is shown in Table 1.

3 A column generation approach for EIP

Model PIP can be directly implemented and solved by standard IP solvers, whereas EIP
has O(2™™) variables and solving it with standard solvers can be impractical even for small
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size instances. A branch-and-price algorithm should be used [2], where a column generation
approach is applied to solve its linear relaxation, that we denote as ELP: at each iteration, we
solve a Reduced Master Problem (RMP) including a subset of variables and, by applying the
theorems on duality, we derive a pricing problem (PP) whose aim is to provide either a new
variable to possibly improve the solution in the next iteration, or a certificate of optimality.

An initial set of variables is needed, to build a first feasible RMP. We use the following
heuristic, based on the approach shown in [7]:
1. initialize the set of haplotypes H to the fixed genotypes, if any
2. for each genotype g with at least one heterozygous site:

a. look for a haplotype h € H that can be used to resolve g

b. if it exists, compute the haplotype v such that h and v resolve g and add v to H

c. otherwise, build h and v from ¢ by respectively assigning values 0 and 1 to the

heterozygous SNPs. Add h and v to H.

3.1 Solving the Pricing Problem

Using the simplex method to solve the RMP, a feasible primal solution to ELP is available,
together with a dual solution satisfying the complementary slackness conditions: if the
latter solution is dual feasible, then both solutions are optimal. The pricing problem aims
at finding any violated dual constraint, corresponding to a primal variable with negative
reduced cost. By associating dual variables m and p to, respectively, constraints (15) and
(16), and observing that constraints A\? < 1 are redundant, we obtain the following dual of
ELP:

max Z 2ﬂ'k+z Z ,u’; (18)

k=eK kEK p:gp=2

s.t. Z F + Z Z ,u]; <c¢q VqgeQ (19)
k: gkeGa k: gk€Ga p: gk=2,h}=1
" >0 Vke K (20)

Let mras, pras be the dual values from the RMP. The pricing problem, with coefficients
(mrM, trRM ), can be formulated as:

(PP) max > whaxX* = Y Y mrabx* — () (21)

keK keK p:gf=2

st.Cp <1 —x* Vke K,peP: glzf:O (22)
CpZXk VkeK,peP : g;le (23)
G X e {0,1} VkeK,peP (24)

where variables ¢ and x describe respectively the haplotype and the genotype subset of the
Q-pair, the constraints guarantee compatibility, and ¢(¢) is either 0 or 1, depending on ¢
configuring a fixed haplotype or not. The PP can be resolved by first considering the fixed
haplotypes, one at a time, and then the other haplotypes. In the first case ¢ is given, ¢(¢) =0
and PP can be solved by inspection: for each genotype compatible with the fixed haplotype
at hand, evaluate 7%, + Zp:glgzlhpzl uRMﬁ and set ¥ = 1 if it is non negative; then select
the haplotype with the largest value for (21). For non-fixed haplotypes, ¢(¢) = 1 and PP has
a quadratic objective function and can be directly solved using standard solvers, in case after
linearizing by means of a two-index variable to represent the product Cpxk. We propose here
an alternative approach using a smart enumeration of all possible genotype subsets.

5:5
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» Proposition 3.1. The following Smart Enumeration procedure solves PP to optimal-
ity:
1. for each genotype ¢', i € K, in a predefined order >

a. firx'=1,and xX* =0, Vk:g" - g*

b. ﬁwgp:g;,VpeP:.g;#2 4 ' ‘ ‘
cset G(i) ={g'}U{¢’ €G|¢g’ = g" and g} +g, #1,Vp€ P}

d. solve PP restricted to the genotypes in G(i); let a; be the corresponding value

2. return the solution related to the maximum c«;

(]

The condition gg; + gzi) # 1 in Step 1c ensures that genotypes g’ and g* could be resolved by a
common haplotype.

Proof. By fixing variables x at Step la, we obtain a partition of the solution space of PP
into |K| subsets. Let (h,G) be a Q-pair associated to a feasible solution within the i-th
subset. Since g* € G, h has to be compatible with ¢’ so that fixing variables as in Step 1b
does not exclude any feasible solution. Now, let ¢/ € G with ¢/ # g*. We necessarily have
¢’ > g', due to the x-fixing determining the i-th subset. Moreover, g7 + g}, # 1,V p € P, as
otherwise ¢7 and ¢* cannot be resolved by the same h. Hence no feasible solution in the i-th
is lost by fixing ¢ (Step 1b) and by restricting to the genotype subset defined in Step 1lc, and
«; is the optimal solution of PP in the i-th subset. |

Notice that fixing one genotype in the solution allows us to consistently decrease running
times, as we can exploit information on homozygous sites to fix some haplotype coordinates
and to choose genotypes in a restricted subset.

Before solving PP exactly, a heuristic can be used to quickly find a variable to be added
to RMP. We consider a local search algorithm that starts from the fixed haplotype with
associated minimum reduced cost (or a random one, if no fixed ones are available) as current
solution. Then all the neighbor solutions defined by flipping one coordinate at a time are
generated and evaluated. We notice that evaluating a neighbor solution is equivalent to
solving PP for a fixed haplotype, which can be efficiently done by inspection. If the best
neighbor solution is better than the current one, it is taken as the new current solution, and
the procedure iterates, otherwise the procedure stops.

Once a Q-pair (/_z, @) with negative reduced cost is available, further Q-pairs to conveni-
ently add to RMP can be determined by taking the same haplotype and extending G to
include further genotypes. The Extension Procedure works as follows: we set an ordering on
G and add one genotype compatible with h at a time to G; if the reduced cost associated
to the variable corresponding to the new @-pair (formula (21)) is negative, then it can be
added to RMP and the procedure iterates, otherwise the procedure stops. Notice that having
Q-pairs with largest genotype subsets may improve the convergence of the column generation
procedure, since we give the same haplotype the opportunity to resolve more genotypes, so
that the objective function is likely to decrease.

3.2 Stabilization

Solutions to model EIP are often highly degenerate, so that it can take several iterations to
recognize that the optimal has been reached, since all the variables with negative reduced
cost should be added (this is the so-called tailing-off effect). In order to deal with this issue,
we derive a lower bound to be used as an alternative termination criterion. To this aim, we
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add the following redundant constraint to EIP:

dSxr<M (25)

q€Q

where M is a constant large enough to ensure the constraint is always satisfied. In particular,
during the column generation procedure we set its value as tight as possible, updating it at
each iteration to the current value of the objective function (14). Notice that the dual of
ELP and the pricing problem PP change: in particular, the objective functions (18) and
(21) has to be increased by M v and vgyy, respectively, where vgys is the dual variable
associated to (25).

» Proposition 3.2. Let pry = (T, rM, VeRM ) be the dual variables associated to the
optimal solution of the current RMP and zrp the corresponding optimal value. Let v(prar)
be the value of the optimal solution of the current PP (including vrar). Then, LB(pry) =
zrym +min{0, M v(prar)} is a lower bound to ELP.

Proof. We will show that the lower bound corresponds to the Lagrangian Relaxation of ELP
where constraints (15) and (16) (but not (25)) are relaxed. The corresponding Lagrangian
function is:

Liprm) = Y 2%har + Y tirarg +71 (26)
keK kEK
pigy =2

The sum of the first two addends is related to the dual objective function of ELP and is
equal to zryr — M vgyr. The value 7 is equal to

7 = min Zcq)\quwf{M Z AT — Z [RMy Z A

q€Q keEK q:gk€G k€K q:g"eG?
p:g§:2 hi=1
st Y A<M
qeq
A >0,VqgeQ.

Let

q = arg {Iréiél Cq — Z FgM - Z Z MRM§7 (27)

keK: gkeGa k€K: gkcGa pgk=2

then 7 is obtained by setting A\? = 0 for all ¢ # ¢, and A\? = 1 if the minimum in (27) is
negative, 0 otherwise. Note that this minimum value is exactly the opposite value of PP
plus vras. |

Further convergence issues are determined by dual degeneracy, which requires stabilization
techniques (see, e.g. [15]) to prevent “oscillations” of the dual variables. The technique we
adopt solves the PP on a convex combination between the values p = (7, u,v) of the current
optimal dual variables and a stability center p = (7, i, 7). This approach has the advantage of
exploiting the lower bound defined above and yields a stabilized column generation procedure
that can be sketched as follows [16]:

1. set parameters 0 < A <1, 7>0and € >0
2. initialize the RMP, the stability centre p = pg, LB(p) = —c0
3. solve current RMP, obtaining the optimal value zgj; and the dual variables pras

5:7
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P

set psT = Apry + (1 — A)p and let zg7 be the value of the dual objective function
computed in pgr

solve PP with coefficients pgr, obtaining the optimal value v(psr) and the Q-pair s
compute the lower bound LB(pst) = zs1 + min{0, M v(pst)}

if LB(psT) > LB(p), update p = psr and LB(p) = LB(pst)

if the reduced cost of s with respect to pras is negative, add A® to the RMP,

if [(zrve — LB(p))/LB(p)] < 7, then set A =1

10. if zrpr — LB(p) < € then stop, otherwise iterate from 3

©eNoOe

It is proved that this algorithm yields the optimal solution [16]. The property is based on
the following lemmas guaranteeing that, when a misprice happens, that is we do not find a
variable to be added to the RMP even if we are not at the optimum, the algorithm is always
able to update the stability centre, so that we do not get stuck in a non-optimal solution.
Here we adapt the proof of the two lemmas to our lower bound definition.

» Lemma 3.3. Let s be the Q-pair defined at Step 5. If the variable \* does not have a
negative reduced cost, then LB(psT) > LB(p) + A(zrm — LB(p)).

Proof. Denote with f(p) the value of the objective function of PP where the coefficients are
p and the variables assume the optimal values found when solving PP with coefficients pgr.
Let z be the value of the dual objective function computed in p. We have

LB(psr) = zsT + M min{0, v(psr)} = 257 + M f(pst) =
= Azpy + (1 = D)2+ AM f(pra) + (1 = A)M f(p) =
= A(zrm + M f(pru)) + (1 = A)(z+ Mf(p)) =
> Azpn + (1= A)LB(p)

where the last inequality holds because f(pras) > 0 by hypothesis and f(p) > v(p). <

» Lemma 3.4. When a misprice happens, the gap zry — LB(p) is reduced by at least a
factor of 1/(1 — A).

Proof. The sequence {z§,,}x, where k indexes the iterations of the stabilized column
generation procedure, is not increasing. Thus, we have

AP =LB(p") < 2hy, — LB(p)"' < 2hy — LB(pky) <

< Zh — LB(P") = A(zhay — LB(7")) = (1 = A)(zhas — LB(7"))

Z

where inequality (*) holds for the previous lemma. Hence

2 —LB(Y) 1

AL LB(pE+1) T 1A

<

We proved that, whenever a misprice takes place, the lower bound increases, so that according
to the stabilization algorithm we need to update the stability center. Moreover, the lower
bound increases by a factor big enough to ensure the convergence of the lower bound to the
optimal solution.

4 Computational results

In this section we report the results obtained from the computational experiments carried out
on instances both from the literature and generated on purpose. The former are taken from
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the class hapmap used in [5]: they are real instances derived from biological data related
to chromosomes 10 and 21 over all four HapMap (International HapMap Consortium 2004)
populations. The number of genotypes involved varies between 5 and 68, while the SNPs
are either 30, 50 or 75. The latter are random instances characterized by a large number of
genotypes (manygen). In particular, we generated instances with 80, 90 and 100 genotypes
and 10, 20 and 30 SNPs (4 per class, for a total of 36 instances), where SNP is heterozygous
with a probability between 10% and 40%, and homozygous sites have the same probability
of being 0 or 1.

Model PIP and the stabilized column generation approach for ELP have been implemented
in C++ using the SCIP 3.2 [1] library and IBM CPLEX 12.4 [12] solver, and have been tested
on an Intel Pentium Dual Core E2160 1.8 GHz processor with 4 GB RAM. A time limit is set
to 7200 CPU-seconds for all the implementations. Different variants of the column generation
algorithm have been implemented, depending on how the pricing problem is solved. The
first variant (ELP+QPP) looks for a variable with negative reduced cost by first solving PP
on fixed haplotypes, then running the local search procedure and, finally, by linearizing the
quadratic PP on general haplotypes and solving it with the standard solver. Notice that
a procedure is only executed if the previous one fails. The second variant (ELP+QPPm)
is similar to the first one, but the extension procedure is applied to add more than one
variable at each iteration. The third variant (ELP+SM) is as the first one, but the smart
enumeration procedure is used instead of the standard solver to solve PP. Finally, a fourth
variant (ELP+SMm) is as the second one, but using smart enumeration.

Notice that the proposed procedures are highly dependent on the order in which we
consider the genotypes. The initial heuristic can end up with sets of different cardinality
according to how compatible genotypes are ordered, as can be shown with a very simple
example: given the genotypes g1 = {01101}, go = {22212}, g3 = {10211}, we obtain a better
solution if we consider the genotypes in the order g1, g3, go instead of g1, g2, g3. In smart
enumeration, the ordering of the genotypes affects the size of the problem to be solved at
each iteration (if we consider a genotype with many homozygous sites, we have many fixed
coordinates and, as a consequence, less decision variables). As for the extending procedure,
the order considered can change the set of variables with negative reduced cost that are
added at each iteration. In our implementation, we consider genotypes ordered according to
the increasing number of heterozygous SNPs.

For the parameters of the stabilization procedure, after preliminary calibration, we set
the stabilization parameter A = 0.15, the tolerances ¢ = 0.1 and 7 = 0.1. Moreover, we set
the initial stability center to my = 0.

Tables 2 and 3 detail our results regarding the LP relaxations of model PIP, indicated
with PLP, and EIP, indicated with ELP, for respectively the instances in the hapmap and
the manygen class. The first column of each table identifies the solution approach. The
following columns point out the percentage of instances solved within the time limit, the
Gap, computed as (zrnt — 2Lr)/2INT, between the integer solution zynr and the solution
of the linear relaxation zpr (average, maximum and percentage of instances having integer
linear relaxation), and running time (average, maximum and minimum). Note that all the
results regarding the Gap and the running time are referred only to those instances solved
within the time limit.

We can see that formulation EIP is tighter than PIP, as the Gap is significantly reduced
and the percentage of instances having integer linear relaxation is clearly higher. However,
for hapmap instances the computational time for the column generation approach is not
competitive. When we increase the number of the genotypes, as for the proposed random
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Table 2 Results for the hapmap class of instances

% solved % LR-Gap time (s)
average max %0-Gap | average min max
PLP 100.00 8.28 25.00 13.04 16.97 0.01 270.14
ELP+ QPP 58.33 4.34 2222 57.14 | 1261.18 0.65 5759.27
ELP 4+ QPPm 62.50 4.05  22.22 62.50 819.58 0.76  3446.52
ELP + SM 75.00 3.67 22.22 61.11 | 1598.46 0.50 6267.11
ELP+ SMm 70.83 3.89 22.22 58.82 789.75 0.47 3557.48

Table 3 Results for manygen instances

% solved % LR-Gap time (s)
average max %0-Gap | average min max
PLP 100.00 3.06 32.58 50.00 | 1263.76 491.78 2287.69
ELP + QPP 61.11 0.22 2.43 86.36 646.63 12.13  7128.80
ELP + QPPm 61.11 0.22 2.43 86.36 647.64 11.96  5996.86
ELP 4+ SM 100.00 1.86  25.40 63.89 269.52 7.83 1677.40
ELP + SMm 100.00 1.86 25.40 63.89 209.09 7.80 1047.98

instances, we can see that the new approach is not only theoretically but also practically
efficient. Note that, due to the reduced number of SNPs considered for the manygen class,
even having a larger number of genotypes results in instances tractable using the same time
limit set for the hapmap class. Moreover, it can be easily seen that solving the pricing
problem with smart enumeration sensibly improves results in terms of number of solved
instances within the time limit (in particular, all the manygen instances are solved). The
effect of the extension procedure can be seen in a reduction of the running times.

5 Conclusions

In this paper, we presented and compared two different formulations for HIPP. The first
model PIP is linear and polynomial in size, and refines one previous model in literature.
The second model EIP has an exponential number of variables and a relatively small set
of constraints. Standard solvers are used for PIP, whereas a column generation approach
has been devised to solve the linear relaxation of EIP and implemented, taking into account
stabilization techniques to improve its efficiency. Computational tests on real and random
instances show that EIP is a consistently tighter formulation than PIP, since its linear
relaxation solves a remarkably higher number of instance to integer optimality, and the
optimality gap is more than halved on average. From the efficiency point of view, EIP shows
promising results on instances with a large number of genotypes, since solving the liner
relaxation is faster than PIP in this case. Future work includes integrating the proposed
column generation algorithm in a branch-and-price procedure to solve EIP, and investigating
specialized branching strategies for both PIP and EIP.
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