
5th Symposium on Languages,
Applications and Technologies

SLATE’16, June 20–21, 2016, Maribor, Slovenia

Edited by

Marjan Mernik
José Paulo Leal
Hugo Gonçalo Oliveira

OASIcs – Vo l . 51 – SLATE’16 www.dagstuh l .de/oas i c s

Editors
Marjan Mernik José Paulo Leal Hugo Gonçalo Oliveira
Department of Computer Science Faculty of Sciences Centre of Informatics and Systems
University of Maribor University of Oporto University of Coimbra
Marjan.Mernik@um.si zp@dcc.fc.up.pt hroliv@dei.uc.pt

ACM Classification 1998
I.2.7 Natural Language Processing, D.3 Programming Languages

ISBN 978-3-95977-006-4

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-006-4.

Publication date
June, 2016

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.SLATE.2016.0

ISBN 978-3-95977-006-4 ISSN 2190-6807 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-95977-006-4
http://www.dagstuhl.de/dagpub/978-3-95977-006-4
http://dnb.d-nb.de
http://dx.doi.org/10.4230/OASIcs.SLATE.2016.0
http://www.dagstuhl.de/dagpub/978-3-95977-006-4
http://drops.dagstuhl.de/oascis
http://www.dagstuhl.de/oasics

0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 2190-6807

www.dagstuhl.de/oasics

SLATE’16

http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

Contents

Preface
Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira . 0:vii–0:viii

Human-Human Languages

Co-Bidding Graphs for Constrained Paper Clustering
Tadej Škvorc, Nada Lavrač, and Marko Robnik-Šikonja . 1:1–1:13

A Re-Ranking Method Based on Irrelevant Documents in Ad-Hoc Retrieval
Rabeb Mbarek, Mohamed Tmar, Hawete Hattab, and Mohand Boughanem 2:1–2:10

Comparing the Performance of Different NLP Toolkits in Formal and Social
Media Text

Alexandre Pinto, Hugo Gonçalo Oliveira, and Ana Oliveira Alves 3:1–3:16

Comparing and Benchmarking Semantic Measures Using SMComp
Teresa Costa and José Paulo Leal . 4:1–4:13

Human-Computer Languages

LLLR Parsing: a Combination of LL and LR Parsing
Boštjan Slivnik . 5:1–5:13

Locating User Interface Concepts in Source Code
Matúš Sulír and Jaroslav Porubän . 6:1–6:9

Declarative Rules for Annotated Expert Knowledge in Change Management
Dietmar Seipel, Rüdiger von der Weth, Salvador Abreu, and Alexander Werner . . 7:1–7:16

A Metamodel for Jason BDI Agents
Baris Tekin Tezel, Moharram Challenger, and Geylani Kardas 8:1–8:9

Profile Detection Through Source Code Static Analysis
Daniel Ferreira Novais, Maria João Varanda Pereira,
and Pedro Rangel Henriques . 9:1–9:13

Context-Free Grammars: Exercise Generation and Probabilistic Assessment
José João Almeida, Eliana Grande, and Georgi Smirnov . 10:1–10:8

A Model-Driven Engineering Technique for Developing Composite Content
Applications

Moharram Challenger, Ferhat Erata, Mehmet Onat, Hale Gezgen,
and Geylani Kardas . 11:1–11:10

Computer-Computer Languages

Eshu: An Extensible Web Editor for Diagrammatic Languages
José Paulo Leal, Helder Correia, and José Carlos Paiva . 12:1–12:13

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/oasics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:vi Contents

Sni’per: a Code Snippet RESTful API
Ricardo Queirós and Alberto Simões . 13:1–13:11

Building a Dictionary Using XML Technology
Alberto Simões, José João Almeida, and Ana Salgado . 14:1–14:8

Automata Serialization for Manipulation and Drawing
Miguel Ferreira, Nelma Moreira, and Rogério Reis . 15:1–15:7

Preface

SLATE, the International Symposium on Languages, Applications and Technologies is an
international conference with a long Portuguese tradition. It is rooted in two former confer-
ences, each with a life span of about 10 years: Compilers, Programming Languages, Related
Technologies and Applications (CORTA) ; and XML, Applications and Associated Technolo-
gies (XATA). The creation of SLATE was part of an effort to promote the internationalization
of those conferences, by creating critical mass, attracting foreigners as participants, program
committee and steering committee members, and by opening to new venues, specifically
Madrid and Maribor.

The current fifth edition has papers from 25 authors, where Portuguese are outnumbered
by the non-Portuguese authors. At first glance this could be interpreted a sign of success of
the internationalization strategy. Unfortunately this is not the case because, this year, the
overall number of submissions did not follow the growing trend of previous editions. In this
process, SLATE may have lost contact with its Portuguese backbone, in particular due to
the fact that this year’s venue was too distant from the Iberian Peninsula.

As in previous editions, SLATE is divided in three main tracks: the processing of lan-
guages used to communicate among humans; the processing of languages used by humans to
communicate with computers; and the processing of languages used for the communication
among computers. These proceedings follow this same structure.

The Human-Human Languages track includes the following contributions:
In “Co-bidding graphs for constrained paper clustering” the authors describe an approach
for scheduling the presentations of conference papers on available slots, where papers
are clustered based on the similarity of their content and on the reviewers preference to
review them;
In “A Re-ranking Method Based on Irrelevant Documents in Ad-hoc Retrieval” the
authors describe a new information retrieval method that uses negative feedback to
re-rank documents;
In “Comparing the Performance of Different NLP Toolkits in Formal and Social Media
Text” the authors compare the performance of the default pre-trained models of several
NLP toolkits, freely available and developed in Java or Python, in the tasks of tokenization,
part-of-speech tagging, chunking and named entity recognition, both in a newspaper
corpus and in social media text;
In “Comparing and benchmarking semantic measures using SMComp” the authors describe
an on-line testbed tool for computing well-known or user-defined path-based similarity
and relatedness measures, of word pairs or datasets, on different versions of WordNet.

The Human-Computer Languages track includes the following contributions:
In “LLLR Parsing: a Combination of LL and LR Parsing” a new LLLR parsing approach
is described, which is a combination of LL and LR parsing. Whenever LL conflict appears
it triggers small embedded LR parsers. The approach has been validated on Java 1.0
programming language;
In “Locating User Interface Concepts in Source Code” the authors explore whether strings
and concepts displayed in the GUI of a running program can be located in its static
source code, too. The study is performed on four Java applications (ArgoUML, FreeMind,
PDFsam and Weka);

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/oasics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:viii Preface

In “Declarative Rules for Annotated Expert Knowledge in Change Management” a declar-
ative domain–specific language for representing expert knowledge in the field of change
management is presented. The declarative rules are written as an extension of the
well–known deductive database language Datalog;
In “A Metamodel for Jason BDI Agents” the authors describe a meta-model for modelling
Belief-Desire-Intention (BDI) agents working on Jason platform;
In “Profile detection through source code static analysis” an approach how to infer a
programmer’s profile through the analysis of his source code is analysed. The approach
can be useful for the continuous evaluation of a student’s progress on a programming
course;
In “Context-Free Grammars: Exercise Generation and Probabilistic Assessment” the
authors deal with a probabilistic assessment whether two context free grammars (CFGs)
are equivalent using a system of non-linear equations. The approach is exemplified on a
simple CFG example of arithmetic expressions;
In “A Model-driven Engineering Technique for Developing Composite Content Applica-
tions” a Domain-Specific Modelling Language (DSML) for composite content applications
is proposed. It is then evaluated within an industrial case study.

The Computer-Computer Languages track includes the following contributions:
In “Eshu: an extensible web editor for diagrammatic languages” the authors present a
visual language environment for editing diagrammatic languages on the web;
In “Sni’per - a Code Snippet RESTful API ” the authors support web based collaboration
for programmers, allowing them to share code snippets using a REST API;
In “Building a Dictionary using XML Technology” the authors present an approach to
the construction of an on-line dictionary using XML-based tools;
In “Automata Serialization for Manipulation and Drawing” the authors present a visual
language environment for handling and visualizing automata.

The articles published here focus very different and interesting areas of languages pro-
cessing.

In conclusion, it is hoped that all the aforementioned papers will provide readers with
some glimpse of research on different and interesting areas of languages processing that
are presented at SLATE. Last but not least, we would sincerely like to thank the Program
Committee for their assistance in the reviewing process.

Marjan Mernik
José Paulo Leal

Hugo Gonçalo Oliveira

Program Committee

Main Chair

Marjan Mernik
University of Maribor, Slovenia

Track Chairs

Marjan Mernik
(Human-Computer Languages)
University of Maribor, Slovenia

José Paulo Leal
(Computer-Computer Languages)
Universidade do Porto, Portugal

Hugo Gonçalo Oliveira
(Human-Human Languages)
Universidade de Coimbra, Portugal

Publication Chair

Alberto Simões
Universidade do Minho, Portugal

Organization Committee

Marjan Mernik
University of Maribor, Slovenia

Boštjan Slivnik
University of Ljubljana, Slovenia

Alberto Simões
Universidade do Minho, Portugal

Local Organizing Committee

Tomaž Kosar (co-chair)
University of Maribor, Slovenia

Matej Črepinšek (co-chair)
University of Maribor, Slovenia

Marjan Horvat
University of Ljubljana, Slovenia

Miha Ravber
University of Maribor, Slovenia

Martin Kraner
University of Maribor, Slovenia

Program Committee

Salvador Abreu
Universidade de Évora, Portugal

José João Almeida
Universidade do Minho, Portugal

Ana Alves
CISUC, University of Coimbra, Portugal

Jorge Baptista
Universidade do Algarve, Portugal

Fernando Batista
Instituto Universitário de Lisboa, Portugal

Mario Beron
Universidad Nacional de San Luis, Argentina

Barrett Bryant
University of North Texas, USA

João Paiva Cardoso
Universidade do Porto, Portugal

Nuno Carvalho
Universidade do Minho, Portugal

Matej Črepinšek
University of Maribor, Slovenia

Daniela da Cruz
Universidade do Minho, Portugal

Gabriel David
Universidade do Porto, Portugal

Alberto Diaz
Universidad Complutense de Madrid, Spain

Brett Drury
Universidade de São Paulo, Brasil

Luís Ferreira
Inst. Politécnico doCávado e doAve, Portugal

Jean-Cristophe Filliâtre
Lab. de Recherche en Informatique, France

Pablo Gamallo
Univ. de Santiago de Compostela, Spain

Alda Lopes Gançarski
Inst. Nat. desTélécommunications, France

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/oasics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:x Program Committee

Hugo Gonçalo Oliveira
CISUC, Universidade de Coimbra, Portugal

Xavier Gómez Guinovart
Universidade de Vigo, Spain

Pedro Rangel Henriques
Universidade do Minho, Portugal

Jan Janousek
Czech Technical University, Czech Republic

Geylani Kardas
Ege University, Turkey

Jan Kollar
Technical University of Kosice, Slovakia

Ioannis Korkontzelos
NaCTeM, University of Manchester, UK

Tomaž Kosar
University of Maribor, Slovenia

Eugenijus Kurilovas
Centre of Inf. Tech. inEducation, Lithuania

José Paulo Leal
Universidade do Porto, Portugal

António Menezes Leitão
Universidade Técnica de Lisboa, Portugal

Giovani Librelotto
Universidade Federal de Santa Maria, Brasil

João Correia Lopes
Universidade do Porto, Portugal

Ivan Lukovic
University of Novi Sad, Serbia

Paulo Matos
Instituto Politécnico de Bragança, Portugal

Marjan Mernik
Univerza v Mariboru, Slovenia

Kratky Michal
Technical University of Ostrava, Czech
Republic

Nuno Oliveira
Universidade do Minho, Portugal

Alexander Paar
TWT GmbH Science & Innovation, Germany

Lluís Padró
Universitat Politècnica de Catalunya, Spain

Thiago Pardo
Universidade de São Paulo, Brasil

Senja Pollak
Jožef Stefan Institute, Slovenia

Jaroslav Porubän
Technická univerzita v Košiciach, Slovenia

Ricardo Queirós
Instituto Politécnico do Porto, Portugal

José Carlos Ramalho
Universidade do Minho, Portugal

Cristina Ribeiro
Universidade do Porto, Portugal

Ricardo Rocha
Universidade do Porto, Portugal

Casiano Rodriguez-Leon
Universidad de La Laguna, Spain

Dietmar Seipel
University of Würzburg, Germany

José Luis Sierra
Universidad Complutense de Madrid, Spain

Alberto Simões
Universidade do Minho, Portugal

Bostjan Slivnik
Univerza v Ljubljani, Slovenia

Peter Sloep
Open Universiteit, Netherlands

Jasmina Smailović
Jožef Stefan Institute, Slovenia

Simão Melo de Sousa
Universidade da Beira Interior, Portugal

Jakub Swacha
University of Szczecin, Poland

Maria João Varanda Pereira
Instituto Politécnico de Bragança, Portugal

List of Authors

Salvador Abreu
Department of Computer Science
University of Évora
Évora, Portugal
spa@di.uevora.pt

José João Almeida
Departamento de Informática
Universidade do Minho
Braga, Portugal
jj@di.uminho.pt

Mohand Boughanem
University of Toulouse
IRIT lab France
bougha@irit.fr

Moharram Challenger
International Computer Institute
Ege University
Izmir, Turkey
moharram.challenger@mail.ege.edu.tr

Helder Correia
Faculty of Sciences
University of Porto
Porto, Portugal
up201108850@fc.up.pt

Teresa Costa
Faculty of Sciences
University of Porto
Porto, Portugal
teresa.costa@dcc.fc.up.pt

Ferhat Erata
UNIT Information Technologies R&D Ltd.
ideEge Technology Development Zone
Ege University, Izmir, Turkey
ferhat@computer.org

Miguel Ferreira
Faculdade de Ciências
Universidade do Porto
Porto, Portugal
miguelferreira108@gmail.com

Hale Gezgen
R&D Center
Koçsistem Inform. and Comm. Services Inc.
Üsküdar/Istanbul-Turkey
hale.gezgen@kocsistem.com.tr

Hugo Gonçalo Oliveira
CISUC, DEI
University of Coimbra
Coimbra, Portugal
hroliv@dei.uc.pt

Eliana Grande
Departamento de Informática
Universidade do Minho
Braga, Portugal
eliana.tiba@ifgoiano.edu.br

Hawete Hattab
Umm Al-qura University
Department of Mathematics
Makkah, KSA
hshattab@uqu.edu.sa

Pedro Rangel Henriques
Departamento de Informática
Universidade do Minho
Braga, Portugal
pedrorangelhenriques@gmail.com

Geylani Kardas
International Computer Institute
Ege University
Izmir, Turkey
geylani.kardas@ege.edu.tr

Nada Lavrač
Jožef Stefan Institute
Ljubljana, Slovenia
nada.lavrac@ijs.si

José Paulo Leal
Faculty of Sciences
University of Porto
Porto, Portugal
zp@dcc.fc.up.pt

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/oasics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xii Authors

Rabeb Mbarek
Sfax University
Multimedia Information Systems and
Advanced Computing Laboratory
Sfax, Tunisia
rabeb.hattab@gmail.com

Nelma Moreira
Faculdade de Ciências
Universidade do Porto
Porto, Portugal
nam@dcc.fc.up.pt

Falco Nogatz
Department of Computer Science
University of Würzburg
Würzburg, Germany
falco.nogatz@uni-wuerzburg.de

Daniel Ferreira Novais
Departamento de Informática
Universidade do Minho
Braga, Portugal
danielnovais92@gmail.com

Ana Oliveira Alves
CISUC, DEI
University of Coimbra
Coimbra, Portugal
ana@dei.uc.pt

Mehmet Onat
R&D Center
Koçsistem Inform. and Comm. Services Inc.
Üsküdar/Istanbul-Turkey
mehmet.onat@kocsistem.com.tr

José Carlos Paiva
Faculty of Sciences
University of Porto
Porto, Portugal
up201200272@fc.up.pt

Alexandre Pinto
CISUC, DEI
University of Coimbra
Coimbra, Portugal
arpinto@student.dei.uc.pt

Jaroslav Porubän
Department of Computers and Informatics
Fac. of Electrical Eng. and Informatics
Technical University of Košice
Košice, Slovakia
jaroslav.poruban@tuke.sk

Ricardo Queirós
ESEIG/IPP & INESC-TEC
Porto, Portugal
ricardoqueiros@eseig.ipp.pt

Rogério Reis
Faculdade de Ciências
Universidade do Porto
Porto, Portugal
rvr@dcc.fc.up.pt

Marko Robnik-Šikonja
University of Ljubljana
Fac. of Computer and Information Science
Ljubljana, Slovenia
marko.robnik@fri.uni-lj.si

Ana Salgado
Instituto de Lexicologia e
Lexicografia da Língua Portuguesa
Academia das Ciências de Lisboa, Portugal
anacastrosalgado@gmail.com

Dietmar Seipel
Department of Computer Science
University of Würzburg
Würzburg, Germany
dietmar.seipel@uni-wuerzburg.de

Alberto Simões
Centro de Estudos Humanísticos
Universidade do Minho
Braga, Portugal
ambs@ilch.uminho.pt

Tadej Škvorc
University of Ljubljana
Fac. of Computer and Information Science
Ljubljana, Slovenia
ts9675@student.uni-lj.si

Boštjan Slivnik
University of Ljubljana
Fac. of Computer and Information Science
Ljubljana, Slovenia
bostjan.slivnik@fri.uni-lj.si

Authors 0:xiii

Georgi Smirnov
Departamento de Matemática
Universidade do Minho
Braga, Portugal
smirnov@math.uminho.pt

Matúš Sulír
Department of Computers and Informatics
Fac. of Electrical Eng. and Informatics
Technical University of Košice
Košice, Slovakia
matus.sulir@tuke.sk

Baris Tekin Tezel
International Computer Institute
Ege University
Izmir, Turkey
baris.tezel@deu.edu.tr

Mohamed Tmar
Sfax University
Multimedia Information Systems and
Advanced Computing Laboratory
Sfax, Tunisia
mohamedtmar@yahoo.fr

Maria João Varanda Pereira
Dpt. de Informática e Comunicações
Instituto Politécnico de Bragança
Bragança, Portugal
mjoao@ipb.pt

Rüdiger von der Weth
Faculty of Business Administration
Dresden University of Applied Sciences
Dresden, Germany
weth@htw-dresden.de

Alexander Werner
Faculty of Business Administration
Dresden University of Applied Sciences
Dresden, Germany
alexander.werner@htw-dresden.de

SLATE’16

Co-Bidding Graphs for Constrained Paper
Clustering

Tadej Škvorc1, Nada Lavrač2, and Marko Robnik-Šikonja3

1 University of Ljubljana, Faculty of Computer and Information Science,
Ljubljana, Slovenia
marko.robnik@fri.uni-lj.si

2 Jožef Stefan Institute, Ljubljana, Slovenia; and
University of Nova Gorica, Nova Gorica, Slovenia
nada.lavrac@ijs.si

3 University of Ljubljana, Faculty of Computer and Information Science,
Ljubljana, Slovenia
marko.robnik@fri.uni-lj.si

Abstract
The information for many important problems can be found in various formats and modalities.
Besides standard tabular form, these include also text and graphs. To solve such problems fusion
of different data sources is required. We demonstrate a methodology which is capable to enrich
textual information with graph based data and utilize both in an innovative machine learning ap-
plication of clustering. The proposed solution is helpful in organization of academic conferences
and automates one of its time consuming tasks. Conference organizers can currently use a small
number of software tools that allow managing of the paper review process with no/little sup-
port for automated conference scheduling. We present a two-tier constrained clustering method
for automatic conference scheduling that can automatically assign paper presentations into pre-
defined schedule slots instead of requiring the program chairs to assign them manually. The
method uses clustering algorithms to group papers into clusters based on similarities between
papers. We use two types of similarities: text similarities (paper similarity with respect to their
abstract and title), together with graph similarity based on reviewers’ co-bidding information
collected during the conference reviewing phase. In this way reviewers’ preferences serve as a
proxy for preferences of conference attendees. As a result of the proposed two-tier clustering
process similar papers are assigned to predefined conference schedule slots. We show that using
graph based information in addition to text based similarity increases clustering performance.
The source code of the solution is freely available.

1998 ACM Subject Classification I.2.8 Problem Solving, Control Methods, and Search

Keywords and phrases Text mining, data fusion, scheduling, constrained clustering, conference

Digital Object Identifier 10.4230/OASIcs.SLATE.2016.1

1 Introduction

In many real world situations data can be present in various different formats and can
therefore be difficult to understand. In order to efficiently use such data it must first be
converted into a common format. Combining data present in different forms is known as
data fusion and is a useful technique, particularly in machine learning, where data must be
present in the form of feature vectors. One field where data fusion can be useful is conference
organization.

© Tadej Škvorc, Nada Lavrač, and Marko Robnik-Šikonja;
licensed under Creative Commons License CC-BY

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira; Article No. 1; pp. 1:1–1:13

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2016.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

1:2 Co-Bidding Graphs for Constrained Paper Clustering

Scientific conferences, which allow scientists to share new discoveries, are a key to progress
in science. Several conferences are very large. Organizing them can be difficult and time
consuming. Various tools have been developed to help conference organizers deal with this
problem by automating some of conference management tasks. However, scheduling paper
presentations is currently still performed manually to a large extent. This can be time
consuming, as large conferences often have a lot of presentations that must be grouped
together based on similarities and differences between them.

A conference schedule usually consists of multiple time slots which contain semantically
similar papers. We propose automated paper scheduling using text mining to find similar
papers, grouping similar papers using clustering and assigning them into schedule time slots.
Conference organizers may have access to additional metadata describing the papers. Such
data is sometimes present in a graph form which can be vectorized and used in clustering.

In general, text documents can be linked within a graph where two documents are
connected if they share the same author, if they are published in the same publication or
based on citations in the paper’s list of references. Such graphs may contain a large amount
of information, which is mostly ignored by conventional text mining methods. To make
graph data suitable for use with standard machine learning algorithms, a feasible approach
is to convert the graphs into a feature vector format. To this end, we have adapted the
methodology proposed by Grčar et. al. [6], which converts the information from graphs to
feature vectors using the Personalized PageRank (PPR) algorithm [11] and then combines
these vectors with text representation in bag-of-words (BOW) vectors. The combined feature
vectors can be used by a wide variety of machine learning algorithms for different tasks, such
as classification model construction.

We describe how this method can be adapted to categorize and cluster similar conference
papers based on the textual content of their abstracts and titles in combination with the
reviewers’ bidding information collected during the conference evaluation period, where the
reviewers select papers they would like to review and the ones they would rather not. This
information is used to create a graph, where two papers are connected if the same reviewer
expressed the wish to review them. We use this information in combination with the textual
information to cluster papers.

The novelty of the proposed methodology is due to combining three previously unrelated
approaches: (a) paper clustering using text-based similarity of BOW vectors, (b) paper
similarity computation using the co-bidding graph to compute PageRank-based instance
weighting, (c) constrained clustering for matching paper clusters to appropriate conference
slots, and finally, (d) a user friendly web interface for conference organizers. The utility of
the proposed approach was show-cased on the AIME 2013 conference (14th Conference on
Artificial Intelligence in Medicine), where the results of automatic approach were nearly as
accurate as the manual conference scheduling approach.

The paper is organized into six sections. In Section 2 we present the related work. Section
3 describes the data set we used. In Section 4 we describe the method used to enrich text
with metadata present in graphs and how we used this method to group similar papers.
In Section 5 we describe a web application used for conference schedule management that
supports semi-automated schedule construction. Section 6 concludes the paper.

2 Related work

Several authors present methods of finding similar academic papers using graph-based
metadata. Such methods can produce better results than methods using only text similarity

T. Škvorc, N. Lavrač, and M.Robnik-Šikonja 1:3

approaches. Huynh et al. [8] and Liang et al. [10] present methods that use graphs constructed
from citations to find similar papers. Grčar et al. [6] show how such data can be effectively
used in combination with text. They describe a method which fuses graph data with standard
bag-of-word vectors into a single feature vector format. These vectors can be used as input to
standard machine learning algorithms. Our approach differs from other approaches searching
similar papers by using a graph constructed from preferences expressed by reviewers during
the conference evaluation period. The information contained in such graphs have yet not
been exploited. Additionally, we use this information in constrained clustering with the final
aim to construct a useful schedule.

Academic conference recommendation systems help users select talks and presentations
they would likely be interested in. Several papers [14, 21, 22] show that information extracted
from socially-aware networks can be helpful. Our approach is not oriented towards conference
attendees but conference organizers. It applies fusion of text and graph information to
conference scheduling. Since a high quality schedule is a prerequisite for conference attendee
recommendations, our approach can be viewed as a foundation for user recommendations.
Instead of using a socially-aware network constructed during the conference, we construct a
graph from the opinions reviewers expressed during the paper review period.

Constrained clustering imposes specific constraints to the results produced by clustering
to improve performance. Wagstaff et al. [20] proposes a method of imposing must-link and
cannot-link constraints that limit which examples can be in the same cluster. Zhu et al. [23]
presents a heuristic method that imposes size constraints to clusters. We use a new approach
to limit cluster sizes so they match a predefined conference schedule structure.

3 Automatic conference scheduling

Automating conference scheduling is a hard task. To solve it we first find semantically similar
papers and then group them together according to the conference schedule. In this section
we present our approach, which uses text-mining enriched with information obtained from
the reviewers’ co-bidding graph to find similar papers.

3.1 Problem overview
To automate conference scheduling we must solve two separate problems. The first is finding
papers that are semantically similar. This is important because conference schedules are
usually composed of several sessions. Each session contains paper presentations related to a
specific research topic and is usually named with the adequate topic name. In automatic
scheduling each of these sessions must be filled with similar papers. We solve this problem
using clustering. First, each paper is turned into a Bag-of-Words (BOW) vector, and vector
components are weighted with tf-idf (term frequency–inverse document frequency) [16]. This
vector is constructed from the abstract and title of the paper. We extend the vector with
paper similarity components extracted from conference reviewers’ co-bidding preferences.
After this the papers are clustered using clustering algorithms.

Other methods can also be used to solve this problem. Topic modeling [2] is commonly
used to assign text documents into separate topics and could be used to find similar papers.
However, such methods only take into account the text of the paper and not the additional
graph-based metadata present in our case. Topic modeling also has to be trained on a large
corpus before it can be used to assign documents into different topics. For use in a general
conference management tool the training corpus would need to encompass papers from a
wide variety of topics.

SLATE’16

1:4 Co-Bidding Graphs for Constrained Paper Clustering

Figure 1 An example of an empty conference schedule. Each slot corresponds to a session
that needs to be filled with papers from the same research topic. Sessions in Slots 1 and 2 occur
sequentially, while Slot 3 has two parallel sessions. The application allows conference organizers to
add new slots, move the slots around and set the duration of the slots. It allows organizers to create
a multi-day conference program.

In our approach, clustering returns several groups of papers where each group corresponds
to a different research topic. The second problem we need to solve is to construct a conference
schedule from these groups. Some aspects of the schedule, such as keynote presentations
and lunch breaks, are independent of paper presentations. Because of this we let conference
organizers manually construct the conference structure. The structure consists of different
blocks with prespecified duration. The blocks can occur either sequentially or in parallel.
After the schedule structure is constructed, conference organizers decide which of the blocks
will be automatically filled with thematically similar papers and which should be used
for other purposes, such as keynote presentations. To integrate the automatic scheduling
with manual schedule structure construction we built a user friendly web application. The
application allows conference organizers to first manually construct the schedule structure
and then automatically place papers into the schedule based on similarities between them.
An example of an empty schedule constructed with this application is presented in Figure 1.
An overview of the entire process is presented in Figure 2.

3.2 Data set
We tested our approach on a real-world example. Below we give a short description of the
data we used. The data set consists of papers from a specific conference. The papers were
described by abstracts and titles. We used this data to create feature vectors describing each
paper. The BOW vectors were obtained by first removing stop words from the abstracts
and titles and then weighting the vector components with tf-idf [16]. The data also included
a list of reviewer preferences. For each paper, the reviewers selected one of the following
opinions: “I want to review this paper”, “I can review it”, “I prefer not to review it” and “I
have a conflict of interest”.

T. Škvorc, N. Lavrač, and M.Robnik-Šikonja 1:5

Figure 2 A summary of the entire scheduling algorithm. Each paper is described by the tf-idf
vector of its abstract and similarity to other papers, which is obtained from the co-bidding graph.
The papers are clustered and assigned to a preconstructed conference schedule.

From these preferences we constructed a graph in which two papers are connected if the
same reviewer expressed a wish to review them. Additionally, each connection is weighted.
Connections between two papers where the reviewer expressed the opinion “I want to review
this paper” for both papers were assigned larger weights (we have chosen the weight of 4)
than the connections between two papers with opinions “I want to review this paper” and
“I can review it”, which were weighted with the weight of 2. Two abstracts, both with the
opinion “I can review it”, were weighted even lower, with the weight of 1. Papers with other
combinations of expressed preferences were not connected. We created such a graph for each
reviewer and combined them into a single co-bidding graph by summing the edge weights
from all the reviewers’ graphs.

This presents a way of modeling the experts’ opinion on the similarity of the articles.
Since most conference reviewers tend to focus on a limited number of research fields and
they usually review papers from these fields, papers they review tend to be semantically
similar. By weighting the graph we can assign larger weights to links between nodes (papers)
for which reviewers express stronger preferences, as this indicates that they are likely to be
similar and from the same topic. The papers connected by the same reviewer are also likely
to be interesting to the same group of conference attendees, of whom the reviewers are an
excellent and valuable sample. Even if the reviewers tend to follow more than one topic this
is not necessarily bad for the connected papers. First, they might be logically connected and
second, the effect of a single reviewer is limited as co-bidding information is merged with
textual similarity.

Past research [21] shows that recommendations from other conference participants can be
useful for finding similar and interesting papers. Such recommendations cannot be obtained
before the start of the conference. With our approach, recommendations from reviewers
are used as a substitute, since they are already familiar with some of papers that appear in
the conference. The goal of our automatic scheduling is to construct a program schedule

SLATE’16

1:6 Co-Bidding Graphs for Constrained Paper Clustering

that pleases as many attendees as possible. An important aspect of this is placing paper
presentations from the same topic that groups of people would find interesting in the same slot
and not to overlap paper presentations with similar audience. It is a reasonable assumption
that reviewers want to review papers they find interesting, therefore the constructed co-
bidding graph links paper presentations that should be placed close to each other. The
co-bidding graph is therefore useful in automatic scheduling.

3.3 Enriching text with co-bidding preferences
The co-bidding graph needs to be converted into a form suitable for clustering algorithms.
To this end, we used the Personalized PageRank (PPR) algorithm [11]. This algorithm was
designed to assess importance of graphs consisting of web pages. For a given starting page it
computes importance of all pages relative to it using a random-walker model. The PageRank
R′ For a given set of pages can be calculated using the following equation:

R′(u) = c ×
∑

v∈Bu

R′(v)
Nv

+ cE(u)

where Bu is a set of all pages linking to u, Nv is the number of links from v and c is a
normalization factor, which ensures that the L1 norm of R′ is equal to 1 and must be
maximized. E(u) represents the PageRank source and is defined as follows.

E(u) =
{

1 : u is starting page
0 : otherwise

The algorithm can be used to convert information from graph structure into a BOW vector
that can be used together with the information obtained by text mining [6]. If we assign a
unique word to each web page (a node in the graph) and the user randomly navigating the
graph writes down that word each time he/she visits the node, we get a textual document
describing our graph. Such a document contains a higher frequency of words that are strongly
linked to the starting node and can be naturally combined with textual data contained in
the node. By using the Personalized PageRank algorithm we essentially get a normalized
BOW vector (a vector holding the relative frequencies of individual words) describing such a
document. This is useful as we get a description of the graph in the same form as the BOW
vectors we constructed from abstracts and titles, and both forms can therefore be merged.

We use this approach to extract information from biddings expressed by the reviewers. In
our bidding graph, two papers are connected if a reviewer expressed a wish to review both of
them. Two connected papers are likely to contain similar topics. Reviewers are not picking
papers to review at random, but rather because they are from the field they are interested
in. Consequently, relevant semantically similar papers will be connected. Additionally, since
the connections are weighted, reviewers’ stronger opinions will have stronger connections.
Applying the Personalized PageRank algorithm to our graph, starting from a specific paper,
the algorithm will return larger probabilities for papers that are semantically close to that
paper. In this way we obtain vectors containing probabilities of other papers being similar
to a given paper. The PPR and the BOW vector can be merged and treated with the same
approaches in the processing pipeline. Note also that the bidding graph contains semantic
similarity information captured from human experts, which is an important added value of
our approach.

Figure 3 shows an example graph obtained from reviewers’ preferences. If we apply PPR
to this graph starting from paper 1, we get the PPR vector [0.27, 0.20, 0.33, 0.09, 0.06, 0.05].

T. Škvorc, N. Lavrač, and M.Robnik-Šikonja 1:7

Figure 3 An example graph obtained from reviewers’ preferences. By running the Personalized
PageRank algorithm starting at a specific node in the graph, we obtain a vector describing how
important other papers are for this specific paper.

This vector contains high values for papers 2 and 3, which are closely connected to paper 1.
Running the algorithm starting from paper 6 returns vector [0.03, 0.05, 0.10, 0.10, 0.31, 0.41],
showing that this paper is closely connected to papers 5 and 4. In our graph edge weights
correspond to the number of reviewer’s that wanted to review both papers in the paper pair
and also indicates the strength of their preferences.

The two vectors (the tf-idf vector of the abstract and title and the PPR vector of the
co-bidding graph) are combined into a single feature vector. Since the PPR vectors are
normalized, we can treat them as a separate tf-idf vector. We combine the two vectors by
multiplying each one by 0.5 and concatenating them. It is possible to weight the vectors
differently, which would place more weight on one of the vectors. The result is a single
normalized feature vector. This final feature vector is clustered with different algorithms to
group similar papers based both on their textual content and on the preferences expressed
by the reviewers. This entire process is summarized in Figure 4. The described method
combining both graph- and text-based information could also be used in classification.

3.4 Constrained clustering
The final step is to assign similar papers from the same cluster into one of several predefined
schedule time slots. To do this we impose constraints on the clustering, as unconstrained
clustering returns groups that do not match the schedule structure. The constraints are
implemented iteratively, by matching and filling in the largest empty time slot with papers
from the largest cluster until it is full. If a cluster large enough to fill the empty time slot
does not exist we rerun the clustering with arguments that produce larger clusters. An
overview of our approach is presented in Figure 5. We tested the method using Affinity
propagation [4], DBSCAN [3], Agglomerative clustering [9], K-means [7] and Mean Shift
clustering [5], as described in Section 5.

4 The conference scheduling application

We implemented the described methodology in a web application that supports program
chairs in conference scheduling by automatically grouping similar articles into predefined

SLATE’16

1:8 Co-Bidding Graphs for Constrained Paper Clustering

Figure 4 The process to obtain feature vectors. When vectorizing the co-bidding graph with
PPR, the starting node of the PPR algorithm corresponds to each paper in turn. This produces a
unique PPR vector for each paper. Since both the PPR and tf-idf vectors are normalized, the final
feature vector is also normalized.

schedule time slots and also allows manual improvements. The source code of the application
is available at https://github.com/TadejSk/conference-scheduler. The program chairs
first construct the structure of the presentation schedule or import one of the stored schedules.
They import papers from a database or manually add them into the application. The
application automatically constructs a schedule which is presented to the program chair and
allows editing. The application allows chairs to work on multiple conferences at the same
time and automatically saves the schedules on the web server running the application. Figure
7 shows an example how paper clusters are visualized by our application and Figure 6 shows
the user interface for schedule construction.

5 Evaluation

We evaluated several aspects of our approach. We compared several clustering algorithms to
determine which one produces the best results. We tested both the quality of the results as
well as the running time of the algorithms. To determine the effect of the co-bidding graph
on the final results we compared the results of standard text-mining methods with the results
obtained when those methods were fused with the information retrieved from the co-bidding
graph. We compared the results by expert analysis and using the silhouette score [15].

5.1 Comparing different clustering methods
As described in Section 3.3, the combined feature vectors produced by our method can
be applied to most clustering algorithms. We tested the method on a number of different
clustering algorithms implemented in scikit-learn [12] to determine which of them is the most
suitable for this type of data. The algorithms we tested were Affinity propagation, DBSCAN,
Agglomerative clustering, K-means and Mean Shift clustering.

For some clusterings examining the visualization of the results was enough to determine
that they are not suitable. Mean Shift clustering and DBSCAN produced clusters that had no
clear structure and appeared random on our data set. They required finely tuned parameters
to return more than one cluster. A visualization of results returned by Mean Shift is presented

https://github.com/TadejSk/conference-scheduler

T. Škvorc, N. Lavrač, and M.Robnik-Šikonja 1:9

Figure 5 The iterative algorithm that fills an empty conference schedule with clustered papers.

in Figure 8. Visually the best results were obtained by K-means clustering, which consistently
returned well structured clusters. We also tested the modifications by Sculley [17], which aims
to improve the performance of K-means clustering for web applications. The modifications
returned similar results while improving the performance. Agglomerative clustering returned
as visually appealing results as K-means clustering. Affinity propagation also returned
good results, but does not allow to explicitly set the number of clusters. In practice this is
problematic, since the number of conference sessions and the number of clusters should be
close.

We also compared the effect of clustering algorithms on the execution time of automatic
scheduling. The choice of algorithm had little effect on the overall execution time. We tested
the execution time by running the entire automatic scheduling process on an example data set
containing 41 papers, using a 2.4 GHz processor. The fastest algorithm was Agglomerative
clustering, which finished in 4.31 seconds. Mean Shift was the slowest algorithm and finished
in 4.96 seconds. The difference between the fastest and the slowest algorithm was 12%.

5.2 Effect of the co-bidding graph
We tested our approach on papers from the AIME 2013 conference (14th Conference on
Artificial Intelligence in Medicine) [13]. The conference schedule consisted of 43 paper
presentations scheduled in 9 sessions. We evaluated the approach by comparing the results
returned by our method with the actual schedule that was used in the AIME 2013 conference.
We also tested the effect of the additional graph data.

We first tested the effect of the co-bidding graph using the silhouette score [15]. The
silhouette score is an internal clustering validity measure and measures the quality of produced
clusters. It does so by comparing the dissimilarity of an object with other objects in the
same cluster to its dissimilarity with objects from a different cluster. If we define a(i) as the
average dissimilarity of i to all other objects in its cluster and b(i) as the smallest average
dissimilarity of i to all other objects in another cluster, we can compute the silhouette score

SLATE’16

1:10 Co-Bidding Graphs for Constrained Paper Clustering

Figure 6 The main user interface of the application. Users can manually assign papers into
conference slots, or they can use the application to automatically schedule them.

using the following equation:

s(i) = b(i) − a(i)
max[a(i), b(i)] .

A high silhouette score indicates that papers within a cluster are more similar among
themselves that to papers in other clusters. The method works best on well defined clusters
with large distances between clusters. The clustering methods we tested do not return such
well defined clusters, since the BOW vectors used in clusterings are both highly dimensional
and similar between each other, which leads to clusters that are blurred. Nevertheless,
the silhouette score can still be used to compare the produced clusterings. We compared
clustering papers by only using BOW vectors and by using BOW vectors fused with graph
data. In both cases we repeated the clustering 50 times and averaged the silhouette score. On
average, using graph data increased the silhouette score by 4.5%. This shows that additional
graph based data is helpful.

5.3 Scheduling evaluation
Evaluating the quality of the automatically constructed schedule with external clustering
validity measures such as adjusted Rand index or variation of information [1] can be unreliable.
For each conference there exist multiple ways to construct a good schedule. This means that
using the actual conference schedule as a ground truth and comparing the automatically
constructed schedule with it will not necessary be objective. An automatic schedule that
correctly groups together similar papers will be evaluated as inadequate if it groups them in a
different way than they were grouped in the actual conference. As ground truth does not exist,
similarly to other text mining tasks, e.g., automatic summarization or machine translation,
we use subjective opinion of domain experts to measure the quality of (automatically)
constructed schedule. Using blind expert evaluation similarity of papers scheduled to the
same time slots was evaluated and papers with matching topics were counted. The process
was repeated for two schedules: the actually used timetable produced manually by the

T. Škvorc, N. Lavrač, and M.Robnik-Šikonja 1:11

Figure 7 A visualization of clustering papers in our web application. Each cluster contains
semantically similar papers and is shown with a unique color. The distance between papers is
preserved in the 2-D graph using t-SNE [19]. The user can move the mouse cursor over the dots to
view the papers’ titles.

conference chair and the automatically constructed schedule. We compared the number of
similar papers assigned to the same slot by our method to the number of similar papers in
the actual conference schedule. On average, the percentage of similar papers in schedule time
slots by our method was 72%, while the actual schedule had a similarity score percentage of
82%. Our method returned useful results and will be used in further improvements.

6 Conclusion

We demonstrate a methodology which is capable to enrich textual information with graph
based data and utilize both in an innovative machine learning application of clustering. The
proposed solution is helpful in organization of academic conferences and presents a step
towards automating one of its time consuming tasks.

We implemented a method that uses data from text documents enriched with additional
information extracted from reviewers’ co-bidding graphs to group similar documents and
assign them to a predefined conference paper presentation schedule. We converted information
from reviewers’ co-bidding graphs into a BOW-compatible vector using the Personalized
PageRank algorithm. We fused this vector with the BOW vector describing the textual
data of abstracts and titles to get the final feature vector. We used this vector with various
clustering algorithms to get clusters of similar articles. The clusters were assigned to
the schedule with iterative clustering implementing predefined constraints and filling in
time slots of the conference program. The method is implemented as an open source web
application which supports conference chairs in creating the structure of the timetable and
allows automatic conference schedule construction. The web application is freely available at
https://github.com/TadejSk/conference-scheduler.

We evaluated our method using objective and subjective evaluation. Using silhouette
score we determined that using additional graph based data increased clustering performance.

SLATE’16

https://github.com/TadejSk/conference-scheduler

1:12 Co-Bidding Graphs for Constrained Paper Clustering

Figure 8 An example of results returned by Mean Shift clustering. There is no clear structure
present in the results, and the number of returned clusters is high, with every cluster containing
only three or less papers. Compared to Figure 7 the results in this figure are noticeably worse.

Subjective evaluation using an expert’s opinion showed that the schedule slots returned by
our method contained similar presentations.

Our approach can be further improved. The text analysis could benefit from term
extraction and domain specific word weighting. Additionally, domain ontologies have been
shown to be useful in semantic text mining [18] and could be used to more effectively find
similar papers. The iterative constrained clustering algorithm could an also be improved
with additional information extracted from whole documents and their semantic similarity.
The approach also needs to be tested on larger conferences.

References
1 Olatz Arbelaitz, Ibai Gurrutxaga, Javier Muguerza, Jesús M Pérez, and Iñigo Perona. An

extensive comparative study of cluster validity indices. Pattern Recognition, 46(1):243–256,
2013.

2 David M Blei. Probabilistic topic models. Communications of the ACM, 55(4):77–84, 2012.
3 Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm

for discovering clusters in large spatial databases with noise. In Proceedings of Knowledge
Discovery and Data Mining, volume 96, pages 226–231, 1996.

4 Brendan J Frey and Delbert Dueck. Clustering by passing messages between data points.
Science, 315(5814):972–976, 2007.

5 Keinosuke Fukunaga and Larry D Hostetler. The estimation of the gradient of a density
function, with applications in pattern recognition. IEEE Transactions on Information
Theory, 21(1):32–40, 1975.

6 Miha Grčar, Nejc Trdin, and Nada Lavrač. A methodology for mining document-enriched
heterogeneous information networks. The Computer Journal, 2012.

7 John A Hartigan and Manchek AWong. Algorithm AS 136: A k-means clustering algorithm.
Applied Statistics, pages 100–108, 1979.

T. Škvorc, N. Lavrač, and M.Robnik-Šikonja 1:13

8 Tin Huynh, Kiem Hoang, Loc Do, Huong Tran, Hiep Luong, and Susan Gauch. Scientific
publication recommendations based on collaborative citation networks. In International
Conference on Collaboration Technologies and Systems (CTS), pages 316–321. IEEE, 2012.

9 Stephen C Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254, 1967.
10 Yicong Liang, Qing Li, and Tieyun Qian. Finding relevant papers based on citation rela-

tions. In Web-age Information Management, pages 403–414. Springer, 2011.
11 Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank Cita-

tion Ranking: Bringing Order to the Web. Technical Report 1999-66, Stanford InfoLab,
Stanford, CA, November 1999.

12 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg,
et al. Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research,
12:2825–2830, 2011.

13 Niels Peek, Roque Marin Morales, and Mor Peleg, editors. Artificial Intelligence in Medi-
cine: 14th Conference on Artificial Intelligence in Medicine, AIME 2013, Murcia, Spain,
volume 7885 of Lecture Notes in Artificial Intelligence. Springer, 2013.

14 Manh Cuong Pham, Dejan Kovachev, Yiwei Cao, Ghislain Manib Mbogos, and Ralf
Klamma. Enhancing academic event participation with context-aware and social recom-
mendations. In Proceedings of IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM), pages 464–471. IEEE, 2012.

15 Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics, 20:53–65, 1987.

16 Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for automatic
indexing. Communications of the ACM, 18(11):613–620, 1975.

17 David Sculley. Web-scale k-means clustering. In Proceedings of the 19th International
Conference on World Wide Web, pages 1177–1178. ACM, 2010.

18 Irena Spasic, Sophia Ananiadou, John McNaught, and Anand Kumar. Text mining and
ontologies in biomedicine: making sense of raw text. Briefings in bioinformatics, 6(3):239–
251, 2005.

19 Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(2579-2605):85, 2008.

20 Kiri Wagstaff, Claire Cardie, Seth Rogers, Stefan Schrödl, et al. Constrained k-means
clustering with background knowledge. In Proceedings of the International Conference on
Machine Learning, volume 1, pages 577–584, 2001.

21 Feng Xia, Nana Yaw Asabere, Haifeng Liu, Nakema Deonauth, and Fengqi Li. Folksonomy
based socially-aware recommendation of scholarly papers for conference participants. In
Proceedings of the Companion Publication of the 23rd International Conference on World
Wide Web Companion, pages 781–786. International World Wide Web Conferences Steering
Committee, 2014.

22 Feng Xia, Nana Yaw Asabere, Joel JPC Rodrigues, Filippo Basso, Nakema Deonauth,
and Wei Wang. Socially-aware venue recommendation for conference participants. In
Proceedings of the 10th International Conference on Autonomic and Trusted Computing
(UIC/ATC), pages 134–141. IEEE, 2013.

23 Shunzhi Zhu, Dingding Wang, and Tao Li. Data clustering with size constraints. Knowledge-
Based Systems, 23(8):883–889, 2010.

SLATE’16

A Re-Ranking Method Based on Irrelevant
Documents in Ad-Hoc Retrieval
Rabeb Mbarek1, Mohamed Tmar2, Hawete Hattab3, and
Mohand Boughanem4

1 Sfax University, Multimedia Information Systems and Advanced Computing
Laboratory, Sfax, Tunisia
rabeb.hattab@gmail.com

2 Sfax University, Multimedia Information Systems and Advanced Computing
Laboratory, Sfax, Tunisia
mohamedtmar@yahoo.fr

3 Umm Al-qura University, Department of Mathematics, Makkah, KSA
hshattab@uqu.edu.sa

4 University of Toulouse – IRIT lab France, Toulouse, France
bougha@irit.fr

Abstract
In this paper, we propose a novel approach for document re-ranking, which relies on the concept of
negative feedback represented by irrelevant documents. In a previous paper, a pseudo-relevance
feedback method is introduced using an absorbing document d̃ which best fits the user’s need. The
document d̃ is orthogonal to the majority of irrelevant documents. In this paper, this document
is used to re-rank the initial set of ranked documents in Ad-hoc retrieval. The evaluation carried
out on a standard document collection shows the effectiveness of the proposed approach.

1998 ACM Subject Classification H.3.3 Information Search and Retrieval

Keywords and phrases Re-ranking, absorption of irrelevance, vector product

Digital Object Identifier 10.4230/OASIcs.SLATE.2016.2

1 Introduction

A commonly used strategy to improve search results is through feedback techniques, including
relevance feedback [14, 15, 16], pseudo-relevance feedback [2, 5, 21] and implicit feedback [17].
A query is difficult if none of the top-ranked documents are relevant. In the case of difficult
queries, if we can perform effective negative feedback when a user could not find any relevant
document on the first page of the search results, we would be able to improve the ranking of the
unseen results in the next few pages. It is clear that in this case of negative relevance feedback,
we only have negative (i.e., irrelevant) documents. When a user is unable to reformulate an
effective query (which happens often in informational queries due to insufficient knowledge
about the relevant documents), negative feedback can be quite beneficial, and the benefit
can be achieved without requiring extra effort from users (e.g., by assuming the skipped
documents by a user to be irrelevant).

This work investigates the role of irrelevant documents in document re-ranking. In
particular, our re-ranking strategy is based on a negative relevance feedback approach which
takes into account irrelevant documents in the initial document ranking. The key idea
behind our approach is to use the absorbing document [11], which fits the user’s need and
is orthogonal to the majority of irrelevant documents, to re-rank documents on the ground

© Rabeb Mbarek, Mohamed Tmar, Hawete Hattab, and Mohand Boughanem;
licensed under Creative Commons License CC-BY

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira; Article No. 2; pp. 2:1–2:10

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2016.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

2:2 A Re-Ranking Method Based on Irrelevant Documents in Ad-Hoc Retrieval

of their similarity with respect to the absorbing document. Generally, standard relevance
feedback methods are able to handle negative feedback by subtracting information from the
original query (for example the Rocchio’s model [15]). The key issue of this approach is to
quantify the side effect caused by information loss. To deal with this effect, we propose a
negative feedback method based on absorbing document that is able to remove only the
unwanted aspects pertaining to irrelevant documents. In our approach, documents are
represented as vectors in a geometric space in which similar documents are represented close
to each other. This space is the classical Vector Space Model (VSM).

We compare our strategy with other approaches. First, with the Baseline Model (the
BM25 model [13]). Second, with the approach of Basile et al. [3].

How to identify irrelevant documents is an open question. We use two distinct approaches
in our work proposed in [3]: the former exploits documents at the bottom of the rank,
while the latter takes the irrelevant documents directly from relevance judgments. These
approaches are thoroughly described in Section 3.

The paper is structured as follows. Related work are briefly analyzed in Section 2. Section
3 describes the two strategies used for re-ranking. Experiments performed for evaluating our
approach are presented in Section 4. The last section concludes.

2 Related Work

There exist several groups of related work in the areas of document retrieval and re-ranking.
The first category performs re-ranking by using inter-document relationship [6, 7]. The

idea is to build a document which represents the ideal response to the user’s information
need. In [6] documents in the result list are re-weighed according to a relevance function
which reflects the distance between documents and the ideal document. Other researchers
use inter-document similarities to combine several retrieved lists (see for example [7]). In
this case, the idea of similarity is used to give support to documents with similar content
highly ranked across multiple result lists.

A second category of work is related to recent advances in structural re-ranking paradigm
over graphs. In the language modeling framework, the traditional cluster-based retrieval has
been juxtaposed with document language model smoothing in which document representation
incorporates cluster-related information [8, 9, 10].

An early attempt to model terms negation in pseudo-relevance feedback by quantum
logic operators is due to Widdows [20]. In his work, Widdows has shown that negation in
quantum logic is able to remove, from the result set, not only unwanted terms but also their
related meaning. The concept of vectors orthogonality is exploited to express queries like
Retrieve documents that contain term A & NOT term B. Widdows suggested that vectors
which represent unrelated concepts should be orthogonal to each other. Indeed, orthogonality
prevents vectors from sharing common features.

In [3], Basile et al. proposed a new re-ranking strategy based on a pseudo-relevance
feedback approach which took into account both relevant and irrelevant documents in the
initial document ranking. The key idea of this approach is to build an ideal document which
fits the user’s need, and then re-rank documents on the ground of their similarity with respect
to the ideal document. The ideal document d∗ is built using a geometrical space where d∗

is computed as a vector close to relevant documents and unrelated to irrelevant ones. In
this space the concept of relevance is expressed in terms of similarity, while the concept of
irrelevance is defined by orthogonality (similarity equals to zero). Formally, Basile et al. [3]

R. Mbarek, M. Tmar, H. Hattab, and M. Boughanem 2:3

computed the ideal document by the following logical operation:

d∗ = d+
1 ∨ d

+
2 ∨ ...d+

n ∧NOT (d−
1 ∨ d

−
2 ∨ ... ∨ d−

m) (1)

where D+ = {d+
1 , d

+
2 , ..., d

+
n } and D− = {d−

1 , d
−
2 , ..., d

−
m} are the subsets of relevant and

irrelevant documents respectively. Equation 1 consists in computing a vector which represents
the disjunction of the documents in D+, and then projecting this vector onto the orthogonal
spaces generated by the documents in D−. Disjunction and negation using quantum logic are
thoroughly described in [20]. An overview of Quantum Mechanics for Information Retrieval
can be found in [4]. The main problem of the approach of Basile et al. is the query drift
problem related to the pseudo-relevance feedback approach. Query drift occurs when the
documents used for relevance feedback contain few or no relevant documents.

In this paper the orthogonality is defined using the algebraic operator vector product1.
Using this operator, we build an absorbing document which is orthogonal to the majority of
irrelevant documents.

The idea to build a document which represents the response to the user’s information
need is not new. In [6] documents in the result list are re-weighed according to a relevance
function which reflects the distance between documents and the “ideal document”.

Whilst relevant documents have been successfully used in several approaches to improve
Information Retrieval performance, irrelevant ones seem not to arouse researchers’ interest.
Singhal et al. [18] achieved an interesting result for the learning routing query problem: they
showed that using irrelevant documents close to the query, in place of those in the whole
collection, is more effective. Rocchio’s original formulation explicitly includes a component of
irrelevant documents [15]. In [12, 11], the authors showed that irrelevant documents can be
used to extract better expansion terms from the top-ranking k documents. A successful use
of irrelevant documents for negative pseudo-relevance feedback has been carried out in [19],
where authors point out the effectiveness of their approach with poorly performing queries.

3 A Re-ranking Method Based on Irrelevant Documents

This section describes our re-ranking strategy based on irrelevant documents. The main idea
is to build a document vector which attempts to model the absorbing document in response
to a user query, and then exploit this vector to re-rank the initial set of ranked documents
Dinit. The absorbing document d̃ should be orthogonal with each document in the set D−

of irrelevant ones. Identifying relevant documents is quite straightforward: we assume the
top ranked documents in Dinit as relevant, whereas identifying non-relevant documents is
not trivial. To this purpose, we propose two strategies: the former relies on documents at
the bottom of Dinit, while the latter needs relevance judgments. The absorbing document
vector d̃ is exploited to re-rank documents in Dinit on the ground of the similarity between
d̃ and each document in Dinit in the Euclidean space (vector space equipped with an inner
product).

3.1 Vector product
Let E be a vector space of dimension n and let u1,..., un−1 be n− 1 vectors of E. For each
vector x of E there exists a unique vector w such that:

det(u1, ..., un−1, x) = wT .x

1 This operator, in a vector space, naturally models the orthogonality.

SLATE’16

2:4 A Re-Ranking Method Based on Irrelevant Documents in Ad-Hoc Retrieval

Figure 1 The cross product for n = 3.

where det is the determinant of n vectors, wT is the transpose of w and wT .x is the classical
inner product.

w is called the vector product of u1,..., un−1 and is denoted by u1 ∧ ... ∧ un−1 (for n = 3,
see Figure 1). We have the following properties:

the vector u1 ∧ ... ∧ un−1 is orthogonal to each vector ui.
the vector u1 ∧ ... ∧ un−1 is orthogonal to the subspace F of E generated by the family
(u1,..., un−1). Indeed, if u is a vector of F , there exists n − 1 scalars α1,..., αn−1 such
that u = α1u1 + ...+ αnun−1.
u1 ∧ ... ∧ un−1 = −→0 if and only if u1,..., un−1 are dependent.
if u1,..., un−1 are independent then (u1,..., un−1, u1 ∧ ... ∧ un−1) is a basis of E.

3.2 Scenario
Let n be the dimension of Dinit as a vector space, n represents the number of indexing terms.
Let m < n be the number of linearly independent and representative documents of D−, and
let u1,...,um be these irrelevant ones. We eliminate n−m− 1 terms and so the dimension
becomes m+ 1. The absorbing document is:

d̃ = u1 ∧ ... ∧ um (2)

This document is orthogonal to the majority of irrelevant documents.

3.3 Compute of the absorbing document
To compute d̃ it suffices to compute the vector product of u1,...,um. Let A = (u1,, um) be
the matrix of m+ 1 rows and m columns. Let Ai be the matrix obtained from the matrix A
by deleting the ith row (1 ≤ i ≤ m+ 1). The vector product of U1,...., Um is the vector:

u1 ∧ ... ∧ um =

detA1
−detA2
...

...

(−1)mdetAm+1

 (3)

The Equation 3 generalizes the definition of vector product of two vectors in dimension 3.
In the following, we give an example of vector product of three vectors in dimension 4:

R. Mbarek, M. Tmar, H. Hattab, and M. Boughanem 2:5

if u1 = (1, 0, 1,−1)T , u2 = (0, 2, 1, 1)T and u3 = (1, 3, 1, 0)T are three vectors, then u1 ∧
u2 ∧ u3 = (4,−1,−1, 3)T and so (4,−1,−1, 3).(1, 0, 1,−1)T = (4,−1,−1, 3).(0, 2, 1, 1)T =
(4,−1,−1, 3).(1, 3, 1, 0)T = 0.

3.4 An illustrative example
In this example we show how the absorbing document d̃ help us to extract better expansion
terms.

We consider four linearly independent irrelevant documents d1, d2, d3, and d4, selected
from the bottom of the initial ranking of topic 351. These four irrelevant documents indexed
by 5 expansion terms t1, t2, t3, t4 and t5, selected from the 2-top relevant documents.

d1 = (2, 1, 1, 0, 0)T d2 = (1, 0, 2, 0, 0)T d3 = (4, 0, 2, 0, 0)T d4 = (0, 1, 0, 2, 1)T .

The absorbing document d̃ is the cross product of d1, d2, d3, and d4:

d̃ = (2, 1, 1, 0, 0)T ∧ (1, 0, 2, 0, 0)T ∧ (4, 0, 2, 0, 0)T ∧ (0, 1, 0, 2, 1)T = (0, 0, 0,−6, 12)T .

d̃ is indexed by the terms t4 and t5. Note that d4 is the only irrelevant document which
is indexed by t4 and t5.

3.5 Strategies to select irrelevant documents
We use the two strategies proposed in [3] to select the set (D−) of irrelevant documents:

BOTTOM, which selects the irrelevant documents from the bottom of the rank; in
other words we assume that the user selects the last m linearly independent irrelevant
documents;
RELJUD, which relies on relevance judgments provided by CLEF organizers. This
technique selects the topm ranked documents which are irrelevant exploiting the relevance
judgments. We use this strategy to simulate the user’s explicit feedback; in other words
we assume that the user selects the first m linearly independent irrelevant documents.

To select linearly independent irrelevant documents we use the Algorithm 1.

4 Experiments

In this section we give the different experiments and results obtained to evaluate our approach.
The goal of the evaluation is to prove that our re-ranking strategy, which relies on the concept
of negative feedback represented by irrelevant documents, improves retrieval performance
and outperforms other methods. Moreover, we want to evaluate the performance of the
BOTTOM strategy and RELJUD strategy.

4.1 Environnement
We set up a baseline system based on the BM25 multi-fields model [13]. The evaluation
has been designed using the CLEF 2009 Ad-hoc WSD Robust Task collection [1]. The
Robust task allows us to evaluate Information Retrieval System performance even when
difficult queries are involved. The CLEF 2009 collection consists of 166, 717 documents which
have two fields: HEADLINE and TEXT. Table 1 shows the BM25 parameters, where b is a
constant related to the field length, k1 is a free parameter, and boost is the boosting factor
applied to that field.

SLATE’16

2:6 A Re-Ranking Method Based on Irrelevant Documents in Ad-Hoc Retrieval

Listing 1 The set of linearly independent irrelevant documents.
Let n be the number of terms
Let A be the n×mm matrix of irrelevant documents
Let m be the rank of A

Let B be the n×m matrix of linearly independent irrelevant documents

for i = 1, . . . , n
bi,1 ← ai,1

end for
k ← 1
for j = 2, . . . ,mm

Let C be a vector
for i = 1, . . . , n

ci ← ai,j

end for
for l = 1, . . . , n

bl,k ← cl

end for

Let p be the rank of B

if p = (k + 1)
k ← k + 1

end if
if k ← n

break
end if

end for

return B

Table 1 BM25 parameters used in the experiments.

Field k1 b boost
HEADLINE 3.25 0.7 2

TEXT 3.25 0.7 1

In detail, the CLEF 2009 collection has 150 topics. Topics are structured in three fields:
TITLE, DESCRIPTION and NARRATIVE. We used only TITLE and DESCRIPTION,
because NARRATIVE field is the topic description used by assessors. Moreover, we used
different boosting factors for each topic field (TITLE=4 and DESCRIPTION=1) to highlight
terms in the TITLE.

For our approach, the experiments consist to re-rank documents (results of the baseline
approach) on the ground of their similarity with respect to the absorbing document d̃
(Equation 2). The retrieved documents are ranked by the inner product done by:

< d̃, d >= d̃T .d (4)

To evaluate the performance of our approach, we executed several runs using the topics
provided by CLEF organizers. In particular, we took into account: m (the cardinality of
D−). We selected different ranges for parameter m: [1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100].

For the approach of [3], the experiments consist to re-rank documents (results of the
baseline approach) on the ground of their similarity with respect to the ideal document d∗

R. Mbarek, M. Tmar, H. Hattab, and M. Boughanem 2:7

(Equation 1). The retrieved documents are ranked by the relevance score computed for each
document d in Dinit done by:

S(d) = α ∗ SDinit
(d) + (1− α).sim(d, d∗)

where SDinit(d) is the score of d in the initial rank Dinit, while sim(d, d∗) is the similarity
degree between the document vector d and the ideal document vector d∗ computed by cosine
similarity.

To evaluate the performance of their approach, Basile et al. [3] executed several runs
using the topics provided by CLEF organizers. In particular, they took into account: n
(the cardinality of D+), m (the cardinality of D−) and the parameter α used for the linear
combination of the scores. They selected different ranges for each parameter: n ranges in
[1, 5, 10, 20, 40], m ranges in [0, 1, 5, 10, 20, 40], while α ranges in [0.3, 0.4, 0.5, 0.6, 0.7]. Table
2. shows the best five runs for BOTTOM and RELJUD strategies with respect to MAP
and GMAP. For the both approaches, they set the cardinality of Dinit to 1000. All the
metrics have been computed on the first 1000 returned documents, as prescribed by the
CLEF evaluation campaign.

4.2 Results
The experiments and the evaluations are as follow. Comparison between the Baseline Model
(the BM25 multi-fields model [13]), the approach of Basile et al. [3], and our approach:
re-ranking method using absorbing document (Equation 4), using Mean Average Precision
(MAP) and Geometric Mean Average Precision (GMAP) over all the queries.

The results have been grouped by the number of irrelevant documents. Table 2 reports
the results of the Baseline Model and the best performance obtained for the approach of
Basile et al. [3] (the best five runs for BOTTOM and RELJUD strategies with respect to
MAP values). Moreover, this table illustrates the best performance obtained for our approach
(the best five runs for BOTTOM and RELJUD strategies where the number of irrelevant
documents ranges in [1, 5, 10, 20, 30, 40, 50, 60, 70]). Improvements in percentage ∆% with
respect to the baseline are reported for MAP and GMAP values.

4.3 Analysis of results
Generally, BOTTOM strategy results are not significant improvements. This suggests that
the BOTTOM strategy is not able to identify irrelevant documents. For this strategy, the
highest MAP value for our approach is 0.476 (GMAP=0.234). Both values (MAP and GMAP)
are obtained with 30 irrelevant documents. For the approach of Basile et al., The highest
MAP value is 0.4384 (GMAP=0.1928). The MAP value is obtained with five irrelevant
documents, while the GMAP is obtained with one irrelevant document.

The method RELJUD obtains very high results. For this strategy, The highest MAP value
for our approach is 0.691 (GMAP=0.3328). Both values (MAP and GMAP) are obtained
with 70 irrelevant documents. For the approach of Basile et al., The highest MAP value is
0.6649 (GMAP=0.3240). Both values (MAP and GMAP) are obtained with 40 irrelevant
documents

For our approach, the performance of the two strategies (BOTTOM and RELJUD)
increases if the number of irrelevant documents increases.

The experimental results are very encouraging. For our approach, both methods (BOT-
TOM and RELJUD) show improvements with respect to the baseline in all the approaches.
The comparison between the results of our approach with the use of the two strategies

SLATE’16

2:8 A Re-Ranking Method Based on Irrelevant Documents in Ad-Hoc Retrieval

Table 2 Comparison between our approach, the baseline, and the approach of Basile et al.

Approach Method Run n m α MAP ∆% GMAP ∆%
- - baseline - - - 0.4139 - 0.1846 -

2.B1 1 5 0.6 0.4384 +5.92 0.1923 +4.17
2.B2 1 10 0.6 0.4379 +5.80 0.1921 +4.06

BOTTOM 2.B3 1 1 0.5 0.4377 +5.75 0.1928 +4.44
2.B4 1 5 0.5 0.4376 +5.73 0.1926 +4.33
2.B5 1 20 0.6 0.4372 +5.73 0.1917 +3.85

Basile et al.
2.R1 40 40 0.7 0.6649 +60.64 0.3240 +75.51
2.R2 40 40 0.6 0.6470 +56.32 0.3156 +70.96

RELJUD 2.R3 40 40 0.5 0.6223 +50.35 0.3124 +69.23
2.R4 20 40 0.7 0.6176 +49.21 0.2859 +54.88
2.R5 20 20 0.7 0.6107 +47.55 0.2836 +53.63
B1 - 1 - 0.4 −3.36 0.17 −7.9
B2 - 5 - 0.419 +1.23 0.185 +0.21

BOTTOM B3 - 10 - 0.423 +2.2 0.191 +3.46
B4 - 20 - 0.442 +6.78 0.212 +14.84
B5 - 30 - 0.476 +15 0.234 +25.89

Our approach
R1 - 20 - 0.601 +45.2 0.272 +47.34
R2 - 40 - 0.671 +62.11 0.331 +79.3

RELJUD R3 - 50 - 0.675 +63.08 0.3325 +80.11
R4 - 60 - 0.687 +65.98 0.3327 +80.22
R5 - 70 - 0.691 +66.94 0.3328 +80.28

(BOTTOM and RELJUD), the results of the classic BM25 model, and the results of Basile
et al., shows that our approach improves the results of the two other approaches.

5 Conclusion and future work

This paper proposes a novel approach based on negative evidence for document re-ranking.
The novelty lies on the use of the absorbing document to capture the negative aspects of
irrelevant documents. This method has shown its effectiveness with respect to a baseline
system based on BM25 and a re-ranking method based on the approach of Basile et al. [3].
Moreover, the evaluation has proved the robustness of the proposed strategy and its capability
to absorb irrelevant documents. On the other hand our approach depends on a single
parameter, while the other re-ranking approaches depend on many parameters. Moreover,
the absorbing document is modelled by a vector product which is simply computed in a
vector space model.

In a future work, we will apply this re-ranking approach with respect to a vector space
basis which optimally separates relevant and irrelevant documents.

References
1 Eneko Agirre, Giorgio Maria Di Nunzio, Thomas Mandl, and Arantxa Otegi. CLEF 2009 ad

hoc track overview: Robust-WSD task. In Carol Peters, Giorgio Maria Di Nunzio, Mikko
Kurimo, Thomas Mandl, Djamel Mostefa, Anselmo Peñas, and Giovanna Roda, editors,

R. Mbarek, M. Tmar, H. Hattab, and M. Boughanem 2:9

Multilingual Information Access Evaluation I, pages 36–49. Springer, Berlin, Heidelberg,
2010. doi:10.1007/978-3-642-15754-7_3.

2 Rony Attar, Fraenkel, and Aviezri Siegmund. Local feedback in full-text retrieval systems.
Journal of the ACM, 24(3):397–417, July 1977. doi:10.1145/322017.322021.

3 Pierpaolo Basile, Annalina Caputo, and Giovanni Semeraro. Negation for document re-
ranking in ad-hoc retrieval. In Giambattista Amati and Fabio Crestani, editors, Advances
in Information Retrieval Theory, pages 285–296. Springer, Berlin, Heidelberg, 2011. doi:
10.1007/978-3-642-23318-0_26.

4 Garrett Birkhoff and John Von Neumann. The logic of quantum mechanics. Annals of
Mathematics, 37(4):823–843, 1936.

5 Chris Buckley, Gerard Salton, James Allan, and Amit Singhal. Automatic query expansion
using SMART: TREC 3. In In Proceedings of The third Text REtrieval Conference (TREC-
3), pages 69–80, 1994.

6 Czesław Daniłowicz and Jarosław Baliński. Document ranking based upon Markov
chains. Information Processing and Management, 37(4):623–637, July 2001. doi:10.1016/
S0306-4573(00)00038-8.

7 Anna Khudyak Kozorovitzky and Oren Kurland. From “identical” to “similar”: Fusing
retrieved lists based on inter-document similarities. In Leif Azzopardi, Gabriella Kazai,
Stephen Robertson, Stefan Rüger, Milad Shokouhi, Dawei Song, and Emine Yilmaz, editors,
Advances in Information Retrieval Theory, pages 212–223. Springer, Berlin, Heidelberg,
2009. doi:10.1007/978-3-642-04417-5_19.

8 Oren Kurland. Re-ranking search results using language models of query-specific clusters.
Information Retrieval, 12(4):437–460, 2009. doi:10.1007/s10791-008-9065-9.

9 Oren Kurland and Lillian Lee. Corpus structure, language models, and ad hoc information
retrieval. In Proceedings of the 27th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 194–201, New York, NY, USA,
2004. ACM. doi:10.1145/1008992.1009027.

10 Xiaoyong Liu and W. Bruce Croft. Cluster-based retrieval using language models. In
Proceedings of the 27th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 186–193, New York, NY, USA, 2004. ACM.
doi:10.1145/1008992.1009026.

11 Rabeb Mbarek, Mohamed, Hawete Hattab, and Mohand Boughanem. Pseudo-relevance
feedback method based on the cross-product of irrelevant documents. International Journal
Web Applications, 8(1):8–16, March 2016.

12 Karthik Raman, Raghavendra Udupa, Pushpak Bhattacharya, and Abhijit Bhole. On
improving pseudo-relevance feedback using pseudo-irrelevant documents. In Proceedings
of the 32nd European Conference on Advances in Information Retrieval, pages 573–576,
Berlin, Heidelberg, 2010. Springer-Verlag. doi:10.1007/978-3-642-12275-0_50.

13 Stephen Robertson, Hugo Zaragoza, and Michael Taylor. Simple BM25 extension to mul-
tiple weighted fields. In Proceedings of the Thirteenth ACM International Conference on
Information and Knowledge Management, pages 42–49, New York, NY, USA, 2004. ACM.
doi:10.1145/1031171.1031181.

14 Stephen E. Robertson and Karen Sparck Jones. Relevance weighting of search terms.
Journal of the American Society for Information Science, 27(3):129–146, 1976. doi:
10.1002/asi.4630270302.

15 Joseph J. Rocchio. Relevance feedback in information retrieval. In Gerard Salton, editor,
The SMART retrieval system - experiments in automatic document processing, pages 313–
323. Englewood Cliffs, NJ: Prentice-Hall, 1971.

SLATE’16

http://dx.doi.org/10.1007/978-3-642-15754-7_3
http://dx.doi.org/10.1145/322017.322021
http://dx.doi.org/10.1007/978-3-642-23318-0_26
http://dx.doi.org/10.1007/978-3-642-23318-0_26
http://dx.doi.org/10.1016/S0306-4573(00)00038-8
http://dx.doi.org/10.1016/S0306-4573(00)00038-8
http://dx.doi.org/10.1007/978-3-642-04417-5_19
http://dx.doi.org/10.1007/s10791-008-9065-9
http://dx.doi.org/10.1145/1008992.1009027
http://dx.doi.org/10.1145/1008992.1009026
http://dx.doi.org/10.1007/978-3-642-12275-0_50
http://dx.doi.org/10.1145/1031171.1031181
http://dx.doi.org/10.1002/asi.4630270302
http://dx.doi.org/10.1002/asi.4630270302

2:10 A Re-Ranking Method Based on Irrelevant Documents in Ad-Hoc Retrieval

16 Gerard Salton and Chris Buckley. Improving retrieval performance by relevance feedback.
In Karen Sparck Jones and Peter Willett, editors, Readings in Information Retrieval, pages
355–364. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

17 Xuehua Shen, Bin Tan, and ChengXiang Zhai. Context-sensitive information retrieval using
implicit feedback. In Proceedings of the 28th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 43–50, New York, NY, USA,
2005. ACM. doi:10.1145/1076034.1076045.

18 Amit Singhal, Mandar Mitra, and Chris Buckley. Learning routing queries in a query zone.
In Proceedings of the 20th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 25–32, New York, NY, USA, 1997. ACM.
doi:10.1145/258525.258530.

19 Xuanhui Wang, Hui Fang, and ChengXiang Zhai. A study of methods for negative relevance
feedback. In Proceedings of the 31st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 219–226, New York, NY, USA,
2008. ACM. doi:10.1145/1390334.1390374.

20 Dominic Widdows. Orthogonal negation in vector spaces for modelling word-meanings and
document retrieval. In Proceedings of the 41st Annual Meeting on Association for Compu-
tational Linguistics, volume 1, pages 136–143, Stroudsburg, PA, USA, 2003. Association
for Computational Linguistics. doi:10.3115/1075096.1075114.

21 Jinxi Xu and W. Bruce Croft. Query expansion using local and global document analysis.
In Proceedings of the 19th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 4–11, New York, NY, USA, 1996. ACM. doi:
10.1145/243199.243202.

http://dx.doi.org/10.1145/1076034.1076045
http://dx.doi.org/10.1145/258525.258530
http://dx.doi.org/10.1145/1390334.1390374
http://dx.doi.org/10.3115/1075096.1075114
http://dx.doi.org/10.1145/243199.243202
http://dx.doi.org/10.1145/243199.243202

Comparing the Performance of Different NLP
Toolkits in Formal and Social Media Text∗

Alexandre Pinto1, Hugo Gonçalo Oliveira2, and Ana Oliveira Alves3

1 CISUC, Dept. of Informatics Engineering, University of Coimbra, Coimbra,
Portugal
arpinto@student.dei.uc.pt

2 CISUC, Dept. of Informatics Engineering, University of Coimbra, Coimbra,
Portugal
hroliv@dei.uc.pt

3 CISUC, Dept. of Informatics Engineering, University of Coimbra, Coimbra,
Portugal; and
Polythecnic Institute of Coimbra, Coimbra, Portugal
aalves@isec.pt, ana@dei.uc.pt

Abstract
Nowadays, there are many toolkits available for performing common natural language processing
tasks, which enable the development of more powerful applications without having to start
from scratch. In fact, for English, there is no need to develop tools such as tokenizers, part-
of-speech (POS) taggers, chunkers or named entity recognizers (NER). The current challenge is
to select which one to use, out of the range of available tools. This choice may depend on several
aspects, including the kind and source of text, where the level, formal or informal, may influence
the performance of such tools. In this paper, we assess a range of natural language processing
toolkits with their default configuration, while performing a set of standard tasks (e.g. tokeniz-
ation, POS tagging, chunking and NER), in popular datasets that cover newspaper and social
network text. The obtained results are analyzed and, while we could not decide on a single
toolkit, this exercise was very helpful to narrow our choice.

1998 ACM Subject Classification I.2.7 Natural Language Processing

Keywords and phrases Natural language processing, toolkits, formal text, social media, bench-
mark

Digital Object Identifier 10.4230/OASIcs.SLATE.2016.3

1 Introduction

The Web is a large source of data, mostly expressed in natural language text. Natural
language processing (NLP) systems need to understand the human languages in order to
extract new knowledge and perform diverse tasks, such as information retrieval, machine
translation, or text classification, among others. For widely-spoken languages, such as
English, there is currently a wide range of NLP toolkits available for performing lower-level
NLP tasks, including tokenization, part-of-speech (POS) tagging, chunking or named entity
recognition (NER). This enables that more complex applications do not have to be developed

∗ This work was supported by National Funds through the FCT – Fundação para a Ciência e a Tecnologia
(Portuguese Foundation for Science and Technology) – within project REMINDS – UTAP-ICDT/EEI-
CTP/0022/2014.

© Alexandre Pinto, Hugo Gonçalo Oliveira, and Ana Oliveira Alves;
licensed under Creative Commons License CC-BY

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira; Article No. 3; pp. 3:1–3:16

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2016.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

3:2 Comparing the Performance of Different NLP Toolkits in Formal and Social Media Text

completely from scratch. Yet, with the availability of many such toolkits, the one to use
is rarely obvious. Users have also to select the most suitable set of tools that meets their
specific purpose. Among other aspects, the selection may consider the community of users,
frequency of new versions and updates, support, portability, cost of integration, programming
language, the number of covered tasks, and, of course, their performance. During the previous
process of selection, the authors of this paper ended up comparing a wide range of tools, in
different tasks and kinds of text. This paper reports the comparison of well-known NLP
toolkits and their performance in four common NLP tasks – tokenization, POS tagging,
chunking and NER – in two different kinds of text – newspaper text, typically more formal,
and social network text, often less formal. Although the majority of the tested tools could
be trained with specific corpora and / or for a specific purpose, we focused on comparing
the performance of their default configuration, which means that we used the available
pre-trained models for each tool and target task. This situation is especially common for
users that either do not have experience, time or available data for training the tools for a
specific purpose. Besides helping us to support our decision, we believe that this comparison
will be helpful for other developers and researchers in need of making a similar selection.

The remainder of this paper starts with a brief reference on previous work. After that, the
tasks where the toolkits were compared are enumerated, which is followed by the description
of the datasets used as benchmarks, all of them previously used in other evaluations. The
measures used for comparison are then presented, right before its results are reported and
discussed. Although there was not a toolkit that outperformed the others in all the tested
tasks and kinds of text, this analysis revealed to be very useful, as it narrowed the range of
possible choices and lead to our current selection.

2 Related Work

In academic, official or business contexts, written documents typically use formal language.
This means that syntactic rules and linguistic conventions are strictly followed. On the other
hand, although typically used orally, informal language has become frequent in written short
messages or posts in social networks, such as Facebook or Twitter. In opposition to news
websites, where posts are more elaborated, complex and with a higher degree of correctness, in
text posted in social networks, it is common to find shorter and simpler sentences that tend to
break some linguistic conventions (e.g. proper nouns are not always capitalized, or punctuation
is not used properly), make an intensive use of abbreviations, and where slang and spelling
mistakes are common. For instance, in informal English, it is common to use colloquial
expressions (e.g. “look blue”, “go bananas”, “funny wagon”), contractions (e.g. “ain’t”,
“gonna”, “wanna”, “y’all”), clichés (e.g. “An oldie, but a goodie”, “And they all lived happily
ever after”), slang (e.g. “gobsmacked”, “knackered”), abbreviations (e.g. “lol”, “rofl”, “ty”,
“afaik”, “asap”, “diy”, “rsvp”); the first and the second person, imperative (e.g. “Do it!”)
and usually active voices, in addition to the third person and the passive voice, which are
generally the only in formal text. Informal language poses an additional challenge for NLP
tools, most of which developed with formal text on mind and significantly dependent on the
quality of the written text. Given the huge amounts of data transmitted everyday in social
networks, the challenge of processing messages written in informal language has received
much attention in the later years. In fact, similarly to well-known NLP shared tasks based
on corpora written in formal language, including the CoNLL-2000, 2002 or 2003 shared
evaluation tasks[25] , tasks using informal text have also been organized, including, for

A. Pinto, H. Gonçalo Oliveira, and A. Oliveira Alves 3:3

instance, the Making Sense of Microposts Workshop (MSM 2013)1 or tasks included in the
SemEval workshops (e.g. Sentiment Analysis from Twitter [23]).

González [13] highlights the particular characteristics of Twitter messages that make
common NLP tasks challenging, such as irregular grammatical structure, language variants
and styles, out-of-vocabulary words or onomatopeias, reminding the fact that there is still a
lack of gold standards regarding colloquial texts, especially for less-resourced languages.

Besides comparing different NLP tools, in this work, we also analyze their performance
in different types of text, some more formal, from newspapers, and some less formal, from
Twitter. Other comparisons have been made by others, including the following. In order
to combine different NER tools and improve recall, Dlugolinský et al. [7] assessed selected
tools for this task in the dataset of the MSM2013 task. This included the comparison of
well-known tools such as ANNIE2, OpenNLP3, Illinois Named Entity Tagger4 and Wikifier5,
OpenCalais6, Stanford Named Entity Tagger7 and Wikipedia Miner8.

Godin et al. [12] also used the MSM2013 challenge corpus and performed similar evalu-
ations oriented to NER web services, such as AlchemyAPI9, DBpedia Spotlight10, OpenCalais,
and Zemanta11. Since the evaluated services use complex ontologies, a mapping between
the obtained ontologies and entity types was performed, with good F1 scores when using
AlchemyAPI for the person (78%) and location (74%) type entities, and OpenCalais for
the organization (55%) and miscellaneous (31%) entities. Rizzo et al. [20] also evaluated
web services, such as Lupedia12, Saplo13, Wikimeta14 and Yahoo Content Analysis (YCa),
but with focus on different kinds of well-formed content and varying length, such as TED
talks transcripts, New York Times articles and abstracts from research papers. In fact, they
evaluated the resulting NER and Disambiguation (NERD) framework, which unified the
output results of the aforementioned web services, supporting the fact that tools such as
AlchemyAPI, OpenCalais and additionally DBpedia Spotlight perform well in well-formed
contents, using formal language. Rizzo et al. also report on the evaluation of datasets
with colloquial text, namely Twitter text from the MSM2013 challenge and newspaper text
from the CoNLL-2003 Reuter Corpus [21]. They report better NER results when using a
combination of the tested tools, achieving F1 results greater than 80% on he CoNLL-2003
dataset, for all entity types and F1 results greater than 50% on the MSM-2013 dataset,
except for the miscellaneous type that obtained results less than 30%.

Garcia and Gamallo [10] report the development of a multilingual NLP pipeline. To assess
the performance of the presented tool, they performed experiments with POS-tagging and
NER. The POS-tagger performed slightly better than well-known tools such as OpenNLP
and Stanford NER, achieving a precision score of 94% on the Brown Corpus. On the other

1 http://microposts2016.seas.upenn.edu
2 https://gate.ac.uk/sale/tao/splitch6.html#chap:annie
3 https://opennlp.apache.org
4 https://cogcomp.cs.illinois.edu/page/software_view/NETagger
5 https://cogcomp.cs.illinois.edu/page/software_view/Wikifier
6 http://www.opencalais.com
7 http://nlp.stanford.edu/software/CRF-NER.shtml
8 http://wikipedia-miner.cms.waikato.ac.nz
9 http://www.alchemyapi.com
10 https://github.com/dbpedia-spotlight/dbpedia-spotlight
11 http://www.zemanta.com
12 http://dbpedia.org/projects/lupedia-enrichment-service
13 http://saplo.com
14 https://www.w3.org/2001/sw/wiki/Wikimeta

SLATE’16

http://microposts2016.seas.upenn.edu
https://gate.ac.uk/sale/tao/splitch6.html#chap:annie
https://opennlp.apache.org
https://cogcomp.cs.illinois.edu/page/software_view/NETagger
https://cogcomp.cs.illinois.edu/page/software_view/Wikifier
http://www.opencalais.com
http://nlp.stanford.edu/software/CRF-NER.shtml
http://wikipedia-miner.cms.waikato.ac.nz
http://www.alchemyapi.com
https://github.com/dbpedia-spotlight/dbpedia-spotlight
http://www.zemanta.com
http://dbpedia.org/projects/lupedia-enrichment-service
http://saplo.com
https://www.w3.org/2001/sw/wiki/Wikimeta

3:4 Comparing the Performance of Different NLP Toolkits in Formal and Social Media Text

hand, the NER module achieved F1 scores of 76% and 59% on the IEER15 and SemCor16
Corpus, respectively.

Rodriquez et al. [22] and Atdag and Labatut [1] compared different NER tools applied
to different kinds of text, respectively biographical and OCR texts. Rodriquez et al. used
Stanford CoreNLP, Illinois NER, LingPipe and OpenCalais, on a set of Wikipedia biographic
articles annotated with person, location, organization and date type entities. Due to the
absence of biography datasets, the evaluated corpus was fully designed by the authors, i.e,
the evaluated corpus consisted of a series of Wikipedia articles which were annotated with
the aforementioned entity types. Although CoreNLP obtained the best F1 scores (60%
and 44%) in two manually-annotated resources, there was not a tool that outperformed
all the others in every entity type. They are rather complementary. Atdag and Labatut
evaluated OpenNLP, Stanford CoreNLP, AlchemyAPI and OpenCalais using datasets with
the entity types person, location and organization manually annotated. They used data from
the Wiener Library, London and King’s College London’s Serving Soldier archive, which
consisted of Holocaust survivor testimonies and newsletters written for the crew of H.M.S.
Kelly in 1939. Once again, Stanford CoreNLP gave the best overall F1 results (90%) while
OpenCalais only achieved 73%.

3 Addressed Tasks

In order to evaluate how good standard NLP tools perform against different kinds of text,
such as noisy text from social networks and formal text from newspapers, we performed a set
of experiments where the performance in common NLP tasks was analysed. The addressed
tasks were tokenization, POS-tagging, chunking and NER. The following list describes the
four evaluated tasks:

Tokenization: usually the first step in NLP pipelines. It is the process of breaking down
sentences into tokens, which can be words or punctuation marks. Although it seems a
relatively easy task, it has some issues because some words may rise doubts on how they
should be tokenized, namely words with apostrophes, or with mixed symbols.
Part-of-Speech (POS) Tagging: given a specific tagset, it determines the part-of-speech
of each token in a sentence. In this work, the tags of the Penn Treebank Project [17],
popular among the NLP community, are used.
Chunking: also known as shallow parsing, it is a lighter syntactic parsing task. The
main purpose is to identify the constituent groups in which the words are organized.
This includes at least noun phrases (NP), verb phrases (VP) and prepositional phrases
(PP). The sequence of chunks forms the entire sentence. They may also be nested inside
each other to form a tree structure, where each leaf is a word, the previous node is the
corresponding POS-tag and the head of the tree is the chunk type.
Name Entity Recognition/Classification: deals with the identification of certain types
of entities in a text and may go further classifying them into one of given categories,
typically PERson, LOCations, ORGanizations, all proper nouns, and sometimes others,
such as dates.

These are common NLP tasks, the first step of several more complex NLP applications, and
supported by several NLP toolkits for English, including those compared in this work.

15 http://www.itl.nist.gov/iad/894.01/tests/ie-er/er_99/er_99.htm
16 http://www.gabormelli.com/RKB/SemCor_Corpus

http://www.itl.nist.gov/iad/894.01/tests/ie-er/er_99/er_99.htm
http://www.gabormelli.com/RKB/SemCor_Corpus

A. Pinto, H. Gonçalo Oliveira, and A. Oliveira Alves 3:5

Listing 1 Example of the Annotated Data Format.
Token POS Syntactic Chunk Named Entity
Only RB B-NP O
France NNP I-NP LOC
and CC I-NP O
Britain NNP I-NP LOC
backed VBD B-VP O
Fischler NNP B-NP PER
’s POS B-NP O
proposal NN I-NP O
. . O O

4 Used Datasets

In order to evaluate the performance of the different NLP toolkits and determine the
best performing ones, the same criteria must be followed, including the same metrics and
manually-annotated gold standard data. Testing tools in the same tasks and scenarios makes
comparison fair and more reliable. For this purpose, we relied on well-known datasets widely
used in NLP and text classification research, not only in the evaluation of NLP tools, but also
for training new models. More precisely, we used different gold standard datasets that cover
different kinds of text – newspaper and social media. Regarding newspaper text, we used a
collection of news wire articles from the Reuters Corpus17, previously used in the shared
task of the 2003 edition of the CoNLL conference. The POS and chunking annotations of
this dataset were obtained using a memory-based MBT tagger [5]. The named entities were
manually annotated at the University of Antwerp [25].

In order to represent social and more informal text, we first used the annotated data from
Alan Ritter’s Twitter corpus18, with manually tokenized, POS-tagged and chunked Twitter
posts, also with annotated named entities. The collection of Twitter posts used in the MSM
2013 workshop19, where named entities are annotated, was also used as a gold standard for
social media text.

The POS tags of the CoNLL-2003 dataset follow the Penn Treebank style 20. Alan
Ritter’s corpus follows the same format, with the same POS-tags and additional specific tags
for retweets, @usernames, #hashtags, and urls. For the chunk tags, the format I|O|B-TYPE
is used in both datasets. This is interpreted as: the token is inside (I), in the beginning (B)
of a following chunk of the same type or outside (O) of a chunk phrase [18]. The named
entities in the CoNLL-2003 dataset are annotated using four entity types, namely Location
(LOC), Miscellaneous (MISC), Organization (ORG) and Person (PER). In Alan Ritter’s
corpus, entity types were not exactly the same, so they had to be converted, as we mention
further on this section. The #MSM2013 corpus only contains annotated named entities and
their types. To ease experimentation, this corpus was converted to the same format as the
other two.

Listing 1 illustrates the annotation format for the experiments. Table 1 shows some
numerical characteristics of the used datasets.

17 http://trec.nist.gov/data/reuters/reuters.html
18 https://github.com/aritter/twitter_nlp/tree/master/data/annotated
19 http://oak.dcs.shef.ac.uk/msm2013/challenge.html
20 https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

SLATE’16

http://trec.nist.gov/data/reuters/reuters.html
https://github.com/aritter/twitter_nlp/tree/master/data/annotated
http://oak.dcs.shef.ac.uk/msm2013/challenge.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

3:6 Comparing the Performance of Different NLP Toolkits in Formal and Social Media Text

Table 1 Dataset properties.
Dataset Documents Tokens Average Tokens per Document
CoNLL (Reuter Corpus) 946 203621 215
Twitter (Alan Ritter) 2394 46469 19
#MSM2013 2815 52124 19

Table 2 Datasets with PoS Tags.

Dataset
Twitter (Alan Ritter) CoNLL (Reuter Corpus) Description

CC 305 (2.01 %) 3653 (1.79 %) Coordinating conjunction
CD 268 (1.76 %) 19704 (9.68 %) Cardinal number
DT 825 (5.43 %) 13453 (6.61 %) Determiner
IN 1091 (7.18 %) 19064 (9.36 %) Preposition or subordinating conjunction
JJ 670 (4.41 %) 11831 (5.81 %) Adjective
MD 181 (1.19 %) 1199 (0.59 %) Modal
NN 1931 (12.72 %) 23899 (11.74 %) Noun, singular or mass
NNP 1159 (7.63 %) 34392 (16.89 %) Proper noun, singular
NNS 393 (2.59 %) 9903 (4.86 %) Noun, plural
PRP 1106 (7.28 %) 3163 (1.55 %) Personal pronoun
PRP$ 234 (1.54 %) 1520 (0.75 %) Possessive pronoun
RB 680 (4.48 %) 3975 (1.95 %) Adverb
RT 152 (1.00 %) 0 Retweet
TO 264 (1.74 %) 3469 (1.70 %) to
UH 493 (3.25 %) 30 (0.01 %) Interjection
URL 183 (1.21 %) 0 Url
USR 464 (3.06 %) 0 User
VB 660 (4.35 %) 4252 (2.09 %) Verb, base form
VBD 306 (2.02 %) 8293 (4.07 %) Verb, past tense
VBG 303 (2.00 %) 2585 (1.27 %) Verb, gerund or present participle
VBN 140 (0.92 %) 4105 (2.02 %) Verb, past participle
VBP 527 (3.47 %) 1436 (0.71 %) Verb, non-3rd person singular present
VBZ 342 (2.25 %) 2426 (1.19 %) Verb, 3rd person singular present
Others 908 (5.98%) 10478 (5.15 %)

It is clear that the Twitter datasets (Alan Ritter and #MSM2013) have a greater number
of documents with short sentences. On the other hand, the CoNLL dataset has longer and
more complex sentences. Tables 2 and 3 show the distribution of the POS and chunk tags,
respectively for Alan Ritter’s and CoNLL-2003 corpora. For the POS tags, only those that
account for more than one percent at least in one of the two datasets, excluding punctuation
marks, are shown. Noun phrases (NP), prepositional phrases (PP) and verbal phrases (VP)
are the most common chunks in both datasets.

For the NER evaluation, we stripped the IOB tags from the datasets whenever they were
present, and joined them in a single entity tag, i.e, different tags such as B-LOC and I-LOC
became simply LOC. Besides making comparison easier, this was made due to some noticed
inconsistencies on the usage of I’s and B’s. Table 4 shows the distribution of the named
entities in all of the used datasets.

We recall that the entity types in Alan Ritter’s corpus are more and different than the
other two. So, in order to enable comparison in the same lines, additional entity types were
considered as alternative tags for one of the types covered by the CoNLL-2003 dataset: LOC,

A. Pinto, H. Gonçalo Oliveira, and A. Oliveira Alves 3:7

Table 3 Datasets with Chunk Tags.

Dataset
Twitter (Alan Ritter) CoNLL (Reuter Corpus) Description

B-ADJP 241 (1.58 %) 2 (0.00 %) Begins an adjective phrase
B-ADVP 535 (3.52 %) 22 (0.01 %) Begins an adverb phrase
B-CONJP 2 (0.01 %) 0 Begins a conjunctive phrase
B-INTJ 384 (2.52 %) 0 Begins an interjection
B-NP 3992 (26.24 %) 3777 (1.85 %) Begins a noun phrase
B-PP 1027 (6.75 %) 254 (0.12 %) Begins a prepositional phrase
B-PRT 109 (0.72 %) 0 Begins a particle
B-SBAR 103 (0.68 %) 8 (0.00 %) Begins a subordinating clause
B-VP 1884 (12.39 %) 163 (0.08 %) Begins a verb phrase
I-ADJP 86 (0.57 %) 1374 (0.67 %) Is inside an adjective phrase
I-ADVP 66 (0.43 %) 2573 (1.35 %) Is inside an adverb phrase
I-CONJP 2 (0.01 %) 70 (0.03 %) Is inside a conjunctive phrase
I-INTJ 124 (0.82 %) 60 (0.03 %) Is inside an interjection
I-LST 0 36 (0.02 %) Is inside a list marker
I-NP 2686 (17.66 %) 120255 (59.06 %) Is inside a noun phrase
I-PP 10 (0.07 %) 18692 (9.18 %) Is inside a prepositional phrase
I-PRT 0 527 (0.26 %) Is inside a particle
I-SBAR 5 (0.03 %) 1280 (0.63 %) Is inside a subordinating clause
I-VP 842 (5.54 %) 26702 (13.11 %) Is inside verb phrase
O 27646 (20.47 %) 3113 (13.58 %) Is outside of any chunk.

MISC, ORG and PER. Table 5 shows the new entities distribution after performing the
following mapping: FACILITY, GEO-LOC → LOC; MOVIE, TVSHOW, OTHER → MISC;
COMPANY, PRODUCT, SPORTSTEAM → ORG; PERSON, MUSICARTIST → PER.
This mapping considered the annotation guidelines of the CoNLL-2003 shared task21.

5 Compared Tools

In order to select a suitable tool for our purpose, many criteria have to be considered. Among
other properties, tools can be implemented in different programming languages; have available
models that cover different tasks, kinds of text or languages; require different setups; or have
different learning curves for simple usage or for integration. The tools compared in this paper
were trained for English and are open, well-known and widely used by the NLP community.
Moreover, they were developed either in Java or Python, which, nowadays, are probably
the two languages more frequently used to develop NLP applications and for which there is
a broader range of available toolkits. The compared tools are enumerated in the following
list, where they are described and grouped in “standard” toolkits, which means they were
developed with no specific kind of text in mind, and social network-oriented tools, which aim
to be used in short messages from social networks.

5.1 Standard NLP toolkits
The NLTK toolkit22 is a Python library aimed at individuals who are entering the NLP field.
It is divided in independent modules, responsible for specific NLP tasks such as tokenization,

21 http://www.cnts.ua.ac.be/conll2003/ner/annotation.txt
22 http://www.nltk.org

SLATE’16

http://www.cnts.ua.ac.be/conll2003/ner/annotation.txt
http://www.nltk.org

3:8 Comparing the Performance of Different NLP Toolkits in Formal and Social Media Text

Table 4 Datasets with NER Tags.
Dataset

Twitter (Alan Ritter) CoNLL (Reuter Corpus) #MSM2013
COMPANY 207 (0.45 %) 0 0
FACILITY 209 (0.45 %) 0 0
GEO-LOC 325 (0.70 %) 0 0
LOC 0 8297 (4.07%) 795 (1.53 %)
MISC 0 4593 (2.26%) 511 (0.98 %)
MOVIE 80 (0.17 %) 0 0
MUSICARTIST 116 (0.25 %) 0 0
ORG 0 10025 (4.92 %) 842 (1.62 %)
OTHER 545 (1.39 %) 0 0
PERSON 664 (1.43 %) 11128 (5.47 %) 2961 (5.68 %)
PRODUCT 177 (0.38 %) 0 0
SPORTSTEAM 74 (0.16 %) 0 0
TVSHOW 65 (0.14 %) 0 0
O 44007 (94.70 %) 169578 (83.28 %) 47015 (90.20 %)

Table 5 Dataset with Joint NER Tags.
Dataset

Twitter (Alan Ritter) CoNLL (Reuter Corpus) #MSM2013
LOC 534 (1.15 %) 8297 (4.07 %) 795 (1.53 %)
MISC 690 (1.48 %) 4593 (2.26 %) 511 (0.98 %)
ORG 458 (0.99 %) 10025 (4.92 %) 842 (1.62 %)
PER 780 (1.68 %) 11128 (5.47 %) 2961 (5.68 %)
O 44007 (94.70 %) 169578 (83.28 %) 47015 (90.20 %)

stemming, tree representations, tagging, parsing and visualization. It also comes bundled
with popular corpus samples ready to be read. By default, NLTK uses the Penn Treebank
Tokenizer, which uses regular expressions to tokenize the text. Its PoS tagger uses the Penn
Treebank tagset and is trained on the PENN Treebank corpus with a Maximum Entropy
model. The Chunker and the NER modules are trained on the ACE corpus with a Maximum
Entropy model [2, 15].

Apache OpenNLP23 is a Java library that uses machine learning methods for common
natural language tasks, such as tokenization, POS tagging, NER, chunking and parsing.
Users can either rely on pre-trained models for the previous tasks or train their own with
a Perceptron or a Maximum Entropy. The pre-trained models for English PoS tagging
and chunking use the Penn Treebank tagset. The Chunker is trained on the CoNLL-2000
dataset. The pre-trained NER models provide cover the recognition of persons, locations,
organizations, time, date and percentage expressions. Although there are two POS tagging
models available for English, in this work, we used the one based on Maximum Entropy.

The Stanford CoreNLP24 toolkit is a Java pipeline that provides common language
processing tasks. The most supported language is English, but other languages are also
available [16]. Comparing to other frameworks such as GATE [4] or UIMA [8], CoreNLP
is simple to set up and run, since users do not need to learn and understand complex
installations and procedures. The CoreNLP performs a Penn Treebank style tokenization
and the POS module is an implementation of the Maximum Entropy model using the Penn
Treebank tagset. The NER component uses a Conditional Random Field (CRF) model and
is trained on the CoNLL-2003 dataset.

23 https://opennlp.apache.org
24 http://stanfordnlp.github.io/CoreNLP

https://opennlp.apache.org
http://stanfordnlp.github.io/CoreNLP

A. Pinto, H. Gonçalo Oliveira, and A. Oliveira Alves 3:9

Table 6 Toolkit properties.

Programming PoS
System Language Target Text Tokenization Tagging Chunking NER
NLTK Python Generic 3 3 3 3

OpenNLP Java Generic 3 3 3 3

CoreNLP Java Generic 3 3 7 3

Pattern Python Generic 3 3 3 7

TweetNLP Java Social Media 3 3 7 7

TwitterNLP Python Social Media 3 3 3 3

TwitIE Java Social Media 3 3 7 3

Pattern25 is a Python library that provides modules for web mining, NLP and ML tasks.
This library does not provide methods for a single field but rather a general cross-domain
and ease-of-use functionality. The PoS tagger uses a simple rule-based model trained on the
Brown Corpus [6].

5.2 Social Network-Oriented Toolkits
Alan Ritter’s TwitterNLP26 is a Python library that offers a NLP pipeline for performing
Tokenization, POS, Chunking and NER. The authors reduced the problem of dealing with
noisy texts by developing a system based on a set of features extracted from Twitter-specific
POS taggers, a dedicated shallow parsing logic, and the use of gazetteers generated from
entities in the Freebase knowledge base, that best match the fleeting nature of informal
texts [19].

CMU’s TweetNLP27 is Java tool that provides a Tokenizer and a POS Tagger with
available models, trained with a CRF model in Twitter data, manually annotated by its
authors [11]. In addition to the typical syntactic elements of a sentence, TweetNLP identifies
content such as mentions, URLs, and emoticons.

TwitIE28 is an open-source plugin for GATE. The GATE framework comes already
packaged with ANNIE, an information extraction system, and includes resources such as: a
Tokenizer, a sentence splitter, gazetteer lists, a PoS tagger and a semantic tagger. TwitIE
re-uses some of these components (sentence splitter and gazeteer lists) but adapts the other to
the Twitter kind of text, supporting language identification, Tokenization, normalization, PoS
tagging and Name Entity Recognition. The TwitIE tokenizer follows the same tokenization
scheme as TwitterNLP. The PoS tagger uses an adptation of the Stanford tagger, trained on
tweets with the Penn Tree Bank tagset, with additional tags for retweets, URLs, hashtags
and user mentions [3]. In our experiments, we used the Text Analytics web service29 which
includes a version of the TwitIE module.

5.3 Tools Summary
Table 6 summarizes additional properties of the aforementioned tools. Java is the most used
programming language and only tools such as TweetNLP, TwitterNLP and TwitIE are made

25 http://www.clips.ua.ac.be/pages/pattern
26 https://github.com/aritter/twitter_nlp
27 http://www.cs.cmu.edu/~ark/TweetNLP
28 https://gate.ac.uk/wiki/twitie.html
29 http://docs.s4.ontotext.com/display/S4docs/Twitter+IE

SLATE’16

http://www.clips.ua.ac.be/pages/pattern
https://github.com/aritter/twitter_nlp
http://www.cs.cmu.edu/~ark/TweetNLP
https://gate.ac.uk/wiki/twitie.html
http://docs.s4.ontotext.com/display/S4docs/Twitter+IE

3:10 Comparing the Performance of Different NLP Toolkits in Formal and Social Media Text

with models adapted to the social domain. In terms of task support, NLTK, OpenNLP
and TwitterNLP offer a complete NLP pipeline (Tokenization, PoS, Chunking and NER).
Without any additional plugin, CoreNLP, TweetNLP and TwitIE lack support for chunking,
while Pattern and TweetNLP do not support NER.

6 Comparison Metrics

The performance of a NLP tool in a certain task can be estimated by the quality of its
predictions on the classification of unseen data. Predictions made are either considered
Positive or Negative (under some category) and expected judgments are called True or
False (again, under a certain category). The following are common metrics used to assess
classification tasks [24]:

Precision: The proportion of correctly classified instances (True Positives) among all the
classified instances under a certain category (True Positives and False Positives).

Pi = TPi
TPi + FPi

Pi = Precision under Category i
TPi = True Positives under Category i
FPi = False Positives under Category i

Recall: The proportion of correctly classified instances (True Positives) under a certain
category (True Positives and False Negatives).

Ri = TPi
TPi + FNi

Ri = Recall under Category i
TPi = True Positives under Category i
FNi = False Negatives under Category i

F-measure: Combines precision and recall, and is computed as the harmonic mean
between the two metrics.

F1 = 2× Pi ×Ri
Pi +Ri

F1 = Harmonic Mean
Pi = Precision under Category i
Ri = Recall under Category i

The previous metrics provide insights on the behavior of the tool. We can go further and
compute the previous estimations in different ways such as:

Micro Averaging: the entire text is treated as a single document and the individual
correct classifications are summed up.

Pµ =
∑|C|

i=1 TPi∑|C|
i=1 TPi + FPi

Pµ = Micro Precision
C = Set of Classes
TP = True Positives
FP = False Positives

Rµ =
∑|C|

i=1 TPi∑|C|
i=1 TPi + FNi

Rµ = Micro Recall
C = Set of Classes
TP = True Positives
FP = False Positives

Macro Averaging: the precision and recall metrics are computed for each document and
then averaged.

A. Pinto, H. Gonçalo Oliveira, and A. Oliveira Alves 3:11

PM =
∑|C|

i=1 Pi

|C|

PM = Macro Precision
C = Set of Classes

RM =
∑|C|

i=1 Ri

|C|

RM = Macro Recall
C = Set of Classes

In addition to the previous averages, the standard deviation is a common dispersion
metric that may be computed as follows:

σ = 1
N − 1

|N|∑
i=1

(xi − x̄)2

N = Number of samples
xi = Result of the i-th measurement
x̄ = Arithmetic mean of the N results

These evaluation metrics can give different results. Macro averaging weights each class
equally, even if there are unbalanced classes. On the other hand, micro averaging weights the
documents under evaluation, but it can happen that large classes dominates smaller classes.
Therefore, macro averaging provides a sense of effectiveness on small classes, increasing their
importance. Of course that selecting the appropriate metric depends on the requirements of
the application.

7 Comparison Results

This section reports on the results obtained when performing the addressed tasks on the gold
standard datasets, presented earlier, using each toolkit. Tables 7, 8, 9, 10 and 11 show the
precision (P), the recall (R) and the F1-scores for each scenario. The presented results are
macro averages, i.e, we computed the precision, recall and F1 for each document (tweet or
news) and then averaged the results. The standard deviations associated with the computed
macro-averages (σ) are also presented. Micro averages were not computed because we were
more interested in assessing the toolkits performance in different documents and not to use
the whole corpus as a large document, which would lower the impact of less frequent tags.

More precisely, each table targets a different task, lines have the results for each tool and
there are three columns per corpus (P, R and F1). Table 7 targets tokenization, Table 8
POS-tagging, and Table 9 chunking. Tables 10 and 11 show two different NER results:
entity identification (NER) only considers the delimitation of a named entity, while entity
classification (NEC) also considers its given type. Table 11 has an additional line with
the results of the best performing system that participated in the CoNLL-2003 shared
task [9], which combined four different classifiers (robust linear classifier, maximum entropy,
transformation-based learning and a hidden Markov model), resulting in F1 = 89% in named
entity classification (NEC).

On the CoNLL dataset, which uses formal language, standard toolkits perform well.
OpenNLP excels with F1 = 99% in tokenization, 88% in POS-tagging and 83% in chunking.
In the NER task, NLTK (89%) and OpenNLP (88%) performed closely. TwitterNLP also
performed well in this dataset. This is not that surprising if we add that the CoNLL-2003
dataset was one of the corpora TwitterNLP was trained on [19], and it is probably also tuned
for this corpus.

As expected, the performance of standard toolkits, developed with formal text in mind,
decreases when used in the social network corpora. This difference is between 5-8% for
tokenization, 17% for POS-tagging, 17-40% for chunking, or 5-18% for NER. This is not

SLATE’16

3:12 Comparing the Performance of Different NLP Toolkits in Formal and Social Media Text

Table 7 Tokenization Performance Results.

Task Tokenization
Data set CoNLL Alan Ritter - Twitter

PPPPPPPTool
Metric P ± σ R ± σ F1 ± σ P ± σ R ± σ F1 ± σ

NLTK 0.95 ± 0.11 0.96± 0.10 0.95 ± 0.11 0.83 ± 0.14 0.91 ± 0.09 0.87 ± 0.12
OpenNLP 0.99 ± 0.02 0.99 ± 0.01 0.99 ± 0.02 0.92 ± 0.11 0.96 ± 0.06 0.94 ± 0.08
CoreNLP 0.73 ± 0.31 0.73 ± 0.31 0.73 ± 0.31 0.93 ± 0.13 0.95 ± 0.11 0.94 ± 0.12
Pattern 0.42 ± 0.30 0.41 ± 0.29 0.42 ± 0.29 0.76 ± 0.21 0.78 ± 0.20 0.77 ± 0.20

TweetNLP 0.97± 0.05 0.98 ± 0.02 0.98 ± 0.04 0.96 ± 0.07 0.98 ± 0.05 0.97 ± 0.06
TwitterNLP 0.95 ± 0.10 0.97 ± 0.09 0.96 ± 0.10 0.96 ± 0.07 0.97 ± 0.05 0.96 ± 0.06

TwitIE 0.85 ± 0.15 0.93 ± 0.11 0.89 ± 0.14 0.83 ± 0.16 0.89 ± 0.11 0.86 ± 0.13

Table 8 PoS Performance Results.

Task PoS Tagging
Data set CoNLL Alan Ritter - Twitter

PPPPPPPTool
Metric P ± σ R ± σ F1 ± σ P ± σ R ± σ F1 ± σ

NLTK 0.65 ± 0.19 0.71 ± 0.18 0.68 ± 0.18 0.65 ± 0.19 0.71 ± 0.18 0.68 ± 0.18
OpenNLP 0.88 ± 0.10 0.88 ± 0.09 0.88 ± 0.10 0.70 ± 0.18 0.73 ± 0.17 0.71 ± 0.17
CoreNLP 0.67 ± 0.29 0.67 ± 0.29 0.67 ± 0.29 0.70 ± 0.19 0.71 ± 0.18 0.71 ± 0.18
Pattern 0.36 ± 0.24 0.35 ± 0.24 0.35 ± 0.24 0.61 ± 0.21 0.62 ± 0.21 0.61 ± 0.20

TweetNLP 0.83 ± 0.10 0.84 ± 0.09 0.84 ± 0.09 0.94 ± 0.08 0.96 ± 0.06 0.95 ± 0.07
TwitterNLP 0.83 ± 0.15 0.84 ± 0.15 0.83 ± 0.15 0.92 ± 0.11 0.93 ± 0.11 0.92 ± 0.11

TwitIE 0.78 ± 0.16 0.85 ± 0.12 0.82 ± 0.14 0.78 ± 0.17 0.84 ± 0.13 0.81 ± 0.14

Table 9 Chunking Performance Results.

Task Chunking
Data set CoNLL Alan Ritter - Twitter

PPPPPPPTool
Metric P ± σ R ± σ F1 ± σ P ± σ R ± σ F1 ± σ

NLTK 0.70 ± 0.10 0.71 ± 0.10 0.71 ± 0.10 0.51 ± 0.16 0.56 ± 0.16 0.54 ± 0.16
OpenNLP 0.83 ± 0.13 0.83 ± 0.12 0.83 ± 0.12 0.44 ± 0.34 0.46 ± 0.36 0.45 ± 0.39
CoreNLP n/a n/a n/a n/a n/a n/a
Pattern 0.33 ± 0.22 0.32 ± 0.21 0.33 ± 0.21 0.54 ± 0.21 0.56 ± 0.20 0.55 ± 0.20

TweetNLP n/a n/a n/a n/a n/a n/a
TwitterNLP 0.82 ± 0.13 0.84 ± 0.12 0.83 ± 0.13 0.90 ± 0.12 0.91 ± 0.11 0.90 ± 0.11

TwitIE n/a n/a n/a n/a n/a n/a

Table 10 NER Performance Results.

Task NER
Data set CoNLL Alan Ritter - Twitter

PPPPPPPTool
Metric P ± σ R ± σ F1 ± σ P ± σ R ± σ F1 ± σ

NLTK 0.88 ± 0.12 0.89 ± 0.11 0.89 ± 0.11 0.77 ± 0.16 0.84 ± 0.13 0.80 ± 0.15
OpenNLP 0.88 ± 0.09 0.88 ± 0.08 0.88 ± 0.08 0.85 ± 0.14 0.90 ± 0.11 0.87 ± 0.12
CoreNLP 0.70 ± 0.30 0.70 ± 0.30 0.70 ± 0.30 0.87 ± 0.15 0.89 ± 0.14 0.88 ± 0.15
Pattern n/a n/a n/a n/a n/a n/a

TweetNLP n/a n/a n/a n/a n/a n/a
TwitterNLP 0.88 ± 0.11 0.89 ± 0.10 0.88 ± 0.11 0.96 ± 0.07 0.97 ± 0.05 0.97 ± 0.06

TwitIE 0.74 ± 0.16 0.80 ± 0.14 0.77 ± 0.15 0.77 ± 0.17 0.83 ± 0.14 0.80 ± 0.15

A. Pinto, H. Gonçalo Oliveira, and A. Oliveira Alves 3:13

Table 11 NEC Performance Results.

Task NEC
Data set CoNLL Alan Ritter - Twitter

PPPPPPPTool
Metric P ± σ R ± σ F1 ± σ P ± σ R ± σ F1 ± σ

NLTK 0.84 ± 0.12 0.84 ± 0.12 0.84 ± 0.12 0.75 ± 0.17 0.83 ± 0.14 0.79 ± 0.15
OpenNLP 0.87 ± 0.10 0.87 ± 0.09 0.87 ± 0.09 0.85 ± 0.15 0.89 ± 0.12 0.87 ± 0.13
CoreNLP 0.70 ± 0.30 0.70 ± 0.30 0.70 ± 0.30 0.87 ± 0.16 0.89 ± 0.14 0.88 ± 0.15
Pattern n/a n/a n/a n/a n/a n/a

TweetNLP n/a n/a n/a n/a n/a n/a
TwitterNLP 0.84 ± 0.13 0.85 ± 0.12 0.85 ± 0.12 0.95 ± 0.08 0.96 ± 0.07 0.95 ± 0.08

TwitIE 0.73 ± 0.17 0.80 ± 0.14 0.76 ± 0.16 0.77 ± 0.17 0.84 ± 0.14 0.80 ± 0.15
Florian et al. 0.89 0.89 0.89 ± 0.70 n/a n/a n/a

Table 12 NER/NEC Performance Results on the #MSM2013 Data set.

Data set #MSM2013 - Twitter
Task NER NEC

PPPPPPPTool
Metric P ± σ R ± σ F1 ± σ P ± σ R ± σ F1 ± σ

NLTK 0.83 ± 0.16 0.83 ± 0.16 0.83 ± 0.14 0.85 ± 0.14 0.85 ± 0.15 0.85 ± 0.13
OpenNLP 0.83 ± 0.14 0.86 ± 0.14 0.85 ± 0.14 0.84 ± 0.14 0.86 ± 0.13 0.85 ± 0.13
CoreNLP 0.73 ± 0.19 0.83 ± 0.16 0.78 ± 0.16 0.73 ± 0.19 0.84 ± 0.16 0.78 ± 0.16
Pattern n/a n/a n/a n/a n/a n/a

TweetNLP n/a n/a n/a n/a n/a n/a
TwitterNLP 0.90 ± 0.12 0.90 ± 0.12 0.90 ± 0.12 0.91 ± 0.11 0.91 ± 0.11 0.91 ± 0.11

TwitIE 0.61 ± 0.20 0.73 ± 0.18 0.66 ± 0.18 0.61 ± 0.20 0.73 ± 0.17 0.66 ± 0.18
Habib et al. 0.72 0.80 0.76 0.65 0.73 0.69

the case of Pattern, which performs poorly in the CoNLL corpus but improves significantly
when tokenizing, PoS tagging and chunking the Twitter corpora. Although not developed
specifically for Twitter, OpeNLP and CoreNLP still obtain interesting results for tokenization
and NER in its corpus (F1 > 80%).

Also as expected, in the Twitter corpus, the Twitter-oriented toolkits performed better
than the others. TweetNLP was the best in the tokenization (97%) and POS-tagging (95%)
tasks. TwitterNLP performed closely (96% and 92%). In the case of TwitIE, the difference of
performance in different types of text was not relevant. Once again, it should be highlighted
that TwitterNLP was trained with the Twitter corpus, so this comparison is not completely fair.
This is also why we used an additional corpus, #MSM2013, which covers social network text.
The results of the NER task in this corpus, shown in table 12, confirm the good performance
of TwitterNLP. In the last line of the previous table, we also present the official results of the
best system that participated in the #MSM2013 Concept Extraction Task, Habib et al. [14],
which apparently underperformed TwitterNLP. Habib et al. combined Conditional Random
Fields with Support Vector Machines for recognition and, for classification, each entity was
disambiguated and linked to its Wikipedia article, where the category was extracted from.

8 Conclusions

We presented a set of experiments aiming at comparing the performance of different open-
domain NLP toolkits, which were used to perform different NLP tasks on different kinds

SLATE’16

3:14 Comparing the Performance of Different NLP Toolkits in Formal and Social Media Text

of text, namely news (more formal) and social media text (higher proportion of informal
documents).

We have shown that, using only the available pre-trained models, there is not one toolkit
that overperformed all the others in every scenario. Though, some are more balanced than
the others. Even if it cannot be seen as a strong conclusion, the results suggest that OpenNLP
is the best choice for news text, and TwitterNLP for social media text. Although the latter
result was biased on the TWitter corpus, where TwitterNLP was trained on, we also tested it
on another corpus, where it got the best results. It should be noticed that we ended up using
datasets that were more appropriate for specific tasks. For instance, although its text of the
CoNLL-2003 dataset is tokenized, POS-tagged, and chunked, it was specifically developed
for a NER shared task. On the other hand, we did not use the CoNLL-2000, developed for a
chunking shared task. Although this dataset was used to train some of the OpenNLP models,
we should also consider its results in the future.

As expected, standard toolkits perform better in formal texts, while Twitter-oriented
tools got better results in social media text. Besides helping us to make a selection, we believe
that these results might be useful for potential users willing to select the most appropriate
tools for their specific purposes, especially if they do not have time or expertise to train new
models. Of course, we did not use all the available tools, especially those available as web
services, but we tried to cover an acceptable range of widely used toolkits that cover several
NLP tasks and developed in two programming languages with a large community – Java
and Python. We also regard that, with more available manually annotated datasets, either
with formal or informal language, we could always re-train some of the available models and
possibly increase the performance achieved with most of the tested tools.

References
1 Samet Atdag and Vincent Labatut. A Comparison of Named Entity Recognition Tools

Applied to Biographical Texts. In Systems and Computer Science (ICSCS), 2013 2nd In-
ternational Conference on, pages 228–233, Villeneuve d’Ascq, France, August 2013. IEEE.

2 Steven Bird. NLTK: The Natural Language Toolkit. In Proceedings of the COLING/ACL
on Interactive Presentation Sessions, COLING-ACL’06, pages 69–72, Sydney, Australia,
2006.

3 Kalina Bontcheva, Leon Derczynski, Adam Funk, Mark A. Greenwood, Diana Maynard,
and Niraj Aswani. TwitIE: An Open-Source Information Extraction Pipeline for Microb-
log Text. In Proceedings of the International Conference on Recent Advances in Natural
Language Processing. Association for Computational Linguistics, 2013.

4 Hamish Cunningham, Diana Maynard, Kalina Bontcheva, and Valentin Tablan. GATE:
An Architecture for Development of Robust HLT Applications. In Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics, pages 168–175, Philadelphia,
Pennsylvania, 2002.

5 Walter Daelemans, Jakub Zavrel, Peter Berck, and Steven Gillis. MBT: A Memory-Based
Part of Speech Tagger-Generator. arXiv preprint cmp-lg/9607012, 1996.

6 Tom De Smedt and Walter Daelemans. Pattern for Python. The Journal of Machine
Learning Research, 13(1):2063–2067, 2012.

7 Štefan Dlugolinský, Peter Krammer, Marek Ciglan, Michal Laclavík, and Ladislav Hluchý.
Combining Named Enitity Recognition Tools. In Making Sense of Microposts (#
MSM2013), Rio de Janeiro, Brazil, May 2013.

8 David Ferrucci and Adam Lally. UIMA: An Architectural Approach to Unstructured In-
formation Processing in the Corporate Research Environment. Natural Language Engin-
eering, 10(3-4):327–348, September 2004.

A. Pinto, H. Gonçalo Oliveira, and A. Oliveira Alves 3:15

9 Radu Florian, Abe Ittycheriah, Hongyan Jing, and Tong Zhang. Named Entity Recog-
nition through Classifier Combination. In Walter Daelemans and Miles Osborne, editors,
Proceedings of CoNLL-2003, pages 168–171. Edmonton, Canada, 2003.

10 Marcos Garcia and Pablo Gamallo. Yet Another Suite of Multilingual NLP Tools. In
Languages, Applications and Technologies – Revised Selected Papers of 4th International
Symposium SLATE, Madrid, Spain, June 2015, CCIS, pages 65–75. Springer, 2015.

11 Kevin Gimpel, Nathan Schneider, Brendan O’Connor, Dipanjan Das, Daniel Mills, Jacob
Eisenstein, Michael Heilman, Dani Yogatama, Jeffrey Flanigan, and Noah A Smith. Part-of-
speech Tagging for Twitter: Annotation, Features, and Experiments. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies: Short Papers – Volume 2, pages 42–47, Portland, Oregon, 2011.

12 Fréderic Godin, Pedro Debevere, Erik Mannens, Wesley De Neve, and Rik Van de Walle.
Leveraging Existing Tools for Named Entity Recognition in Microposts. In Making Sense
of Microposts (# MSM2013), pages 36–39, Rio de Janeiro, Brazil, May 2013.

13 Meritxell González Bermúdez. An analysis of Twitter corpora and the difference between
formal and colloquial tweets. In Proceedings of the Tweet Translation Workshop 2015, pages
1–7. CEUR-WS. org, 2015.

14 Mena Habib, Maurice Van Keulen, and Zhemin Zhu. Concept extraction challenge: Univer-
sity of Twente at #msm2013. InMaking Sense of Microposts (#MSM2013) Concept Extrac-
tion Challenge, pages 17–20, 2013. URL: http://ceur-ws.org/Vol-1019/paper_14.pdf.

15 Edward Loper and Steven Bird. NLTK: The Natural Language Toolkit. In Proceedings
of the ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural Lan-
guage Processing and Computational Linguistics – Volume 1, ETMTNLP’02, pages 63–70,
Philadelphia, Pennsylvania, 2002.

16 Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven Beth-
ard, and David McClosky. The Stanford CoreNLP Natural Language Processing Toolkit.
In Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics:
System Demonstrations, pages 55–60, Baltimore, USA, 2014.

17 Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a Large
Annotated Corpus of English: The Penn Treebank. Comput. Linguist., 19(2):313–330, June
1993. URL: http://dl.acm.org/citation.cfm?id=972470.972475.

18 Lance A. Ramshaw and Mitchell P. Marcus. Text Chunking using Transformation-Based
Learning. In Proceedings of the ACL Third Workshop on Very Large Corpora, pages 82–94,
June 1995.

19 Alan Ritter, Sam Clark, and Oren Etzioni. Named Entity Recognition in Tweets: An
Experimental Study. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pages 1524–1534, Edinburgh, Scotland, July 2011.

20 Giuseppe Rizzo, Raphaël Troncy, Sebastian Hellmann, and Martin Bruemmer. NERD
meets NIF: Lifting NLP Extraction Results to the Linked Data Cloud. LDOW, 937, 2012.

21 Giuseppe Rizzo, Marieke van Erp, and Raphaël Troncy. Benchmarking the Extraction and
Disambiguation of Named Entities on the Semantic Web. In International Conference on
Language Resources and Evaluation, pages 4593–4600, 2014.

22 Kepa Joseba Rodriquez, Mike Bryant, Tobias Blanke, and Magdalena Luszczynska. Com-
parison of Named Entity Recognition Tools for Raw OCR Text. In KONVENS, pages
410–414, Vienna, Austria, 2012.

23 Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko, Saif Mohammad, Alan Ritter, and
Veselin Stoyanov. SemEval-2015 Task 10: Sentiment Analysis in Twitter. In Proceedings
of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pages 451–
463, Denver, Colorado, June 2015. Association for Computational Linguistics. URL: http:
//www.aclweb.org/anthology/S15-2078.

SLATE’16

http://ceur-ws.org/Vol-1019/paper_14.pdf
http://dl.acm.org/citation.cfm?id=972470.972475
http://www.aclweb.org/anthology/S15-2078
http://www.aclweb.org/anthology/S15-2078

3:16 Comparing the Performance of Different NLP Toolkits in Formal and Social Media Text

24 Fabrizio Sebastiani. Machine Learning in Automated Text Categorization. ACM Computing
Surveys, 34(1):1–47, Mars 2002.

25 Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003 Shared
Task: Language-Independent Named Entity Recognition. In Walter Daelemans and Miles
Osborne, editors, Proceedings of CoNLL-2003, pages 142–147. Edmonton, Canada, 2003.

Comparing and Benchmarking Semantic Measures
Using SMComp∗

Teresa Costa1 and José Paulo Leal2

1 CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto, Porto,
Portugal
teresa.costa@dcc.fc.up.pt

2 CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto, Porto,
Portugal
zp@dcc.fc.up.pt

Abstract
The goal of the semantic measures is to compare pairs of concepts, words, sentences or named en-
tities. Their categorization depends on what they measure. If a measure only considers taxonomy
relationships is a similarity measure; if it considers all type of relationships it is a relatedness
measure.

The evaluation process of these measures usually relies on semantic gold standards. These
datasets, with several pairs of words with a rating assigned by persons, are used to assess how
well a semantic measure performs.

There are a few frameworks that provide tools to compute and analyze several well-known
measures. This paper presents a novel tool – SMComp – a testbed designed for path-based
semantic measures. At its current state, it is a domain-specific tool using three different versions
of WordNet.

SMComp has two views: one to compute semantic measures of a pair of words and another to
assess a semantic measure using a dataset. On the first view, it offers several measures described
in the literature as well as the possibility of creating a new measure, by introducing Java code
snippets on the GUI. The other view offers a large set of semantic benchmarks to use in the
assessment process. It also offers the possibility of uploading a custom dataset to be used in the
assessment.

1998 ACM Subject Classification E.1 Graphs and networks, I.2.4 Knowledge Representation
Formalisms and Methods, Semantic networks, H.3.5 Online Information Services, Web-based
services, H.5.3 Group and Organization Interfaces, Web-based interaction

Keywords and phrases Semantic similarity, semantic relatedness, testbed, web application

Digital Object Identifier 10.4230/OASIcs.SLATE.2016.4

1 Introduction

Semantic measures are an attempt to quantify and compare pairs of concepts, words, sentences
or named entities that can be regarded as a kind of semantic distance in a semantic space [12].

∗ This work is partially financed by the ERDF – European Regional Development Fund through the
Operational Programme for Competitiveness and Internationalisation – COMPETE 2020 Programme
and by the FCT within project POCI-01-0145-FEDER-006961 and project “NORTE-01-0145-FEDER-
000020” financed by the North Portugal Regional Operational Programme (NORTE 2020), under the
PORTUGAL 2020 Partnership Agreement and through the European Regional Development Fund
(ERDF).

© Teresa Costa and José Paulo Leal;
licensed under Creative Commons License CC-BY

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira; Article No. 4; pp. 4:1–4:13

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2016.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

4:2 Comparing and Benchmarking Semantic Measures Using SMComp

This analysis is difficult since the object of semantic measures is inherently psychological,
thus their evaluation rely on datasets that average the human perception of the semantic
relationships.

There are two main types of semantic measures: similarity and relatedness. Despite
being two different concepts they are commonly confused. Similarity measures the amount
of common features between a pair of entities. It depends on the size of the smallest class
that contains them. Relatedness depends on any relationship type connecting two elements,
including but not restricted to class membership and inclusion. For instance, cat and dog are
two similar concepts since they are both mammals; the same can be said about ant and flee
since they are both insects. An ant and a dog are also similar insofar they are both animals,
but less similar than cat and dog. The reason why is that the class animals contains both the
classes mammal and insect. Flees are related to cats and dogs since they parasite them, thus
flees are more related to dogs than ants. This happens not because the features they share,
and they share because they are animals, but because of other relationships, in this case
parasitism. In such way, the similarity of dogs and flees may be the same as the similarity of
dogs and ants, but the relatedness between flees and dogs is greater than dogs and ants.

In spite of the clear difference between similarity and relatedness, people often confuse
them or value them differently, as the classical example of how people compare a magazine,
a pencil and a notepad [9] demonstrates. This difference is particularly noted when the same
pair of words is measure using both types: similarity and relatedness.

This paper presents SMComp, a testbed for semantic measures freely available on-line1.
This web application provides several well-known path based semantic measures and also
supports user-defined measures. It has also an assessment mode, using several semantic gold
standards or a custom dataset, uploaded by the user.

Section 2 surveys different semantic measures, datasets and libraries. It categorizes the
types of semantic measures regarding their source, with focus on knowledge-based measures
using the structural approach. This section also provides an overview on other tools used to
compute and analyze semantic measures. It identifies also the semantic datasets commonly
used in the assessment of semantic measures.

Section 3 introduces SMComp, providing an overview of this testbed. It details on its
architecture and its behavior. The validation process was performed using the semantic
graphs and measures available in the web application. The results are presented in Section 4.
Section 5 summarizes the research present in this paper and highlights its main contribution.

2 Background

A semantic measure is a numerical estimation of how semantically connected two elements are.
This evaluation relies on the analysis of information extracted from semantic sources. The
type of a semantic measure depends on the type of the semantic source. The unstructured /
semi-structured sources (plain texts or dictionaries, for instance) are used by Distributional
Measures. Structured sources, such as semantic graphs (WordNet or DBPedia, for instance)
are used by Knowledge-based Measures. These measures follow three different approaches:
the structural [15, 23, 30] approach, the feature-based [4, 25, 28] approach and the Shannon’s
Information Theoretical [16, 22, 20, 21] approach. There are also hybrid measures [2, 3, 18, 26]
that combine distributional and knowledge-based approaches and take advantage of both
representations.

1 http://quilter.dcc.fc.up.pt/smcomp/

http://quilter.dcc.fc.up.pt/smcomp/

T. Costa and J. P. Leal 4:3

This paper focus on structural knowledge-based measures, namely on path-based measures.
A common knowledge source used on the assessment of these measures is WordNet2 [7]. This
knowledge base is usually represented as a semantic graph that models the English lexical
knowledge. Its structure uses synsets as nodes and they are connected by semantic and
lexical relationships.

Path-based measures follow a structural approach. They take advantage of several graph
traversal strategies, such as shortest path, random walks and other interaction analysis.
These measures are based on the analysis of the interconnections between nodes and use
it to estimate the similarity (or relatedness) between them. They rely on the definition
of shortest path and least common subsumer. The measures proposed by Rada et al. [23],
Resnik [26], Leacock & Chodorow [15] and Wu & Palmer [30] are examples of path-based
similarity measures. Hirst & St-Onge [14] and Strube & Ponzetto [29] proposed several
relatedness measures.

There are several tools for the computation and analysis of semantic measures. They
can be categorized according to the interface they support. The programming packages
are usually general libraries, not focused in any particular semantic graph. They can be
used only through their application interface (API) which requires programming just to be
used. SML3 [11] is an example of this kind of tool. It is simultaneously a library and a
toolkit designed to the computation of semantic measures, such as similarity, relatedness and
distance, supporting a large range of knowledge-based measures.

User packages provide both and API and a graphic user interface (GUI), usually deployed
on the web. Typically, they are domain-specific since they are designed for a particular
semantic graph. WordNet::Similarity [19] is a Perl module that implements several semantic
similarity and relatedness measures. The results are based on the information found in a
specific version of WordNet. WordNet::Similarity is freely available for download and has
also a web interface4. WS4J5 is a Java API for several semantic similarity and relatedness
measures. It is freely available for download and has also a web application6 where one can
compute simultaneously all the semantic measures available between a pair of concepts also
in a specific version of WordNet. None of these tools provide measure assessment from the
GUI.

The assessment of semantic measures usually rely on the correlation of a measure with
expected scores of word pairs. This provides an insight of how well they mimic the human
capacity to compare things. Most of datasets used in the measure assessment average human
ratings for a set of word pairs [12]. The ratings are collected during experiments involving
several participants. According to the instructions provided to them, they assign a similarity
or relatedness score to the word pairs. Usually, each dataset has its own set of instructions
which may influence the notions of similarity and relatedness. Thus, datasets are also
categorized as intended for similarity or relatedness. This work uses four different similarity
datasets [27, 17, 1, 13] and five relatedness datasets [8, 1, 5, 10, 24].

3 SMComp

SMComp is a testbed for semantic measures, developed with Google Web Toolkit (GWT),
that is freely available on-line7. It presents a novel approach that combines the GUI and

2 https://wordnet.princeton.edu/
3 http://www.semantic-measures-library.org/sml/index.php
4 http://marimba.d.umn.edu/cgi-bin/similarity/similarity.cgi
5 https://code.google.com/archive/p/ws4j/
6 http://ws4jdemo.appspot.com/
7 http://quilter.dcc.fc.up.pt/smcomp/

SLATE’16

https://wordnet.princeton.edu/
http://www.semantic-measures-library.org/sml/index.php
http://marimba.d.umn.edu/cgi-bin/similarity/similarity.cgi
https://code.google.com/archive/p/ws4j/
http://ws4jdemo.appspot.com/
http://quilter.dcc.fc.up.pt/smcomp/

4:4 Comparing and Benchmarking Semantic Measures Using SMComp

Front-end Back-end Sandbox

sendCode(code)

safelyExecutecode(pair)

measure(pair)

Spearman's

upload(dataset)

feedback

calcSM(Measures, pair)

[else]

measure(pair)

evaluateDataset(measure, dataset)

measure(pair)

Result

Result

feedback

opt [wordPairs]

Result

compile(code)

loop

opt [userDefinedMeasure]

opt [Measures]loop

alt

Figure 1 SMComp sequence diagram.

API features. Using its web interface the user can test a range of semantic measures and
assess them with several datasets referred in the literature. This GUI also allows the user to
provide a snippet of Java code to implement his own semantic measure and quickly assess its
performance with relevant benchmarks.

The presented web application has four main distinctive features:
it compares a semantic similarity measure with its corresponding relatedness version;
it allows the user to create his own semantic measure and test it with the available
semantic sources;
it allows the user to upload a custom dataset;
it assesses semantic measures using a set of semantic datasets.

The following Subsections detail on each aspect of SMCom: architecture, front-end,
back-end and sandbox.

3.1 Architecture
SMComp is a testbed composed of 3 main components: a front-end, running on a web client,
responsible for user interaction; a back-end running on a server responsible for computing
semantic measures; and a sandbox responsible for the safe execution of user-provided Java
code.

Figure 1 shows an UML sequence diagram summarizing the interaction between com-
ponents. It has 4 key moments: submit a user-defined method, compute semantic measures,
upload a custom dataset and assess a measure. On the first moment, the Java code is sent to
the back-end server to be compiled. On the second moment, a selection of measures is sent

T. Costa and J. P. Leal 4:5

for computation. The back-end server iterates over the set of measures. If it includes the
user-defined measure, it is sent to the sandbox to be safely executed. On the third moment,
the user uploads his dataset to be used in the evaluation process. This process occurs on the
final moment, where a single measure is assessed using a selected dataset.

3.2 Back-end

Semantic Graph Processing

The implemented semantic measures follow a structural approach, depending on graph
traversal strategies to find paths connecting two words. This strategy can be a very time-
consuming process, in particular if a remote source is used. To rely on remote sources
would raise some issues: there is no guarantees that they are always available and network
performance issues may hinder the execution of a semantic measures, since it requires a
massive amount of graph queries.

In order to overcome these constraints, this application relies on a pre-processed graph.
Known knowledge-bases, such as WordNet, usually provide dumps of their data. These
dumps, in Resource Description Framework (RDF), were previously pre-processed in order
to store the graph locally.

The graph pre-processing requires to parse RDF data. This data can be retrieved in
several formats, such as Turtle, RDF/XML or N-Triples. To simplify and unify the process,
all dumps are converted to N-Triples, the simplest RDF serialization. This conversion relies
on the Apache Jena Framework8.

The SMComp measures are path-based. Thus, the internal representation of semantic
graphs in SMComp is designed to simplify the manipulation of paths. A path can be seen as a
sort of chain, composed by a sequence of links. Hence, a pre-processed graph in SMComp can
be seen as a collection of links ready to form chains. These chain links are called Transition
and are made of a pair of Node. This internal representation is created by loading semantic
graph serializations.

A semantic graph in RDF is a collection of triples of the form subject - predicate - object.
This data is represented in SMComp using the types depicted in the UML class diagram in
Figure 2. Each element of a triple is converted to a Node<N>, where the type parameter N is
the type of the node representation, such as String or Jena Resource. A subject must be
a Concept Node and the same is true for the predicate . The object can be either a Value
Node or a Concept Node. Concept Node are serialized in RDF by URIs and Value Node
are serialized as literals. For each subject, a Transition is created and associated to it, using
the values of the predicate and object.

A Path is a more complex data type that has a node at its first position followed by a
sequence of transitions. Paths are create by semantic measures using the ProcessedGraph.

This mapping process creates a locally stored graph, called ProcessedGraph. Fig-
ure 2 shows its operations and the relationships with the other types. The use of the
ProcessedGraph eases the process of adding and retrieving path components, i.e. Transition
instances.

SMcomp uses the ProcessedGraph format to store the available knowledge bases. This
conversion process is executed only once, when a new semantic graph is added to SMComp.

8 https://jena.apache.org/

SLATE’16

https://jena.apache.org/

4:6 Comparing and Benchmarking Semantic Measures Using SMComp

Node<N>

ConceptNodeValueNode

Transition<N>

- node : Node
- property : Node

ProcessedGraph<N>

+ validProperties : List<N>
+ nodes : Map<Node, Transition>
+ labels : Map <String, Set<Node>>

Path<N>

+ start : String
+ end : String
+ first : Node
+ last : Node
+ property : Node

SemanticMeasure

2

Figure 2 UML class diagram of the ProcessedGraph.

The RDF dumps used are available for WordNet 2.19, WordNet 3.010 and WordNet 3.111.
WordNet 2.1 uses 4.8GB of disk space, WordNet 3.0 uses 6.6GB of disk space and WordNet 3.1
uses 6.3GB.

Semantic Measures

SMcomp implements several path-based semantic measures, namely those described in
Section 2. With the exception of the Hirst & St-Onge, the proposed measures were originally
designed to estimate semantic similarity. However, they were adapted by Strube & Ponzetto
to also measure semantic relatedness.

In addition to these measures, SMComp also implements a Resnik and a Hirst & St-Onge
adaptation, enabling measure relatedness with the former and similarity with the later. The
approach followed in these adaptations is similar to that used by Strube & Ponzetto [29]. To
compute semantic relatedness using the Resnik measure, all the properties must be considered
instead of only the taxonomic ones. To compute semantic similarity with Hirst & St-Onge,
one must only consider the only taxonomic properties instead of the allowable12 ones.

The implementation process considered the following assumptions:
the value of a semantic measure between a word and itself it is the maximum value;
if at least one of the words is not in the semantic graph the value of its measure is the
minimum value;
if the semantic graph has several roots, a new node is inserted to create a semantic tree
with a single root node;

9 http://sourceforge.net/projects/texai
10 http://semanticweb.cs.vu.nl/lod/wn30/
11 http://wordnet-rdf.princeton.edu/
12The allowble relations include: see also, antonymy, attribute, cause, entailment, holonymy, hypernymy,

hyponymy, meronymy, pertinence and similarity.

http://sourceforge.net/projects/texai
http://semanticweb.cs.vu.nl/lod/wn30/
http://wordnet-rdf.princeton.edu/

T. Costa and J. P. Leal 4:7

Sandbox

PathBasedMethod

~ graph : ProcessedGraph
~ taxonomicProperties : List<Node>
~ validProperties: List<Node>
~ maxDepth: Integer

+ initializeMeasure(ProcessedGraph)
+ getBranches(Node) : Set<Path>
+ mergePaths(Path, Path) : Path
+ getLCA(Path, Path) : Node
+ getAllRelatedPaths(Node,Node) : Set<Paths>
+ getRelatedShorterPath(Node,Node) : Path

KindOfPaths
<<enumeration>>

SHORTEST_PATH
LONGEST_PATH

MeasureOwnMethods
<<interface>>

+ defineMinValue() : Double
+ defineMaxValue() : Double
+ defineValidProperties() : List<Node>
+ defineKindOfPaths() : KindOfPath
+ measureSimilarity(List<Paths>) : Double
+ measureRelatedness(List<Paths>) : Double

HSOResnik

LCH

Rada

WUP

<<User Defined Code>>

SafePathBasedMethod

GatedSecurity
Manager

MeasureMethodProvider

+ terminate()

Security
Manager

RMI
connection

Figure 3 UML class diagram of the path-based semantic measures.

the disambiguation strategy selects the pair of concepts (derived from the input words)
that produces the best measure.

Figure 3 is an UML class diagram for the available methods. An important advantage of
the SMComp design is the abstraction of common features used by all measures, exploiting
the fact they are all path-based. This simplified the implementation of the literature methods
and provided a skeleton to easily implement new measures with only a few lines of code.

All methods follow the same approach. The first step is to define the range of values,
which is done by defineMinValue() and defineMaxValue(). If the measure considers
a specific set of properties when computing relatedness, those must be declared using
defineValidProperties(). A method can consider either the shortest path or a path of
any size. To define which kind should be considered the defineKindOfPaths() is used.
At last, the methods that actually implement the measures are measureSimilarity and
measureRelatedness. The methods receive a list of Path and return a numerical value.

3.3 Sandbox
The Java code submitted by the user is compiled by back-end. Compilation errors detected
at this stage are reported back to the client and shown on the user interface. For safety

SLATE’16

4:8 Comparing and Benchmarking Semantic Measures Using SMComp

reasons, the execution of this code is performed in a different Java Virtual Machine (JVM).
Thus, the back-end can ensure termination of the submitted code.

The sandbox is the component responsible for the execution of submitted code. This
component uses its own Security Manager to deny the access of user submitted code to
any sensitive resources, such as the file system or the network, avoiding the execution of
malicious code. It also enforces time limit on the execution of individual methods.

The communication between the back-end and the sandbox relies on Remote Method
Invocation (RMI). The sandbox exposes all the methods defined by MeasureOwnMethods
interface and also the terminate() method, which is invoked by the back-end whenever
the user-submitted code can no longer be executed. The sandbox is also responsible for
reporting back to the back-end, and are forward to the front-end, any timeout, execution
errors or security violations.

3.4 Front-end
Figure 4 presents a screenshot with an edit view of the SMComp front-end. The web interface
is a single window and requires no authentication. An user can select one of two modules:
word pairs or datasets. This selection is available by using the tabs on the top of the window.

Both tabs have a similar layout. The major difference is in the area right bellow the tabs:
in the word pairs view it has entries for the words to compare; in the datasets view it has
a selector with the available benchmarks. The selector of knowledge source is also similar
in both tabs. They also have similar grids where the computed results are displayed and a
large button labelled “Compute” at the bottom.

All computation results are displayed in a two column grid. Each row corresponds to a
semantic measure and the columns to the semantic type (left column is assigned to relatedness
and the right column is assigned to similarity). The row and column headers have check
boxes where the user selects which measures and variants he wants to compute. Bellow each
row label, there is a button with a magnifying glass. When pressed, it shows a dialog box
with the Java implementation of the measure. This should be useful as an example for the
user implementation.

Bellow the User Defined label, the button icon shows a pencil. When pressed, the user
enters on edit mode of its measure, as shown on Figure 4. This dialog provides a code editor,
where he can enter a Java class with a new method, extending PathBaseMethod.

The assessment view using datasets is similar. The computation results are also displayed
in a two column grid where each row corresponds to a semantic measure and each column
to a semantic variant. The measure and its variant are selected using radio buttons. The
available datasets are displayed in a list on the top. It is possible to upload a custom dataset
by selecting USER from this list. In this case, a dialog box opens where values can be
inserted using the format word, word, value. Clicking in the button labelled “Upload”
dataset is sent to server and is ready to use in the assessment.

Use-case example
The code in Listing 1 is a simple example of the implementation of a user defined measure. The
first step is to give a name to the class, which in this case is UserDefinedMethodExample.
This class implements MeasureOwnMethods that provides a skeleton of the measure to
complete.

The minimun and maximun numerical value of the measure must be defined. In this
example, the minimum value is set to 0 and the maximum is set to the largest double. These

T. Costa and J. P. Leal 4:9

Figure 4 SMComp user interface.

were defined with defineMinValue() and defineMaxValue() respectively. The next step is
to decide which properties should be considered when measuring relatedness since in similarity
only is-a relationships are considered. If all should be considered, defineValidProperties()
must return a empty list, which is the case.

It is also needed to define the size of paths. One can select between the shortest path
between two elements or the longest path. This example uses the shortest path which is the
enumerate value defined by defineKindOfPaths().

After these initialization the user can define the measures itself. In this case, the measure
takes in consideration the number of edges in the shortest path. The score is given by
1/(number_of_edges_in_the_path + 1).

4 Validation

This work is part of a comprehensive research on semantic measures that aimed at under-
standing the misconceptions between similarity and relatedness. SMComp was developed to
support its validation process. The detailed results obtained are available on [6].

SLATE’16

4:10 Comparing and Benchmarking Semantic Measures Using SMComp

Listing 1 User defined method example.
import pt.up.fc.dcc.SemArachne.datagraphTypes.*;
import pt.up.fc.dcc.SemArachne.methods.MeasureOwnMethods;
import pt.up.fc.dcc.SemArachne.methods.KindOfPaths;
import java.util.*;

public class UserDefinedMethodExample implements MeasureOwnMethods {
@Override
public double defineMinValue() {

return 0.0;
}

@Override
public double defineMaxValue() {

return Double.MAX_VALUE;
}

@Override
public List<Node<String>> defineValidProperties() {

return new ArrayList<>();
}

@Override
public KindOfPaths defineKindOfPaths() {

return KindOfPaths.SHORTEST_PATH;
}

@Override
public double measureSimilarity(List<Path<Node<String>>> paths) {

int edges = paths.get(0).getProperties().size();
return score = 1.0 / ((double) edges + 1);

}

@Override
public double measureRelatedness(List<Path<Node<String>>> paths) {

int edges = paths.get(0).getProperties().size();
return score = 1.0 / ((double) edges + 1);

}
}

The validation performed executed a cross evaluation using 10 different semantic measures
(5 similarity and 5 relatedness) and 9 semantic datasets (4 similarity and 5 relatedness). The
three versions of WordNet were used in the process.

Using WordNet 2.1, WUP and HSO similarity measures stood out since they had a
better performance with similarity datasets. WS Sim dataset was correctly identified by all
measures and MTurk-287 and MEN was always misidentified. With WordNet 3.0, WUP and
HSO similarity measures stood out again. WS Sim was once again always identified as a
similarity dataset. WordNet 3.1 only WUP stood out for similarity and HSO for relatedness.
WS Rel was correctly identified by all semantic measures.

T. Costa and J. P. Leal 4:11

5 Conclusion

This work presents a testbed to compare, analyze and assess path-based semantic measures.
SMComp is a novel approach for tools of this kind that couples GUI and API in a web
interface. It provides three versions of a widely used semantic knowledge-base (WordNet);
implementations of the most referenced path-based measures described in the literature;
support for user-provided measures, coded with small snippets on the web interface; and
evaluation of semantic measure quality using standard and custom datasets.

A validation of SMComp was performed during an experiment to compare similarity and
relatedness measures and datasets. This experiment covered all the measures and datasets
supported by SMComp. Using SMComp we were able to show that most of the semantic
measures do not have the best performance with datasets of their type. It also allowed
to pinpoint some measures and datasets more accurate, namely Wu & Palmer similarity
measure and WS-Sim and WS-Rel datasets.

References
1 Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Paşca, and Aitor

Soroa. A study on similarity and relatedness using distributional and wordnet-based ap-
proaches. In Proceedings of Human Language Technologies: The 2009 Annual Conference of
the North American Chapter of the Association for Computational Linguistics, NAACL’09,
pages 19–27, Stroudsburg, PA, USA, 2009. Association for Computational Linguistics. URL:
http://dl.acm.org/citation.cfm?id=1620754.1620758.

2 Satanjeev Banerjee and Ted Pedersen. An adapted lesk algorithm for word sense disambig-
uation using wordnet. In Computational linguistics and intelligent text processing, pages
136–145. Springer, 2002.

3 Satanjeev Banerjee and Ted Pedersen. Extended gloss overlaps as a measure of semantic
relatedness. In Proceedings of the 18th International Joint Conference on Artificial In-
telligence, IJCAI’03, pages 805–810, San Francisco, CA, USA, 2003. Morgan Kaufmann
Publishers Inc. URL: http://dl.acm.org/citation.cfm?id=1630659.1630775.

4 Olivier Bodenreider, Marc Aubry, and Anita Burgun. Non-lexical approaches to identifying
associative relations in the gene ontology. In Pacific Symposium on Biocomputing. Pacific
Symposium on Biocomputing, pages 91–102. NIH Public Access, 2005.

5 Elia Bruni, Nam Khanh Tran, and Marco Baroni. Multimodal distributional semantics. J.
Artif. Int. Res., 49(1):1–47, January 2014. URL: http://dl.acm.org/citation.cfm?id=
2655713.2655714.

6 Teresa Costa and José Paulo Leal. Semantic measures: How similar? How related? in
print, 2016.

7 Christiane Fellbaum. WordNet. Wiley Online Library, 1999.
8 Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolf-

man, and Eytan Ruppin. Placing search in context: The concept revisited. In Proceedings
of the 10th international conference on World Wide Web, pages 406–414. ACM, 2001.

9 Yuriy Gorodnichenko and Gerard Roland. Understanding the individualism-collectivism
cleavage and its effects: Lessons from cultural psychology. In Masahiko Aoki and Timur
Kuran, editors, Institutions and Comparative Economic Development, volume 150, page
213. Palgrave Macmillan, 2012.

10 Guy Halawi, Gideon Dror, Evgeniy Gabrilovich, and Yehuda Koren. Large-scale learning of
word relatedness with constraints. In Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD’12, pages 1406–1414, New
York, NY, USA, 2012. ACM. doi:10.1145/2339530.2339751.

SLATE’16

http://dl.acm.org/citation.cfm?id=1620754.1620758
http://dl.acm.org/citation.cfm?id=1630659.1630775
http://dl.acm.org/citation.cfm?id=2655713.2655714
http://dl.acm.org/citation.cfm?id=2655713.2655714
http://dx.doi.org/10.1145/2339530.2339751

4:12 Comparing and Benchmarking Semantic Measures Using SMComp

11 Sébastien Harispe, Sylvie Ranwez, Stefan Janaqi, and Jacky Montmain. The semantic
measures library and toolkit: fast computation of semantic similarity and relatedness using
biomedical ontologies. Bioinformatics, 30(5):740–742, 2014.

12 Sébastien Harispe, Sylvie Ranwez, Stefan Janaqi, and Jacky Montmain. Semantic similarity
from natural language and ontology analysis. Synthesis Lectures on Human Language
Technologies, 8(1):1–254, 2015.

13 Felix Hill, Roi Reichart, and Anna Korhonen. Simlex-999: Evaluating semantic models
with (genuine) similarity estimation. arXiv preprint arXiv:1408.3456, 2014.

14 Graeme Hirst and David St-Onge. Lexical chains as representations of context for the
detection and correction of malapropisms. WordNet: An electronic lexical database, 305:305–
332, 1998.

15 Claudia Leacock and Martin Chodorow. Combining local context and wordnet similarity
for word sense identification. WordNet: An electronic lexical database, 49(2):265–283, 1998.

16 Dekang Lin. An information-theoretic definition of similarity. In Proceedings of the Fifteenth
International Conference on Machine Learning, ICML’98, pages 296–304, San Francisco,
CA, USA, 1998. Morgan Kaufmann Publishers Inc. URL: http://dl.acm.org/citation.
cfm?id=645527.657297.

17 George A. Miller and Walter G. Charles. Contextual correlates of semantic similarity.
Language and Cognitive Processes, 6(1):1–28, 1991. doi:10.1080/01690969108406936.

18 Siddharth Patwardhan, Satanjeev Banerjee, and Ted Pedersen. Using measures of semantic
relatedness for word sense disambiguation. In Proceedings of the 4th International Con-
ference on Computational Linguistics and Intelligent Text Processing, CICLing’03, pages
241–257. Springer-Verlag, Berlin, Heidelberg, 2003. URL: http://dl.acm.org/citation.
cfm?id=1791562.1791592.

19 Ted Pedersen, Siddharth Patwardhan, and Jason Michelizzi. Wordnet:: Similarity: meas-
uring the relatedness of concepts. In Demonstration papers at HLT-NAACL 2004, pages
38–41. Association for Computational Linguistics, 2004.

20 Giuseppe Pirró. A semantic similarity metric combining features and intrinsic information
content. Data & Knowledge Engineering, 68(11):1289–1308, 2009.

21 Giuseppe Pirró and Jérôme Euzenat. A feature and information theoretic framework for
semantic similarity and relatedness. In The Semantic Web–ISWC 2010, pages 615–630.
Springer, 2010.

22 Giuseppe Pirró and Nuno Seco. Design, implementation and evaluation of a new semantic
similarity metric combining features and intrinsic information content. In On the Move to
Meaningful Internet Systems: OTM 2008, pages 1271–1288. Springer, 2008.

23 Roy Rada, Hafedh Mili, Ellen Bicknell, and Maria Blettner. Development and application
of a metric on semantic nets. Systems, Man and Cybernetics, IEEE Transactions on,
19(1):17–30, 1989.

24 Kira Radinsky, Eugene Agichtein, Evgeniy Gabrilovich, and Shaul Markovitch. A word
at a time: Computing word relatedness using temporal semantic analysis. In Proceedings
of the 20th International Conference on World Wide Web, WWW’11, pages 337–346, New
York, NY, USA, 2011. ACM. doi:10.1145/1963405.1963455.

25 Sylvie Ranwez, Vincent Ranwez, Jean Villerd, and Michel Crampes. Ontological distance
measures for information visualisation on conceptual maps. In On the Move to Meaningful
Internet Systems 2006: OTM 2006 Workshops, pages 1050–1061. Springer, 2006.

26 Philip Resnik. Using information content to evaluate semantic similarity in a taxonomy. In
Proceedings of the 14th International Joint Conference on Artificial Intelligence – Volume
1, IJCAI’95, pages 448–453, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers
Inc. URL: http://dl.acm.org/citation.cfm?id=1625855.1625914.

http://dl.acm.org/citation.cfm?id=645527.657297
http://dl.acm.org/citation.cfm?id=645527.657297
http://dx.doi.org/10.1080/01690969108406936
http://dl.acm.org/citation.cfm?id=1791562.1791592
http://dl.acm.org/citation.cfm?id=1791562.1791592
http://dx.doi.org/10.1145/1963405.1963455
http://dl.acm.org/citation.cfm?id=1625855.1625914

T. Costa and J. P. Leal 4:13

27 Herbert Rubenstein and John B. Goodenough. Contextual correlates of synonymy. Com-
mun. ACM, 8(10):627–633, 1965.

28 Nenad Stojanovic, Alexander Maedche, Steffen Staab, Rudi Studer, and York Sure. Seal: A
framework for developing semantic portals. In Proceedings of the 1st International Confer-
ence on Knowledge Capture, K-CAP’01, pages 155–162, New York, NY, USA, 2001. ACM.
doi:10.1145/500737.500762.

29 Michael Strube and Simone Paolo Ponzetto. Wikirelate! Computing semantic relatedness
using Wikipedia. In Proceedings of the 21st National Conference on Artificial Intelligence
– Volume 2, AAAI’06, pages 1419–1424. AAAI Press, 2006. URL: http://dl.acm.org/
citation.cfm?id=1597348.1597414.

30 Zhibiao Wu and Martha Palmer. Verbs semantics and lexical selection. In Proceedings
of the 32nd Annual Meeting on Association for Computational Linguistics, pages 133–138.
Association for Computational Linguistics, 1994.

SLATE’16

http://dx.doi.org/10.1145/500737.500762
http://dl.acm.org/citation.cfm?id=1597348.1597414
http://dl.acm.org/citation.cfm?id=1597348.1597414

LLLR Parsing: a Combination of LL and LR
Parsing
Boštjan Slivnik

University of Ljubljana, Faculty of Computer and Information Science, Ljubljana,
Slovenia
bostjan.slivnik@fri.uni-lj.si

Abstract
A new parsing method called LLLR parsing is defined and a method for producing LLLR parsers
is described. An LLLR parser uses an LL parser as its backbone and parses as much of its
input string using LL parsing as possible. To resolve LL conflicts it triggers small embedded LR
parsers. An embedded LR parser starts parsing the remaining input and once the LL conflict is
resolved, the LR parser produces the left parse of the substring it has just parsed and passes the
control back to the backbone LL parser. The LLLR(k) parser can be constructed for any LR(k)
grammar. It produces the left parse of the input string without any backtracking and, if used for
a syntax-directed translation, it evaluates semantic actions using the top-down strategy just like
the canonical LL(k) parser. An LLLR(k) parser is appropriate for grammars where the LL(k)
conflicting nonterminals either appear relatively close to the bottom of the derivation trees or
produce short substrings. In such cases an LLLR parser can perform a significantly better error
recovery than an LR parser since the most part of the input string is parsed with the backbone
LL parser. LLLR parsing is similar to LL(∗) parsing except that it (a) uses LR(k) parsers instead
of finite automata to resolve the LL(k) conflicts and (b) does not perform any backtracking.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems (Parsing),
D.3.1 Formal Definitions and Theory (Syntax), D.3.4 Processors (Parsing)

Keywords and phrases LL parsing, LR languages, left parse

Digital Object Identifier 10.4230/OASIcs.SLATE.2016.5

1 Introduction

As the syntax-directed translation represents the core of virtually any modern compiler’s
front-end, the parser as the implementation of the syntax analysis form an important part
of any compiler. Hence, the parser should provide the compiler writer with (a) a solid
framework for evaluation of semantic actions during or after parsing and (b) an appropriate
support for producing detailed syntax error reports. The two predominant techniques for
parsing programming languages are the top-down and the bottom-up parsing. LL parsers
represent the core of the first group and LR parsers the core of the second. Both techniques
have their advantages and disadvantages. The top-down parsing provides “the readability of
recursive descent (RD) implementations of LL parsing along with the ease of semantic action
incorporation” while “an LL parser is linear in the size of the grammar”; the bottom-up
parsing is regarded highly for “the extended parsing power of LR parsers, in particular the
admissibility of left recursive grammar” but “even LR(0) parse tables can be exponential in
the size of the grammar” (all quotes are from [12]). The parsers incorporating both top-down
and bottom-up parsing (left-corner parsers, etc. [2, 4, 5, 7]) never gained much popularity
because of the confusing order in which the semantic actions are triggered.

© Boštjan Slivnik;
licensed under Creative Commons License CC-BY

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira; Article No. 5; pp. 5:1–5:13

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2016.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

5:2 LLLR Parsing: a Combination of LL and LR Parsing

I Example 1. Much older XLC(1) and LAXLC(1) parsers [4, 5] are extensions of left-corner
parsing and (like LLLR parsing) employ both top-down and bottom-up approaches. However,
XLC(1) and LAXLC(1) parsers produce neither left nor right trace of the input string. For
instance, if string abbbbccc is parsed using an XLC(1) or an LAXLC(1) parser for grammar

[A −→ aBbC], [B −→ Bb], [B −→ b], [C −→ Cc], and [C −→ c],

the output

[A −→ aBbC][B −→ b][B −→ Bb][B −→ Bb][C −→ c][C −→ Cc][C −→ Cc]

is neither left nor (reverse) right parse of the input string. As the first production printed
out expands the start symbol at the top of the derivation tree the evaluation of semantic
routines starts at the top. But then the evaluation of semantic routines suddenly changes
from the top-down into the bottom up approach since the second production printed out
produces the leaf several levels below the root of the tree. Later the evaluation changes
direction from bottom-up to top-down and vice-versa a few more times.

In general, during XLC(1) and LAXLC(1) parsing the evaluation of semantic routines
might become quite confusing as it changes direction all the time. J

Likewise, Packrat parsers [3] used for Parsing Expression Grammars, have not become
popular as “. . . it can be quite difficult to determine what language is defined by a TDPL
program.” [1]. In recent years the focus has shifted strongly towards the top-down parsing and
towards LL parsing in particular [11, 18, 13, 12, 8, 16, 17] – even to the point that yacc was
erroneously considered dead [6]. On one hand, a GLL parser capable of parsing a language
of any context-free grammar, was formulated [12], but in the worst case it runs in cubic time.
Furthermore, an LL(∗) parser using (a) finite automata to resolve certain LL(k) conflicts and
(b) backtracking to resolve the others, has been implemented in antlr [8]. Furthermore,
“the LL(∗) grammar condition is statically undecidable and grammar analysis sometimes fails
to find regular expressions that distinguish between alternative productions” [9].

On the other hand, LR parsers were modified to produce the left parse of its input
and thus giving the compiler writer the impression of top-down parsing [11, 18]. However,
these parsers either (a) produce the first production of the left parse (and thus trigger the
first semantic actions) only after the entire input string has been parsed [11] or (b) they
further increase the difference of how much space LR or LL parser needs by introducing two
additional parsing tables [18]. One could also use a much stronger GLR parsing but the time
complexity is O(np+1) (where p is the length of the longest production). For deterministic
grammars, however, both GLL and GLR parsers should run in near-linear time [9].

Finally, ALL(∗) parsing performs grammar analysis in parse-time to combine “the simpli-
city, efficiency, and predictability of conventional top-down LL(k) parsers with the power
of a GLR-like mechanism to make parsing decisions” [9]. It achieves almost linear time for
majority of grammars used in practice where it is consistently faster than GLL and GLR
parsing and can compete with LL or LALR parsing. Nevertheless, its worst case complexity
is O(n4).

The idea behind LLLR parsing is to produce the left parse of the input string by using LL
parsing as much as possible and to use small LR parsers only to avoid LL conflicts [19]. Hence,
LLLR parsing uses LR parsers where LL(∗) and ALL(∗) parsing use deterministic finite
automata “even though lookahead languages (set of all possible remaining input phrases) are
often context-free” [9].

B. Slivnik 5:3

Table 1 LLLR(1) parsing of bbbbaab ∈ L(Gex2). Whenever the LR(1) parser for A stops, it
handles the remaining part of the right side of production for A, i.e., symbols that has not yet
appeared on the stack as the input has not yet been reduced to these symbols, back to the backbone
LL(1) parser (bA in the first instance and a in the second).

stack input action output
1 $S bbbbaab$ LL produce [S −→ bBab] [S −→ bAab]
2 $baAb bbbbaab$ LL shift b

3 $baA bbbaab$ — start the LR parser for A

4 $baq0 bbbaab$ LR shift b

5 $baq0bq1 bbaab$ LR reduce on [B −→ b]
6 $baq0Bq1 bbaab$ — stop the LR parser for A [A −→ BbA][B −→ b]
7 $baAb bbaab$ LL shift b

8 $baA baab$ — start the LR parser for A

9 $baq0 baab$ LR shift b

10 $baq0bq1 aab$ — stop the LR parser for A [A −→ ba]
11 $baa aab$ LL shift a

12 $ba ab$ LL shift a

13 $b b$ LL shift b

14 $ $ LL accpet

I Example 2. Consider the grammar Gex2 ∈ LR(1) \ LL(1) with the start symbol S and
productions

[S −→ bAab], [A −→ ba], [A −→ BbA], and [B −→ b].

The trace of LLLR(1) parsing of string bbbbaab ∈ L(Gex2) is shown in Table 1. LLLR(1)
parsing starts with LL(1) parsing, but to avoid the LL(1) conflict on b for A (line 3), the
embedded left LR(k) parser for A is started (line 4). After the 2nd b of the input string is
shifted and reduced to B using production [B −→ b], the 3rd b appears in the lookahead buffer
and the embedded left LR(k) parser deduces that productions [A −→ bbA] and [B −→ b] are
part of the left parse if the input string. It prints out both productions and passes the control
back to the backbone LL(1) parser together with suffix bA of the right side of [A −→ bbA] as
these two symbols have not yet been handled by LR(1) parser yet (line 6).

The same pattern repeats in lines 8, 9 and 10 except that the production [A −→ ba] is
printed out and that only suffix a is returned to the backbone LL(1) parser.

The mechanism that enables the embedded LR(1) parser to deduce which production
expanding A must be used in either case is explained in [16], the procedure for printing out
the left parse instead of the right parse during LR parsing has been described in [11]. J

Example 2 contains a simple case that can be handled by, for instance, LL(∗) parsing.
Harder cases, e.g., (chained) left-recursive nonterminals, etc., must be parsed using LLLR
parsing which can be used for parsing any language generated by an LR(k) grammar. The
paper is organized in the way an LLLR parser is constructed. After Section 2, which provides
the reader with some preliminary issues, Section 3 introduces different kinds of conflicts that
can appear during LLLR parsing. Section 4 describes the construction of the LLLR parser
while Section 5 provides a method used for eliminating redundant entries in the generated
parser tables. Before Conslusions, another section is dedicated to a test case – an illustration
how LLLR parsing performs on the grammar for the Java programming language.

SLATE’16

5:4 LLLR Parsing: a Combination of LL and LR Parsing

2 Preliminaries

An intermediate knowledge of LL and LR parsing is presumed and the standard terminology
of formal language theory and parsing is assumed [14, 15]. In addition, let

FSTFLWG
k (α,A) = ∪z∈FOLLOWG

k
(A)FIRSTGk (αz)

and let T ∗k = T 0 ∪ T 1 ∪ . . . ∪ T k.
The LLLR parser is composed of (a) an LL parser based on the SLL parsing table and

(b) the embedded left LR(k) parser. For the lack of space, only a short overview of both
methods are given here.

2.1 The SLL(k) parsing
An LL(k) grammar G = 〈N,T, P, S〉 can be transformed to an equivalent SLL(k) grammar
Ḡ = 〈N̄ , T, P̄ , S̄〉 [15] where the set of nonterminals is defined as

N̄ = {〈A,FA〉 ; S =⇒∗lm uAδ ∧ FA = FIRSTGk (δ)}

and the initial symbol is S̄ = 〈S, {ε}〉; for any nonterminal 〈A,FA〉 ∈ N̄ and any production
[A −→ X1X2 . . . Xn] ∈ P the grammar Ḡ contains production

[〈A,FA〉 −→ X̄1X̄2 . . . X̄n]

where

X̄i =
{
Xi Xi ∈ T
〈Xi,FIRSTGk (Xi+1Xi+2 . . . XnFA)〉 Xi ∈ N .

Regardless of whether G ∈ LL(k)), (a) L(Ḡ) = L(G), and (b) every nonterminal A of Ḡ
appears in exactly one right-context F(substrings derived from the nonterminal A are always
followed by strings from F). However, G ∈ LL(k)⇐⇒ Ḡ ∈ SLL(k).

The most straightforward method for producing the LL(k) parser for an $-augmented
SLL(k) grammar G = 〈N,T, P, S〉 is a construction of the LL table

LL-table : N × T ∗k −→ 2P

where LL-table(A, x) is defined as

{[A −→ α] ; ∀[A −→ α] ∈ P : x ∈ FSTFLWG
k (α,A)} .

The cardinality of LL-table(A, x) indicates different issues. If |LL-table(A, x)| = 1,
the LL(k) table indicates the regular selection of the next production that is to be used
during LL(k) parsing when the nonterminal A ∈ N is on the top of the parser stack and
x ∈ T ∗k is in the lookahead buffer. |LL-table(A, x)| = 0 indicates the syntax error while
|LL-table(A, x)| > 1 represents the LL(k) conflict.

It is assumed that prior the construction of an LLLR(k) parser, a grammar is transformed
by the LL-to-SLL transformation described above.

2.2 The embedded left LR(k) parser
Given a grammar G = 〈N,T, P, S〉, the embedded left LR(k) grammar for α ∈ (N ∪ T)∗ and
F ∈ (T ∪ {$})∗k [16, 17] is an LR(k) parser that

B. Slivnik 5:5

1. expects a string starting with a prefix wz, where z ∈ F and α =⇒∗G w, on its input;
2. parses a prefix u of w, i.e., w = uv for some v, without shifting any symbol of z on the

stack;
3. returns the left parse πu ∈ P ∗ and the viable suffix δR ∈ (N ∪T)∗ found in the derivation

αz =⇒πu

G,lm uδz.

The embedded left LR(k) parser is the left LR(k) parser [18] for the (reduced) grammar
G(α,F) = 〈N ∪ {S1, S2}, T, Pα,F , S1〉 where S1, S2 6∈ (N ∪ T) and

Pα,F = P ∪ {[S1 −→ S2z], [S2 −→ α] ; z ∈ F}.

The trick is that, if the parser does not stop earlier, the reduction on [S2 −→ α] is regarded as
a signal to accept the input string w leaving the string z in the lookahead buffer. Furthermore,
if G ∈ LR(k), then testing whether G(α,F) can be done very efficiently [17].

The embedded left LR(k) parser is called ‘embedded’ since it parses only a substring
of the entire input string and can thus be embedded into other parsers. It is called ‘left’
because it produces the left parse (instead of the right parse) of the substring it parsed.

3 Identifying conflicts

Computing a set of LL(k) conflicts for a given $-augmented grammar G = 〈N,T, P, S〉 is
straightforward, but it gets slightly more complicated if these conflicts are to be resolved
using small LR(k) parsers embedded into the backbone LL(k) parser.

Suppose that a string uv ∈ L(G) is derived by the leftmost derivation

S =⇒∗G,lm uBδ =⇒G,lm uβ1Aβ2δ =⇒∗G,lm uv

and that the grammar exhibits an LL(k) conflict on the lookahead string x ∈ FIRSTGk (Aβ2δ$)
for the nonterminal symbol A. However, as demonstrated by Example 3, the correct
termination of the LR(k) parser for the substrings derived from A is not always guaranteed.

I Example 3. Consider the grammar Gex3 ∈ LR(1) \ LL(1) with the start symbol S′ and
productions

[S −→ bBab], [B −→ A], [A −→ b] and [A −→ Ba].

The trace of parsing the input string starting with bba using the backbone LL(1) parser
and the embedded LR(1) parser for the LL(1) conflicting nonterminal A is shown in Table 2.
The configuration $baA|ba . . . $ results in the LL(1) conflict on b for A where the embedded
LR(1) parser for A is started (line 4). However, after pushing b and reducing it to A the
LR(1) parser cannot determine whether the first a of bba . . . is derived from A or not (line 7).
Namely, if the input string is bbab, the LR(1) parser must accept, terminate and handle the
control back to the backbone LL(1) parser; otherwise the LR(1) parser must perform the
reduction on [B −→ A] and continue parsing.

As shown in Table 3, the problem remains even if the embedded LR(1) parser for B is
used instead (since A is initially derived from B). However, the embedded LR(1) parser for
parsing substrings derived from Ba and followed by b$ can terminate correctly and should
be used. J

SLATE’16

5:6 LLLR Parsing: a Combination of LL and LR Parsing

Table 2 Parsing a string starting with bba using an LL(1) parser for Gex3 and an LR(1) parser
for nonterminal symbol A.

stack input action
1 $S bba . . . $ LL produce [S −→ bBab]
2 $baBb bba . . . $ LL shift b

3 $baB ba . . . $ LL produce [B −→ A]
4 $baA ba . . . $ — start a parser for A —
5 $baq0 ba . . . $ LR shift b

6 $baq0bq1 a . . . $ LR reduce on [A −→ a]
7 $baq0Aq2 a . . . $ LR reduce on [B −→ a] or accept?

Table 3 Parsing a string starting with bba using an LL(1) parser for Gex3 and an LR(1) parser
for nonterminal symbol B.

stack input action
1 $S baa . . . $ LL produce [S −→ bBab]
2 $baBb baa . . . $ LL shift b

3 $baB aa . . . $ — start a parser for B —
4 $baq0 aa . . . $ LR shift a

5 $baq0aq1 a . . . $ LR reduce on [A −→ a]
6 $baq0Aq2 a . . . $ LR reduce on [B −→ a]
7 $baq0Bq2 a . . . $ LR shift a or accept?

Example 3 shows that there are two kinds of conflicting nonterminals in LLLR(k) parsing:
1. Genuine conflicting nonterminals are all SLL(k) conflicting nonterminals (symbol A in

Example 3).
2. Induced conflicting nonterminals are all nonterminals which are not SLL(k) conflicting

but must be treated as conflicting so that the embedded LR(k) parser can terminate
correctly (symbol B in Example 3).

Algorithm 1 computes the set of all LLLR conflicting nonterminals. It starts with
computing genuine conflicting nonterminals (set C(0) in lines 2–3). Afterwards, it adds all
induced conflicting nonterminals: if A is a conflicting nonterminal in production [B −→
β1Aβ2], then there should exist a prefix β′2 of β2 so that the embedded LR(k) parser for
Aβ′2 stops correctly – if β′2 does not exist, then A induces B and B is added to the set of
conflicting nonterminals (lines 6–9). Finally, the set C contains all conflicting nonterminals
(while C \ C(0) contains all genuine conflicting nonterminals).

The most time consuming part of Algorithm 1 is testing whether the embedded LR(k)
parser can always stop – the condition in line 9. Fortunately, if the grammar G for which
the LLLR(k) parser is being made is an LR(k) grammar, the test can be performed quite
efficiently [17].

4 Constructing the LLLR parser

After the conflicting nonterminals have been computed, the parsing table of the backbone
LL(k) parser can be computed using Algorithm 2. The basic idea is simple: replace all
(genuine or induced) conflicting nonterminals appearing on the right side of any production
with markers which trigger the appropriate embedded left LR(k) parsers.

B. Slivnik 5:7

Algorithm 1 Evaluation of LLLR conflicting nonterminals.
Input: A grammar G after the LL-to-SLL transformation.
Output: A set C(0) of genuine conflicting nonterminals and a set C of all conflicting
nonterminals.
1: i← 0
2: C(0) ← {A ; ∃[A −→ α1], [A −→ α2] ∈ P : FSTFLWG

k (α1,A) ∩ FSTFLWG
k (α2,A) 6= ∅}

3: repeat
4: i← i+ 1
5: C(i) ← C(i−1) ∪
6: {B ; ∃[B −→ β1Aβ2] ∈ P,A ∈ C(i−1) :
7: ∀β′2, β′′2 :

(
β′2β

′′
2 = β2 =⇒ G(Aβ′2,FSTFLWG

k (β′′2 ,B)) 6∈ LR(k)
)
}

8: until C(i) = C(i−1)

9: C = C(i)

More precisely, if A is the only conflicting nonterminal in [B −→ β1Aβ2], then

LL-table(B, x) = [B −→ β1[[Aβ′2,FSTFLWG
k (β′′2 , B)]]β′′2]

where β′2 is the shortest prefix of β2 = β′2β
′′
2 such that the embedded left LR(k) parser for

Aβ′2 can stop on any string x ∈ FSTFLWG
k (β′′2 , B). The newly created nonterminal symbol

[[Aβ′2,FSTFLWG
k (β′′2 , B)]] acts as a trigger for starting the embedded left LR(k) parser. If

there are more conflicting nonterminals on the right hand side of a production, then the
described substitution is performed from left to right. Furthermore, the embedded left LR(k)
grammar for G(Aβ′2,FSTFLWG

k (β′′2 , B)) must be constructed regardless of whether B is a
conflicting nonterminal or not.

The left-to-right scan of the sentential form on the right side of a production being
transformed is performed in lines 3–17 of Algorithm 2; the computation of the shortest
sentential form a particular embedded left LR(k) parser is to be made for, is computed in
lines 8–15.

There are two key insights into the correctness of Algorithm 2: (a) the loop in lines 8–15
terminates successfully, i.e., by finding an appropriate prefix XiXi+1 . . . Xj and exiting after
reaching line 11, and (b) no element of LL-table contains more than one production. For if
either of these two statements were false, the nonterminal A should have been considered a
conflicting nonterminal by Algorithm 1.

I Example 4. Consider a grammar Gex4 with the start symbol S and productions

[S −→ aAabCb],
[A −→ aEB], [A −→ Aaa], [C −→ aaD], [C −→ abE],
[B −→ bb], [D −→ aa], [E −→ a] and [E −→ Aa].

As symbols A, C and E are conflicting nonterminals, the LL(1) parsing table contains
the following entries:

LL-table(S, a) = [S −→ a[[Aa, {b}]]b[[C, {b}]]b]
LL-table(B, b) = [B −→ bb]
LL-table(D, a) = [D −→ aa]

The backbone LL(1) parser is augmented with the embedded left LR(1) parsers for the
following grammars:

G(Aa, {b}), G(C, {b}) and G(E, {b}).

SLATE’16

5:8 LLLR Parsing: a Combination of LL and LR Parsing

Algorithm 2 Construction of the backbone LL(k) parser.
Input: A grammar G after the LL-to-SLL transformation and a set C of all conflicting
nonterminals for G.
Output: The LL parsing table for the backbone LL parser.
1: for [A −→ X1X2 . . . Xn] ∈ P ∧A 6∈ C do
2: α← ε ; i← 1
3: while (i ≤ n) do
4: if Xi 6∈ C then
5: α← αXi ; i← i+ 1
6: else
7: j ← i

8: while (i ≤ j) do
9: F = FSTFLWG

k (Xj+1 . . . Xn, A)
10: if G(Xi . . . Xj ,F) ∈ LR(k) then
11: α← α[[Xi . . . Xj ,F]] ; i← j + 1
12: else
13: j ← j + 1
14: end if
15: end while
16: end if
17: end while
18: for x ∈ FSTFLWG

k (X1 . . . Xn, A) do
19: LL-table(A, x)← {[A −→ α]}
20: end for
21: end for

LLLR(1) parsing of string aaaabbaaabaaaab is shown in Table 4:
1. The parsing starts with printing out the the first production of the left parse, i.e.,

[S −→ aAa bCb] (line 1) and shifting the first symbol.
2. When [[Aa, {b}]] appears on the top of the stack, the embedded LR(1) parser for G(Aa, {b})

is started. While parsing the substring aaabbaaa derived from Aa, the left parse πAa =
[A −→ Aaa][A −→ aEB][E −→ Ea][E −→ a][B −→ bb] is accumulated on the stack
(lines 3–17). When b is in the lookahead buffer, the left parse πAa is printed out and the
viable suffix ε returned to the backbone LL(1) parser (line 17).

3. After shifting b, the embedded parser for G(C, {b}) is started. After shifting a, the
lookahead buffer contains another a and the parser recognizes the production [C −→ aaD]
(line 22). It prints this production out and returns the viable suffix aD – the part of the
production not yet matched against the input.

4. Afterwards, the backbone parser finishes the job.
Hence, the LLLR(1) parser prints the left parse

[S −→ aAabCb][A −→ Aaa][A −→ aEB]
[E −→ Ea][E −→ a][B −→ bb][C −→ aaD].

As the symbols A and E are left-recursive, the parsers for G(Aa, {b}) and G(E, {b}) must
always parse the entire string generated by either grammar. However, the parser for G(C, {b})
always shifts only the first a and returns the viable suffix aD (if a is in the lookahead buffer)
or the viable suffix b[[E, {b}]] (if b is in the lookahead buffer).

B. Slivnik 5:9

Table 4 Parsing a string starting with bba using an LL(1) parser for Gex3 and an LR(1) parser
for B. (All LR(1) states of both embedded left LR(1) parsers are presented generically with q; the
subscripts denote left parses accumulated on stack during left LR parsing [11].)

stack input action
1 $S aaaabbaaabaaaab$ LL produce

[S −→ a[[Aa, {b}]]b[[C, {b}]]b]
2 $b[[C]]b[[Aa]]a aaaabbaaabaaaab$ LL shift a

3 $b[[C, {b}]]b[[Aa, {b}]] aaabbaaabaaaab$ LL starts the LR parser
for grammar G(Aa, {b})

4 $b[[C, {b}]]b〈qε〉 aaabbaaabaaaab$ LR shift a

5 $b[[C, {b}]]b〈qε〉a〈qε〉 aabbaaabaaaab$ LR shift a

6 $b[[C, {b}]]b〈qε〉a〈qε〉a〈qε〉 abbaaabaaaab$ LR reduce on p1 = [E −→ a]
7 $b[[C, {b}]]b〈qε〉a〈qε〉E〈qp1〉 abbaaabaaaab$ LR shift a

8 $b[[C, {b}]]b〈qε〉a〈qε〉E〈qp1〉a〈qε〉 bbaaabaaaab$ LR reduce on p2 = [E −→ Ea]
9 $b[[C, {b}]]b〈qε〉a〈qε〉E〈qp2p1〉 bbaaabaaaab$ LR shift b

10 $b[[C, {b}]]b〈qε〉a〈qε〉E〈qp2p1〉b〈qε〉 baaabaaaab$ LR shift b

11 $b[[C, {b}]]b〈qε〉a〈qε〉E〈qp2p1〉b〈qε〉b〈qε〉 aaabaaaab$ LR reduce on p3 = [B −→ bb]
12 $b[[C, {b}]]b〈qε〉a〈qε〉E〈qp2p1〉B〈qp3〉 aaabaaaab$ LR reduce on p4 = [A −→ aEB]
13 $b[[C, {b}]]b〈qε〉A〈qp4p2p1p3〉 aaabaaaab$ LR shift a

14 $b[[C, {b}]]b〈qε〉A〈qp4p2p1p3〉a〈qε〉 aabaaaab$ LR shift a

15 $b[[C, {b}]]b〈qε〉A〈qp4p2p1p3〉a〈qε〉a〈qε〉 abaaaab$ LR reduce on p5 = [A −→ Aaa]
16 $b[[C, {b}]]b〈qε〉A〈qp5p4p2p1p3〉 abaaaab$ LR shift a

17 $b[[C, {b}]]b〈qε〉A〈qp5p4p2p1p3〉a〈qε〉 baaaab$ LR stops:
lm parse = p5p4p2p1p3
remaining suffix = ε

18 $b[[C, {b}]]b baaaab$ LL shift b

20 $b[[C, {b}]] aaaab$ LL starts the parser
for grammar G(C, {b})

21 $b〈qε〉 aaaab$ LR shift a

22 $b〈qε〉a〈qε〉 aaab$ LR stops:
lm parse = p4
remaining suffix Da

23 $bDa aaab$ LL shift a

24 $bD aab$ LL produce [D −→ aa]
25 $baa aab$ LL shift a

26 $ba ab$ LL shift a

27 $b b$ LL shift b

28 $ $ LL accept :-)

SLATE’16

5:10 LLLR Parsing: a Combination of LL and LR Parsing

Finally, note that not all LL-table entries generated by Algorithm 2 are needed –
LL-table(B, b) is not needed as substrings derived from B will always be parsed by a parser
for G(Aa, {b}). Likewise, if C is eliminated from the grammar, the parser for G(E, {b}) is
not needed anymore for the same reason. J

An LLLR(k) parser can be constructed for any LR(k) grammar G: if not otherwise, the
start symbol gets included into the set of induced conflicting symbols and hence the entire
input string is parse by a single embedded left LR(k) parser. However, this is not the advised
use of LLLR parsing.

5 Reducing the LLLR Parser

As illustrated by Example 4, the construction of the LLLR parser described in Section 4
might produce some redundant LL-table entries or even some redundant embedded parsers.

Since it it obvious that LL-table entries for the start symbol of the grammar are not
redundant, it is trivial to compute what entries and parsers are needed by the backbone
LL(k) parser and thus the rest of this section is dedicated to identifying all symbols that
can form a viable suffix returned by an embedded left LR(k) parser. Once this symbols are
known, it is again straightforward to see which entries and parsers are needed on the basis of
embedded parsers.

The key insight comes from the understanding of how the embedded left LR(k) parser
computes the viable suffix. Namely, that parser uses an additional parsing table left that
maps certain parser states and lookahead strings to LR(0) items. More precisely, if

left(q, x) = [A −→ α • β],

then for each viable prefix γ the state q is associated with, i.e., for every LR(k) stack contents
where q is at the top, there exists a single γ-path of items in the nondeterministic LR(0)
machine starting with the initial LR(0) item and terminating with item [A −→ α •β] [18, 17].
The viable suffixes consist from the sentential forms found on the right side of • in this LR(0)
items and thus these sentential forms must be checked to find symbols that can form a viable
suffix returned by an embedded left LR(k) parser. This in fact is done by Algorithm 3 which
must be run for every embedded parser.

6 A test case: the Java Language

To test the new parsing method against the real programming language, Java 1.0 has been
chosen. There are two reasons for this: (a) there is an official LALR grammar for Java 1.0
available (Gosling et. al, The JavaTM Language Specification, 1996), and (b) choosing a
language primarily made for parsing in a top-down manner would be unfair.

As the official Java 1.0 grammar is LALR, it contains a lot of left-recursive nonterminals.
However, one must distinguish between two kinds of left-recursive nonterminals:
1. Essential left-recursive nonterminals are those where left recursion is used to achieve the

proper form of derivation trees.
The best examples of essential left-recursive nonterminals are those describing arithmetic
expressions as the left recursion is needed to emphasize the left associativity of various
arithmetic operators. For instance, productions

AdditiveExpression −→ MultiplicativeExpression
AdditiveExpression −→ AdditiveExpression + MultiplicativeExpression
AdditiveExpression −→ AdditiveExpression - MultiplicativeExpression

B. Slivnik 5:11

Algorithm 3 Enumeration of all symbols that can form a viable suffix returned by an
embedded left LR(k) parser.
Input: An embedded left LR(k) parser.
Output: A set of symbols L.
enumerate all items needed to compute the viable suffix:
1: i← 0
2: I(0) ← { 〈[A→ α • β, x], q〉 ;
3: LEFT(q, z) = [A→ α • β]
4: ∧ [A→ α • β, x] ∈ q
5: ∧ z ∈ FIRSTGk (βx) }
6: repeat
7: i← i+ 1
8: I(i) ← I(i−1) ∪ { 〈[A′ → α′ •Aβ′, x′], q′〉 ;
9: 〈[A→ α • β, x], q〉 ∈ I(i−1)

10: ∧ δ̂(q′, α) = q

11: ∧ x ∈ FIRSTGk (β′x′) }
12: until I(i) = I(i−1)

13: I = I(i)

enumerate all symbols
14: L = ∅
15: for 〈[A→ α •X1X2 . . . Xn, x], q〉 ∈ I(0) do
16: L ← L ∪ {Xi, Xi+1, . . . , Xn}
17: end for
18: for 〈[A→ α •A′X1X2 . . . Xn, x], q〉 ∈ I \ I(0) do
19: L ← L ∪ {Xi, Xi+1, . . . , Xn}
20: end for

describing the structure of additive expressions should not be changed as otherwise the
programmer needs to modify the derivation tree manually.

2. Nonessential left-recursive nonterminals are those where the left recursion is used to make
a grammar more suitable for a particular parsing algorithm.
For instance, the Java 1.0 grammar includes a number of non-essential left recursion like

ClassBodyDeclarations −→ ClassBodyDeclaration
ClassBodyDeclarations −→ ClassBodyDeclarations ClassBodyDeclaration

that can easily be rewritten to

ClassBodyDeclarations −→ ClassBodyDeclaration ClassBodyDeclarationsopt
ClassBodyDeclarationsopt −→ ε

ClassBodyDeclarationsopt −→ ClassBodyDeclaration ClassBodyDeclarationsopt

using the established method for immediate left recursion elimination.

Nonterminal symbol ClassBodyDeclarations describes the entire contents of a class –
all declarations within a class together. If it is left-recursive (the original productions),
virtually entire Java source is parsed by the embedded left LR(1) parser – everything except
the package header, import declarations and the class header. If the non-left-recursive
productions are used, then every declaration within a class can be parsed separately using

SLATE’16

5:12 LLLR Parsing: a Combination of LL and LR Parsing

either LL or LR parsing, depending on (a) the structure of a particular declaration and (b)
what other left-recursive productions are replaced by non-left-recursive ones.

By eliminating the left recursion (using the well-known recipe illustrated above) in
productions for only

ImportDeclarations, TypeDeclarations,
InterfaceMemberDeclarations, ClassBodyDeclarations, and
BlockStatements

the percentage of the input that is parsed using the embedded LR(1) parsers drops sig-
nificantly: (typically) from 98 % to 54 % (but one should be warned that by using the
right set of Java sources, especially the second number can be tailored to whatever value
one chooses). Instead of parsing the entire contents of an interface or a class using the
embedded left LR(1) parser, individual interface members or statements within a method
can be reached using the backbone LL(1) parser – and at the same time, expressions can be
parsed using the left-recursive productions producing the most appropriate derivation trees.
Furthermore, approx. 54 % of the input is not parsed using one embedded LR(1) parser as a
single substring but rather as a number of short substrings parsed by several instances of
embedded LR(1) parsers.

Reducing the length of the substrings that need to be parsed using the individual
embedded LR(k) parser is crucial for efficient LLLR parsing. In case of Java 1.0, these
substrings encompass mostly expressions (which are seldom longer than a few dozen symbols)
and prefixes of the field or method declarations.

Finally, as the left parse of the Java program is produced during LLLR(1) parsing,
semantic routines can be inserted at every position within a grammar, i.e., on both sides
of every symbol found on the right side of some production. This is also true for several
other parsing methods like SLL, LL(∗) and ALL(∗), but not for left-corner parsing and its
derivatives like XLC(1) and LAXLC(1) parsing. For instance, methods like the one described
in [10] can handle semantic routines in only 41.95 % of all positions within a grammar.

7 Conclusions

The main advantage of LLLR parsing (which can be used to parse any LR(k) language)
over left-corner parsing is that it produces the left parse of the input string while left-corner
parsing produces the mixed-strategy parse. If compared with LL(∗) and ALL(∗) parsing,
LLLR parser runs in linear time and does not involve backtracking.

However, it must be admitted once again that there is no silver bullet in parsing. The
LLLR(k) parsing works well for certain LR(k) grammars, i.e., typically for grammars where
LL(k) conflicting nonterminals appear close to the bottom of the derivation trees. Otherwise,
if LL(k) conflicting nonterminals are found near the top of large subtrees of the derivation
tree, LLLR(k) parsing is not to be advised – one should either modify the grammar or use
some other parsing method (the situation is similar to LR(k) parsing where, if an LR(k)
grammar is right-recursive, the parser works but consumes a lot of stack unnecessarily).

There are basically two issues left undone in regard to LLLR parsing. First, a combination
of LL and LR parsing using lookahead buffers of different sizes is worth investigating. Second,
a clear theoretical formulation of LLLR parsing using the combination of the canonical
LL(k1) and the canonical LR(k2) machines would be a challenging task.

B. Slivnik 5:13

References
1 Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation and Compiling,

volume Volume I: Parsing. Prentice-Hall, Englewood Cliffs, N.J., USA, 1972.
2 Alan J. Demers. Generalized left corner parsing. In Proceedings of the 4th ACM SIGACT-

SIGPLAN symposium on Principles of programming languages POPL’77, pages 170–182,
Los Angeles, CA, USA, 1977. ACM, ACM.

3 Bryan Ford. Parsing expression grammars: a recognition-based syntactic foundation. In
Proceedings of the 31st ACM SIGACT-SIGPLAN symposium on Principles of programming
languages POPL’04, pages 111–122, Venice, Italy, 2004. ACM, ACM.

4 R. Nigel Horspool. Recursive ascent-descent parsers. In Dieter Hammer, editor, Compiler
Compilers, Third International Workshop CC ’90, Schwerin, FRG, volume 477 of Lecture
Notes in Computer Science, pages 1–10. Springer-Verlag, 1990.

5 R. Nigel Horspool. Recursive ascent-descent parsing. Journal of Computer Languages,
18(1):1–16, 1993.

6 Matthew Might and David Darais. Yacc is dead. Available online at Cornell University
Library (arXiv.org:1010.5023), 2010.

7 Mark-Jan Nederhof. Generalized left corner parsing. In Proceedings of the sixth conference
on European chapter of the Association for Computational Linguistics EACL’93, pages
305–314, Stroudsburg, PA, USA, 1993. Association for Computational Linguistics.

8 Terence Parr and Kathleen Fischer. LL(*): The foundation of the ANTLR parser generator.
ACM SIGPLAN Notices - PLDI’10, 46(6):425–436, 2011.

9 Terence Parr, Sam Harwell, and Kathleen Fischer. Adaptive LL(*) parsing: The power of
dynamic analysis. In Proceedings of the 2014 ACM SIGPLAN International Conference on
Object-Oriented Programming Systems Languages and Applications (OOPSLA’14), volume
579–598, Portland, OR, USA, 2014. ACM, ACM.

10 Paul Purdom and Cynthia A. Brown. Semantic routines and LR(k) parsers. Acta Inform-
atica, 14(4):299–315, 1980.

11 James P. Schmeiser and David T. Barnard. Producing a top-down parse order with bottom-
up parsing. Information Processing Letters, 54(6):323–326, 1995.

12 Elizabeth Scott and Adrian Johnstone. GLL parsing. Electronic Notes in Theoretical
Computer Science, 253(7):177–189, 2010.

13 Elizabeth Scott, Adrian Johnstone, and Rob Economopoulos. BRNGLR: a cubic Tomita-
style GLR parsing algorithm. Acta Informatica, 44(6):427–461, 2007.

14 Seppo Sippu and Eljas Soisalon-Soininen. Parsing Theory, Volume I: Languages and Pars-
ing, volume 15 of EATCS Monographs on Theoretical Computer Science. Springer-Verlag,
Berlin, Germany, 1988.

15 Seppo Sippu and Eljas Soisalon-Soininen. Parsing Theory, Volume II: LR(k) and LL(k)
Parsing, volume 20 of EATCS Monographs on Theoretical Computer Science. Springer-
Verlag, Berlin, Germany, 1990.

16 Boštjan Slivnik. The embedded left LR parser. In Proceedings of the Federated Conference
on Computer Science and Information Systems, pages 871–878, Szczecin, Poland, 2011.
IEEE Computer Society Press.

17 Boštjan Slivnik. LL conflict resolution using the embedded left LR parser. Computer
Science and Information Systems, 9(3):1105–1124, 2012.

18 Boštjan Slivnik and Boštjan Vilfan. Producing the left parse during bottom-up parsing.
Information Processing Letters, 96(6):220–224, 2005.

19 Boštjan Slivnik. LLLR parsing. In Proceedings of the 28th Annual ACM Symposium on
Applied Computing SAC’13, pages 1698–1699, Coimbra, Portugal, 2013. ACM.

SLATE’16

Locating User Interface Concepts in Source Code∗

Matúš Sulír1 and Jaroslav Porubän2

1 Department of Computers and Informatics, Faculty of Electrical Engineering
and Informatics, Technical University of Košice, Košice, Slovakia
matus.sulir@tuke.sk

2 Department of Computers and Informatics, Faculty of Electrical Engineering
and Informatics, Technical University of Košice, Košice, Slovakia
jaroslav.poruban@tuke.sk

Abstract
Developers often start their work by exploring a graphical user interface (GUI) of a program.
They spot a textual label of interest in the GUI and try to find it in the source code, as a
straightforward way of feature location. We performed a study on four Java applications, asking
a simple question: Are strings displayed in the GUI of a running program present in its source
code? We came to a conclusion that the majority of strings are present there; they occur mainly
in Java and “properties” files.

1998 ACM Subject Classification D.2.3 Coding Tools and Techniques, H.5.2 User Interfaces:
Graphical User Interfaces

Keywords and phrases Source code, graphical user interfaces, feature location

Digital Object Identifier 10.4230/OASIcs.SLATE.2016.6

1 Introduction

Developers understand a program only when they are able to mentally connect structures in
the program with real-world concepts [2]. Naturally, this connection can be established much
more easily if the vocabulary used in the source code resembles the domain terms displayed
in the GUI of a program.

One of the most frequent activity performed by a programmer is feature location –
finding an initial source code location implementing a given functionality [5]. To perform it,
developers rarely use complicated feature location tools and plugins [8], and rely on simple
textual search instead [4].

Consider a developer trying to fix a bug in a program he does not know. He will probably
start with an exploration of a running UI (user interface) relevant to the bug. He will start
to concentrate on particular GUI items, like buttons and menu items causing the bug to
manifest. Then, he will try to search for the labels of these GUI items (button captions,
menu names) in the source code of the program, using standard search functionality of an
IDE (integrated development environment).

The GUI of a program is displayed to an end user – often a paying customer. For this
reason, it must contain terms from the problem domain. On the other hand, the source code
is rarely shown to a customer. The use of correct domain concepts in the source code is only
a recommended practice, often not enforced.

∗ This work was supported by the FEI TUKE Grant no. FEI-2015-16 “Evaluation and metrics of domain
usability”.

© Matúš Sulír and Jaroslav Porubän;
licensed under Creative Commons License CC-BY

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira; Article No. 6; pp. 6:1–6:9

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2016.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

6:2 Locating User Interface Concepts in Source Code

Table 1 The applications used in the study.

Application Java LOC GUI strings GUI words

ArgoUML 0.34 195,363 307 2,391

FreeMind 1.0.1 67,357 353 1,050

PDFsam 2.0.0 23,774 65 168

Weka 3.6.13 275,036 592 904

We formulate our main hypothesis and two smaller research question for this paper as
follows:

Hypothesis: Strings and concepts displayed in the GUI of a running program are located
in its static source code, too.
RQ1 : When yes, mainly in what types of files are these strings located?
RQ2 : If no, what are the most common reasons?

2 Method

To prove our hypothesis, we will automatically extract strings from a running GUI of a few
applications and try to search for these strings (and their parts) in the source code of the
corresponding program.

In Table 1, there is a summary of the studied objects. We selected three desktop Java
applications from the SF110 [6] corpus of open source projects: FreeMind1 is mind-mapping
software, PDFsam2 splits and merges PDF files, and Weka3 is machine learning software.
Additionally, ArgoUML4 – a UML modeling tool – was selected as a popular, medium-sized
project. The “Java LOC” column in Table 1 denotes the number of source code lines in Java
files, measured by the the CLOC5 program.

2.1 GUI Scraping
Before running the experiment, we ensured English localization was set in all applications,
since the source code is written in English and a mismatch between the code and GUI
language would produce skewed results. In the case of the FreeMind application, language
adjustment in the settings was necessary, all other programs had the language already set
correctly.

Every application was fed to a GUI ripper [10] which is a part of the project GUITAR [12].
The GUI ripper fully automatically opens all available windows in the program, checks all
check-boxes, clicks the menus, etc., in a systematic way. The properties of all widgets are
written in a form of an XML file.

From the XML file, a text and title was extracted for all recorded widgets. The number
of unique strings for each application is in Table 1, column “GUI strings”. Examples of
these strings include button labels and tooltips, text-area contents, items in combo-boxes
and many more. We excluded strings shorter than two characters, as they do not represent
realistic search queries for further analysis.

1 http://sourceforge.net/projects/freemind/
2 http://sourceforge.net/projects/pdfsam/
3 http://sourceforge.net/projects/weka/
4 http://argouml.tigris.org/
5 http://github.com/AlDanial/cloc

http://sourceforge.net/projects/freemind/
http://sourceforge.net/projects/pdfsam/
http://sourceforge.net/projects/weka/
http://argouml.tigris.org/
http://github.com/AlDanial/cloc

M. Sulír and J. Porubän 6:3

Table 2 The occurrence counts of whole strings from GUIs in the source code.

Occurrences of GUI strings in code

Application 0 1 [2, 10) [10, 100) [100, ∞)

ArgoUML 20.5% 10.4% 42.3% 12.1% 14.7%

FreeMind 7.9% 2.8% 60.6% 13.0% 15.6%

PDFsam 13.8% 13.8% 50.8% 4.6% 16.9%

Weka 8.1% 12.0% 14.0% 30.2% 35.6%

Table 3 The occurrence counts of individual words from GUIs in the source code.

Occurrences of GUI words in code

Application 0 1 [2, 10) [10, 100) [100, ∞)

ArgoUML 4.8% 3.1% 13.6% 29.4% 49.2%

FreeMind 0.7% 0.1% 26.0% 32.9% 40.4%

PDFsam 4.8% 7.7% 4.2% 18.5% 64.9%

Weka 6.6% 0.7% 5.9% 32.5% 54.3%

2.2 Analysis

Some of the strings contain multiple words, or even lines of text. For this reason, we broke
them into individual words. We define a word as a sequence of three or more letters. The
number of unique words for each application is in the column “GUI words” in Table 1.

For each string contained in the GUI, we searched it in the source code files of the
corresponding project. The same process was repeated for individual words.

Regarding the source code, we used tarballs of the same versions as the binaries. The
PDFsam tarball contained also automatically generated JavaDoc API documentation, which
we removed, since such files should not be included in source archives.

The searching was performed fully automatically, via a script. We decided to perform a
case-sensitive search, which should be more precise, especially to locate whole GUI strings.
On the other hand, in practice, case-insensitive search is probably the preferred way, as it is
often default in IDEs.

3 Quantitative Results

3.1 Occurrence Counts

First, we would like to simulate a situation when a programmer tries to find a whole GUI
string in the source code. For each string, we determine a number of occurrences in the
project – essentially the number of search results he would get in an IDE. For example, the
string “Generate Data” (a button label in the Weka application) has 2 occurrences in the
source code of the Weka project. Only text files were searched – this behavior is consistent
with the majority of common IDEs which ignore binary files when searching.

In Table 2, we can see what portion of all GUI strings has no occurrence in the source
code, exactly one occurrence, from 2 to 10 occurrences, etc.

SLATE’16

6:4 Locating User Interface Concepts in Source Code

strings

words

strings

words

strings

words

strings

words

A
rg

o
U
M

L
F
re

eM
in

d
P
D
F
sa

m
W

ek
a

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

.java

.xml

.properties

other

Figure 1 Occurrence counts of strings/words divided by file types.

Similar statistics, but for individual words, are located in Table 3. This represents the
situation when the programmer is unhappy about the results and starts searching for smaller
parts of the given string – usually words.

An ideal situation arises when a search gives exactly one result. It can (in theory)
mean that the programmer found the sole piece of code relevant to the GUI widget. The
higher is the number of occurrences, the longer he must sift through search results to find
the relevant code. However, a situation when a searched string is not found in the source
code is unfavorable, as the developer would have no idea where to start searching for an
implementation of the given feature.

3.2 File Types

Ideally, the search results point to Java source files (*.java). This way, it is possible to
directly find the code of interest. However, the source code of a project usually contains
many kinds of files – not just Java source files.

For each project, we took all GUI string (and word) occurrences in all files and divided
them by an extension of a file they are located in. In Figure 1, there is a graphical
representation of the results.

In ArgoUML, 65% of all occurrences of GUI strings are contained directly in Java
source code files. Although the project uses *.properties files for internationalization, GUI
concepts are often used also as identifiers in Java code. For example, a GUI label “Notation”
is present many times in the source code in the form of the class name Notation.

The FreeMind project uses “properties” localization files, too.
PDFsam uses a system where each key in a *.properties file is the original English

string, and the value is the translated one. Therefore, the GUI strings are located both in
*.java and *.properties files.

While Weka also uses *.properties files for localization, many GUI strings are also
contained in special DSL [7] (domain specific language) files with an extension .ref.

M. Sulír and J. Porubän 6:5

4 Qualitative Results

While the numbers gave us some insight about the presence of strings from GUIs in the
source code, it is necessary to know exact reasons why some strings were not found at all.
Furthermore, we will show on a few samples that the strategy of searching GUI strings in
the source code can sometimes be an effective way of finding the relevant code.

4.1 Strings Not Present in Code
Many GUI strings were not found in the source code of the application because they were a
part of a universal dialog supplied by the GUI toolkit. For example, color-related terms like
“Saturation” were not found in the FreeMind source tree because they are a component of
the standard Java Swing color chooser dialog. Examples of such strings in ArgoUML and
Weka are “File Name:” – a part of a file selection dialog and “One Side” – a term from the
printing dialog.

The string “http://simplyhtml.sf.net/” displayed in FreeMind was located only in a class
file inside a third-party JAR archive. Therefore, it is invisible for a standard textual search.

The string “Mode changed to MindMap Mode” was not found in the FreeMind source
code as a whole because it was instantiated at runtime from the template “Mode changed to
{0}”. This forces the developer to find smaller portions of a string until a match appears, as
we mentioned earlier.

The label “Show Icons Hierarchically” was not found in the source code of FreeMind
because it was written as “Show Icons &Hierarchically” to specify the keyboard shortcut
Alt+H.

Examples of strings which are not present in the code as a whole, but their parts can be
found there, are help texts, logs and exception stack traces.

Regarding PDFsam, the label “Thumbnail creator:” was not found in the code because
the colon was programatically concatenated.

4.2 Strings Present in Code
First, we tried to search for a string which is present exactly once in the FreeMind code:
“Change Root Node”. It was located in a localization file, as a value of a key named
“accessories/plugins/ChangeRootNode.properties_name”. Opening the file “accessories/plug-
ins/ChangeRootNode.java” revealed that this Java class is really relevant to the feature.

Next, we searched for a string present 35 times in the code – “Bubble”. It represents a
node format in the mind-mapping software. This time, the exploration of the results took
more time and we required multiple iterations using different search terms, even with some
dead ends, until we finally found the relevant source code.

Finally, we searched the string “Export” (a menu item), present 1,988 times in the
source code. Just skimming through such a long list is a lengthy activity. Therefore, other
strategies are necessary to efficiently find the feature of interest in the code. For example,
the programmers can reformulate their search queries, use structured navigation (tools like
Call Hierarchy) or debugging techniques [4].

We conclude that in some cases, simple textual searching is a feasible way to find code
relevant to a GUI element. Ideally, a GUI string should be located exactly once (or just a
few times) in the source code, to allow easy finding of source code relevant to a GUI feature.
Furthermore, finding an occurrence in a non-Java file makes it more difficult to find relevant
source code than finding it directly in a Java file.

SLATE’16

6:6 Locating User Interface Concepts in Source Code

5 Threats to Validity

We will now look at the threats to validity of our study. Construct validity is concerned
with the correctness of the measures. External validity discusses whether the findings can
be generalized. Reliability denotes whether similar results would be obtained by another
researcher replicating the study [13].

5.1 Construct Validity

While the GUI ripper in the GUITAR suite gives good results when scraping the GUI, it is
not perfect and it could miss some of the strings visible in the user interface.

During an automated search for whole GUI strings in the code, also long texts like
exception stack traces were included. It is not probable that a programmer will actually try
to search for a whole stack trace in the code textually, as-is. Instead, he will directly look at
some of the methods mentioned in the trace.

As was already mentioned, we performed a case-sensitive search, which has both advan-
tages and disadvantages. In the future, a case-insensitive search should be also performed to
better reflect the manual searching behavior of programmers.

5.2 External Validity

All four applications in our study were desktop Java programs, using the Swing GUI widget
toolkit. However, common contemporary applications have Web and mobile front-ends.
Scraping Web applications could have produced much different results. For example, they
often display texts downloaded from external databases. This could be one of the reasons for
non-presence of GUI strings in the code of these applications.

Even in the world of Java Swing applications, the selected ones represent just a small
sample. However, they are representative of common Java projects, as three of them were
included in the standard SF110 [6] benchmark.

5.3 Reliability

The quantitative results were produced chiefly by an automated script. Therefore, the
subjectivity of a researcher is eliminated. The strings presented in the qualitative part were
selected manually, but we tried to select representative samples.

6 Related Work

6.1 GUI Ripping

To rip GUIs, we used the tool GUI ripper [10] which is a part of the GUITAR [12] suite.
Swing UIs are one of the best supported technologies, however, there is a partial support for
SWT, Web, and Android. To crawl highly dynamic Web applications, Crawljax [11] could
be used.

The DEAL method [1] creates a DSL from a GUI. However, the process is not automated
and a user must manually traverse the user interface.

M. Sulír and J. Porubän 6:7

6.2 Feature Location Using GUIs
Of course, finding a string from a UI using IDE’s textual search is not a sole option to
perform feature location. GUITA [14] allows to take a snapshot of a running GUI widget.
The snapshot is associated with a method which was last called on the given widget.

Another approach, UI traces [15], splits a long method trace into smaller ones, each
associated with a graphical snapshot of the GUI in the given state.

6.3 Feature Location in General
There exists a large number of feature location techniques – see [5] for a survey. An example
of a method utilizing source code comments and identifiers is presented by Marcus et al. [9].
Carvalho et al. [3] use a combination of static and dynamic analysis, specifications and
ontologies to map problem domain concepts to source code elements. However, none of these
approaches use labels directly from GUIs of running programs.

6.4 Other Studies
Václavík et al. [16] analyzed words used in names of identifiers in the source code of Java
EE application servers and web frameworks. They tried to determine what portion of these
words are meaningful according to the WordNet database. The more words from the source
code of a project are meaningful, the more understandable it should be. We could perform
a similar experiment, but use a dictionary built from the GUI of an application instead of
WordNet.

7 Conclusion

In this article, a simple study was performed: We scraped all strings contained in a GUI of
four open-source Java desktop applications and tried to automatically find them (as a whole
and words contained in them) in the static source code.

Regarding the main hypothesis: The vast majority of GUI strings were found in the code.
However, 11.2% of them were not found at all.

Answering RQ1, the GUI strings are often located in Java source code files, *.properties
localization files, XML and custom DSL files.

To answer RQ2, the main reasons of a non-presence of a GUI string in the source code
were: a string was a part of a standard dialog, a third-party library, or the string was
dynamically generated at runtime.

If we consider a set of GUI words the application’s problem domain dictionary, the
percentage of GUI words present in the source code can be regarded as a measure of code
understandability. For example, if the code contains too few concepts from the GUI, it can
be considered obfuscated.

We found out that the approach of simple textual code search of strings displayed in the
GUI is useable and it can actually find code relevant to a feature, unless there are too many
results, or none at all.

As a future work, there is a potential in creation of a tool which would automatically
assign GUI strings to corresponding source code fragments, e.g., using annotations. This way,
a simple textual search would be sufficient to quickly find any code related to a given GUI
element. Also, we can replicate this study on Web applications, or study logs in addition to
GUIs.

SLATE’16

6:8 Locating User Interface Concepts in Source Code

References

1 Michaela Bačíková, Jaroslav Porubän, and Dominik Lakatoš. Defining domain language
of graphical user interfaces. In José Paulo Leal, Ricardo Rocha, and Alberto Simões,
editors, 2nd Symposium on Languages, Applications and Technologies, volume 29 of Ope-
nAccess Series in Informatics (OASIcs), pages 187–202, Dagstuhl, Germany, 2013. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.SLATE.2013.187.

2 Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas Webster. The concept assignment
problem in program understanding. In Proceedings of the 15th International Conference
on Software Engineering, ICSE’93, pages 482–498, Los Alamitos, CA, USA, 1993. IEEE
Computer Society Press. URL: http://dl.acm.org/citation.cfm?id=257572.257679.

3 Nuno Ramos Carvalho, José João Almeida, Pedro Rangel Henriques, and Maria
João Varanda Pereira. Conclave: Ontology-driven measurement of semantic relatedness
between source code elements and problem domain concepts. In Computational Science
and Its Applications – ICCSA 2014, pages 116–131. Springer International Publishing, 2014.
doi:10.1007/978-3-319-09153-2_9.

4 Kostadin Damevski, David Shepherd, and Lori Pollock. A field study of how developers
locate features in source code. Empirical Software Engineering, 21(2):724–747, 2016. doi:
10.1007/s10664-015-9373-9.

5 Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. Feature location
in source code: a taxonomy and survey. Journal of Software: Evolution and Process,
25(1):53–95, 2013. doi:10.1002/smr.567.

6 Gordon Fraser and Andrea Arcuri. A large-scale evaluation of automated unit test gener-
ation using EvoSuite. ACM Trans. Softw. Eng. Methodol., 24(2):8:1–8:42, December 2014.
doi:10.1145/2685612.

7 Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Maria João Varanda Pereira, Matej Čre-
pinšek, Daniela da Cruz, and Pedro Rangel Henriques. Comparing general-purpose and
domain-specific languages: An empirical study. Computer Science and Information Sys-
tems, 7(2):247–264, April 2010. doi:10.2298/CSIS1002247K.

8 Walid Maalej, Rebecca Tiarks, Tobias Roehm, and Rainer Koschke. On the comprehension
of program comprehension. ACM Trans. Softw. Eng. Methodol., 23(4):31:1–31:37, Septem-
ber 2014. doi:10.1145/2622669.

9 Andrian Marcus, Andrey Sergeyev, Václav Rajlich, and Jonathan I. Maletic. An in-
formation retrieval approach to concept location in source code. In Reverse Engineer-
ing, 2004. Proceedings. 11th Working Conference on, pages 214–223, Nov 2004. doi:
10.1109/WCRE.2004.10.

10 Atif Memon, Ishan Banerjee, and Adithya Nagarajan. GUI ripping: reverse engineering of
graphical user interfaces for testing. In Reverse Engineering, 2003. WCRE 2003. Proceed-
ings. 10th Working Conference on, pages 260–269, Nov 2003. doi:10.1109/WCRE.2003.
1287256.

11 Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling AJAX-based Web ap-
plications through dynamic analysis of user interface state changes. ACM Trans. Web,
6(1):3:1–3:30, March 2012. doi:10.1145/2109205.2109208.

12 Bao N. Nguyen, Bryan Robbins, Ishan Banerjee, and Atif Memon. GUITAR: an innova-
tive tool for automated testing of GUI-driven software. Automated Software Engineering,
21(1):65–105, 2013. doi:10.1007/s10515-013-0128-9.

13 Per Runeson and Martin Höst. Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering, 14(2):131–164, 2009. doi:10.
1007/s10664-008-9102-8.

http://dx.doi.org/10.4230/OASIcs.SLATE.2013.187
http://dl.acm.org/citation.cfm?id=257572.257679
http://dx.doi.org/10.1007/978-3-319-09153-2_9
http://dx.doi.org/10.1007/s10664-015-9373-9
http://dx.doi.org/10.1007/s10664-015-9373-9
http://dx.doi.org/10.1002/smr.567
http://dx.doi.org/10.1145/2685612
http://dx.doi.org/10.2298/CSIS1002247K
http://dx.doi.org/10.1145/2622669
http://dx.doi.org/10.1109/WCRE.2004.10
http://dx.doi.org/10.1109/WCRE.2004.10
http://dx.doi.org/10.1109/WCRE.2003.1287256
http://dx.doi.org/10.1109/WCRE.2003.1287256
http://dx.doi.org/10.1145/2109205.2109208
http://dx.doi.org/10.1007/s10515-013-0128-9
http://dx.doi.org/10.1007/s10664-008-9102-8
http://dx.doi.org/10.1007/s10664-008-9102-8

M. Sulír and J. Porubän 6:9

14 André L. Santos. GUI-driven code tracing. In Visual Languages and Human-Centric
Computing (VL/HCC), 2012 IEEE Symposium on, pages 111–118, Sept 2012. doi:10.
1109/VLHCC.2012.6344495.

15 Andrew Sutherland and Kevin Schneider. UI traces: Supporting the maintenance of interac-
tive software. In Software Maintenance, 2009. ICSM 2009. IEEE International Conference
on, pages 563–566, Sept 2009. doi:10.1109/ICSM.2009.5306389.

16 Peter Václavík, Jaroslav Porubän, and Marek Mezei. Automatic derivation of domain terms
and concept location based on the analysis of the identifiers. Acta Universitatis Sapientiae.
Informatica, 2(1):40–50, 2010. URL: http://www.acta.sapientia.ro/acta-info/C2-1/
info21-4.pdf.

SLATE’16

http://dx.doi.org/10.1109/VLHCC.2012.6344495
http://dx.doi.org/10.1109/VLHCC.2012.6344495
http://dx.doi.org/10.1109/ICSM.2009.5306389
http://www.acta.sapientia.ro/acta-info/C2-1/info21-4.pdf
http://www.acta.sapientia.ro/acta-info/C2-1/info21-4.pdf

Declarative Rules for Annotated Expert
Knowledge in Change Management
Dietmar Seipel1, Rüdiger von der Weth2, Salvador Abreu3,
Falco Nogatz4, and Alexander Werner5

1 Department of Computer Science, University of Würzburg, Würzburg,
Germany
dietmar.seipel@uni-wuerzburg.de

2 Fac. of Business Admin., Dresden University of Applied Sciences, Dresden,
Germany
weth@htw-dresden.de

3 LISP and Department of Computer Science, University of Évora, Évora,
Portugal
spa@di.uevora.pt

4 Department of Computer Science, University of Würzburg, Würzburg,
Germany
falco.nogatz@uni-wuerzburg.de

5 Fac. of Business Admin., Dresden University of Applied Sciences, Dresden,
Germany
alexander.werner@htw-dresden.de

Abstract
In this paper, we use declarative and domain–specific languages for representing expert knowledge
in the field of change management in organisational psychology. Expert rules obtained in practical
case studies are represented as declarative rules in a deductive database. The expert rules are
annotated by information describing their provenance and confidence. Additional provenance
information for the whole – or parts of the – rule base can be given by ontologies.

Deductive databases allow for declaratively defining the semantics of the expert knowledge
with rules; the evaluation of the rules can be optimised and the inference mechanisms could be
changed, since they are specified in an abstract way. As the logical syntax of rules had been
a problem in previous applications of deductive databases, we use specially designed domain–
specific languages to make the rule syntax easier for non–programmers.

The semantics of the whole knowledge base is declarative. The rules are written declaratively
in an extension Datalog∗ of the well–known deductive database language Datalog on the data
level, and additional Datalog∗ rules can configure the processing of the annotated rules and
the ontologies.

1998 ACM Subject Classification H.2 Database Management, I.2.1 Applications and Expert
Systems, I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases declarative, DATALOG, PROLOG, domain-specific, change manage-
ment

Digital Object Identifier 10.4230/OASIcs.SLATE.2016.7

1 Introduction

There have been many rule–based approaches for knowledge representation, but the declara-
tive approach of deductive databases appears very promising. Especially when armed with

© Dietmar Seipel, Rüdiger von der Weth, Salvador Abreu, Falco Nogatz, and Alexander Werner;
licensed under Creative Commons License CC-BY

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira; Article No. 7; pp. 7:1–7:16

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2016.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

7:2 Declarative Rules for Annotated Expert Knowledge in Change Management

domain–specific languages, it becomes much easier to incorporate domain expertise into the
development process of an information system.

The knowledge in organisations plays an important role in day–to–day business, even more
if routines and organisational structures have to be changed. Knowledge in organisations is
represented in many ways. Some rules are documented explicitly in rules but there are also
informal procedural rules, which are mostly undocumented. A reason why it is so difficult to
compare these implicit and explicit rules is because they exist fragmented in different sources
(e.g. individuals, groups) and can not be collected in a standardised manner. An approach
to solve this problem is to transfer differently collected information about procedures in a
standard format using content analysis, which allows to manage the rules in a deductive
database system. The system DDbase [17] allows to analyse rules during input and to link
them in the evaluation process. Both a graphical visualiser interface and automated reasoning
facilitate the linking of conclusions and help to detect contradictions. An expandable rule
base enables the extension of an overall model and its validation across methodologically
different studies. Having a semantically sound and functionally rich declarative rule language
is an enabling factor when presented as a domain–specific language (DSL). These results pave
the way for the comparison of informal knowledge and official rules as well as documenting
and modelling their history accurately.

We have described a rule concept for knowledge in change management and some methods
for querying and visualizing the rules from the point of view of organizational psychology
in [21]; the syntax of the rules has been modelled using operator precedences yielding an
internal DSL in Prolog. In the present paper, we give a context–free grammar for the rule
language, which might be textended later, and we provide a theory about the semantics and
evaluation of declarative rule bases following concepts from Datalog and logic programming
in general. Moreover, it is necessary to include provenance information, that can be given by
ontologies, and confidence annotations of the rules.

Organization of the Paper
The rest of this paper is organised as follows: Section 2 recalls some basic ideas from
declarative programming, domain–specific languages, and deductive databases. Section 3 is
about declarative rule bases; it introduces rules for change management and defines syntax,
semantics, and evaluation using deductive databases and logic programming. Section 4
shows how the rule base can be represented using a suitable DSL. The analysis of rule
bases is investigated in Section 5; ideas for queries and the visual analysis in interactive rule
editors are given. Section 6 shows how the knowledge base can be augmented by contextual
information given in ontologies and how rules can be annotated with confidence information.
The paper is concluded with some final remarks.

2 Background Concepts

In this section, we recall some concepts useful for reading the rest of the article, namely
declarative programming, domain–specific languages, deductive databases and logic program-
ming. We will mainly summarize and highlight some of the general statements found in
literature.

2.1 Declarative Programming
Declarative programming is a programming paradigm that expresses the logic of a computation
in an abstract way, without having to describe its control flow. Thus, the semantics of a

D. Seipel, R. von der Weth, S. Abreu, F. Nogatz, and A. Werner 7:3

declarative language becomes easier to grasp for domain experts. Declarative programming
offers, e.g., the following advantages for data and knowledge engineering: security, safety, and
shorter development times, as known from information systems with relational databases.
There exists a plethora of results about query optimisation in relational and deductive
databases, e.g., [7, 4, 19, 20, 14]. For instance, Minker and his students have interesting
results in the field of semantic query optimisation [5]: evaluation plans can be derived and
cached results can be included.

Languages which claim to be declarative usually attempt to minimise or eliminate side
effects by describing what the program must accomplish in terms of the problem domain rather
than describing how to accomplish it as a sequence of the programming language instructions –
the how is implicitly left to be decided by the implementation of the language. In contrast,
imperative (or procedural) languages require algorithms to be implemented in explicit
steps. Declarative programming often considers programs as theories of a formal logic, and
computations as deductions, or proofs. Declarative programming may greatly simplify writing
parallel programs, as it does away with explicit control. Examples of declarative languages
include database query languages (e.g., Sql, Datalog, XQuery), regular expressions, logic
and constraint programming (e.g. Prolog), and functional programming.

2.2 Domain Specific Languages

A domain–specific language (DSL) is a computer language specifically tailored to a particular
application domain, in contrast to a general–purpose language (GPL), which aims for broad
applicablility across domains. The syntax of a DSL is meant to be intelligible for domain
experts. According to Martin Fowler [9], DSLs are small languages, focused on a particular
aspect of a software system, i.e. they cannot be used to write a whole program, although it is
frequent to resort to multiple DSLs in a single system, which is basically written in a GPL.

DSLs can take on two forms: external or internal. The first form is parsed independently
of the host GPL, for instance CSS or regular expressions. Internal DSLs, also known as
embedded DSLs, are a dialect of a host programming language, and are intrinsically part of
the host syntax; they amount to an API in a general–purpose language.

DSLs are appreciated because, for its target domain, a DSL is much easier to wield than
either a GPL or a traditional library. The outcome is increased programmer productivity,
which is always welcome. Having a DSL also improves communication with the domain
experts. In short, a DSL raises the level of abstraction required to program an application,
allowing non–computer savvy experts to work more productively.

There are DSLs for numerous areas of application, such as, e.g., expert rules, business
rules, configuration rules/constraints, and queries to databases. A systematic mapping study
has been given in [12].

2.3 Deductive Databases and Logic Programming

A deductive database (DDB) is a database which may carry out deductions based not only
on facts but also on rules which are also stored in the database itself [4]. DDBs combine
logic programming languages and relational databases, as they share the querying flexibility
of the former while retaining the performance and scalability of the latter.

DDBs commonly use variants of the logic programming language Datalog, whose syntax
restricts the standard logic programming language Prolog [3, 22], and whose declarative
bottom–up semantics, given in Section 3, is closer to relational databases.

SLATE’16

7:4 Declarative Rules for Annotated Expert Knowledge in Change Management

Typically DDBs will operate on data which are more restrictive than that of Prolog, yet
more general than that which may structurally be accessed with Sql. Deductive database
languages have been used in many applications, such as data integration, computer networking,
program analysis or security [1, 14].

3 Declarative Rule Bases

Besides relational databases, ontologies have played an important role for building intelligent
information systems. Currently, ontology languages like Owl are extended by rule–based
elements and links. We have built tools for managing and analysing relations, ontologies,
and rules. Techniques from deductive databases and logic programming can integrate hybrid
knowledge bases with structured knowledge. We will show how domain–specific languages
and declarative languages can offer a clear syntax and semantics to modern information
systems. Nowadays, semantic web technology including linked data (JSON–LD) is also very
important. Data and knowledge engineering can clearly benefit from the declarative approach
provided by logic programming.

3.1 Declarative Rules in Change Management
Currently, the results obtained in psychological studies of organisations are not collected in a
uniform data format. The data are kept in proprietary systems, which so far only serve for
persistent storage without trying to obtain new insights. Some databases are used, but joining
the data records and the underlying research results remained almost impossible for lack of
integration. The field of change management offered a perfect case study for an integrated
rule management [21]. The following types of rules have been considered in organisations:
explicit, official business processes, and informal rules. Often, the sources of the rules are
fragmented, distributed, and hybrid. To collect and manage the rules systematically, we have
used the Prolog–based deductive database system DDbase [17]. We have investigated the
analysis, evaluation, and visualisation of the rule base as well as reasoning techniques. Since
we use a deductive database system, we are able to do a continuous integration of further
rules. Based on the facilities of DDbase, we could perform a comparison of informal and
official rules.

We are developing a textual, logic–based rule format, which tries to represent the rules –
as far as possible – in a natural language syntax. We have modelled the emotional processes
in connection with projects for introducing new software. Currently, we have about 50 rules
including the rules shown below. The rules are relevant for companies that are considering
to introduce an ERP system. E.g., the second rule states that the acceptance of an ERP
system is decreasing if other software exists and the functionality and the acceptance of other
Software is increasing.

if ’Processes in ERP System’ = partly
then ’Processes in other Software’ = partly .

if ’Existence of other Software’ = yes
and ’Functionality of other Software’ = increasing
and ’Acceptance of other Software’ = increasing
then ’Acceptance of ERP System’ = decreasing .

if ’Use of other Software’ = increasing/constant

D. Seipel, R. von der Weth, S. Abreu, F. Nogatz, and A. Werner 7:5

then ’Acceptance of ERP System by Users’ = decreasing .

if ’Test of ERP System by Users’ = yes
then ’Discovery of ERP Function by Users’ = yes .

We have developed a DSL for intuitively representing the business rules, which maps to
Prolog in simple manner. We have also implemented mechanisms for analysing and
visualising the rule base. We use the deductive database system DDbase, which works
with an extension of Datalog, a logic programming language extending the well–known
relational query language Sql.

3.2 Deductive Databases and Logic Programming
A comprehensive description of the syntax and semantics of deductive databases and logic
programming is given, e.g., in [14]. A logic program P is a set of rules, which are range–
restricted implications A ← β, where A is an atom and β can be any formula over atoms
built with the junctors ∨, ∧, and not (default negation). Some extensions can also handle
literals with classical negation (¬), rather than just atoms in the rules. We allow for function
symbols and an arbitray use of the junctors in the rules, whereas frequently in deductive
databases β = B1∧ . . .∧Bm∧not C1∧ . . .∧not Cn is just taken as a conjunction of atoms Bi

or default negated atoms not Ci without function symbols. A is called the head, and β is
called the body of the rule. The property range–restricted means that every variable symbol
in the head must also occur in the body, where variable symbols within default negated
formulas not φ are not counted. Facts A are rules with an empty body and thus correspond
to tuples in a relational database; rules A← β are implications. For instance, the well–known
transitive closure rules can be expressed as:

tc(X,Y)← arc(X,Y),
tc(X,Y)← arc(X,Z) ∧ tc(Z, Y).

Semantics and Evaluation
In logic programming, terms are defined inductively: terms can be variable symbols or
constant symbols or of the form f(t1, ..., tn), where f is a function symbol and t1, ..., tn are
terms themselves. An atom is of the form p(t1, ..., tn), where p is a predicate symbol and
t1, ..., tn are terms. A ground atom is an atom without variable symbols. E.g., arc(a, b) is a
ground atom with the predicate symbol arc, where the ground terms t1 = a and t2 = b are
constants (strings starting with a lower case character), and the atom arc(X,Y) contains the
variable symbols X and Y (strings starting with an upper case character). The Herbrand
base HBP is the set of all ground atoms over the logic program P , i.e. their predicate, function,
constant and variable symbols must occur in P . An Herbrand interpretation I is a subset
of HBP .

Consequences and Evaluation

Assuming the standard definition, we write I |= β, if I models β. Here, I(not φ) = ¬I(φ)
and I(φ1 � φ2) = I(φ1)� I(φ2), for formulas φ, φ1, φ2, and junctors � = ∨,∧. A ground
rule A← β ∈ gnd (P) is obtained by substituting all variable symbols of a rule by ground
terms. The immediate consequence operator TP derives all ground atoms A, such that there
exists a ground rule in gnd (P), where I models its body:

TP(I) = { A ∈ HBP | A← β ∈ gnd (P), I |= β }.

SLATE’16

7:6 Declarative Rules for Annotated Expert Knowledge in Change Management

Since the rules are range–restricted, TP(I) will be finite, if I is finite. E.g., for the transitive
closure rules together with the facts arc(a, b), arc(b, c), arc(c, d), the bottom–up evaluation
derives the following monotonically increasing sequence of interpretations by repeatedly
applying the rules to the already derived facts:

I0 = ∅,
I1 = { arc(a, b), arc(b, c), arc(c, d) },
I2 = I1 ∪ { tc(a, b), tc(b, c), tc(c, d) },
I3 = I2 ∪ { tc(a, c), tc(b, d) },
In = I3 ∪ { tc(a, d) }, for all n ≥ 4.

For n ∈ IN0, the interpretation In = T n
P is obtained by the repeated application of TP ,

starting with I0 = T 0
P = ∅, i.e. T n+1

P = TP(T n
P). The least fixpoint of the consequence

operator – here I4 – is also the unique minimal model of the logic program. Observe, that
the least fixpoint is Iω = T ω

P = ∪ω
n=0T n

P . In theory, it can be infinite, if the Herbrand base
is infinte since P contains function symbols. In practice, the rules have to ensure that the
iteration terminates after finitely many steps with a finite fixpoint. The consequence operator
and its iteration provide one proof–theoretic (operational) semantics of a logic program
without default negation, i.e., an evaluation method.

Semantics

In general, the semantics of a logic program with default negation is given by its answer sets,
cf. [14]. For our purposes, however, it is sufficient to consider logic programs with a limited
use of default negation, so–called stratified programs, where there is no recursion through
default negation. The evaluation of stratified programs can be based on logic programs
without default negation at all. These programs – the transitive closure program above is an
example – can be evaluated bottom–up using hyperresolution in an efficient bottom–up style.
Then, declarativity is given by the fact that without default negation, three semantics coincide:
model, proof, and fixpoint theory. In general, the answer set semantics of logic programs
with unlimited default negation is defined by a fixpoint theory. This can also be extended
to handle literals with classical negation (¬), rather than just atoms. In non–monotonic
reasoning with answer sets, we distiguish between true literals in an answer set and literals
derived by the inference process. Intuitively, a default negated literal notA is considered true
in an answer set, if the atom A cannot be derived, whereas a classically negated literal ¬A is
considered true, if the negated atom ¬A can be derived.

During the first phase of the case study in change management, we needed only basic
semantic concepts, since the main focus had been on the language and the structural analysis
and visualisation of the rule base. For the future, it will be important that the semantics of
the target language is precisely defined, a characteristic we inherit from logic programming
and Datalog.

Renaissance of Datalog
For several years, we can observe what is sometimes called a renaissance of Datalog [1].
Zaniolo started with Ldl at Austin; subsequently, many DDBs have been developed. New
Datalog applications have been developed, e.g., at Berkeley, where Boom and Bloom
handle distributed computing, parallelism, and concurrency. New Datalog companies have
been created and became successful: the company LogicBlox provides a unified database
foundation for the next generation of smart analytical and transactional applications; the

D. Seipel, R. von der Weth, S. Abreu, F. Nogatz, and A. Werner 7:7

Figure 1 Architecture of DDbase.

company Lixto on declarative web data extraction and annotation exists since the beginning
of the millennium, and Gottlob’s database group has recent publications with Oracle. SAP
uses Swi–Prolog [22] in its Cloud Platform HANA (configuration with source repository
git/gerrit), just to name a few.

3.3 The Deductive Database System DDbase
The deductive database system DDbase uses the extension Datalog∗ with function sym-
bols [16, 17]. Rule bodies can contain embedded Prolog calls and default negation. In
DDbase, it is possible to have bottom–up and top–down evaluation in one system. Dat-
alog∗ can evaluate logic programs with Prolog syntax (extended Datalog programs)
in a bottom–up style. Thus, the main evaluation method of Datalog∗ is bottom–up; but
Datalog∗ is designed to evaluate embedded Prolog calls in a top–down manner. In
DDbase, a logic program can be abstracted by a predicate dependency or a rule predicate
graph, and a derivation can be visualised by its proof tree, cf. [4].

The architecture of DDbase is given in Figure 1, which also shows that DDbase can
access hybrid data sources.

DDbase is part of the Ddk, the DisLog developers’ kit, a collection of Prolog
libraries written in Swi–Prolog [22] including features from data and knowledge engineering,
databases (relational, Xml, and deductive), ontologies, and non–monotonic reasoning. It can
be obtained from http://www.ddbase.de.

4 A Domain Specific Language for Rules

For expressing rules, we chose to follow the general form:

if Condition then Consequence.

Notwithstanding the previous schematic statement form, every rule is required to end with a
dot. The dot allows the language to behave as an embedded DSL for Prolog. With minor
changes, it could be embedded into other host languages such as Python or Javascript.

SLATE’16

http://www.ddbase.de

7:8 Declarative Rules for Annotated Expert Knowledge in Change Management

The DSL has been conveniently defined in Prolog by a collection of suitable operator
precedences. After the keywords if and then, a Condition and Consequence, respectively, is
expected. Both are so–called junctions of findings. If Condition is empty, the rule is also
called a fact. A finding always has the form: Feature = Value, where Feature and Value
should generally be included in quotation marks. Only in strings that neither contain spaces
nor start with a capital letter, the quotes can be omitted. The values are not limited to yes
and no, for instance other literal descriptions as in the finding ’Acceptance’ = increases
or numerical information, which can assume significant practical importance, are possible.
Besides equality, additional comparators may be used.

4.1 Syntax of Formulas

Several findings in Condition and Consequence can be linked to formulas by connectives.
For this, the keywords and, or, and neg are available. If F and G be formulas, then the
following are also allowed formulas: neg F , F and G, F or G. Note that conjunction
binds stronger than disjunction, and classical negation neg binds the most strongly. An
extension would be to allow for default negation (not) to occur in Condition, but not in
Consequence. For representing arbitrary formulas, subformulæ can be included in brackets.

Our domain–specific rule language could be described by a context–free grammar, which
we could also implement using the following definite clause grammar (DCG) in Prolog.

rule --> "if ", formula, " then ", conjunction.
formula --> conjunction | disjunction | classical_negation.
conjunction --> literal | literal, " and ", formula.
disjunction --> literal | literal, " or ", formula.
classical_negation --> "-", formula.
literal --> finding | "not(", finding, ")".
finding --> feature, "=", value.

By further rules, we can define that features and values are certains strings without the
character “=”. This DCG can be used for verifying that a rule is in the language. The grammar
formalism can help to clarify the syntax for people who are not experts in logic programming
or Prolog. At the moment, however, we are not using the DCG. Instead, we have embedded
the rule DSL internally into Prolog by providing suitable operator defintions for the junctors
if, then, and, or, neg, etc. Thechnically, the rules if Formula then Conjunction can
be parsed by Prolog into Prolog structures then(if(Formula), Conjunction). From
these structures, the rule base of our system can be derived easily and analyzed by our tool.
In future work, we might need a more powerful rule language that cannot be an internal
DSL in Prolog. In that case, will try to use refinements and extensions of the given DCG
formalism to define a suitable external DSL.

W.r.t. the syntax given in Section 3.2, the findings A=V are the atoms in the rules; they
have the binary predicate symbol “=”. More general findings A�V can use other comparator
predicate symbols “�”, which could be, e.g., one of =,<,>,=<,>=. Moreover, also other atoms
are possible in Datalog∗, e.g. for embedded calls with built–in predicates. In Datalog∗,
the rules are evaluated bottom–up, and the embedded calls are evaluated in a top–down style,
as it is common in logic programming approaches, cf. Section 3.3. Within a formula not F
with default negation “not”, no other default negation is allowed, but classical negation “¬”
is allowed; i.e., F can only be built using the classcical junctors ∧, ∨, and ¬.

D. Seipel, R. von der Weth, S. Abreu, F. Nogatz, and A. Werner 7:9

An Example from Change Management
As a more complex example, consider the following statement:

In small business, work processes are comprehensible without frequent team meetings,
and no abundance of information arises.

The same applies to large companies with frequent meetings. In natural language, this may
be formulated as follows:

If either the size of the company is small or the meetings are frequent, then the
transparency of the work processes increases and there is no information overload.

The syntax of the rules must follow the form if Condition then Consequence. The
statement above is only true in the case of exclusive ors: either the company is small – then
no meetings are needed – or it is so large that team meetings are needed to track work
processes without an excess of information. If both premises are met (i.e., there would
be frequent business meetings in a small business), then the consequence ’information
overload’ = no would not be true.

The given example illustrates that the formal recording of statements by predicate logic
formulas can sharpen the uniqueness of the resulting statements. In the case of the more
general F or G instead of either F or G, the application of the rule along with other
statements might lead to inconsistencies. The detection of such situations is part of the
functionality of our tool.

The syntax for the rule storage allows the basic conjunction and and disjunction or.
Moreover, classical negation is supported, which is denoted by neg in rules. The exclusive or,
F ⊕G (either F or G), can be expressed as (F ∧¬G)∨ (¬F ∧G) using elementary connectives.
Thus, the statement sketched in the example above can be modeled using elementary
connectives as follows:

if neg ’Company Size’ = small and ’Meeting’ = often
or ’Company Size’ = small and neg ’Meeting’ = often

then ’Traceability of Work Processes’ = rises
and ’Information Overload’ = no.

In this case, we do not need any brackets. The precedences ensure that and binds before or
and if and then, that or binds before if and then, and finally that if binds before then.
In Prolog, we can declare this more compactly by assigning increasing precedences to the
operators in the sequence =, and, or, if, then. In general, using brackets we can express a
formula where or should bind before and.

Variants of Rules and the DSL
The proposed notation for rules complies with the syntax of Prolog, which facilitates its
usage as an embedded DSL. With the definition of if, then, neg, and and or as operators,
the established rules become valid Prolog structures. Thus, it is possible to create an
externally–backed rule base file including all known statements. As it conforms to user–
readable syntax, the rule base may even be updated with a text editor. It may be gradually
expanded by adding new rules. The end result is an incremental rule storage containing all
statements found from research results to be analysed later.

We allow for formulas linking findings by the connectives and and or. If Consequences
is a conjunction, then the rule can be normalized to several rules using macro expansion

SLATE’16

7:10 Declarative Rules for Annotated Expert Knowledge in Change Management

techniques in Prolog. More general rules over the junctors and and or can be transformed
to several rules with disjunctive Consequences. So far, the domain experts have not used
disjunctive Consequences in applications; at the moment, they are not accustomed to
use disjunctions in rule heads. In the future, we will try to introduce that new feature
into applications. Especially the handling of confidence values together with disjunctive
Consequences will be an interesting research field.

4.2 The Integrated Development Environment (IDE)
The current tool will allow sloppy input that gets normalized. More powerful rule editors are
planned for the future, so as to avoid having to directly alter the rule file. These advanced
editors will facilitate the insertion of rules, to embody the intention that rules should look
like natural language statements. Additionally, the editing tool will try to correct frequently
occurring syntactic errors, for example, forgetting the dot at the end of the rule or the wrong
notation and use of the junctors; these are potential sources of easy–to–correct errors.

Having a graphical integrated development environment will also facilitate the reuse of
previously existing features and values. It is clear that conclusions from the given statements
are only possible if the same names are consistently used for the same features.

At present, the tool implements a text–based approach for the handling and a declarative
approach for the analysis and the visualisation of the rule base.

5 Design Analysis of the Rule Base

The individual records of the rule memory are usually stored in the memory of DDbase and
analysed with our tool. It is possible to read rules as Prolog source code, to inspect the
rules and even directly query them.

5.1 Declarative Queries
Using this deductive knowledge base, it is possible to answer the following exemplary questions
with our tool:

Which factors affect the acceptance of the new ERP system?
Which constellation of findings is necessary to derive another finding?
Are there findings, which are a particularly common cause of a change?
Are there any killer findings, that block many developments?
What are the necessary conditions for a finding? Which ones are optional?
If a different value is assigned to a single feature, how does this affect the overall structure?
Are there any redundant rules?
Can some individual rules be expressed by more accurate rules?
Where do some findings form opposite or even contradictory relationships?

The questions above underline the diversity of queries than can be asked. The current
prototype is already supporting queries for conditions and consequences of individual findings.
For example, by means of the predicate depends_on, the following query can be formulated
in DDbase (we do not show the encoding here); we can iterate through all answers. 1 The
predicate depends_on is built to work also for pairs of features instead of just findings.

1 This can be done by entering a semicolon “;” after each answer, standard procedure in a Prolog
top–level interpreter.

D. Seipel, R. von der Weth, S. Abreu, F. Nogatz, and A. Werner 7:11

?- F1 = finding:Consequence, F2 = finding:Condition,
depends_on(F1, F2).

Consequence = (’Emergence of ERP Knowledge in Employees’ = yes),
Condition = (’Existence of ERP Knowledge in Employees’ = yes) ;
Consequence = (’Emergence of ERP Knowledge in Employees’ = yes),
Condition = (’Cooperation/Communication between Employees

and Employees with ERP Knowledge’ = yes) ;
...

Here, not only the contents of individual rules is returned, but also derived knowledge gets
computed. If the consequence ‘Emergence of Knowledge about ERP System in Employees’ =
yes is a prerequisite for a further consequence, then the existence of an employee with
knowledge about the ERP System is output as being a prerequisite. Since we use the system
DDbase, is it also possible to immediately determine all causes of an individual finding. For
doing this, the consequence can be an argument in the following predicate, as this happens
to determine the causes of a conflict:

?- F1 = finding:’Emergence of Conflicts’ = yes,
F2 = finding:Precondition,
depends_on(F1, F2).

Precondition =
(’Acceptance of ERP System at the Beginning’ = partly) ;

Precondition =
(’Feedback’ = no).

For simple values, the tool can also handle classical negations, i.e., in the example above the
two findings neg ‘Feedback’ = no and ‘Feedback’ = yes are equivalent.

5.2 Visualisation of Dependency Graphs

We have already indicated the advantages of an interactive rule editor. Besides facilitating
the entry of rules and the dynamic formulation of queries, the rule editor should be used for
visualising the statements stored in the rule base.

In a similar form, this had been implemented with the tool Visur, cf. [18]. The tool
visualises a given rule base and thus allows for a graphical interpretation of the rule base.
It had been developed for and used by AI people for the analysis and visualisation of rules
in medical diagnosis. Thus findings, which are a prerequisite for a variety of consequences,
can also been rendered visually. Visur has, among other applications, been used for the
visualisation of medical diagnoses, whose rules assign symptoms to a diagnosis. We are
extending the tool for visualising change management rules from studies in organisational
psychology. This provides a schematic representation of the findings: from the features
(grey circles), consequences can be visualised depending on the values (which are not shown
here). An example application is given in Figure 2, which illustrates the features and the
relevant rules on which the feature ’acceptance of ERP system by employee’ depends
transitively. The other nodes (shown by grey circles) are features, which can themselves be
influenced by further features.

SLATE’16

7:12 Declarative Rules for Annotated Expert Knowledge in Change Management

Figure 2 A dependency graph for the schematic representation of the transitive preconditions
and the relevant rules (shown by the blue triangles labelled by 2, 17–20, 22–24) for deriving the
feature ’acceptance of ERP system by employee’.

6 Extensions of the Knowledge Base

As already suggested, besides the pure features, the rules should be annotated by contextual
information, such as their source, the method of achieving the rules, the time period of the
investigation, and the confidence. The annotations can be used to deduce further constraints
and implications from the rule base; the resulting statements about findings can be annotated
with confidence values. For reasoning about the queries, provenance information is very
important and can influence the usage of the interactive rule editor; for instance, unexpected
interaction with other parts of the knowledge base can resort to provenance information
to influence whether and how we accept or reject the new knowledge. The extensions can
be expressed in Datalog∗, and thus DDbase can integrate them with the evaluation in a
consistent reasoning system.

6.1 Provenance Information in Ontologies

Provenance is information about entities, activities, and people involved in producing a
piece of data, which can be used to assess its quality, reliability or trustworthiness. For
collaborations across disciplines, hybrid information systems using data and techniques from
many different sources with no preexisting agreement about the semantics of the processes
or data, it is important to be able to express provenance. The infrastructure must provide
general purpose mechanisms for annotating (i.e., making assertions about), discovering, and
reasoning about processes and data.

D. Seipel, R. von der Weth, S. Abreu, F. Nogatz, and A. Werner 7:13

The Open Provenance Model (OPM)
Some of the inferences require additional reasoning beyond that supported by Owl and
Swrl. We assume that the reader is familiar with the basic concepts from ontologies; we do
not get formal in this section; a general description of the semantic web rule language Swrl
can, e.g., be found in [15, 2]. Also, structures such as the provenance graph are very useful
for representing causal relationships. The Open Provenance Model (OPM) defines logical
constraints on the provenance graph [15]. Some constraints cannot be expressed in Owl, but
can be expressed based on Swrl rules. The Open Provenance Model provides a way to use
semantic web technology and rules to implement semantic metadata. [15] discusses a binding
of the OPM written in Owl with rules written in Swrl. This allows for the development
of hybrid systems that use Owl, Swrl, and other semantic web software, interoperating
through a shared space of RDF triples. PROV is a specification that provides a vocabulary
to interchange provenance information. It defines a core data model for the interchange
of provenance on the web; it allows for building representations of the entities, people and
processes involved in producing a piece of data in the domain. The provenance of digital
objects represents their origins; the records of a PROV specification can describe the entities
and activities involved in producing and delivering or otherwise influencing a given object.
Provenance can be used for many purposes, such as understanding how data was collected
so it can be used meaningfully, determining ownership and rights over an object, making
judgements about information to determine whether to trust it, verifying that the process
and steps used to obtain a result complies with some given requirements, and reproducing
how something was generated.

Example in Turtle Syntax
For example, the provenance of a conference paper could be described as follows: The paper
was written by author abc. The final version of the paper is based on an earlier draft. Some
professors made comments on the draft. The author cites prior work from a book. The paper
includes a table that was generated by a program. This may be expressed in the so–called
turtle syntax, which is a special language that could also be considered as a DSL. Note that
the property “a” means “is a”.

ex:draft
a prov:Entity ;
a abc:Manuscript ;
dcterms:title "Latest results" .

ex:article a prov:Entity ;
a abc:ConferencePaper ;
dcterms:title "Results from case study" .

ex:dataset a prov:Entity ;
a abc:Dataset .

ex:book
a prov:Entity ;
a abc:Thesis .

ex:result a prov:Entity ;
a abc:Table .

ex:comment a prov:Entity ;
a abc:Review .

SLATE’16

7:14 Declarative Rules for Annotated Expert Knowledge in Change Management

Evaluation in Datalog∗

Several of the key constraints and inferences of the OPM cannot be expressed in Owl and
Swrl, due to fundamental limitations of the semantics of these languages. E.g., it is not
possible to modify the value of an asserted property, or to write a rule to determine the
number of times an artifact is used, or to detect a cycle in the provenance graph. Storing
the OPM records in triples makes it possible to use other reasoning engines or languages
such as Prolog or Datalog to implement queries or inferences. Owl and Swrl’s Rdf
representations provide a simple and well–understood means of exchanging provenance
information with other tools, such as Rdf databases or declarative programming languages.

The hybrid system DDbase shows that semantic web technologies are not only useful for
provenance information but also provide a base level of interoperability that can enable loosely–
coupled tools with varying levels of capability and expressiveness. We do not need specialized
reasoners for different knowledge bases. Instead, the rules are encoded in Datalog∗ and the
provenance information is given in ontologies. Further Datalog∗ rules can encode the profile
of the ontology. E.g., [10] study the controlled query evaluation for Datalog and Owl 2
profile ontologies. Then, we obtain a Datalog∗ knowledge base that can be evaluated in
DDbase. Observe, that standard Datalog rules would not be sufficient here, since we need
function symbols and embedded calls to Prolog.

6.2 Annotation of the Rule Base
The infrastructure must provide universal mechanisms for the annotation of rules for ar-
gumenting about processes and data. Similarly, the treatment of confidence values can be
achieved. Frequently, collected values can be ambiguous. In the example above, our rule
base contains the value partly in addition to yes and no. A more precise value in the form
of relative frequencies could derive a more accurate form of knowledge.

Annotated Findings
The following simple example is a general annotated rule, where findings are annotated by
values in the form X:A=V; the higher precedence of “=” in our domain–specifc language binds
the finding A=V before it is annotated with the confidence value X by “:”:

if A:’Existence of other Software’ = yes
and B:’Functionality of other Software’ = increasing
and C:’Acceptance of other Software’ = increasing
and accumulate(conjunction_independence, [A,B,C], D)
then D:’Acceptance of ERP System’ = decreasing .

The symbols A, B, C, and D in the rule represent logical variables, which always begin with
a capital letter – which is common in the logic programming language Prolog. They are
distinguishable from normal character strings, since they are included in quotation marks
as ‘emergence conflicts’. The variables in the rule body are universally quantified; i.e., the
statement is assumed to hold for all suitable findings. The variables are in this case attached
to the actual values, so that the unconditional probability can be calculated. Thus, our
domain–specific language makes use of logical variables, and follows the syntax and semantics
of predicate logic and its refinements in answer set programming.

In the case of stochastic independence, the predicate accumulate can be implemented as
follows:

D. Seipel, R. von der Weth, S. Abreu, F. Nogatz, and A. Werner 7:15

accumulate(conjunction_independence, Xs, X) :-
multiply(Xs, X).

Annotated Datalog Rules
In general, the handling of annotated Datalog rules has also been investigated by Laksh-
manan, Subrahmanian, Kifer, et. al. [13, 11]. We have implemented the rules of Subrahmanian
in DDbase. Observe, that the implementation of accumulate above works for arbitrary lists
Xs of values to obtain the product. In DDbase, multiply is implemented using Prolog
meta–predicates. We have also implemented other forms of accumulating lists Xs of values,
such as, e.g., positive and negative correlation. They can be used within the same knowledge
base in Datalog∗.

Our approach is specified in terms of declarative rules that are given in domain–specifc
languages. Rather than changing the inference engine in various forms, we keep the inference
engine of DDbase and change the declarative knowledge base of rules. We are thinking of
adding a mode for specifying how to interpret variables as matching or evaluate. By analysing
the individual rules, their dependencies, and the number of occurrences of individual features
or findings, it is possible to determine the approximate impact of a single features, findings,
or rules.

In short, having a good match with the underlying general purpose language while
retaining a convenient user–friendly syntax and clear semantics is useful for an application–
oriented DSL. This is clearly the case with DDbase and Prolog.

7 Final Remarks

Deductive databases allow for declaratively defining the semantics of the expert knowledge
with rules. For representing the syntax of the rules, we use concepts from domain–specific
languages – trying to remain usable within an adequate host language. In a case study for
change management in organisational psychology, we have demonstrated the usefulness of
the proposed approach in a practical situation. The analysis and visualisation of rules is also
used successfully by AI people for medical diagnosis.

In the future, we are planning to apply knowledege engineering techniques, such as
refactoring approaches [8], to the deductive rule bases. We will also incorporate further
aspects of hybrid information sources and contextual annotations by, e.g., uncertainty and
provenance information. Regarding the latter, it could be useful to model confidence and
uncertainty with concepts from annotated logic programming [13, 11] and probabilistic–
enabled logic programming languages, such as ProbLog [6], and to analyse and support the
knowledge engineering and reasoning process for hybrid knowledge bases including these
concepts.

Other extensions might deal with uncertain knowledge in the form of disjunction in the
rule heads (conclusions), as described in, e.g., [14]. We expect that, especially, the combined
handling of confidence values and disjunctive rules will be an interesting research field.

References
1 Serge Abiteboul. Datalog: La renaissance. http://www.college-de-france.fr/site/

serge-abiteboul/course-2012-05-09-10h00.htm, 2012.

SLATE’16

http://www.college-de-france.fr/site/serge-abiteboul/course-2012-05-09-10h00.htm
http://www.college-de-france.fr/site/serge-abiteboul/course-2012-05-09-10h00.htm

7:16 Declarative Rules for Annotated Expert Knowledge in Change Management

2 Joachim Baumeister and Dietmar Seipel. Anomalies in ontologies with rules. Journal of
Web Semantics, Science, Services and Agents on the World Wide Web, 8(1):55–68, 2010.

3 Ivan Bratko. Prolog Programming for Artificial Intelligence. Addison–Wesley Longman,
4th edition, 2011.

4 Stefano Ceri, Georg Gottlob, and Letizia Tanca. Logic Programming and Databases.
Springer, Berlin, 1990.

5 Upen S. Chakravarthy, Dan H. Fishman, and Jack Minker. Semantic query optimization
in expert systems and database systems. In Proceedings of the 1st International Workshop
on Expert Database Systems, pages 659–674, 1986.

6 Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. ProbLog: A probabilistic Pro-
log and its application in link discovery. In Proceedings of the 20th International Joint
Conference on Artifical Intelligence, pages 2468–2473, 2007.

7 Ramez Elmasri and Shamkant Navathe. Fundamentals of Database Systems. Benjamin
Cummings, 7th edition, 2015.

8 Martin Fowler. Refactoring – Improving the Design of Existing Code. Addison–Wesley,
1999.

9 Martin Fowler. Domain–Specific Languages. Addison–Wesley, 2011.
10 Bernardo Cuenca Grau, Evgeny Kharlamov, Egor V. Kostylev, and Dmitriy Zheleznyakov.

Controlled query evaluation for Datalog and Owl 2 profile ontologies. arXiv:1504.06529,
2015.

11 Michel Kifer and V. S. Subrahmanian. Theory of generalized annotated logic programming
and its applications. Journal of Logic Programming, 12(4):335–368, 1992.

12 Tomaž Kosar, Sudev Bohra, and Marjan Mernik. Domain–specific languages: A systematic
mapping study. Information and Software Technology, 71:77–91, 2016.

13 Laks V. Lakshmanan and Fereidoon Sadri. On a theory of probabilistic deductive databases.
Theory and Practice of Logic Programming, 1:5–42, 2001.

14 Jack Minker, Dietmar Seipel, and Carlo Zaniolo. Logic and databases: History of deductive
databases. In Handbook of the History of Logic, volume 9, Computational Logic. North
Holland, 2014.

15 Robert E. McGrath and Joeg Futrelle. Reasoning About Provenance with Owl and Swrl
Rules. In AAAI Spring Symposium, 2008.

16 Dietmar Seipel. Practical applications of extended deductive databases in Datalog∗. In
Proceedings of the 23rd Workshop on Logic Programming (WLP 2009), September 2009.

17 Dietmar Seipel. Knowledge engineering for hybrid deductive databases. In Proceedings of
the 29th Workshop on Logic Programming (WLP 2015), September 2015.

18 Dietmar Seipel, Joachim Baumeister, and Marbod Hopfner. Declaratively querying and
visualizing knowledge bases in XML. In Proceedings of the 15th International Conference on
Applications of Declarative Programming and Knowledge Management, LNAI 3392, pages
16–31. Springer, 2005.

19 Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Volume I. Com-
puter Science Press, 1988.

20 Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Volume II. Com-
puter Science Press, 1989.

21 Rüdiger von der Weth, Dietmar Seipel, Falco Nogatz, Katrin Schubach, Alexander Werner,
and Franz Wortha. Modellierung von handlungswissen aus fragmentiertem und hetero-
genem rohdatenmaterial durch inkrementelle verfeinerung in einem regelbanksystem. Jour-
nal Psychologie des Alltagshandelns, 2016.

22 JanWielemaker. An overview of the SWI–Prolog programming environment. In Proceedings
of the 13th International Workshop on Logic Programming Environments (WLPE), pages
1–16, 2003.

A Metamodel for Jason BDI Agents

Baris Tekin Tezel1, Moharram Challenger2, and Geylani Kardas3

1 International Computer Institute, Ege University, Izmir, Turkey
baris.tezel@deu.edu.tr

2 International Computer Institute, Ege University, Izmir, Turkey
moharram.challenger@mail.ege.edu.tr

3 International Computer Institute, Ege University, Izmir, Turkey
geylani.kardas@ege.edu.tr

Abstract
In this paper, a metamodel, which can be used for modeling Belief-Desire-Intention (BDI) agents
working on Jason platform, is introduced. The metamodel provides the modeling of agents with
including their belief bases, plans, sets of events, rules and actions respectively. We believe that
the work presented herein contributes to the current multi-agent system (MAS) metamodeling
efforts by taking into account another BDI agent platform which is not considered in the existing
platform-specific MAS modeling approaches. A graphical concrete syntax and a modeling tool
based on the proposed metamodel are also developed in this study. MAS models can be checked
according to the constraints originated from the Jason metamodel definitions and hence conform-
ance of the instance models is supplied by utilizing the tool. Use of the syntax and the modeling
tool are demonstrated with the design of a cleaning robot which is a well-known example of Jason
BDI architecture.

1998 ACM Subject Classification I.6.5 Model Development, I.2.11 Multiagent systems

Keywords and phrases metamodel, BDI agent, multi-agent system, Jason

Digital Object Identifier 10.4230/OASIcs.SLATE.2016.8

1 Introduction

In agent-oriented software engineering (AOSE), many metamodels (e.g. [1, 18, 19, 20, 13, 2, 7,
10]) exist for describing the intelligent software agents and multi-agent systems (MASs) which
are composed of these agents. A group of these metamodels (e.g. [1, 18, 2]) only provides the
definition of traditional AOSE methodologies [14] while another group (e.g. [19, 12, 13, 7, 10])
aims at more general specification of agent systems from different aspects varying from
agent internals to MAS organizations. They present abstract syntaxes for domain-specific
MAS modeling languages (such as [17, 12, 8, 11]) and hence enable the model-driven
development (MDD) of MAS [15]. Taking into account the OMG’s Model-driven architecture
(MDA) specifications1, it is proper to indicate that above metamodels support the platform-
independent MAS modeling which is abstract from the underlying agent implementation
and/or execution platforms.

On the other hand, platform-specific modeling of agent systems is also possible by
using metamodels. AOSE researchers propose metamodels which are specific to real MAS

1 OMG Model Driven Architecture, http://www.omg.org/mda/.

© Baris Tekin Tezel, Moharram Challenger, and Geylani Kardas;
licensed under Creative Commons License CC-BY

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira; Article No. 8; pp. 8:1–8:9

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2016.8
http://www.omg.org/mda/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

8:2 A Metamodel for Jason BDI Agents

implementation platforms such as JACK2 , JADE3 or JADEX4. For instance, [13] defines
the metamodels of JADE and JACK platforms while [16] and [8] consider the development
of MAS on JADEX platform. Definition of MAS metamodels at these different abstraction
levels and application of model transformations between these platform-independent and
platform-specific MAS metamodels enable the implementation of modeled agent systems in
abovementioned MAS platforms.

This paper introduces our ongoing work on the platform-specific modeling of Belief-Desire-
Intention (BDI) agents [22] according to the specifications and features of Jason platform5

which provides the implementation of agents using a Prolog-like logic programming language
called AgentSpeak [21]. We discuss the derivation of a metamodel for Jason and construction
of a graphical modeling tool in which agent developers can model Jason systems conforming
to the introduced metamodel. We believe that the work presented herein contributes to
the abovementioned MAS metamodeling efforts by taking into account another BDI agent
platform which is not considered in the existing platform-specific MAS modeling approaches.
The work introduced in [9] is the single exception which also aims at the modeling of Jason
agents. However, the given metamodel does not support the reusability of same concepts
like beliefs, events, actions plans, goals and rules for different agents of a MAS if required.
The metamodel proposed in this study supports the reusability of all related entities inside
the whole MAS model.

Rest of the paper is organized as follows. In section 2, Jason platform is briefly discussed.
Section 3 introduces the metamodel we propose for Jason. Section 4 covers the definition
of the concrete syntax, implementation of a modeling environment for Jason agents and
exemplification of its usage. Section 5 concludes the paper.

2 Jason

Jason [3] is a Java-based interpreter for an extended version of a Prolog-like logic programming
language called AgentSpeak [21]. AgentSpeak is based on the well-known BDI architecture [22]
for software agents which originates from Bratman’s human practical reasoning theory [5]. In
BDI architecture, agents constantly monitor their environment and respond instantly to the
changes in the environment. This reaction depends on agent’s mental attitudes. An agent
has three types of mental attitudes which are belief, desire and intention.

Beliefs are information about an agent’s itself, other agents and the environment that
the agent is located. Desires express all possible states of affairs which might be achieved
by an agent. One desire is a potential trigger for an agent’s actions. Simply, desires are
often considered as options for an agent. Finally, intentions represent the states of affairs
which have been decided to work towards by the agent. Intentions may be delegated goals or
results of considered options.

Simply, an AgentSpeak agent is defined by a set of beliefs, rules and plans. Beliefs represent
initial knowledge of an agent. Rules are logic expressions or mathematical equations. Plans
constitute the actions and/or subgoals to achieve the current goal.

A plan of an AgentSpeak agent consists of a triggering event, a context and a body
element. The triggering event specifies the events for which that plan is suitable. The context

2 JACK Autonomous Software, http://aosgrp.com/products/jack/.
3 JAVA Agent DEvelopment Framework, http://jade.tilab.com/.
4 JADEX Active Components, https://www.activecomponents.org/#/project/news.
5 Java-based interpreter for an extended version of AgentSpeak, http://jason.sourceforge.net/wp/.

http://aosgrp.com/products/jack/
http://jade.tilab.com/
https://www.activecomponents.org/#/project/news
http://jason.sourceforge.net/wp/

B.T. Tezel, M. Challenger, and G. Kardas 8:3

represents whether the plan is applicable according to the beliefs of the agent. Body is a
sequence of basic actions and/or subgoals.

Logic programming based on AgentSpeak [4] serves a computationally efficient capability
for BDI agent development. With providing a Java-based interpreter, Jason extends the
expressiveness of AgentSpeak during implementation of cognitive agents.

3 A metamodel for Jason

A metamodel, which may provide an abstract syntax of a modeling language for Jason
platform, is presented in this section. As shown in Figure 1, the metamodel provides the
meta-entities and their relations required for both the internal BDI agent architecture and
MAS organization on Jason platform. Derivation of the main elements and their associations
is mainly based on the definitions given in [4]. Moreover, the metamodel complies with
the Extended Backus-Naur Form (EBNF) of Agent Speak Language [4] with the required
level of abstractions. During the discussion below, the meta-entities of the proposed Jason
metamodel are given in the text with italic font.

A Multi-agent System (MAS) is mainly composed of agents. However, the metamodel
includes five different entities other than the Agent entity for the complete representation
of the MAS composite structure. These are BeliefBase, EventSet, RuleSet, PlanLibrary,
ActionSet and GoalSet. Each of them is denoted by individual meta-elements which are
owned by the agents. This helps the metamodel’s support on the reusability for the agent
developers.

BeliefBase is consisted of possible beliefs which may be adopted by agents in order to
use for initial beliefs or context of plans. But, above mentioned BeliefBase of a MAS is
different from the belief base of individual agents. It has a static structure while belief
base of an agent can be changed during the execution of reasoning cycles. Also, each belief
represents knowledge about an agent or the environment. EventSet contains events within
the environment. In Jason platform, each event is represented by a triggering event which is
also a meta-element (Triggering_Event) included in the proposed metamodel. Events happen
as a consequence of belief or goal changes inside an agent’s mind. RuleSet is composed of
rules. Each Rule, which allows arriving at a judgement based on beliefs of an agent, can
simplify making certain conditions used in the context of plans. Rule concept is directly
related with logic programming especially in Prolog.

In the metamodel, ActionSet stores actions which can be used by all agents. Actions,
which are included in the body of plans, represent what an agent is capable of performing.
The Jason metamodel provides two kinds of actions which are internal actions and external
actions. Internal actions (represented by the Internal_Action meta-entity) are executed
inside an agent’s mind. So, they cannot change the environment. Communication actions of
an agent, which are called as Messages in the Jason metamodel, are also internal actions.
On the other hand, external actions (represented by External_Action meta-entities) directly
change the environment.

An agent has Goals to achieve. Bringing together all candidate goals for each agent
within the environment creates the GoalSet. In fact, goals are the desired states, which
are achieved by the executed plans. There are two types of goals, including achievement
goals and test goals. An achievement goal represents a state of the environment which is
desired to be achieved by an agent. A test goal is used to retrieve knowledge from beliefs
of an agent or to check something expected what is actually believed by the agent, while
executing a plan body. Those agent types are included in the metamodel as being attributes

SLATE’16

8:4 A Metamodel for Jason BDI Agents

Figure 1 The Jason metamodel.

B.T. Tezel, M. Challenger, and G. Kardas 8:5

of Goal meta-entity. However, these attributes can not be shown in Figure 1 since attribute
compartments are closed in the metamodel given in the figure due to space limitations.

An agent reacts against events. Those reactions of an agent are represented in the
metamodel by Plans. As previously mentioned, a plan, which represents the skills of an
agent, has three distinct parts. These are the triggering event, the context and the body.
Triggering_Event is the post-condition of a plan. Context is the pre-condition of a plan and
composed of beliefs and rules which allow deducing based on the knowledge. The Body of a
plan is simply a list of actions. Besides, the body has sub-goals and Mental_Notes which
modify the belief base. All possible plans which can be used by an agent, are covered in a
PlanLibrary meta-element. Finally, an agent has initial beliefs, plans and pursuing goals.
Initial beliefs and pursing goals are adopted from the related sets defined in the metamodel
(e.g. BeliefBase, GoalSet). Also, plans of an agent are selected from the PlanLibrary.

4 Concrete Syntax

Whilst the specification of abstract syntax inside a metamodel includes those concepts that
are represented in the language and the relationships between those concepts, concrete syntax
definition provides a mapping between meta-elements and their representations for models.
In fact, the concrete syntax is the set of notations which facilitates the presentation and
construction of the language. This section discusses the graphical concrete syntax which
maps the Jason platform’s abstract syntax elements presented in the previous section to
their graphical notations.

We use Epsilon EuGENia6 for constructing the concrete syntax from the Jason metamodel.
Providing a tool for implementing a graphical modeling editor from a single annotated Ecore
metamodel and hence facilitating the construction of a concrete syntax of a metamodel
caused us to prefer EuGENia in this study. After setting the graphical notations for the
abstract syntax meta-elements, we employ EuGENia to tie notations to the domain concepts.
The graphical notations are listed in Table 1. Meta-elements which are not used directly
during the creation of a Jason instance model, do not have notations in the table. For
instance, the Action meta-element, which is inherited by internal action and external action,
is not needed in an instance model. But, internal action and external action have to be
existed in an instance model. Moreover, some composition relations, which are modeled
with compartments in their holder elements, do not have graphical notations. On the other
hand, rest of the composition relations which are modeled with connections to their holder
elements, have the same graphical notations with their owner.

Use of the derived concrete syntax inside the EuGENia-based modeling editor can impose
some restrictions/controls for the conformance of designed models to the specifications of
our Jason metamodel. Benefiting from adopting the Ecore as the meta-metamodel while
the production of the graphical modeling tool, the graphical concrete syntax succeeds in
providing the check of constraints such as compartment, number of relationships between
model elements and source and destination elements in a relationship. Finally, defined
inheritance relationship in the Jason metamodel obligates users while modelling. Inheritance
relationship constraint in question checks whether a sub-entity in a Jason instance model
includes all of the attributes and relationships of its super-entity.

In order to demonstrate the use of the proposed concrete syntax during modeling a Jason
MAS, let us consider the design of a cleaning robot. Cleaning robot is one of the well-known

6 Epsilon Eclipse GMT Component: EuGENia, http://www.eclipse.org/epsilon/doc/eugenia/.

SLATE’16

http://www.eclipse.org/epsilon/doc/eugenia/

8:6 A Metamodel for Jason BDI Agents

Figure 2 Instance model for the cleaning robot example designed inside the provided graphical
Jason modeling editor.

B.T. Tezel, M. Challenger, and G. Kardas 8:7

Table 1 Jason concepts and their notations provided for the graphical concrete syntax.

Concept Notation Concept Notation

Agent Rule

Belief Base Plan

Event Set Context

Rule Set Body

Plan Library Internal Action

Action Set External Action

Goal Set Message

Belief Goal

Triggering Event Mental Note

examples of Jason BDI architecture which is provided by Bordini and Hubner [3] for the
scenario described in [6].

The screenshot from our EuGENia-based modeling tool, given in Figure 2, shows the
instance model conforming to Jason metamodel designed for the cleaning robot example. The
cleaning robot example consists of robots (agent instances) that collect and burn garbage. In
our example, robot1 is responsible for collecting garbage. In order to collect garbage, robot1
has different plans. The agent adopted each plan from the plan library again given in the
instance model. Also, each plan mainly covers the required action which is adopted from the
action set. So, when we add an action to the action set of the model, it is available for any
plan. This idea works not only for actions but also works for beliefs, goals, events and rules.
The model given in Figure 2 shows that robot1 agent’s main goal is checking slots. The
agent continues to search until finding garbage. When it finds garbage, it desires to carry
garbage toward robot2 which burns garbage. Whole system runs until there is no garbage in
the environment.

5 Conclusion

A metamodel, which can be used for modeling Jason BDI agents, has been introduced in
this paper. The metamodel provides the modeling of agents with including their belief bases,
plans, and sets of events, rules and actions respectively. Derivation of a graphical concrete
syntax based on this metamodel also enabled us to develop a graphical modeling tool for the
MDD of Jason agents. In this tool, MAS models can be checked according to the constraints
originated from the Jason metamodel definitions and hence conformance of the instance
models is supplied.

Our next work will include automatic code generation from the instance models designed
with the tool introduced in this paper. Hence, agent developers will achieve executables
for Jason platform via MAS modeling. Following this work, our aim is to integrate Jason
metamodel and its modeling tool into the tool set of our existing domain-specific MAS
modeling language called SEA_ML [8]. Hence, it will be possible to model BDI agents in the
platform-independent level and after executing a chain of model-to-model and model-to-text
transformations, agent developers can automatically achieve the implementation of their
MAS models in the Jason platform.

SLATE’16

8:8 A Metamodel for Jason BDI Agents

References

1 Carole Bernon, Massimo Cossentino, Marie-Pierre Gleizes, Paola Turci, and Franco Zam-
bonelli. A study of some multi-agent meta-models. In 5th Int’l Workshop on Agent-Oriented
Software Engineering, volume 3382, pages 62–77, 2005.

2 Ghassan Beydoun, Graham Low, Brian Henderson-Sellers, Haralambos Mouratidis, Jorge J.
Gomez-Sanz, Juan Pavon, and Cesar Gonzalez-Perez. FAML: A generic metamodel for
MAS development. IEEE Transactions on Software Engineering, 35(6):841–863, 2009.

3 Rafael H. Bordini and Jomi F. Hübner. BDI agent programming in Agentspeak using
Jason. In Proceedings of the 6th International Conference on Computational Logic in Multi-
Agent Systems, pages 143–164, Berlin, Heidelberg, 2006. Springer-Verlag. doi:10.1007/
11750734_9.

4 Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. Programming Multi-Agent
Systems in AgentSpeak Using Jason. John Wiley & Sons, 2007.

5 Michael E. Bratman. Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge, Massachusetts, 1987.

6 Lars Braubach, Alexander Pokahr, Daniel Moldt, and Winfried Lamersdorf. Goal repres-
entation for bdi agent systems. In Proceedings of the Second International Conference on
Programming Multi-Agent Systems, pages 44–65, Berlin, Heidelberg, 2005. Springer-Verlag.
doi:10.1007/978-3-540-32260-3_3.

7 MMoharram Challenger, SSebla Demirkol, SSinem Getir, and Geylani Kardas. A domain
specific metamodel for semantic web enabled multi-agent systems. In 1st International
Workshop on Domain Specific Engineering, volume 83, pages 177–186, 2011.

8 Moharram Challenger, Sebla Demirkol, Sinem Getir, Marjan Mernik, Geylani Kardas, and
Tomaž Kosar. On the use of a domain-specific modeling language in the development of
multiagent systems. Engineering Applications of Artificial Intelligence, 28:111–141, 2014.

9 Massimo Cossentino, Antonio Chella, Carmelo Lodato, Salvatore Lopes, Patrizia Ribino,
and Valeria Seidita. A notation for modeling Jason-like BDI agents. In Complex, Intelligent
and Software Intensive Systems (CISIS), 2012 Sixth International Conference on, pages 12–
19, July 2012. doi:10.1109/CISIS.2012.203.

10 Iván Garcia-Magarino. Towards the integration of the agent-oriented modeling diversity
with a powertype-based language. Computer Standards & Interfaces, 36:941–952, 2014.

11 Enyo José Tavares Goncalves, Mariela Inés Cortes, Gustavo Augusto Lima Campos, Yr-
leyjander Salmito Lopes, Emmanuel Sávio Ssilva Freire, Viviane Torres da Silva, Kleiner
Silva Farias de Oliveira, and Marcos António de Oliveira. MAS-ML2.0: Supporting the
modelling of multi-agent systems with different agent architectures. The Journal of Systems
and Software, 108:77–109, 2015.

12 Christian Hahn. A domain specific modeling language for multiagent systems. In 7th Int’l
Conf. on Autonomous agents and Multi-agent systems (AAMAS 2008), pages 223–240,
2008.

13 Christian Hahn, Cristián Madrigal-Mora, and Klaus Fischer. A platform-independent
metamodel for multiagent systems. Autonomous Agents and Multi-Agent Systems,
18(2):239–266, 2009.

14 Brian Henderson-Sellers and Paolo Giorgini. Agent-oriented Methodologies. Idea Group
Publishing, 2005.

15 Geylani Kardas. Model-driven development of multiagent systems: a survey and evaluation.
The Knowledge Engineering Review, 28(4):479–503, 2013.

16 Geylani Kardas, Erdem Eser Ekinci, Bekir Afsar, Oguz Dikenelli, and N. Yasemin Topalo-
glu. Modeling tools for platform specific design of multi-agent systems. In Lars Braubach,

http://dx.doi.org/10.1007/11750734_9
http://dx.doi.org/10.1007/11750734_9
http://dx.doi.org/10.1007/978-3-540-32260-3_3
http://dx.doi.org/10.1109/CISIS.2012.203

B.T. Tezel, M. Challenger, and G. Kardas 8:9

Wiebe van der Hoek, Paolo Petta, and Alexander Pokahr, editors, Multiagent System Tech-
nologies: 7th German Conference, MATES 2009, pages 202–207. Springer, Berlin, Heidel-
berg, 2009. doi:10.1007/978-3-642-04143-3_20.

17 Uirá Kulesza, Alessandro Garcia, Carlos Lucena, and Paulo Alencar. A generative approach
for multi-agent system development. In Ricardo Choren, Alessandro Garcia, Carlos Lucena,
and Alexander Romanovsky, editors, Software Engineering for Multi-Agent Systems III:
Research Issues and Practical Applications, pages 52–69. Springer, Berlin, Heidelberg, 2005.
doi:10.1007/978-3-540-31846-0_4.

18 Ambra Molesini, Enrico Denti, and Andrea Omicini. MAS meta-models on test: UML
vs. OPM in the SODA case study. In Proceedings of the 4th International Central and
Eastern European Conference on Multi-Agent Systems and Applications, pages 163–172,
Berlin, Heidelberg, 2005. Springer-Verlag. doi:10.1007/11559221_17.

19 James Odell, Marian Nodine, and Renato Levy. A metamodel for agents, roles, and
groups. In James Odell, Paolo Giorgini, and Jörg P. Müller, editors, Agent-Oriented
Software Engineering V, pages 78–92. Springer, Berlin, Heidelberg, 2005. doi:10.1007/
978-3-540-30578-1_6.

20 Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the A&A meta-model for
multi-agent systems. Autonomous Agents and Multi-Agent Systems, 17(3):432–456, 2008.

21 Anand Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In 7th
European Workshop on Modelling Autonomous Agents in a Multi-Agent World, Eindhoven,
The Netherlands, Lecture Notes in Computer Science, volume 1038, pages 42–55, 1996.

22 Anand S. Rao and Michael P. Georgeff. Decision procedures for BDI logics. Journal of
Logic and Computation, 8(3):293–343, 1998.

SLATE’16

http://dx.doi.org/10.1007/978-3-642-04143-3_20
http://dx.doi.org/10.1007/978-3-540-31846-0_4
http://dx.doi.org/10.1007/11559221_17
http://dx.doi.org/10.1007/978-3-540-30578-1_6
http://dx.doi.org/10.1007/978-3-540-30578-1_6

Profile Detection Through Source Code Static
Analysis
Daniel Ferreira Novais1, Maria João Varanda Pereira2, and
Pedro Rangel Henriques3

1 Departamento de Informática & Centro Algoritmi, Universidade do Minho,
Braga, Portugal
danielnovais92@gmail.com

2 Departamento de Informática e Comunicações & Centro Algoritmi, Instituto
Politécnico de Bragança, Bragança, Portugal
mjoao@ipb.pt

3 Departamento de Informática & Centro Algoritmi, Universidade do Minho,
Braga, Portugal
pedrorangelhenriques@gmail.com

Abstract
The present article reflects the progress of an ongoing master’s dissertation on language engin-
eering. The main goal of the work here described, is to infer a programmer’s profile through the
analysis of his source code. After such analysis the programmer shall be placed on a scale that
characterizes him on his language abilities. There are several potential applications for such pro-
filing, namely, the evaluation of a programmer’s skills and proficiency on a given language or the
continuous evaluation of a student’s progress on a programming course. Throughout the course
of this project and as a proof of concept, a tool that allows the automatic profiling of a Java
programmer is under development. This tool is also introduced in the paper and its preliminary
outcomes are discussed.

1998 ACM Subject Classification D.2.8 Metrics, D.3.4 Processors

Keywords and phrases Static analysis, metrics, programmer profiling

Digital Object Identifier 10.4230/OASIcs.SLATE.2016.9

1 Introduction

Proficiency on a programming language can be compared to proficiency on a natural lan-
guage [7]. Using, for example, the Common European Framework of Reference for Languages:
Learning, Teaching, Assessment (CEFR) method1 it is possible to classify individuals based
on their proficiency on a given foreign language. Similarly, it may be possible to create a set
of metrics and techniques that allow the profiling of programmers based both on proficiency
and abilities on a programming language.

In [6], the main inspiration behind this project, Pietrikova explores techniques aiming the
evaluation of Java programmers’ abilities through the static analysis of their source code.
Static code analysis may be defined as the act of analysing source-code without actually
executing it, as opposed to dynamic code analysis which is done on executing programs. It’s
usually performed with the goal of finding bugs or ensure conformance to coding guidelines.

1 http://www.coe.int/t/dg4/linguistic/cadre1_en.asp

© Daniel Ferreira Novais, Pedro Rangel Henriques, and Maria João Varanda Pereira;
licensed under Creative Commons License CC-BY

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira; Article No. 9; pp. 9:1–9:13

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2016.9
http://www.coe.int/t/dg4/linguistic/cadre1_en.asp
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

9:2 Profile Detection Through Source Code Static Analysis

For the present paper, static analysis will be used to extract metrics from source-code related
with language usage practices.

Building on the referred paper, the goal is to further explore the discussed techniques
and introduce new ones to improve that evaluation, with the ultimate goal of creating a tool
that automatically profiles a programmer.

The basic idea is to statically analyse a Java programmer’s source code and extract a
selection of metrics that can either be compared to standard solutions (considered ideal by
the one willing to obtain the profiles) or, using machine learning techniques, subjected to
a classification model in order to be assigned the appropriate profile. The attributes or
metrics that will allow us to infer a profile based on sets of previously classified programs
can be defined a-priori by hand (using intuition) or can be extracted through data-mining
techniques, as Kagdi et al. explored [5]. However this last approach requires the availability
of huge collections of programs assigned to each class.

The programmers will be classified generically as for their language proficiency or skill,
for example, as novice, advanced or expert. Other relevant details are also expected to be
provided, such as the classification of a programmer on his code readability (indentation, use
of comments, descriptive identifiers), defensive programming, among others.

Below are some source-code elements that can be analysed to extract the relevant metrics
to appraise the code writer’s proficiency:

Statements and Declarations

Repetitive patterns

Lines (code lines, empty lines, comment lines)

Indentation

Identifiers

Good practices

Code with errors will not be taken into consideration for the profiling. This is, only
correct programs producing the desired output will be used for profiling.

To build the system discussed in this paper we intend to develop a metric extractor
program, to evaluate the set of parameters that we chose for the profiling process. However
this process will be complemented with the use of a tool, called PMD2, to get information
of the use of good Java programming practices. PMD is a source code analyser that finds
common programming flaws like unused variables, empty catch-blocks, unnecessary object
creation, and so forth. For these reasons it is a tool that may prove to be very useful.

The rest of the paper is organized as follows. In Section 2 we will review the area and
present related work, in order to identify techniques and tools commonly used to deal with
this problem. Section 3 is devoted to present our proposal for an automatic programmer
profiling system based on source code analysis. The analyzer implemented and the set of
metrics extracted at the present project stage will be introduced in Section 4. In Section 5
we will discuss the profiling results so far inferred correlating the values provided by the
comparison between the programmer’s code metrics and the standard solution. The paper is
closed at Section 6 with some conclusions and future work.

2 https://pmd.github.io/

https://pmd.github.io/

D. Novais, P. Henriques, and M. J. Varanda Pereira 9:3

2 Programmer Profiling: approaches and tools

As mentioned before, the main motivation for this project came from the study [6] of Pietriková
and Chodarev. These authors propose a method for profiling programmers through the static
analysis of their source code. They classify knowledge profiles in two types: subject and
object profile.

The subject profile represents the capacity that a programmer has to solve some pro-
gramming task, and it’s related with his general knowledge on a given language. The object
profile refers to the actual knowledge necessary to handle those tasks. It can be viewed as a
target or a model to follow.

The profile is generated by counting language constructs and then comparing the numbers
to the ones of previously developed optimal solutions for the given tasks. Through that
comparison it’s possible to find gaps in language knowledge. The authors agree that the tool
is promising, but there is still a lot of work that can be done on the subject. To compare
programs against models or ideal solutions, by counting language constructs is a common
feature between this work and our project. Despite that, in this work, the object profile is
optional. The subject profile can be inferred analysing the source code, using as base the
language grammar. Considering the language syntax, a set of metrics are extracted from
the source code. This can be done to conclude about the complexity of a program or to
perform some statistics when analysing a set of programs of one programmer. In our case,
we are not concerned with the complexity level of the programs but we analyse the way each
programmer solves a concrete problem. So, almost all metrics that we extract only make
sense when compared with a standard solution.

In another paper [9], Truong et al. suggest a different approach. Their goal is the
development of a tool, to be used throughout a Java course, that helps students learning the
language. Their tool provides two types of analysis: Software engineering metrics analysis
and structural similarity analysis. The former checks the students programs for common poor
programming practices and logic errors. The latter provides a tool for comparing students’
solutions to simple problems with model solutions (usually created by the course teacher).
Despite having several limitations, teachers have been giving this tool a positive feedback.
As stated before, this thesis will be taking a similar approach to this software engineering
metrics. However, the tool above mentioned was only used on an academic context while the
purpose of this project is to develop a tool that can also be applied in another contexts.

Flowers et al. [1] and Jackson et al. [4] discuss a tool developed by them, Gauntlet, that
allows beginner students understanding Java syntax errors committed while taking their
Java courses. This tool identifies the most common errors and displays them to students in a
friendlier way than the Java compiler. Expresso tool [3] is also a reference on Java syntax,
semantic and logic error identification. Both tools have been proven to be very useful to
novice Java learners but since they focus mainly on error handling, they will not be very
useful for this project.

Hanam et al. explain [2] how static analysis tools (e.g. FindBugs) can output a lot of
false positives (called unactionable alerts) and they discuss ways to, using machine learning
techniques, reduce the amount of those false positive so a programmer can concentrate
more on the real bugs (called actionable alerts). This study may prove to be very useful to
this work since there is an intention of exploring similar machine learning and data mining
techniques on the analysis.

SLATE’16

9:4 Profile Detection Through Source Code Static Analysis

3 Programmer Profiling: Our proposal

3.1 Programmer Profiles
Programmer profiling is an attempt to place a programmer on a scale by inferring his profile.
As Poss stated [7], we can compare proficiency on a programming language with proficiency
on a natural language, and like the CEFR has a method of classifying individuals based on
their proficiency on a given foreign language, it is believed that the same can be done for a
programming language.

CEFR defines foreign language proficiency at six levels: A1, A2, B1, B2, C1 and C2 (A1
meaning the least proficient and C2 the most proficient). A similar method for classifying
programmers was considered at first, but due to the fact that the levels were not very
descriptive, a more self-described scale was preferred.

Sutcliffe presents [8] a classification for programmer categorization: naive, novice, skilled
and expert. A similar scale was agreed upon, with what it is believed to be a good starting
point for the profiling:

Novice
Is not familiar with all the language constructs
Does not show language readability concerns
Does not follow good programming practices

Advanced Beginner
Shows variety in the use of language constructs and data-structures
Begins to show readability concerns
Writes programs in a safely3 manner

Proficient
Is familiar with a great variety of language constructs
Follows good programming practices
Shows readability and code-quality concerns

Expert
Masters a great variety of language constructs
Focuses on producing efficient code (minimizing resources or lines of code) without
readability concerns

The following (a little bit exaggerated) example (see Listing 1) may help to shed some
light on what is meant by the previous scale. Each method has the same goal: to calculate
the sum of the values of an integer array, and has features of what may be expected for each
class. It’s hard to represent all 4 classifications on such a small example, so the Advanced
Beginner was left out.

The novice has little or no concern with code readability. He will also show lack of
knowledge of language features. In the example we can see that by the way he spaces his
code, writes several statements in one line or gives no meaning in variable naming. He also
shows lack of advanced knowledge on assignment operators (he could have used the add and
assignment operator, +=).

The expert, much like the novice, shows no concern for language readability, but unlike
the latter, he has more language knowledge. That means that the expert has a different kind

3 e.g. writes if (cond==0) instead of if (!cond) as is done by people that have more self-confidence
and usually have a not so obvious way of programming.

D. Novais, P. Henriques, and M. J. Varanda Pereira 9:5

Listing 1 Examples of programs corresponding to different Profile Levels.
int novice (int [] list) {

int a=list. length ;
int b;int c= 0;
for (b=0;b<a;b++) {

c=c+list[b];}
return c;

}

// Sums all the elements of an array
int proficient (int [] list) {

int len = list. length ;
int i, sum = 0;
for (i = 0; i < len; i++) {

sum += list[i];
}
return sum;

}

int expert (int [] list) {
int s = 0;
for (int i : list) s += i;
return s;

}

of bad readability. The code can be well organized but the programming style is usually
more compact and it’s harder to understand. As an example of language knowledge the
expert uses the extended for loop, making his code a lot smaller.

Finally, the proficient will show the skill and knowledge of an expert programmer while
keeping concern with code readability and appearance. The code will feature advanced
language constructs while maintaining readability. His code will be clear and organized,
variable naming has meaning and code will have comments for better understanding.

3.2 System architecture
As mentioned previously, this project will be complemented with a tool, developed in Java,
that intends to put into action the theory behind the project.

Figure 1 shows the block diagram that represents the expected final implementation of
the system. The tool will be named Programmer Profiler (PP).

The programmer’s Java source code is loaded as PP input. Then, the code goes through
two static analysis processes: the analyser implemented (PP-Analyser) using AnTLR with
the goal of extracting a set of metrics and the PMD-Analyser, an analyser that resorts to
the PMD Tool to find a set of predefined metrics regarding poor coding practices.

Both analysis’ outcomes will feed two other modules: A Metrics Visualizer (a generator
of HTML pages 4) which will allow us to make a manual assessment of the source code to
infer the programmer’s profile; and a Profile Inference Engine whose goal is to make the
profile assignment an automatic process.

4 http://www4.di.uminho.pt/~gepl/PP/

SLATE’16

http://www4.di.uminho.pt/~gepl/PP/

9:6 Profile Detection Through Source Code Static Analysis

Figure 1 PP Block Diagram.

Making the profiling an automatic assignment will be the most interesting, challenging
and complex part of this project. The goal is not to assign an absolute value that characterizes
a programmer’s proficiency on the Java language, but instead to give a general classification
in regards to a resolution of a given problem or task.

3.3 Tools being used
To implement PP some tools were very helpful throughout the development process. Below
we describe the two most relevant: AnTLR and PMD.

3.3.1 AnTLR
As taken from the website5:

ANTLR (ANother Tool for Language Recognition) is a powerful parser generator for
reading, processing, executing, or translating structured text (...). From a grammar,
ANTLR generates a parser that can build and walk parse trees.

5 http://www.antlr.org/

http://www.antlr.org/

D. Novais, P. Henriques, and M. J. Varanda Pereira 9:7

Using only a Java grammar, AnTLR will generate a parser that will read any syntactically
correct Java source file. This allows us to easily manipulate the information that a source
file contains. This means that AnTLR allows us to extract, with more or less ease, any kind
of metric needed from the Java files.

As mentioned on the previous chapter, instead of implementing features that search for
poor Java practices and novice programming mistakes, PMD, a very useful source code
analyser, was selected.

3.3.2 PMD

PMD6 is a source code analyser. It finds common programming flaws like unused variables,
empty catch-blocks, unnecessary object creation, and so forth.

PMD executes a thorough analysis over source-code (it supports several languages) and
reports back the possible programming flaws in the form of violations. PMD looks for dozens
of poor programming practices, nonconformity to conventions and security guidelines, being
a promising asset to this project.

Below are some of the main PMD Rulesets7 that may be the most useful to our goals:

Unused Code
The Unused Code Ruleset contains a collection of rules that find unused code

Optimization
These rules deal with different optimizations that generally apply to performance best
practices

Basic
The Basic Ruleset contains a collection of good practices which everyone should follow

Design
The Design Ruleset contains a collection of rules that find questionable designs

Code Size
The Code Size Ruleset contains a collection of rules that find code size related problems

Naming
The Naming Ruleset contains a collection of rules about names - too long, too short, and
so forth

Braces
The Braces Ruleset contains a collection of braces rules

4 Metrics extraction: source code analysis

As mentioned before the Programmer Profiler (PP) tool will consist of two performed
analysis. An implemented PP-Analyser, which resorts to metrics extraction, with the goal of
comparing with model solutions and a PMD-Analyser, which uses the PMD tool to detect
poor programming practices in an absolute manner (not resorting to comparison).

6 https://pmd.github.io/
7 https://pmd.github.io/pmd-5.4.1/pmd-java/rules/index.html

SLATE’16

https://pmd.github.io/
https://pmd.github.io/pmd-5.4.1/pmd-java/rules/index.html

9:8 Profile Detection Through Source Code Static Analysis

Listing 2 Violation detected by PMD.
<violation beginline ="274" endline ="276" begincolumn ="33"
endcolumn ="33" rule=" CollapsibleIfStatements " ruleset ="Basic"
package ="(...)" class="IMC" method ="MT"
externalInfoUrl =" https: // pmd. github .io/pmd -5.4.0/ pmd -java/rules/
java/basic.html# CollapsibleIfStatements " priority ="3">
These nested if statements could be combined </ violation >

4.1 PP-Analyser
The PP-Analyser, which extracts metrics that allow comparing possible solutions with
optimal ones was implemented using AnTLRv4 and so far a variety of metrics is being
extracted:
1. Class hierarchy
2. Class and method names and sizes
3. Variable names and types
4. Number of files, classes, methods, statements
5. Number of lines code and comment
6. Control Flow Statements (if, while, for, etc)
7. Advanced Java Operators (Bitshift, Bitwise, etc)
8. Other relevant Java Constructs
Metrics 1, 3, 4, 6 and 7 can be used to compare a given solution of a problem to an optimal
solution, and that way know if a solution was that of a programmer with more or less
expertise in Java. Metrics 2, 3 and 5 can be use to find concerns with code understanding
and readability.

4.2 PMD-Analyser
As mentioned before, PMD is a source-code analyser that looks for poor practices usually
adopted by beginner programmers (e.g. several returns in one method or leaving empty
catch-blocks).

To illustrate PMD behaviour, listing 2 below shows an example of a violation detected
and reported by the tool.

Each violation found contains a good amount of information about the violation itself
and where it was found. A large-sized project, with a lot of rulesets being examined, could
return hundreds of violations which may prove very helpful in the profiling of programmers.

5 Correlating metrics with profiles

Correlating metrics with profiles has proved to be a challenging task. After much consideration,
we came up with a proposal, presented below, that we think to be as accurate as possible.

To classify the abilities of a programmer regarding his knowledge about a language and
the way he uses it, we considered two profiling perspectives, or group of characteristics:
language skill and language readability.

Skill is defined as the language knowledge and the ability to apply that knowledge in a
efficient manner.
Readability is defined as the aesthetics, readability and general concern with understand-
ability of code.

D. Novais, P. Henriques, and M. J. Varanda Pereira 9:9

Table 1 Proposed correlation.

Profile Skill Readability
Novice − −
Advanced Beginner − +
Expert + −
Proficient + +

Of the metrics extracted, some show a tendency towards classifying Skill while others
towards classifying Readability. Here’s a breakdown of where each metric may fall:

Skill
Number of statements
Control flow statements (If, While, For, etc)
Advanced Java Operators
Number and datatypes used
Some PMD Violations (e.g. Optimization, Design and Controversial rulesets)

Readability
Number of methods, classes and files
Total number and ratio of code, comments and empty lines
Some PMD Violations (e.g. Basic, Code Size and Braces rulesets)

These two groups contain enough information to obtain a profile of a programmer,
regarding a given task. Then, for each group, and according to the score obtained by the
programmer, Table 1 gives a general idea of how programmers can be profiled. (+) means a
positive score, while (−) means a negative one.

What constitutes a lower and a higher score on each group must be defined. For every
programmer, the goal is to compare each metric’s value to the standard solution, which is
by default considered a proficient solution (high skill and readability), and then, assemble a
mathematical formula which allows to combine the metrics’ results into a grade for each one
of the two groups. With those two grades and resorting to Table 1 we can easily infer the
programmer’s profile in regards to the subject problem.

The exercise: “Read a given number of integers to an array, count how many are even”, as
proposed to two programmers. A Java and OOP teacher and an advanced Java programmer
(master student). Listings 3 and 4 show both solutions.

After running both solution through the PP-Analyser we get the results shown in Table 2.
In Table 3 we compare the metrics of the obtained solution with the ones of the standard

solution. In this table, for each metric analysed, the programmer gets 1, 0 or -1 whether
his value on that metric is better, the same level or worst when compared to the standard
solution, respectively. In this case the programmer got +3 points in skill -6 in readability
when comparing to a proficient solution, making him an expert according to Table 1. As
a general rule of thumb, for the readability group, more is better. Of course the score was
obtained in a very naive way. As mentioned previously a mathematical formula which takes
into consideration the importance of the metrics is expected to be developed to make this
classification as precise a possible.

Another problem that is yet to be tackled is how to automatically compare some complex
metrics like control flow statements and variable declarations, but we already know that it
will be important to classify CFS and the datatypes as common or not so common in order
to evaluate the programming language knowledge level.

SLATE’16

9:10 Profile Detection Through Source Code Static Analysis

Listing 3 Teacher Solution.
package ex1_arrays ;

import java.util. Scanner ;

/**
* Escreva um algoritmo que leia e mostre um vetor de n elementos
* inteiros e mostre quantos valores pares existem no vector .
*
* @author Paula
*/

public class Ex1_Arrays {

public static void main(String [] args) {
Scanner in = new Scanner (System .in);

int cont = 0, N;

N = in. nextInt ();

int vec [] = new int[N];

for (int i = 0; i < N; i++) {
vec[i] = in. nextInt ();

}

for (int i = 0; i < N; i++) {
if (vec[i] % 2 == 0) {

cont = cont + 1;
}

}

System .out. println (cont);
}

}

The goal for the Programmer Profiler, and especially the Profile Inference Engine is
to be able to automatically make that classification and that way infer the profile of the
programmer.

The (alpha version) PP-Analyser has already been applied on source-code developed by
programmers on different levels of Java proficiency to start acquiring the values (metrics)
that characterise the profiles. The code analysed was of moderate diversity, ranging in size
and programming background (teachers, students and professional programmers).

6 Conclusion

Along this article, it was presented a proposal to develop a system (called Programmer
Profiler) that allows to profile a programmer through the analysis of his source code. The
hypothesis is that such profile inference is possible.

D. Novais, P. Henriques, and M. J. Varanda Pereira 9:11

Listing 4 Advanced Programmer Solution.
import java.util. Scanner ;
public class Even {

public static void main(String [] args) {
Scanner in = new Scanner (System .in);
int n = in. nextInt ();
int [] numbers = new int[n];
int result = 0;
for (int i = 0; i < n; i++) {

int input = in. nextInt ();
numbers [i] = input;
result += (input & 1) == 0 ? 1 : 0;

}

System .out. println (result);
}

}

Table 2 PP-Analysis of two solutions.

Metric Teacher Expert
Total Number Of Files 1 1
Number Of Classes 1 1
Number Of Methods 1 1
Number Of Statements 6 3
Lines of Code 17 (48,6%) 12 (75%)
Lines of Comment 3 (8.3%) 0
Empty Lines 10 (28.6%) 1 (6.3%)
Total Number Of Lines 35 16
Control Flow Statements {FOR=2, IF=1} {FOR=1, IIF=1}
Not So Common CFSs 0 1
Variety of CFSs 2 2
Number of CFSs 3 2
Not So Common Operators {} {BIT_AND=1}
Number of NSCOs 0 1
Variable Declarations {Scanner=1, int[]=1, int=4} {Scanner=1, int[]=1, int=4}
Number Of Declarations 6 6
Number Of Types 3 3
Relevant Expressions {SYSOUT=1} {SYSOUT=1}

Until now, the main contributions of this work consist in: defining a set of possible profiles
and their main characteristics; constructing the architecture of the system and the used tools;
and performing experiments that allowed us to manually profile a programmer.

Currently, there is a working implementation that can be used to visualize 8 extracted
metrics, both by the implemented PP-Analyser and the PMD Tool. That generated data is
also being properly stored.

8 http://www4.di.uminho.pt/~gepl/PP/

SLATE’16

http://www4.di.uminho.pt/~gepl/PP/

9:12 Profile Detection Through Source Code Static Analysis

Table 3 Comparing to standard solution.

Metric Name Skill Readability
Number Of Files X 0
Number Of Classes X 0
Number Of Methods X 0
Number Of Statements +1 X
Number Of Lines of Code X −1
% Code X −1
Number Of Lines of Comment X −1
% Comment X −1
Number Of Empty Lines X −1
% Empty X 0
Total Number Of Lines X −1
Control Flow Statements +1 X
Variable Declaration 0 X
Total Number Of Declarations 0 X
Total Number Of Types 0 X
Advanced Operators +1 X
PMD N/A N/A
Total +3 −6

a) (+1) – better than the standard solution
b) (0) – same level as the standard solution
c) (−1) – worst than the standard solution
d) (X) – metric no related to this group
e) PMD results were not considered in this example

Some manual assessments are already being made with the objective of finding patterns
and correlations that will make the PP a fully automatic tool.

We intend to go on conducting more and more experimental case studies to extract as
much data as possible to refine the conclusions so far attained to improve our inference
process aiming at finding a set of rules to automatically profile programmers.

References
1 Thomas Flowers, Curtis Carver, James Jackson, et al. Empowering students and building

confidence in novice programmers through gauntlet. In Frontiers in Education, 2004. FIE
2004. 34th Annual, pages T3H–10. IEEE, 2004.

2 Quinn Hanam, Lin Tan, Reid Holmes, and Patrick Lam. Finding patterns in static analysis
alerts: improving actionable alert ranking. In Proceedings of the 11th Working Conference
on Mining Software Repositories, pages 152–161. ACM, 2014.

3 Maria Hristova, Ananya Misra, Megan Rutter, and Rebecca Mercuri. Identifying and
correcting java programming errors for introductory computer science students. ACM
SIGCSE Bulletin, 35(1):153–156, 2003.

4 James Jackson, Michael Cobb, and Curtis Carver. Identifying top java errors for novice pro-
grammers. In Frontiers in Education, 2005. FIE’05. Proceedings 35th Annual Conference,
pages T4C–T4C. IEEE, 2005.

5 Huzefa Kagdi, Michael L Collard, and Jonathan I Maletic. A survey and taxonomy of
approaches for mining software repositories in the context of software evolution. Journal
of Software Maintenance and Evolution: Research and Practice, 19(2):77–131, 2007.

D. Novais, P. Henriques, and M. J. Varanda Pereira 9:13

6 Emília Pietriková and Sergej Chodarev. Profile-driven source code exploration. Computer
Science and Information Systems (FedCSIS), pp. 929-934, IEEE., 2015.

7 Raphael ‘kena’ Poss. How good are you at programming? – a CEFR-like approach to meas-
ure programming proficiency, July 2014. URL: http://science.raphael.poss.name/
programming-levels.html.

8 Alistair Sutcliffe. Human-computer interface design. Springer, 2013.
9 Nghi Truong, Paul Roe, and Peter Bancroft. Static analysis of students’ java programs.

In Proceedings of the Sixth Australasian Conference on Computing Education-Volume 30,
pages 317–325. Australian Computer Society, Inc., 2004.

SLATE’16

http://science.raphael.poss.name/programming-levels.html
http://science.raphael.poss.name/programming-levels.html

Context-Free Grammars: Exercise Generation and
Probabilistic Assessment
José João Almeida∗1, Eliana Grande†2, and Georgi Smirnov3

1 Departamento de Informática, Universidade do Minho, Braga, Portugal
jj@di.uminho.pt

2 Departamento de Informática, Universidade do Minho, Braga, Portugal
eliana.tiba@ifgoiano.edu.br

3 Departamento de Matemática, Universidade do Minho, Braga, Portugal
smirnov@math.uminho.pt

Abstract
In this paper we present a metagrammar based algorithm for exercise generation in the domain
of context-free grammars. We also propose a probabilistic assessment algorithm based on a new
identity theorem for formal series, a matrix version of the well-known identity theorem from the
theory of analytic functions.

1998 ACM Subject Classification F.4.2 Grammars and Other Rewriting Systems, F.4.3 Formal
Languages, Classes defined by grammars or automata, F.2.1 Numerical Algorithms and Problems

Keywords and phrases Exercise generation, context-free grammars, assessment

Digital Object Identifier 10.4230/OASIcs.SLATE.2016.10

1 Introduction

This paper deals with (1) exercise generation and (2) assessment in the theory of context-free
grammars. We describe a process of exercise generation based on metagrammars and an
algorithm of assessment allowing one to decide, with high probability, if two context-free
grammars are equivalent or not. It is well-known that the equivalence of two context-free
grammars is an undecidable problem [9]. This is true if we consider the problem as an
algebraic one. In this paper we show that the context-free grammars equivalence problem
admits a solution if considered as a problem of analysis. Such a situation is not new. For
example the fundamental theorem of algebra [7] has no algebraic proves but admits a simple
proof using methods of analysis. The main idea of the assessment algorithm is the following.
We associate to any context-free grammar a system of nonlinear equations. The system
admits a solution in the form of formal series [10]. We substitute the symbols of terminal
alphabet by 2× 2-matrices and numerically solve the system of nonlinear matrix equations.
This amounts to calculating of the value of the corresponding matrix series. We prove a
new identity theorem. This theorem claims that if the sums of two formal power series
coincide for all possible substitutions of 2× 2-matrices, then the series are identical. From
the practical point of view this implies that it suffices to check the equality between the
sums of two series for a sufficiently big number of different substitutions, in order to decide
if the grammars are equivalent or not. This leads us to a probabilistic assessment algorithm.

∗ The work of J.João Almeida was partially supported by COMPETE: POCI-01-0145-FEDER-007043
and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.

† The work of Eliana Grande was supported by PIQ IF Goiano through the fellowship no. 02/2013.

© José João Almeida, Eliana Grande, and Georgi Smirnov;
licensed under Creative Commons License CC-BY

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira; Article No. 10; pp. 10:1–10:8

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2016.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

10:2 Context-Free Grammars: Exercise Generation and Probabilistic Assessment

This algorithm allows one not only to distinguish between two different languages but also
to distinguish between grammars with different ambiguity.

2 Exercise generation and assessment

The exercise generation in the field of formal grammars can be based on several methods:
Completely hand written,
Example based methods (sets of positive and negative examples)
Automata or regular expression-based generation,
Grammar based generation.

As a result one pretends to obtain the statement of the problem, its solution and, if possible,
an assessment method.

In this paper we consider a method based on a generative grammars.

2.1 Metagrammars for exercise generation
We define an attribute grammar which generates an exercise statement and the respective
solution (a grammar). We refer to this attribute grammar as metagrammar [12, 11, 6]. The
right-hand side (rhs) of any production-rule of the metagrammar is composed of two parts:

a traditional grammar rhs to describe a grammar;
a template to build an exercise statement, using subparts returned by the elements of the
first part (attributes).

Schematically, an exercise generating metagrammar production has the following form:

NonTerminal → (”GrammarComponent” | NonTerminal)∗
{TemplateWithAttributes}

(1)

2.2 Example
Consider the following metagrammar example:

Mg → ”S → ” B ” |A ; A→ ” C ”|Int; ”
{Give a context− free unambiguous grammar for the language of the
arithmetic expressions including integers, $2 operator and $4 .}

B → ”S −A”{infix subtraction}
| ”S +A”{infix addition}
| ”S ∗A”{infixmultiplication}
| ”S/A”{infix division}

C → ”(S)”{round brackets}
| ”f(S)”{prefix unary functions}

(2)

In the templates $2 and $4 stand for attribute expansions following the Yacc[1], Bash, Perl
syntax.

An example of generated exercise is:

I Example 1. Give a context-free unambiguous grammar for the language of the arithmetic
expressions including integers, infix subtraction operator and round brackets.

J. J. Almeida, E. Grande, and G. Smirnov 10:3

The generated correct grammar for this exercise is the following:

S → S −A
| A

A → (S)
| Int

(3)

2.3 Assessment
The comparison of languages may take different flavor depending on the situation:

If we are dealing with regular languages, we can use minimal automata comparison [3, 2];
It is possible to use a set of tests (positive and negative sentences) to verify if two
grammars generate the same language;
In some situations it is possible to directly compare the grammars.

But these approaches are only applicable to special cases or do not completely solve the
problem. Below we propose a new assessment method. It consists of the following steps:
1. The transformation of a context-free grammar into a system of formal nonlinear equa-

tions [9, 10];
2. The substitution of the terminal alphabet letters by randomly generated 2× 2-matrices;
3. Creation of a numerical solution of the system of nonlinear matrix equations;
4. Iterating the previous steps k times.
The identity theorem proved in the next section says that if the sums of two formal power
series coincide for all possible substitutions of 2× 2-matrices, then the series are identical.
Motivated by this result we use a probabilistic approach to compare two grammars. Namely,
if the solutions of the respective systems of matrix equations coincide for k successive random
matrix substitutions, we conclude that the grammars generate the same language.

Note that the use of 2× 2-matrices is a key point of the approach. The multiplication
of matrices is not commutative, and this fact allows one to distinguish between two words
composed of the same terminal symbols collocated in different order. Obviously the use of
numbers (instead of matrices) would not solve this problem.

3 Context-free grammars, formal power series, and nonlinear matrix
equations

Any language can be defined in terms of a formal powers series in associative but noncom-
mutative variables [9, 10]. Let VT be a terminal alphabet, W (VT) be the set of words over
VT , and Z+ be the set of nonnegative integers. A map φ : W (VT) → Z+ defines a formal
power series

s =
∑

P∈W (VT)

φ(P)P (4)

with nonnegative integer coefficients. Let µ be a map from VT to the set R2×2 of 2 × 2-
matrices. By µ(P) we will denote the matrix obtained substituting the letters ai ∈ P by the
matrices µ(ai) and calculating the respective matrix product. If the series

s(µ) =
∑

P∈W (VT)

φ(P)µ(P) (5)

converges, its sum is a 2 × 2-matrix. (If the series is divergent, we set s(µ) = ∞.) The
assessment of exercises is base on the following identity theorem

SLATE’16

10:4 Context-Free Grammars: Exercise Generation and Probabilistic Assessment

I Theorem 2. Let s1 and s2 be two formal power series. If s1(µ) = s2(µ) for all µ : VT →
R2×2, then s1 = s2.

Proof. It suffices to consider the class of matrices

µ =
(
u v

0 1

)
.

By induction it is easy to prove the equalities

n∏
i=1

µi =
n∏
i=1

(
ui vi
0 1

)
=
(
P Q

0 1

)
, (6)

where

P =
n∏
i=1

ui and Q =
n∑

m=2

(
m−1∏
i=1

ui

)
vm + v1. (7)

(It is allowed ui = uj , and vi = vj .) The polynomial P allows one to identify the letters
appearing in the word a1a2 . . . an, while the polynomial Q makes it possible to uniquely
reconstruct the order of the letters. J

I Remark. It suffices to check the equality of the series sums for matrices with a sufficiently
small norm. This will guarantee the convergence of the series.

It is well-known [9, 10] that for any context-free grammar there exists a system of nonlinear
equations allowing one to obtain, by an iterative procedure, the formal power series whose
terms are the words of the respective language. This correspondence between the series and
systems of equations makes it possible to effectively calculate the sums of the series for all
possible substitutions of 2× 2-matrices.

Let Xi, i = 0,m, be the nonterminals of a context-free grammar and let P ij , i = 0,m,
j = 1, li, be the words appearing on the right-hand sides of the production with the left-hand
side Xi. Then the system of formal equations corresponding to the grammar reads

X1 = P 1
1 + . . .+ P 1

l1
,

...
Xm = Pm1 + . . .+ Pmlm .

(8)

Substituting the letters of the terminal alphabet, ai ∈ P ij , by matrices µ(ai), we get a system
of nonlinear (matrix) equations. This system, X = F (X), can be solved using an iterative
procedure: Xk+1 = F (Xk), X0 = 0, or using the Newton method. The latter is much more
faster. Note that, in view of the Identity Theorem, it suffices to consider only matrices of
the form

µ = η

(
u v

0 1

)
with u, v ∈ [0, 1] and sufficiently small η. The convergence of the iterations can be guaranteed
for grammars in Chomsky and Greibach normal forms. If we deal with regular languages,
then system (8) is linear.

J. J. Almeida, E. Grande, and G. Smirnov 10:5

4 Example

Let us go back to the example considered in Sec. 2. Assume that we generate the following
exercise:

I Example 3. Give a context-free unambiguous grammar for the language of the arithmetic
expressions including integers, infix subtraction operator and round brackets.

The generated correct grammar for this problem is:

S → S −A
| A

A → (S)
| Int

(9)

To avoid confusion in notation we set a = −, b = Int, c = (, and d =). Thus the right
solution is given by

S → SaA

| A

A → cSd

| b

(10)

The corresponding system of matrix equations reads [9, 10]

S = SaA+A,

A = cSd+ b.
(11)

Let us consider other three possible answers.

Alternative correct solution. The following grammar is different but generates the same
language:

S → AaS

| A

A → cSd

| b

(12)

and the corresponding system of matrix equations is

S = AaS +A,

A = cSd+ b.
(13)

Wrong solution. The following grammar does not generate the same language (does not
generate the sentence cbabd):

S → SaA

| A

A → cAd

| b

(14)

The corresponding system of matrix equations is

S = SaA+A,

A = cAd+ b.
(15)

SLATE’16

10:6 Context-Free Grammars: Exercise Generation and Probabilistic Assessment

Ambiguous solution. The following grammar generates the same set of sentences but is
ambiguous (the sentence babab possesses more then one derivation):

S → SaS

| A

A → cSd

| b

(16)

and the corresponding system of matrix equations is

S = SaS +A,

A = cSd+ b.
(17)

Generating random matrices a, b, c, and d with random elements uniformly distributed in
the interval [0, 0.1] and solving systems (11), (13), (15), and (17) (the iteration process starts
at S = A = 0) we see that the difference between S components of solutions for systems (11)
and (13) is zero, while for the pair (11) and (15) or (11) and (17) is of the order 10−4 ÷ 10−5.
This allows one to clearly distinguish between the correct solution and the wrong one.

The interval where the elements of the random matrices are generated must be (a)
sufficiently small in order to guarantee the convergence of iterations, (b) big enough to
distinguish between two different languages.

5 Probabilistic assessment

It is clear that to distinguish between the correct solution and a wrong solution it suffices
to find a matrix substitution µ(ai), ai ∈ VT , giving different solutions to systems (8)
corresponding to two different grammars. But how many substitutions are needed to
conclude that two (unambiguous) grammars generate the same language? The answer to this
question can be given in a probabilistic form. Probabilistic approach is not new in program
testing [4] or assessment of math exercises [8] and showed good results.

Consider the following thought statistical experiment. We randomly generate a pair of
grammars with the same terminal alphabet (see Sec. 2) and solve, for an infinite sequence
of matrix substitutions µ(ai), ai ∈ VT , the corresponding systems (8) of matrix equations.
The number of substitutions giving the same result for two systems of equations is a random
variable ξ. It is natural to assume that ξ is distributed according with the Poisson law:

P{ξ = k} = λke−λ

k! ,

where λ is the average number of events. Our simulations show that λ � 1. Thus the
probability to have k times equal results for two different languages (recall that we consider
languages with different ambiguity as different languages) is

P{ξ = k} = λke−λ

k! <
1
k! .

From the practical point of view this implies that if we have the same result for two systems
of equations in, for example, k = 10 successive random matrix substitutions µ(ai), ai ∈ VT ,
then the grammars generate the same language.

J. J. Almeida, E. Grande, and G. Smirnov 10:7

6 Application to real size grammars

In the context of exercise generation, the grammars are rather small, because the aim is to
deal with one thing at a time. Typical examples of such grammars have half a dozen of
nonterminal symbols, and a dozen of productions. In this situation we had no problems with
the presented approach.

Comparing two real size grammars, we may fall in situations of non-convergence, or
in situations where it is impossible to distinguish between two different grammars due to
insufficient computer accuracy. In order to test our approach for real size grammars we used
a C-like grammar [5] (44 nonterminals, 104 production rules). We compared this grammar
with an equivalent one and with a slightly modified grammar generating a different language.
Generating random matrices with components in the interval [0, 0.01], we could correctly
solve the respective systems of equations and to establish the coincidence of the languages
generated by the equivalent grammars and to distinguish between the correct and the wrong
grammars.

7 Conclusion and future research

In this paper we demonstrated that numerical methods can be an effective tool to compare
context-free grammars.

We presented:
1. An algorithm for exercise generation in the domain of formal languages, namely context-

free grammars. The algorithm makes use of metagrammars;
2. A probabilistic assessment algorithm allowing one to decide, with high probability, if two

context-free grammars are equivalent or not.
The algorithms allow one to automatically generate and assess exercises involving context-free
grammars.

In the future research we plan to address the following issues:
1. Determination of the range of random matrices guaranteeing the convergence of numerical

methods used to solve the systems of nonlinear matrix equations;
2. A profound study of statistical properties of the random variable ξ defined in section 5.

Acknowledgments. The authors would like to thank the reviewers for their comments,
insights and corrections.

References

1 Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

2 Marco Almeida, Nelma Moreira, and Rogerio Reis. Testing equivalence of regular languages.
Journal of Automata, Languages and Combinatorics, 15(1/2), 2010.

3 Marco Almeida, Nelma Moreira, and Rogerio Reis. Finite automata minimization al-
gorithms. In Jiacun Wang, editor, Handbook of Finite State Based Models and Applications,
Discrete Mathematics and Its Applications, pages pp.145–170. Chapman and Hall/CRC
Press, 2012.

4 Richard Demillo and Richard Lipton. A probabilistic remark on algebraic program testing.
Information Processing Letters, 7(4):pp. 193–195, 1978.

SLATE’16

10:8 Context-Free Grammars: Exercise Generation and Probabilistic Assessment

5 Robert Heckendorn. A grammar for the C- programming language. Technical Report
Version S16, Department of Computer Science – University of Idaho, 2016. URL: http:
//marvin.cs.uidaho.edu/Teaching/CS445/c-Grammar.pdf.

6 Daan Leijen and Erik Meijer. Parsec: Direct style monadic parser combinators for the real
world. Technical report, Department of Computer Science, University of Utrecht, 2001.
URL: http://research.microsoft.com/pubs/65201/parsec-paper-letter.pdf.

7 Jerrold E. Marsden and Michael J. Hoffman. Basic Complex Analysis. W. H. Freeman,
third edition, 1999.

8 Minh Luan Nguyen, Siu Cheung Hui, and Alvis C. M. Fong. Probabilistic equivalence veri-
fication approach for automatic mathematical solution assessment. In 23rd International
Joint Conference on Artificial Intelligence (IJCAI2013), pages pp. 1352–1356, 2013.

9 Arto Salomaa. Formal Languages. Academic Press, 1973.
10 Arto Salomaa and Matti Soittola. Automata-theoretic aspects of formal power series.

Springer, 1978.
11 S. Doaitse Swierstra. Combinator parsers: From toys to tools. Electronic Notes in Theor-

etical Computer Science, 41, 2001. doi:10.1016/S1571-0661(05)80545-6.
12 Harald Heinz Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper. Higher order attribute

grammars. SIGPLAN Not., 24(7):131–145, June 1989. doi:10.1145/74818.74830.

http://marvin.cs.uidaho.edu/Teaching/CS445/c-Grammar.pdf
http://marvin.cs.uidaho.edu/Teaching/CS445/c-Grammar.pdf
http://research.microsoft.com/pubs/65201/parsec-paper-letter.pdf
http://dx.doi.org/10.1016/S1571-0661(05)80545-6
http://dx.doi.org/10.1145/74818.74830

A Model-Driven Engineering Technique for
Developing Composite Content Applications∗

Moharram Challenger1, Ferhat Erata2, Mehmet Onat3,
Hale Gezgen4, and Geylani Kardas5

1 R&D Department, UNIT IT R&D Ltd., Izmir, Turkey, and
International Computer Institute, Ege University, Izmir, Turkey
moharram.challenger@unitbilisim.com

2 R&D Department, UNIT IT R&D Ltd., Izmir, Turkey, and
International Computer Institute, Ege University, Izmir, Turkey
ferhat.erata@unitbilisim.com

3 R&D Center, Koçsistem Information and Communication Services Inc.,
Üsküdar/Istanbul, Turkey
mehmet.onat@kocsistem.com.tr

4 R&D Center, Koçsistem Information and Communication Services Inc.,
Üsküdar/Istanbul, Turkey
hale.gezgen@kocsistem.com.tr

5 International Computer Institute, Ege University, Izmir, Turkey; and
R&D Center, Koçsistem Information and Communication Services Inc.,
Üsküdar/Istanbul, Turkey
geylani.kardas@ege.edu.tr

Abstract
Composite Content Applications (CCA) are cross-functional process solutions built on top of
Enterprise Content Management systems assembled from pre-built components. Considering the
complexity of CCAs, their analysis and development need higher level of abstraction. Model-
driven engineering techniques covering the use of Domain-specific Modeling Languages (DSMLs),
can provide the abstraction in question by moving software development from code to models
which may increase productivity and reduce development costs. Hence, in this paper, we present
MDD4CCA, a DSML for developing CCAs. The DSML presents an abstract syntax, a concrete
syntax, and an operational semantics, including model-to-model and model-to-code transforma-
tions for CCA implementations. Use of the proposed language is evaluated within an industrial
case study.

1998 ACM Subject Classification D.1.7 Visual Programming, D.2.6 Programming Environ-
ments, Graphical environments, D.2.11 Software Architectures, Domain-specific Architectures

Keywords and phrases Domain-specific modelling languages, composite content applications,
model transformation, code generation

Digital Object Identifier 10.4230/OASIcs.SLATE.2016.11

1 Introduction

An enterprise content management system (ECM) organizes documents, contacts and records
related to the processes of a commercial organization [3]. ECM aims to make the management

∗ This work is financially supported by the Scientific and Technological Research Council of Turkey (TUBI-
TAK) Technology and Innovation Funding Programs Directorate (TEYDEB) under grant no. 3110712.

© Moharram Challenger, Ferhat Erata, Mehmet Onat, Hale Gezgen, and Geylani Kardas;
licensed under Creative Commons License CC-BY

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira; Article No. 11; pp. 11:1–11:10

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2016.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

11:2 A Model-Driven Engineering Technique for Composite Content Applications

of corporate information easier through simplifying storage, security, version control, process
routing, and retention. However, considering all capabilities and components of ECM, its
architecture is rather huge and complex. Composite Content Applications1 (CCA) are
cross-functional process solutions (built on top of an ECM system) assembled from pre-built
components, e.g. an integration of a Customer Relation Management (CRM), Forms, ECM,
and Business Process Modelling (BPM). This integration adds more structural complexity to
the system architecture.

Considering this complexity, CCA analysis and development needs new domain engineering
and software development techniques. One possible approach to cope with this complexity
is to increase the abstraction level using models [6] [8], in other words applying Model
Driven Engineering (MDE), which moves software development from code to models [11]
and may increase productivity [5] and reduce development costs [13]. One of the approaches
to realize MDE is developing a Domain-specific Modelling Language (DSML) [7]. A DSML
allows end-user programmers (domain experts) to describe the essence of a problem with
abstractions related to a domain specific problem space.

In this paper, we present MDD4CCA, a domain specific modelling language for composite
content applications. The DSML covers abstract syntax, concrete syntax, and operational
semantics (including model-to-model and model-to-code transformations). In this study,
the target platform is Microsoft Sharepoint. Using MDD4CCA tool, a user can model the
system from various aspects, such as Form, Navigation, Content, and Workflow. As result
the functional architectural code will be generated by the tools which is fully functional in
target platform. Furthermore, the proposed language is evaluated using a real industrial use
case and the results are reported in this paper.

There are some frameworks in industry to address the difficulty of CCA development, such
as Nintex2, AgilePoint3, and K24 Frameworks. Nintex is a workflow software to automate
business processes. AgilePoint enables business users to manage their processes. K2 is a
platform for creating business applications and provides forms and workflows. However,
there is no language behind any of these frameworks. So, they can only convert the model
to code in a idiosyncratic way and they offer no semantics check and constraint control
possibilities. A DSML, not only provides the concrete syntax for elements in the language,
but also it presents abstract syntax including meta elements and their relations. Moreover,
DSML allows providing controls both in modelling and interpretation time. Having these
capabilities was our main motivations for developing MDD4CCA. In addition, the above-
mentioned frameworks mainly stress on Forms and Workflow views. However, in our approach
MDD4CCA uses various views in the form of different packages namely, Content, Navigation,
Workflow, Form, and User packages.

Rest of the paper is organized as follows: In Section 2, the methodology applied in
developing MDD4CCA is presented. In the next section, development of MDD4CCA is
elaborated. Section 4 presents the industrial use case in which MDD4CCA is used to develop
the software. Finally, the paper is concluded in Section 5.

1 http://www.gartner.com/it-glossary/composite-content-applications-ccas/
2 http://www.nintex.com/
3 http://agilepoint.com/
4 http://www.k2.com/

http://www.gartner.com/it-glossary/composite-content-applications-ccas/
http://www.nintex.com/
http://agilepoint.com/
http://www.k2.com/

M. Challenger, F. Erata, M. Onat, H. Gezgen, and G. Kardas 11:3

2 Methodology

To perform this study, we fulfilled three main steps: Requirement analysis, development
of the language and finally its application in a case study. The overall procedure of steps
one and two are depicted in Figure 1 and the case study is discussed in Section 4. The
DSML development procedure includes the problem space (PS) modelling, solution space
(SS) modelling, and solution space code generation [10]. PS covers issues for the modelling
the problem and related tools independent of the details of the underlying frameworks, while
SS deals with the modelling and code generation for the target framework.

Considering the requirement engineering for MDD4CCA, initially a concept dictionary is
provided including the terms of a CCA. We have used a feature model [9] as a formal method
to represent the specifications. As a tool to realize this, we have used Clafer [1] with which it
is possible to perform model checking. After checking the feature models, the feature model
is transformed into a meta-model in EMF [12] automatically by transformation rules given
in Xtend [2] and Java. The meta-model is divided into four viewpoints including: Content,
Form, Navigation, and Workflow.

The provided PS meta-model in EMF is the main input by which problem space modelling
and its tool are provided. We developed a graphical editor in GMF5 with which an end-user
can model a problem according to the related business domain. Also, we provided Form
model with an endogenous model to model transformation which is required for a composite
content model. Using the Form model, we generate entity data models using bidirectional
transformations which provides round-trip functionality and any modification in each side
can be converted to the other side automatically. In the solution space modelling, the entity
data model is generated.

Finally, from entity data model, entity classes are generated by using entity data model
tool. On the other hand, from solution space models, the codes for server side pages, and
other required files such as XML files are generated by model to text transformations via
Xpand6, Xtend, and Java. With a similar transformation, the required library code is
configured based on the solution space model.

3 Development of MDD4CCA

As depicted in Figure 1, MDD4CCA development started with the requirement engineering
providing a concept dictionary including terms (from YAWL7, UWE8, BPMN9, and so on)
and their relations with other concepts. The dictionary includes 537 concepts which are
used as CCA requirements. To present these specifications in a formal way, we mapped the
requirements into feature model. Also, to cope with the complexity and size of the resulted
feature model (considering large number of concepts and their inter-relations), the models
are divided into several viewpoints. It is worth noting that the User view is integrated in
Content model. We used Clafer to implement the feature model with which we can also use
Alloy10 to do model checking. In this way, a clean room software engineering is realized with
preventing some defects in the requirement engineering level using Alloy model checking

5 http://www.eclipse.org/gmf-tooling/
6 http://wiki.eclipse.org/Xpand
7 http://www.yawlfoundation.org/
8 https://en.wikipedia.org/wiki/UML-based_Web_Engineering
9 http://www.bpmn.org/
10 http://alloy.mit.edu/alloy/

SLATE’16

http://www.eclipse.org/gmf-tooling/
http://wiki.eclipse.org/Xpand
http://www.yawlfoundation.org/
https://en.wikipedia.org/wiki/UML-based_Web_Engineering
http://www.bpmn.org/
http://alloy.mit.edu/alloy/

11:4 A Model-Driven Engineering Technique for Composite Content Applications

Figure 1 The process of analysing and developing MDD4CCA.

M. Challenger, F. Erata, M. Onat, H. Gezgen, and G. Kardas 11:5

on feature model. Then, we transform feature models in Clafer format (XML-based) to
meta-model [4].

3.1 Problem Space Modelling
Modelling of PS addresses the problem independent of details inside the artefacts of target
framework. Based on the requirement analysis, the problem space modelling covers the
domain with four viewpoints discussed in the previous section. Considering the space
limitations of this paper, we focus on Content viewpoint which includes User viewpoint and
also can generate main forms of Form viewpoint. Of course, an end-user’s custom forms will
be added to the Form viewpoint to complete the modelling.

To develop a DSML for modelling the PS, i.e. MDD4CCA, there is need for an abstract
syntax. We generated the required meta-model automatically from the PS feature model.
Part of this meta-model, related to Content Viewpoint, is depicted in Figure 2. This
meta-model is used to provide the graphical editor for the Content viewpoint in MDD4CCA.

As can be seen in this figure, the features and the hierarchy structure in the feature model
is transformed to the meta-elements and the relations between them in the meta-model. For
example, a Web item can have several sub Web items and each of them can have Pages,
Lists, SiteCollections and so on.

In addition to the abstract syntax, the graphical concrete syntax is provided for the
MDD4CCA’s graphical editor. To this end, we mapped the abstract syntax elements of
MDD4CCA to the graphical notations. In this study, we have used Eclipse GMF to provide
the graphical editor of the DSML. However, the complexity of configuring GMF forced us to
use a higher level tool on top of GMF called Eclipse Epsilon11 with which we could generate
GMF components from an Ecore like language called EMF and a tool called Emfatic12. As
result, we have provided a fully functional tool for MDD4CCA.

MDD4CCA’s syntax tools can impose some restrictions/controls during the user’s model-
ling. One part of these controls comes from the PS meta-model and the remaining originates
from the graphical tool itself. These constraint controls help the end-user to design an
accurate model by presenting mistakes such as wrong element connection, avoiding empty
attribute, controlling number of required relations for a specific element, and so on. These
constraints are implemented in Epsilon Validation Language (EVL)13. Part of the contraint
control for Content Type is given in Listing 1.

3.2 Solution Space Modelling
There is a difference between modelling a CCA independent of the underlying frameworks
(PS) and its modelling based on the platforms (SS). Therefore, we needed to separate level
of modelling by providing two different meta-models for problem and solution spaces. To
prepare a meta-model for SS, we analysed the commonality and variability. The result was a
meta-model including elements from different related technologies, e.g. Entity Framework,
Server Side pages and Forms, Cache layer, and object oriented language concepts.

Finally, a (instance) model of solution space meta-model is transformed to a platform
specific code (or API) which is discussed in the next section.

11 http://www.eclipse.org/epsilon/
12 http://www.eclipse.org/epsilon/doc/eugenia/
13 http://www.eclipse.org/epsilon/doc/evl/

SLATE’16

http://www.eclipse.org/epsilon/
http://www.eclipse.org/epsilon/doc/eugenia/
http://www.eclipse.org/epsilon/doc/evl/

11:6 A Model-Driven Engineering Technique for Composite Content Applications

Figure 2 The Abstract Syntax of the Content Viewpoint.

M. Challenger, F. Erata, M. Onat, H. Gezgen, and G. Kardas 11:7

Listing 1 Constraint control for Content Type element in EVL.
import ecore : ’http :// www. eclipse .org/emf /2002/ Ecore #/’;
package modelgen : modelgen =

’http :// www. mdd4cca .com/msf/ modelgen /Modelgen ’{
...
class File{

attribute name : String [?];
attribute extension : String [?] = ’.cs ’;
attribute folderPath : String [?];

}
class EnumMProperty extends MProperty {

property enumType : EnumClass [?];
}
class MNavigationProperty {

attribute name : String [?];
property type : Cache [?];
attribute multi : Boolean [?];

}
class MClass extends File{

attribute usings : String [*] { ordered };
attribute namespace : String [?];
attribute constructorBody : String [*] { ordered };

}
...

}

Table 1 Model Transformations in MDD4CCA.

Direction Source MM Target MM Type # of Rules
Forward Problem Space Problem Space M2M 38
Forward Problem Space Solution Space M2M 71
Forward/Backward Problem Space Microsoft CSDL14 M2M 24
Forward Solution Space code and xml files M2C 204 Xpand templates

3.3 Model Transformations

It is not sufficient to complete a DSML definition by only specifying the notions and their
representations. The complete definition requires that one provides semantics of language
concepts in terms of other concepts whose meanings are already established. In this study,
four types of transformations are fulfilled to realize the mentioned methodology, see Table 1.
These transformations are Clafer to Ecore transformation (in requirement engineering phase),
Content viewpoint to Form viewpoint transformation (in problem space modelling phase),
problem space model to solution space model transformation, and finally solution space model
to target platforms’ code transformation. These transformations are used to respectively
generate CRUD forms from content models; weave and translate content and form models
into a solution space model; transform MDD4CCA content model (EDM) from/to EDMX
(Entity Framework); and code generation from the SS models. The transformations are
implemented using Java and Xpand in an integrated way.

SLATE’16

11:8 A Model-Driven Engineering Technique for Composite Content Applications

4 Industrial Use Case: TUPRAS TPY Project

Taking into account the high cost of developing a DSML, there is a need to have the Return On
Investment (ROI), balancing the expected benefits and productivity improvement against the
cost of development and future maintenance of the tools before moving to a new development
environment. Therefore, in this section we present one of the industrial projects which is
implemented using MDD4CCA for one of the corporate customers of UNIT Company. The
purpose of this section is to briefly report our experiences of developing a DSML based on
the use case.

The industrial project discussed here is called TPY (acronym for the Turkish translation
of “Tupras Project Management”). Turkish Petroleum Refineries Corporation (TUPRAS)15
is currently the biggest enterprise in Turkey according to Turkey’s Fortune 500 list16. TPY
project is for managing the newly defined projects such as designing a new refinery in Tupras.
The use case is modelled in MDD4CCA in 4 viewpoints (Content, Form, Fork-flow, and
Navigation) with many diagrams. For example, there are several diagrams modelled for
Form viewpoint considering the forms in different parts of the project, such as Activity form,
Feasibility form, and so on.

After modelling the project in different viewpoints with diagrams for each part of the
project using MDD4CCA, the transformations are applied using transformation engine of
MDD4CCA and other models are generated from which the architectural code is generated.
By adding delta code with developers, the system is fully functional. Altogether, this project
has 79 work-flows, 195 transitions in work-flows, 43 roles, 137 tasks, 107 tables of databases,
and 403 web pages for forms. The project has several important parts such as pre-feasibility,
feasibility, pre-discovery, discovery, yearly investment planing, and Progress. For instance
the screenshot of automatically generated form of the TPY’s “Feasibility Page” is shown in
Figure 3. Due to the confidentially issues, only the general parts are demonstrated in the
figure. Besides, both the interface and the content of the form are in Turkish since Tupras
aimed at using TPY only nation-wide at this stage. In the figure, feasibility study of a new
project inside the refinery is considered. In the active tab given in the figure, some of the
financial calculation values such as yearly interest for the credit, tax ratio, yearly distribution
of the new project investments are given inside the form which is achieved by the execution
of the MDD4CCA transformations.

In this case study, totally 96 model to model transformation rules and 151 model to code
transformation templates are used. The model transformation from the problem space to
the solution space is fully transformed automatically. In the scope of this case study, most of
the code also is generated automatically. The resulting architectural code is functional in
the target platform. Considering the underlying web-based content management platform,
the language generated around 65% of the code. The other 35% of the code is in fact the
part which has high variability among the projects.

The resulting software product has been used in TUPRAS since mid 2014 (about 2 years
until the time this paper was prepared). The software is used by the staff from different
TUPRAS departments. 120 workers from the project management departments of four
TUPRAS refineries are using the software. In addition, 80 engineers are benefiting from the
modeling environment of the given tool during project proposal preparation.

15 http://www.tupras.com.tr/masterpage.en.php
16 http://aa.com.tr/en/economy/tupras-tops-turkey-s-fortune-500-list/30989

http://www.tupras.com.tr/masterpage.en.php
http://aa.com.tr/en/economy/tupras-tops-turkey-s-fortune-500-list/30989

M. Challenger, F. Erata, M. Onat, H. Gezgen, and G. Kardas 11:9

Figure 3 The running application of TPY use case (Feasibility Page).

5 Conclusion and Future Work

In this paper, a domain specific modelling language, called MDD4CCA is developed for
Composite Content Applications. The language covers all model driven components including
the abstract syntax, the concrete syntax, model to model and model to code generation. The
language is used in the development of an industrial project which is reported as a case study
again in this paper. The result shows that utilization of the proposed model-driven technique
and MDD4CCA, the 65% of the application code is generated automatically in average. Our
next work is to continue the evaluation of the DSML by using it for the development of new
real industrial CCAs.

References

1 Kacper Bąk, Zinovy Diskin, Michał Antkiewicz, Krzysztof Czarnecki, and Andrzej
Wąsowski. Clafer: unifying class and feature modeling. Software & Systems Modeling,
pages 1–35, 2014.

2 Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and Xtend. Packt
Publishing, 2013.

3 Bob Boiko. Content Management Bible. John Wiley & Sons, 2005.
4 Ferhat Erata, Moharram Challenger, Serhat Gezgin, Argün Demirbas̨, Mehmet Önat, and

Geylani Kardas. A methodology for supporting the synchronization between capability
models and metamodels in software product lines. In 8th Turkish National Software En-
gineering Symposium, volume 1221, pages 2–13, 2014.

5 Tomaž Kos, Tomaž Kosar, Jure Knez, and Marjan Mernik. From DCOM interfaces to
domain-specific modelling language: A case study. Computer Science and Information
Systems, 8(2):361–378, 2011.

SLATE’16

11:10 A Model-Driven Engineering Technique for Composite Content Applications

6 Ivan Lukovic, Vladimir Ivancevic, Milan Celikovic, and Slavica Aleksic. DSLs in action with
model based approaches to information system development. In Marjan Mernik, editor,
Formal and Practical Aspects of Domain-Specific Languages: Recent Developments, pages
502–532. IGI Global, 2013.

7 Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop domain-
specific languages. ACM Computing Surveys, 37(4):316–344, December 2005.

8 Aleksandar Popovic, Ivan Lukovic, Vladimir Dimitrieski, and Verislav Djukic. A DSL for
modeling application-specific functionalities of business applications. Computer Languages,
Systems and Structures, 43(C):69–95, October 2015. doi:10.1016/j.cl.2015.03.003.

9 Roger Pressman. Software Engineering: A Practitioner’s Approach. McGraw Hill, 2000.
10 Awais Rashid, Jean-Claude Royer, and Andreas Rummler. Aspect-Oriented, Model-Driven

Software Product Lines - The AMPLE Way. Cambridge publications, 2011.
11 Douglas C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. Computer,

39(2):25–31, February 2006.
12 Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: eclipse mod-

eling framework. Pearson Education, 2008.
13 Antonio Vallecillo. A journey through the secret life of models. In Uwe As̈mann, Jean

Bézivin, Richard Paige, Bernhard Rumpe, and Douglas C. Schmidt, editors, Perspectives
Workshop: Model Engineering of Complex Systems (MECS), number 08331 in Dagstuhl
Seminar Proceedings, Dagstuhl, Germany, 2008. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, Germany.

http://dx.doi.org/10.1016/j.cl.2015.03.003

Eshu: An Extensible Web Editor for
Diagrammatic Languages∗

José Paulo Leal1, Helder Correia2, and José Carlos Paiva3

1 CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto, Porto,
Portugal
zp@dcc.fc.up.pt

2 CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto, Porto,
Portugal
up201108850@fc.up.pt

3 CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto, Porto,
Portugal
up201200272@fc.up.pt

Abstract
The corner stone of a language development environment is an editor. For programming lan-
guages, several code editors are readily available to be integrated in Web applications. However,
only few editors exist for diagrammatic languages. Eshu is an extensible diagram editor, embed-
dable in Web applications that require diagram interaction, such as modeling tools or e-learning
environments. Eshu is a JavaScript library with an API that supports its integration with other
components, including importing/exporting diagrams in JSON. Eshu was already integrated in
a pedagogical environment with automated diagram assessment, configured for extended entity-
relationship diagrams, that served as basis for an usability evaluation.

1998 ACM Subject Classification D.2.6 Programming Environments; Interactive environments

Keywords and phrases Diagram assessment, language environments, automated assessment,
e-learning

Digital Object Identifier 10.4230/OASIcs.SLATE.2016.12

1 Introduction

Programming is about languages, but not all languages used in programming are textual.
Visual languages are typically used when it is necessary to abstract complex concepts and
highlight relationships among them. Visual languages replace named types by simple shapes,
such as rectangles or ellipses, that our brain grasps immediately. They also replace identifiers
used in textual representations by lines connecting occurrences of these concepts. Still,
visual languages have drawbacks when compared to textual languages. The number of types
that can be represented with simple shapes is limited and the same goes for the number of
connections that a person perceives using lines.

∗ This work is partially financed by the ERDF – European Regional Development Fund through the
Operational Programme for Competitiveness and Internationalisation – COMPETE 2020 Programme
and by the FCT within project POCI-01-0145-FEDER-006961 and project “NORTE-01-0145-FEDER-
000020” financed by the North Portugal Regional Operational Programme (NORTE 2020), under the
PORTUGAL 2020 Partnership Agreement and through the European Regional Development Fund
(ERDF).

© José Paulo Leal, Helder Correia, and José Carlos Paiva;
licensed under Creative Commons License CC-BY

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira; Article No. 12; pp. 12:1–12:13

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2016.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

12:2 Eshu: An Extensible Web Editor for Diagrammatic Languages

Visual languages in programming are mainly diagrams used for modelling1. The most
popular example is arguably the (Extended) Entity-Relationship diagrams (EER) used for
modelling databases. Another example are Deterministic Finite Automaton (DFA) diagrams
used for modelling simple computations. The Unified Modelling Language (UML) also
specifies a number of diagram types, including the popular Class Diagram, that can be seen
as an extension of EER, and the state transition diagram that is an extension of DFA.

A diagram editor is the core component of an environment for diagrammatic languages.
The goal of Eshu – the library described in this paper – is to provide diagram editing to
Web based applications. Typical clients of Eshu are e-learning systems for diagrammatic
languages, in particular those with automated evaluation of diagrams, that provide feedback
to the student and need it to be displayed as diagram fragments (inserted and removed nodes
and edges) overlaying the original diagram.

There are several programs for editing diagrams, including e-learning systems for certain
diagrammatic languages. A survey of these systems is presented in Section 2. This survey
covers also libraries for displaying and editing diagrams on web applications, with features in
common with Eshu. Nevertheless, they lack the concept of language, both for supporting
guided edition and to exchange diagrams with other tools, such as evaluators.

The concept of language is essential in Eshu. It supports the basic concepts of diagrams,
such as nodes and edges, and basic operations on them. Nodes and edges may have their
own visual syntax according to their type. Restrictions on the type and number of edges
connected to a type of node can also be defined. Diagrammatic languages aggregate a
collection of types of edges and nodes. Eshu has its own JSON based format for exchanging
diagrams of any kind. This format can also be used for transmitting differences that Eshu
is able to display over the current diagram. The features of Eshu as well as its design and
implementation are detailed in Section 3.

Eshu was integrated in Enki, a web environment for learning computer science languages.
The integration is described in Section 4 and served as a validation of the proposed library.
It validated both the interoperability features of Eshu, in particular with the graph evalu-
ation module [13], and the usability of the user interface. Section 5 summarizes the main
contributions of this work and discusses the opportunities for future research.

2 State of the Art

The most used diagram editors are rich client applications, such as Microsoft Visio or Dia. A
few libraries embeddable in web applications, such as mxGraph or GoJS, are also available.
This section surveys the features of the systems that served as inspiration for the design of
Eshu.

Microsoft Visio2 is an application for creating diagrams in Windows. The strengths of
Visio are the professional and technical diagrams with vector images, which can be magnified
and manipulated. Visio can be used to create diagrams of various types, such as organization
charts, flowcharts, data modeling (using UML or other graphical notation), network diagrams,
floor plans, posters, etc.. Besides the ability to export diagrams into a variety of different
formats (for example: PDF, SVG, DWG), it also enables a publishing model in Web format
and export/import in XML formats. There are only versions of Visio for Windows. Also, it
is a commercial software and it lacks diagram validation.

1 There are also visual programming languages, but these are seldom used in computer science.
2 https://msdn.microsoft.com/en-us/library/office/ff604964(v=office.14).aspx

https://msdn.microsoft.com/en-us/library/office/ff604964(v=office.14).aspx

J. P. Leal, H. Correia, and J. C. Paiva 12:3

Figure 1 Eshu test application.

Inspired by the Windows program Visio, Dia3 is a free diagram drawing software running
on GNU/Linux, MacOS X, Unix, and Windows. Most diagram objects have handles to which
lines can be connected to form graph structures. When the objects are moved or resized,
the connections follow their respective objects. Dia has stencils for a wide variety of use
cases such as user interface layout, organizational chart, entity relationship diagrams, UML
diagrams, network diagrams and flowcharts. It can load and save diagrams to a custom
XML format, save files in various formats such as EPS, SVG, xfig, WMF and PNG, among
others. As a drawback for educational purposes, Dia allows nodes and connectors from
various categories to be mixed together in the same diagram.

The product family library mxGraph [7] provides resources to applications that display
interactive charts and graphs with implementations in various technologies. The JavaScript
implementation supports several features such as file I/O using XML and JSON, dynamic
styling of nodes and edges, event processing, folding of subtrees in acyclic graphs and node
grouping.

GoJS [11] is a pure JavaScript library for the implementation of interactive diagrams
in browsers. It offers advanced features for user interactivity, such as drag, copy and paste
the text editing site, automatic layouts, data binding and templates, event handlers and
select groups of nodes. Usually, it runs completely in a Web browser without any need for
JavaScript libraries or frameworks, facilitating its integration. It supports diagram serializing
in JSON.

Most of the available automatic diagram assessment systems were designed for a specific
diagram type and use tailor made diagram editors . Examples of these single diagram types
addressed by existing systems are deterministic finite automata (DFA) [2, 10], UML class
diagrams [1, 12], UML use case diagrams [14], Entity-Relationship diagrams [3], among
others.

3 https://wiki.gnome.org/Apps/Dia

SLATE’16

https://wiki.gnome.org/Apps/Dia

12:4 Eshu: An Extensible Web Editor for Diagrammatic Languages

3 Design and implementation

Eshu is a diagram editor running on a web browser, written in JavaScript and using
the HTML 5 canvas. This section details the main design points, starting with the user
interface, covering also its interoperability and extensibility features, and ending with a few
implementation details.

3.1 User interface
Eshu is not a complete application, it is a complex widget comparable to a rich text editor.
Its user interface appears in the context of a host application. During the development
of Eshu, a test application was developed to mock a host application. Figure 1 presents
a screenshot of the test application. In fact, the user interface of Eshu is just the central
rectangle displaying a diagram, including the toolbar for selecting nodes and edges. All
the other widgets, such as check boxes, buttons and the text window, are part of the test
application. These widgets interact with Eshu through its API, in a similar manner as a
host application would do.

Eshu is started by the host application like any widget provided by a framework. When
started, it has a certain width and height, that by default is also the size of the canvas where
the user draws the diagram. If the user drags an object to the right or to the bottom then
the canvas will automatically enlarge. The size of the Eshu widget will remain the same and
scroll bars will be added to allow the navigation on the enlarged diagram.

The types of diagram elements, nodes and edges, available for the current diagrammatic
language are displayed in the toolbar, right above the canvas. As mentioned previously,
this panel is an integral part of Eshu. The toolbar may be positioned both vertically and
horizontally, or even hidden, by using the appropriate calls to the API. After selecting an
element type, the user may insert a new instance anywhere on the diagram and it may even
overlap other elements.

Newly inserted nodes are selected, meaning that they will be the focus of the subsequent
editing operations. If the user types, the label will be replaced, and if he drags its handles
(the small squares on the borders), the node will be resized. Node size is also automatically
adjusted according to the label text.

Eshu can also display feedback. Figure 2 presents an example of the feedback shown to
the user. In the feedback, green nodes are modifications, blue nodes are additions and red
nodes are deletions.

3.2 Interoperability
The main purpose of Eshu is to be integrated in web applications, hence interoperability
is a particularly important facet of its design. Eshu has an extensive API that allows the
host application to control it. Some of the most important methods of the API require a
diagram serialization, to import or export them. Eshu uses its own JSON based serialization,
specified using JSON-Schema [4].

Figure 3 presents, as UML classes, the data schema used by the API. As expected, a
diagram is composed by a set of Node and a set of Edge; nodes have a position and a
dimension; edges connect a source and a target node. Instances of Node or Edge are also
instances of Element, containing an identifier and a type.

An Element may also have a temporary status given by an enumerated value, one of
DELETE, INSERT or MODIFY. These values are used for stating differences between diagrams,

J. P. Leal, H. Correia, and J. C. Paiva 12:5

Figure 2 Example of feedback provided by Eshu.

and are used for returning feedback. For instance, an Element, either a Node or an Edge
marked as DELETE should be removed of the current diagram. Eshu displays in red, blue and
light green respectively the elements marked as INSERT, DELETE and MODIFY.

An Element may also have a number of instances of Feature, which are name-value
pairs. Features depend on the type of element, thus cannot be rigidly specified in the schema.
For instance, an Attribute is a type of node in an Entity-Relationship diagram which can
have different features, such as being a key or multivalued. Thus, an Attribute may have a
core graphical representation, a labelled ellipsis, with variants controlled by its features: in a
key attribute the label is underlined while a multivalued attribute has a double line ellipsis.

Some features are actually a kind of sub-types. Encoding node characteristics as types or
as features is mostly a matter of convenience. One could consider the types “Attribute-Key”
and “Attribute-Non-Key” for instance, each with its own graphical representations. Of
course, this would lead to a proliferation of types by combining different features that could
be rather cumbersome.

Having a large number of types may be relevant for some operations, such as assessing
diagrams. Previous research [13] has shown that the assessment of diagrams (represented
as graphs) is more efficient when a larger number of types is considered. However, it does
not always make sense to use all the features as sub types and it also depends largely on
the diagrammatic language being considered. The reducibles property of Diagram class
identifies the names of the types that can be reduced in this fashion, wich ultimately depends
on the language.

The diagram serialization is needed by some of the methods provided by the application
interface (API) of Eshu. The basic methods are setGraph() and getGraph(). The former
receives a diagram represention as argument while the latter returns one. The method
importGraph() also receives a diagram serialization but only with differences to the current

SLATE’16

12:6 Eshu: An Extensible Web Editor for Diagrammatic Languages

Diagram

note : String
reducibles :List<String>

Node

x , y : int
width, height : int
label : String

Edge

anchorSource : int
anchorTarget: int

source

Element

id : String
type : String
temporary : Temporary

Feature

name : String
value : String

target

<<enumeration>>
Temporary

DELETE
INSERT
MODIFY

Figure 3 UML class diagram of the diagram serialization used for import/export.

diagram. The diagram serializations imported with this method typically have elements with
a Temporary value assigned to them and they are displayed accordingly.

The import and export methods are not the only ones in Eshu’s API. A partial list of
the available methods is presented in Table 1. These methods can be used on an instance of
Eshu to configure it. An example of a configuration is the definition of the diagrammatic
language, using the setLanguage(). An example of binding functions to the user interface
would be assigning the copy, cut and paste operations to menu entries or to accelerator keys.
As another example, the widgets shown in Figure 1 are all bound to methods of the API.

3.3 Extensibility
Eshu was designed for being extensible, to be able to incorporate new diagrammatic languages,
with their own nodes and edges, and enforce restrictions on how these can be connected.
These extensions require new JavaScript definitions that have to be integrated with Eshu’s
source code.

To ease the integration of these definitions, Eshu’s code follows an object-oriented approach.
JavaScript is not in itself an object-oriented language, but supports to a certain extent a
few key concepts of this methodology. For instance, object instances are created with the
keyword new and a function that acts as a constructor. This function is itself an object with
a prototype. The properties of the prototype are shared by all objects it creates, thus these
properties can be seen as fields or methods, when they hold values or functions, respectively.
It is even possible to simulate inheritance by calling the constructor function of a parent
“class”.

The new nodes and edges extend abstract definitions provided by the core of the library.
These define a number of essential fields, such as position, dimension and label; and also
methods for label editing, node resizing, feature selection, moving and dragging, among

J. P. Leal, H. Correia, and J. C. Paiva 12:7

Table 1 The application interface (API) of Eshu.

Name method Description
setLanguage defines the language of the graph
getGraph returns the graph in json
setGraph create a new graph using a json text
importDiff import the differences to the graph
resizeGraph resize the graph
setPositionHorizontal change the position of the toolbar to horizontal
setPositionVertical change the position of the toolbar to vertical
copy mark to copy a node or a node group
cut cut a selected node
paste paste a node or node group that were marked to copy

Listing 1 Entity constructor.
function Entity (x, y,id) {

Vertice .call(this , x, y,id); // extend Vertice
this.type=" entity ";
this.label =" ENTITY ";
this.weak= false;
this. cursorPosition =this.label .length -1;
this. listTypeCanBeconnected =[

" attribute ", " simpleNode ",
" relationship ", " espGenCat "];

}

others. However, a few methods have to be explicitly provided, such as the method that
displays the element. JavaScript does not have means to enforce the implementation of
methods. Thus, mandatory methods are defined by the abstract classes, but the default
implementation simply raises an exception unless they are overriden/implemented.

The code snippet in Listing 1 is the constructor of an Entity that inherits from Vertice
all the generic definitions of nodes. The constructor receives a position and an identifier
that are passed to the constructor of Entity. The constructor also initializes, in this object,
specific properties of Entity, such as weak (by default it is not a weak entity). The last
instruction defines a list of node types that can be connected to an Entity. Note that in this
language two entities cannot be connected directly (only through a Relationship), hence
the type being defined is absent from this list.

The definition of Entity is incomplete without a draw() method, as presented in Listing 2.
This method receives a graphic context as argument, which the method uses to draw a
rectangle, and, optionally, another argument that defines if it is a weak entity or not. Drawing
the label at the center is common in most node types, hence this definition can resort to the
method showLabel inherited from Vertice.

The creation of an edge type follows a similar pattern. As shown on Listing 3, the new
constructor must extend the Edge class which already defines the basic fields and methods
required by an edge. Edge takes as argument a source node, a target node, the source anchor
index, the index of the anchor and the target node id. It is necessary to define a method
draw().

The nodes in the graph are connected with other nodes through edges, but not all nodes
can connect with each other. One can set a list of restrictions with objects that check if the

SLATE’16

12:8 Eshu: An Extensible Web Editor for Diagrammatic Languages

Listing 2 Drawing method of an Entity.
Entity . prototype .draw = function (ctx) {

ctx. beginPath ();
ctx.rect(this.x, this.y,this.width , this. height);
if(this.weak){

ctx.rect(this.x+2, this.y+2,
this.width -4, this.height -4);

}
ctx.fill ();
ctx. stroke ();

this. showLabel (ctx);
}

Listing 3 Creating a new Edge.
function EEREdge1 (source ,target , handleSource , handleTarget ,id) {

this.links= [
new SimpleNodeOther (),
new EntityAttribute (),
new EntityRelationship (),
new AttributeAttribute (),
new AttribuiteRelationship (),
new RelationshipRelationship (),
new EntityEspGenCat ()];

Edge.call(this ,source ,target , handleSource , handleTarget ,id);
}

pair of connected nodes has acceptable types. Thus Eshu avoids having links in the graph
that are not allowed in the language.

After creating nodes and edges it is necessary to relate them to a language. As shown in
Listing 4, the method setLanguage() assigns to a language named “eer” a list of previously
defined nodes and edge types. This setting has as side effect the creation of a new toolbar in
Eshu’s user interface.

3.4 Implementation
The implementation of the design described in the previous subsections has some points
that need to be detailed. These points are related to the efficiency, automatic layout and
integration.

In general, the number of nodes and edges in a diagram is fairly small, since large diagrams
are difficult to understand. However, small is relative and for some computers a few dozens
of nodes and edges may have impact on efficiency. The most demanding operation from
an efficiency point of view is node and edge selection. The iteration over a list of nodes,
with a computational complexity of O(n), proved to be too inefficient. Instead, Eshu uses
quadtrees, that with a complexity of O(log(n)) find nodes and edges more efficiently. The
main drawback of using quadtrees for indexing nodes and edges is that it requires reindexing
them when they are moved, but the efficiency gain when searching for selected elements
pays off.

J. P. Leal, H. Correia, and J. C. Paiva 12:9

Listing 4 Defining language EER.
var graph = new Graph(div ,700 ,400);

graph. setLanguage (Language ("err",
[" attribute "," entity "," relationship "," espGenCat "],
["line"," lineEGC "]);

As a diagram editor, Eshu does not need to layout nodes. The users insert nodes where
they please. However, the API allows the host application to send feedback in the form of
changes to the existing diagram. If these changes are deletions or modifications, they can be
rendered by displaying the existing nodes and edges with a different color. If the difference
is a node insertion then it has to be positioned by Eshu.

The layout of these new nodes is computed using a force-directed algorithm [5]. In this
approach, nodes repel each other according to Coulomb’s law as if they were electrically
charged particles with the same signal, and edges bind them together as springs following
Hooke’s law. One of the advantages of a force directed algorithm is that it adjusts to changes,
either changes of window’s dimension or changes in the number of nodes.

Eshu is a pure JavaScript library, hence it can be integrated in most JavaScipt based
web applications. However, some frameworks, such as the Google Web Toolkit (GWT), use
different languages to code the web interfaces; in this case Java. To enable the integration of
Eshu in GWT applications, a binding to this framework was also developed. The binding
is composed of a Java class (that is converted to JavaScript by GWT) with methods for
all API methods, such as those listed in Table 1, implemented using the JavaScript Native
Interface (JSNI) of GWT.

4 Validation

This section presents an acceptability evaluation of Eshu. To carry out this evaluation, Eshu
was integrated in a web integrated environment for learning computer science languages –
Enki [9] – to create a diagram assessment module. The assessment of diagrams was provided
by a graph-based evaluator [13]. Then, an experiment was conducted with undergraduate
students in the laboratory classes of an undergraduate Databases course at the Department
of Computer Science of the Faculty of Sciences of the University of Porto (FCUP), from the
1st to the 18th of March, 2016.

Enki is one of the GUIs of Mooshak 2.0 (the new version of Mooshak [6]), a framework
for automated assessment of computer science languages. Enki was designed for a wide range
of use cases, from introductory high school or college courses, to massive online open courses.
It assumes that the students may have little or no help from a teaching assistant and that
they may not have the necessary tools installed on their computers. It was developed using
Google Web Toolkit (GWT), an open source software development framework that allows a
fast development of AJAX applications in Java.

The diagram assessment component compares 2 diagrams using a graph based serialization
obtained from Eshu’s API. Given two graphs, a solution and an attempt of a student, it
computes a mapping between the node sets of both graphs that maximizes the student’s grade,
as well as a description of the differences between them. These differences are converted to
Eshu’s diagram serialization and are shown to the student as feedback.

The Enki course created for the experiment contains resources of two types: expository
and evaluative. The expository resources are PDFs describing EER languages. The evaluative

SLATE’16

12:10 Eshu: An Extensible Web Editor for Diagrammatic Languages

Figure 4 Screenshot of Eshu integrated in Enki.

resources contain the statements describing the database requirements, and an instance of
Eshu to create an EER diagram for that database. Figure 4 presents a screenshot of Enki’s
GUI with Eshu as the editor.

The integration of Eshu in Enki requires a frequent communication between the two,
controlled by Enki. Eshu has been designed as a widget, with a binding for GWT, exposing
several methods for managing it. An important part of this integration happens when a
student sends his diagram for evaluation. Figure 5 presents an activity diagram of this
situation.

Firstly, Enki gets the graph from Eshu as a JSON serialization and stores it in a temporary
variable. Then, Enki executes an asynchronous request to the graph evaluator to evaluate
the graph serialized in JSON. The graph evaluator returns the feedback, observations and
a grade of this attempt to solve the exercise. The feedback is a JSON serialization with
differences between the attempt and a possible solution to the exercise. These differences are
imported temporarily to Eshu, until the student confirms that he is ready to continue from
his last attempt. Finally, Enki imports the JSON serialization of the last submission (stored
in the temporary variable) to Eshu.

After the experiment the students were invited to fill-in an online questionnaire based on
the Nielsen’s model [8], using Google Forms. It includes questions on the usefulness of the
integration of Enki with Eshu, i.e. on its utility and usability. Utility is the capacity of the
system to achieve a desired goal. Usability is defined by Nielsen as a qualitative attribute
that estimates how easy is to use an user interface. The survey was completed by 8 students,
of which 3 were females.

Figure 6 shows the results grouped by Nielsen’s heuristics. The collected data is shown
in a bar chart, with heuristics sorted in descending order of user satisfaction.

On the positive side the results prove that the compatibility, consistence and visibility
were the heuristics with higher satisfaction. The respondents also selected the ease of use as
one of the strongest points of Eshu. On the negative side the results highlighted deficiencies
in three areas: speed, reliability and flexibility. Students complained about the difficulty of
connecting edges to nodes. This is due to the size of the connecting area of the node. Other
students stated that the delay when they validate or submit their programs was too high.

J. P. Leal, H. Correia, and J. C. Paiva 12:11

Figure 5 Communication diagram of Eshu with Enki upon a submission to the evaluator.

Most of these issues were already fixed as result of the students’ feedback.
The questionnaire finalizes with an overall classification of Eshu in a 5 values Likert-type

scale (very good, good, adequate, bad, very bad). Many of the students (37.5%) classified
Eshu as an adequate tool and others (37.5%) stated Eshu as a good or a very good tool.
Some students (25%) found it either bad or very bad.

5 Conclusions

The creation of a language based environment requires an editor. Many editors are available
for textual languages, but the offer is much more limited for diagram editors, in particular
for embeddable in web based e-learning environments. Eshu is a JavaScript library that
offers diagram editing to web based applications, with an emphasis on the production of
valid diagrams within a given language, and in the interoperability with other software
components.

Eshu was designed for interoperability and extensibility. It has a diagram definition
language for data interchange with other components, which includes complete diagrams
and diagram differences used for reporting feedback. This data is serialized in JSON and its
schema is formalized in JSON Schema. Although implemented in JavaScript, Eshu follows
an object-oriented methodology, which simplifies the introduction of new node and edge
types by extending core classes.

To validate the proposed library, Eshu was integrated in Enki, the pedagogical interface
of Mooshak 2.0. Eshu is one component of the diagram language module, where it interacts
with a graph based evaluation component. This integration validated the interoperability
features of Eshu and was also the base for an usability evaluation. To complete the validation
of the extensibility features, new languages must also be supported.

The candidates to new languages in Eshu are deterministic finite automata (DFA) and
UML diagrams. The former should be straightforward for Eshu (although more demanding
from an evaluation point of view). UML diagrams are a bit more complex due to their variety
and profusion of features, particularly in class diagrams.

SLATE’16

12:12 Eshu: An Extensible Web Editor for Diagrammatic Languages

Figure 6 Eshu acceptability evaluation.

References
1 Noraida Haji Ali, Zarina Shukur, and Sufian Idris. A design of an assessment system for

uml class diagram. In Computational Science and its Applications, 2007. ICCSA 2007.
International Conference on, pages 539–546. IEEE, 2007.

2 Rajeev Alur, Loris D’Antoni, Sumit Gulwani, Dileep Kini, and Mahesh Viswanathan. Auto-
mated grading of dfa constructions. In Proceedings of the Twenty-Third international joint
conference on Artificial Intelligence, pages 1976–1982. AAAI Press, 2013.

3 Firat Batmaz and Chris J. Hinde. A diagram drawing tool for semi–automatic assessment of
conceptual database diagrams. In Myles Danson, editor, 10th CAA International Computer
Assisted Assessment Conference, pages 71–84. Loughborough University, 2006.

4 Kris Zyp Francis Galiegue and Gary Court. Json schema: core definitions and terminology.
Technical report, Internet Engineering Task Force, 2013.

5 Stephen G. Kobourov. Spring embedders and force directed graph drawing algorithms.
CoRR, abs/1201.3011, 2012. URL: http://arxiv.org/abs/1201.3011.

6 José Paulo Leal and Fernando Silva. Mooshak: a web-based multi-site programming contest
system. Software: Practice and Experience, 33(6):567–581, 2003. doi:10.1002/spe.522.

7 JGraph Ltd. Build interactive web diagramming apps. Accessed: 2016-03-18. URL: https:
//www.jgraph.com/.

8 Jakob Nielsen and Thomas K Landauer. A mathematical model of the finding of usability
problems. In Proceedings of the INTERACT’93 and CHI’93 conference on Human factors
in computing systems, pages 206–213. ACM, 1993.

9 José Carlos Paiva, José Paulo Leal, and Ricardo Queirós. Enki: A pedagogical services
aggregator for learning programming languages. (in press), 2016.

10 Zarina Shukur and Nurul F Mohamed. The design of adat: A tool for assessing automata-
based assignments. Journal of Computer Science, 4(5):415, 2008.

11 Northwods Software. Gojs – interactive diagrams for javascript and html. Accessed: 2016-
03-18. URL: http://gojs.net/.

http://arxiv.org/abs/1201.3011
http://dx.doi.org/10.1002/spe.522
https://www.jgraph.com/
https://www.jgraph.com/
http://gojs.net/

J. P. Leal, H. Correia, and J. C. Paiva 12:13

12 Josep Soler, Imma Boada, Ferran Prados, Jordi Poch, and Ramon Fabregat. A web-based
e-learning tool for uml class diagrams. In Education Engineering (EDUCON), 2010 IEEE,
pages 973–979. IEEE, 2010.

13 Rúben Sousa and José Paulo Leal. A structural approach to assess graph-based exercises.
In José-Luis Sierra-Rodríguez, José-Paulo Leal, and Alberto Simões, editors, Languages,
Applications and Technologies, pages 182–193. Springer International Publishing, 2015. doi:
10.1007/978-3-319-27653-3_18.

14 Vinay Vachharajani and Jyoti Pareek. A proposed architecture for automated assessment of
use case diagrams. International Journal of Computer Applications, 108(4):35–40, Decem-
ber 2014. Full text available.

SLATE’16

http://dx.doi.org/10.1007/978-3-319-27653-3_18
http://dx.doi.org/10.1007/978-3-319-27653-3_18

Sni’per: a Code Snippet RESTful API∗

Ricardo Queirós1 and Alberto Simões2

1 ESEIG/IPP & INESC-TEC, Porto, Portugal
ricardoqueiros@eseig.ipp.pt

2 Centro de Estudos Humanísticos & Centro Algoritmi, Universidade do Minho,
Braga, Portugal
ambs@ilch.uminho.pt

Abstract
Today we use the Web for almost everything, even to program. There are several specialized code
editors gravitating on the Web and emulating most of the features inherited from traditional IDEs,
such as, syntax highlight, code folding, autocompletion and even code refactorization. One of the
techniques to speed the code development is the use of snippets as predefined code blocks that can
be automatically included in the code. Although several Web editors support this functionality,
they come with a limited set of snippets, not allowing the contribution of new blocks of code.
Even if that would be possible, they would be available only to the code’s owner or to the editors’
users through a private cloud repository. This paper describes the design and implementation of
Sni’per, a RESTful API that allows public access for multi-language programming code-blocks
ordered by popularity. Besides being able to access code snippets from other users and score
them, we can also contribute with our own snippets creating a global network of shared code. In
order to make coding against this API easier, we create a client library that reduces the amount
of code required to write and make the code more robust.

1998 ACM Subject Classification D.3 Programming Languages; D.3.3 Language Constructs
and Features

Keywords and phrases Programming languages, interoperability, web services, code snippets

Digital Object Identifier 10.4230/OASIcs.SLATE.2016.13

1 Introduction

With the evolution of the Internet, the act of programming, so far exclusive to standalone
IDEs, moved to the Web taking advantage of its full potential regarding ubiquity and speed.
This transition fostered code sharing and collaboration in real time, whether the goal is pair
programming or just get some help from a friend.

In this context, several Web programming editors appeared, in the last decade, such as
ICEcoder, CodeAnywhere, CodeMirror, ACEditor, and many others. These editors are often
used by web applications for different purposes: 1) computer programming learning, 2) code
development and testing, and 3) programming contests.

Regardless of their purposes, they include a set of features, inherited from traditional
IDEs, that aims to facilitate and speed up the coding process [5, 2], such as syntax highlight
and checking, tab support, indentation, bracket matching, code folding, keyword shortcuts,
spell checking, code generation, refatorization, etc.

∗ This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação
para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.

© Ricardo Queirós and Alberto Simões;
licensed under Creative Commons License CC-BY

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira; Article No. 13; pp. 13:1–13:11

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2016.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

13:2 Sni’per: a Code Snippet RESTful API

One of the most promising features is the code snippets. Code snippets is a well-known
IDE feature that increases productivity by reducing the amount of time spent by programmers
typing repetitive code or searching for samples [4]. In fact, snippets might be used for standard
file skeletons, class and function definitions, HTML tables, and much more.

Despite their importance, most editors do not benefit from the potential that the Web
provides in order to leverage code snippets implementation. For instance, there are few
editors that support code snippets. Those who support, do not allow the contribution of new
snippets and provide only a small range of code snippets based on a private user account or
on a specific editor’s code repository.

This paper presents the design and implementation of an API – called Sni’per – that
allows code snippets management. The RESTful API supports the access to multi-language
code blocks and the submission of new snippets to authenticated users. These same users
can also score the snippets affecting the results of subsequent requests.

The remainder of this paper is organized as follows. Section 2 analyses several of
existing code snippets formats highlighting both their differences and their similar features.
In the same section, various snippets API are also covered and a comparative survey is
presented based on several criteria. The following section provides details on the design and
implementation of Sni’per, including its architecture, the service API, the data model and a
client library. The final section summarizes the main contributions of this research and plans
futures developments of this service.

2 Related work

The standardization of content and communication is the key for the interoperability on the
Web. In this section, we survey the approaches used to formally represent and share snippets
over the Web.

2.1 Snippets languages
Code snippets are small blocks of reusable code that can be inserted into a source file to
speed up coding. Usually, the representation of a snippet resource is encoded in XML or
JSON formats and include the text of the snippet and some metadata for easy discovery.
The content of the snippet can be categorized in two groups:

Static snippets: plain text inserted by the user into the source code. The user is not able to
specify anything else.

Dynamic snippets: plain text combined with dynamic elements. The user may specify both
the content of the dynamic elements, as well as their position relative to the plain text.
Good examples are variables such as the current system date or the input from the user
that is supplied via a GUI.

Dynamic snippets use placeholders to define dynamic elements. These elements are
supplied by the user (through graphical user interface and modal dialog boxes) or other
external process. Placeholders have special markup syntax that allows the editor to identify
the boundaries of placeholders relative to the plain text. There are two typical actions made
with placeholders: duplication and transformation. The former allows the user to indicate
that the value supplied for one placeholder should be replicated in multiple places, relative
to the entire text of the programmable snippet. The later, allows the user to indicate that
one or more values supplied for a placeholder should be replicated and transformed in other
places within the text of the programmable snippet. For instance, the user may supply a

R. Queirós and A. Simões 13:3

Listing 1 HelloWorld VS code snippet.
<?xml version ="1.0" encoding ="utf -8"? >
<CodeSnippets

xmlns =" http :// schemas . microsoft .com/ VisualStudio /2005/ CodeSnippet ">
<CodeSnippet Format ="1.0.0" >

<Header >
<Title >Hello World VB </ Title >
<Shortcut >HelloWorld </ Shortcut >
<Description > Inserts code </ Description >
<Author >MSIT </ Author >
<SnippetTypes >

<SnippetType >Expansion </ SnippetType >
<SnippetType > SurroundsWith </ SnippetType >

</ SnippetTypes >
</Header >
<Snippet >

<Declarations >
<Literal >

<ID >expression </ID >
<ToolTip > Expression to switch on.</ ToolTip >
<Default >World </ Default >

</Literal >
</ Declarations >
<Code Language ="VB">

<![CDATA[Console . WriteLine (" Hello , $expression$!")]] >
</Code >

</Snippet >
</ CodeSnippet >

</ CodeSnippets >

document title in one part of the snippet, and specify that the document title should be
repeated in other places, with the first instance being all uppercase and every other instance
being lowercase.

The previous categorization can include also scriptable snippets that consists of run-
nable segments of code in a scripting language. Although its flexibility, it depends on the
programming languages supported by the text editor.

There are several languages to represent code snippets. We detail two of the most popular:
VS Code Snippet and TextMate snippet syntax.

2.1.1 VS Code Snippet
VS Code Snippets1 are predefined pieces of code (e.g. Visual Basic, Visual C#, or XML)
that are ready to be inserted into source code within Visual Studio. The VS Code Snippet
language uses an XML Schema to formalize a code snippet. Listing 1 shows a simple XML
instance that reproduces a “Hello World” snippet:

The root element CodeSnippets aggregates two elements: Header and Snippet. The
former includes metadata about the snippet, more precisely, its title, author, date, description,

1 Code Snippets Schema Reference: https://msdn.microsoft.com/en-us/library/ms171418.aspx

SLATE’16

https://msdn.microsoft.com/en-us/library/ms171418.aspx

13:4 Sni’per: a Code Snippet RESTful API

Listing 2 For Loop snippet for JavaScript using TextMate language snippet.
"For Loop ": {

" prefix ": "for",
"body ": [

"for(var ${index} = 0; ${index} < ${array }. length ; ${index }++) {",
"\ tvar ${ element } = ${array }[${index }];" ,
"\ t$0",

"}"
],
" description ": "For Loop"

},

shortcut and type of the snippet. The type, represented by a set of SnippetType elements,
can be one of the following values:

SurroundsWith: allows the code snippet to be placed around a selected piece of code;
Expansion: allows the code snippet to be inserted at the cursor;
Refactoring: specifies that the code snippet is used during Visual C# refactoring.

The Snippet element contains the Code element that defines the placeholders and the code
snippet. To define a placeholder you must include the Literal element that defines the literals
of the code snippet that you can edit and add three sub-elements: ID – specifies a unique
identifier for the literal; ToolTip – describes the expected value and usage of the literal; and
Default – specifies the literals’ default value when you insert the code snippet. Later in
the element Code you should signal the placeholder with $. The element has an attribute
Language where the language of the code snippet is defined.

2.1.2 Textmate Code Snippet
TextMate snippets2 are pieces of text which can be inserted into the source code at the
current location via a context-sensitive key stroke or tab completion. The text can be, in the
simplest case, plain text that you do not want to type systematically (either because you
type it a lot, or because the actual text to insert is hard to remember) or dynamic text with
interpolated shell code, placeholders and transformations.

The Textmate language uses JSON as the format for the snippet syntax. Each snippet is
defined under a snippet name and has a prefix, body and description. The prefix is what is
used to trigger the snippet and the body will be expanded and inserted. Possible variables
are: $1, $2 for tab stops and $id and $id:label and $1:label for variables variables. Listing 2
shows a For Loop snippet for JavaScript.

Variables with the same id are connected. In the previous example, the $index variable
(after set) will reflect the same value for all variables with the same name.

2.2 Code snippets API
With the evolution of Computer Science, several front-end development tools and code
snippets repositories appeared having in mind code sharing and collaboration.

There are several tools focused on front-end development, usually coined as live pastebin
apps, such as jsbin, jsfiddle or codepen. In this context, Github Gists assumes a leading role.

2 https://manual.macromates.com/en/snippets

https://manual.macromates.com/en/snippets

R. Queirós and A. Simões 13:5

Listing 3 Snippet creation with Bitbucket API.
$ curl -u { username }

-X POST https :// api. bitbucket .org /2.0/ snippets / \
-F file= @mySnippet .txt

GitHub Gists are a type of pastebin apps that hosts code snippets adding version control,
easy forking, and SSL encryption for private pastes.

Regarding code snippets repositories, the most prominent are GistBox, CSnipp, Snippet-
Source.net, Snipplicious, Bootsnipp, Snip2code and Tagmycode. Most of these repositories
offer a GUI to create and manage public or private snippets. If they are public some of
the repositories allow the possibility to comment and grade snippets. All of them allow the
snippets search based on tags and the “copy & paste” action for the users code editor.

Nevertheless, these are generic tools and do not allow their easy use as a snippet API
service. An API for code snippets is not a novel approach. There are a few solutions
on the Web that provide access to pieces of code through an API. Most solutions use
REST as the software architectural style in order to benefit from its main features (e.g.
caching, self-descriptiveness and hypermedia) and JSON as the data format used for the
asynchronous browser/server communication. The next subsections details four code snippets
API: Bitbucket, Glot, SnippetStash and TagMyCode.

2.2.1 Bitbucket Snippet API
Bitbucket is a Web-based hosting service, owned by the Atlassian group, for projects using
revision control systems (e.g. Mercurial, Git). It is similar to GitHub, which primarily uses
Git. The Bitbucket cloud hosts several REST API to build third party applications. The
snippets API3 allows you to create, retrieve and delete snippets in the Bitbucket Cloud as well
information about them. Snippets can be either public (visible to anyone on Bitbucket Cloud,
as well as anonymous users), or private (visible only to the owner, creator and members
of the team in case the snippet is owned by a team). Beyond the possibility of managing
snippets (e.g. add, update, get and delete), the API allows users to comment and watch
for existing snippets. For instance, creating a snippet from a local file is just a single curl
command as shown in Listing 3: The API uses JSON as the standard format to exchange
data between the server and the browser.

2.2.2 Glot Snippet API
The Glot Snippets API4 provides an HTTP API for storing and managing snippets. This
API enables users to create, update, get, list and delete snippets. Snippets can be saved as
either public or secret. Public snippets appear in /snippets the endpoint and can be found
by search engines. Secret snippets can only be accessed by those who know the URL. In
order to create a private snippet an API token is required. Listing 4 shows how to create an
anonymous snippet:

This Snippets API uses CouchDB as the datastore engine and JSON for exchanging data.

3 https://confluence.atlassian.com/bitbucket/snippets-endpoint-719095086.html
4 https://github.com/prasmussen/glot-snippets/tree/master/api_docs

SLATE’16

/snippets
https://confluence.atlassian.com/bitbucket/snippets-endpoint-719095086.html
https://github.com/prasmussen/glot-snippets/tree/master/api_docs

13:6 Sni’per: a Code Snippet RESTful API

Listing 4 Snippet creation with Glot API.
$ curl --request POST \

--header ’Content -type: application /json ’ \
--data ’{

" language ": " python ",
"title ": "test",
" public ": true ,
"files ": [{" name ": "main.py", " content ": "print (42)"}]} ’ \

--url ’https :// snippets .glot.io/snippets ’

Listing 5 Snippet creation with Glot API.
$ curl -u my@email .com: d53a1fb463c7e3180f3ac0f1479ec7daffa2b9b7 \

http :// www. snippetstash .com/ snippets .xml

2.2.3 SnippetStash API
The SnippetStash API5 is a REST-based API which allows users to integrate snippets in an
easy and uniform way. The SnippetStash has a public and a private API hosted in the main
endpoint http://www.snippetstash.com. The public API has three endpoints:

/snippets/latest.xml – obtains the latest twenty snippets in XML format;
/tags.xml – retrieves all existent tags;
/tags/[tag].xml – retrieves all the snippets associated with [tag].

The responses to these requests use an ad-hoc XML representation.
The private API allows users to access and manage personal snippets. Since SnippetStash

supports authentication via OpenID and basic password authentication, it is necessary to
use an API key to access the API functions. After registration, the API key is sent by e-mail
to the registered user. To access the API, you simply provide the email address and the
API key on every request. For instance, to get your snippets returned as XML use the code
included in Listing 5:

Other actions supported by this API are creating, editing and sharing snippets.

2.2.4 TagMyCode Snippet API
The TagMyCode API6 is a RESTful service that enables users to access to snippets and
tags. Firstly, you need to register a new application to get a consumer id and secret. Most
of the TagMyCode API calls needs authentication. OAuth 2 is the only way to authenticate
your requests. After the authentication, you can execute several actions based on the main
endpoint https://api.tagmycode.com/, such as:

/account?access_token=YOUR_TOKEN – get logged user information;
/languages – list languages;
/snippets – list snippets;
/snippets/:id – get single snippets;

5 http://www.snippetstash.com/api
6 https://tagmycode.com/

http://www.snippetstash.com
/snippets/latest.xml
/tags.xml
/tags/[tag].xml
https://api.tagmycode.com/
/account?access_token=YOUR_TOKEN
/languages
/snippets
/snippets/:id
http://www.snippetstash.com/api
https://tagmycode.com/

R. Queirós and A. Simões 13:7

Table 1 Snippet API comparision.

Features Bitbucket Glot SnippetStash TagMyCode
Web Service REST REST REST REST
Authentication HTTP Basic HTTP Basic OpenID & Basic OAuth
Storage – CouchDB – –
Response format JSON JSON XML JSON
CRUD actions YES YES YES YES
Social Comment NO Share & Unshare NO
GUI NO NO YES YES
public snippets 45 87 199 1350
languages 6 17 19 59

/snippets – create a new snippet; this is a HTTP POST request with the following
parameters: the id of the language, the title of the snippet, the description of the snippet
(optional), the tags of the snippet (comma or space separated) and the optional boolean
private that specifies if the snippet is private;
/snippets/:id – edit a specific snippet; this is a PUT request with the same parameters
as the previous endpoint;
/snippets/:id – removes a specific snippet; this is a DELETE request with the identi-
fication of the snippet to remove;
/search – search for snippets based on a search keyword.

2.2.5 Snippet API comparision
In this section, we present a comparative table that surveys the four snippets API previously
presented. Table 1 compare the four snippets API based on several criteria.

All the snippets API use REST as the software architectural style because of its simplicity.
Regarding authentication, basic access authentication is the preferred method providing

a username and password when making a request.
JSON is the elected exchange format. In fact, JSON has a much smaller grammar when

compared with XML and maps more directly onto the data structures used in modern
programming languages such as JavaScript.

All the API support common actions over snippets, such as, the creation of snippets
through the HTTP POST, their edition using the HTTP PUT method, getting a specific
snippet or all snippets through the HTTP GET and remove a specific snippet using the
HTTP DELETE method. Moreover, snippets can be found by using filters based on tags.
Regarding social features, Bitbucket supports comments on snippets and SnippetStash allow
users to share snippets with others.

Beyond the documentation of the API, some API (SnippetStash and TagMyCode) have a
graphical interface where users can perform all the CRUD actions and others such as embed
the snippet in a HTML page or share it on social networks (e.g. Facebook, Twitter).

Lastly, to assess the use and diversity of content API, we obtained data on the number of
public snippets and programming languages represented. Based on the numbers, it can be
concluded that the SnippetStash and TagMyCode are the API with more activity.

3 Sni’per

This section describes the details on Sni’per server implementation.

SLATE’16

/snippets
/snippets/:id
/snippets/:id
/search

13:8 Sni’per: a Code Snippet RESTful API

Table 2 Snippet API.

Function REST syntax
List languages GET /langs
List language snippets GET /lang-id
List snippets per language/type GET /lang-id/keyword

Retrieve snippet GET /snippet/snippet-id
Register snippet POST /lang-id/keyword/username < auth-hash, snippet
Retrieve user info and snippets GET /user/user-name
Delete snippet DELETE /lang-id/keyword/username/auth-hash

Register POST /user/user-name < email, password
Authenticate POST /user/user-name < password
Vote on snippet POST /snippet/snippet-id/voting-user < auth-hash

3.1 Architecture

Sni’per is a complete JSON REST service, implemented in Perl, using Dancer 2 Web
Framework. This server interacts with a MongoDB NoSQL server, using the Perl Moo OO
module. Thus, requests are intercepted by the web server, that translate the request route
in a query for the object model. The object model queries the database, and retrieves an
answer that is later serialised to JSON.

As Sni’per uses a RESTful approach [1], where HTTP verbs are used to indicate the type
of each operation, and without storing any information between each request. This means
that each client needs to authenticate itself for each operation that requires it. In order
to allow clients not to store the user password, and send it over and over for each request,
Sni’per uses a token-based authentication. The client performs its authentication sending the
user name and password. It receives a token that identifies that user in his/her consequent
requests.

3.2 Service API

Table 2 lists the most important routes available in Sni’per API. Note that for simplicity we
decided not to include the full URI, but just the route. Routes requiring extra explanation
are:

The registration and authentication that use the same route but behave differently
accordingly with the supplied arguments.
Users can have only one snippet per language/keyword pair. Note that this is the usual
behaviour for most text editors. If the user wants to have different snippets for the same
language keyword, they name it differently (for example, for and fori where the first
cycles over the elements of a collection, and the second creates a typical index-based
cycle).
The voting route is used both to vote or remove a vote. Unlike other websites, like Stack
Overflow, we decided to have a vote-only approach (or the starring mechanic). If the user
likes a snippet it can vote or star it. If the user tries to like it again, the vote is removed.
Although there is nothing against the definition of a body to a DELETE request, some
web servers and proxies drop that information. Therefore, our DELETE routes include,
explicitly, all required parameters for authentication.

R. Queirós and A. Simões 13:9

Web page
instantiate

SniperJS library

AceWrapper
<<Editor>>

<<implement>>
CodeMirrorWrapper

<<Editor>>

CodePressWrapper
<<Editor>>

<<interface>> EditorWrapper

+ EditorWrapper(Editor editor)
+ setLanguage(String language)
+ setBindingKey(String key)
+ setTheme(String theme)
+ setText(String text)
+ getText() : String
...

Sniper
REST API

SniperManager

+ Sniper()
+ getLanguages() : List
+ getKeywords(String lang) : List
+ getSnippetsByKeyword(String lang, String key) : List
+ setSnippet(String userId, String snippet)
+ addScore(String snippetId, String userId)
...

Figure 1 Components diagram of the SniperJS library.

As pointed before, the database uses a NoSQL approach, storing information in a
MongoDB database [6]. At the moment, the database consists of a set of collections, for
users, languages, snippets and votes. This requires the system logic to be implemented in
the OO model representation. In the future we expect to use more features from MongoDB,
reducing the complexity of the system logic.

3.3 Client library
In order to foster the use of the Sni’per API on Web environments, we implement a JavaScript
library called SniperJS. Figure 1 shows the component diagram of the library. The cornerstone
of the library is the interface EditorWrapper that defines the actions that a specific editor
must follow. Thus, to support a specific editor, it is necessary to implement this interface
through the creation of a wrapper. The interface has the following functions:

EditorWrapper([Editor] editor) – instantiates a new wrapper;
setLanguage(String language) – defines the language of the editor;
setBindingKey(String key) – defines the key combination that will trigger the Sni’per
management modal box;
setTheme(String theme) – defines the theme of the editor;
setText(String text) – includes new text on the editor;
getText() : String – obtains text from the editor.

In the HTML page, we instantiate a EditorWrapper passing a reference for the specific editor.
Listing 6 shows the initialization of the Ace editor. In turn, the wrapper is responsible for
communicating directly with the Snippet API through the SniperManager class that provides
a set of functions to facilitate the process of interaction with the Snippet API.

This architecture promotes and facilitates the use of Sni’per API. If a programmer does
not find the desired wrapper, he/she only has to create a new one, that implements the
EditorWrapper interface and, then, use the SniperManager class to interact with the API
without the need to handle HTTP requests or even parsing JSON reponses.

The GUI for the Sni’per library had two design requirements: be simple and responsive.
Based on these requirements we opt for using Bootstrap for the creation of the graphical
interface of the Sni’per JS library. Bootstrap is an open source frontend Web framework.
Since version 2.0 the framework supports responsive web design. This means the layout of
web pages adjusts dynamically, taking into account the characteristics of the device used
(desktop, tablet, mobile phone). Figure 2 shows the modal box that allows users to select
the desired snippet.

SLATE’16

13:10 Sni’per: a Code Snippet RESTful API

Listing 6 Instantiation of the Sni’per library.
<body >
...
<div id=" editor "></div >
...
<script >

// Ace editor initialization
var aceSniper = new EditorWrapper (ace.edit (" editor "));
aceSniper . setLanguage (" c_cpp ");
aceSniper . setTheme (" ace/theme/ cobalt ");
aceSniper . setBindingKey (" Shift - Return ");

</script >
...
</body >

Figure 2 Sni’per library graphical interface.

4 Conclusions

The goal of the research presented in this paper is to promote the interoperability among
Web code editors through the use of a standard API for code snippets management. The
proposed approach is a service to manage code snippets on-the-fly. The contribution of this
research is twofold, the service definition and a client library implementation that will use
the service. The service definition comprehends the modular design of the snippet service
based on a RESTful API with a set of functions for snippets management such as getting
snippets based on a keyword, submit a new snippet of a specific language or vote on a single
snippet. The client of the Sni’per service is a library implemented in JavaScript with a
Bootstrap-based GUI. Currently, Sni’per supports only a few languages with few snippets
each. The idea was initially to have a functional proof of concept. The API can be accessed
in the following link sniper.zbr.pt7. As future work the authors will:

7 To be available soon.

sniper.zbr.pt

R. Queirós and A. Simões 13:11

increase the number of snippets on the cloud snippets repository
extend the Sni’per compliance to other snippet formats based on the implementation of
injectors of other snippets DSLs
use source code context to enhance snippet retrieval and parameterization [8], [3]
improve dynamic snippets using placeholders to define dynamic elements with duplication
and transformation actions [7]

References
1 Roy T. Fielding and Richard N. Taylor. Principled design of the modern web architecture.

In Proceedings of the 22Nd International Conference on Software Engineering, ICSE ’00,
pages 407–416, New York, NY, USA, 2000. ACM. doi:10.1145/337180.337228.

2 Joel Galenson, Philip Reames, Rastislav Bodik, Björn Hartmann, and Koushik Sen. Code-
hint: Dynamic and interactive synthesis of code snippets. In Proceedings of the 36th Inter-
national Conference on Software Engineering, ICSE 2014, pages 653–663, New York, NY,
USA, 2014. ACM. doi:10.1145/2568225.2568250.

3 Tihomir Gvero, Viktor Kuncak, and Ruzica Piskac. Interactive synthesis of code snippets.
In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided Verification: 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings,
pages 418–423. Springer Berlin Heidelberg, 2011. doi:10.1007/978-3-642-22110-1_33.

4 Miryung Kim, Lawrence Bergman, Tessa Lau, and David Notkin. An ethnographic study
of copy and paste programming practices in oopl. In Empirical Software Engineering,
International Symposium on, pages 83–92, Aug 2004. doi:10.1109/ISESE.2004.1334896.

5 Torben Lorenzen, Lee Mondshein, Abdul Sattar, and Seikyung Jung. A code snippet library
for cs1. ACM Inroads, 3(1):41–45, March 2012. doi:10.1145/2077808.2077822.

6 Zachary Parker, Scott Poe, and Susan V. Vrbsky. Comparing nosql mongodb to an sql db.
In Proceedings of the 51st ACM Southeast Conference, ACMSE ’13, pages 5:1–5:6, New
York, NY, USA, 2013. ACM. doi:10.1145/2498328.2500047.

7 Naiyana Sahavechaphan and Kajal Claypool. Xsnippet: Mining for sample code. SIGPLAN
Not., 41(10):413–430, October 2006. doi:10.1145/1167515.1167508.

8 Doug Wightman, Zi Ye, Joel Brandt, and Roel Vertegaal. Snipmatch: Using source code
context to enhance snippet retrieval and parameterization. In Proceedings of the 25th
Annual ACM Symposium on User Interface Software and Technology, UIST ’12, pages 219–
228, New York, NY, USA, 2012. ACM. doi:10.1145/2380116.2380145.

SLATE’16

http://dx.doi.org/10.1145/337180.337228
http://dx.doi.org/10.1145/2568225.2568250
http://dx.doi.org/10.1007/978-3-642-22110-1_33
http://dx.doi.org/10.1109/ISESE.2004.1334896
http://dx.doi.org/10.1145/2077808.2077822
http://dx.doi.org/10.1145/2498328.2500047
http://dx.doi.org/10.1145/1167515.1167508
http://dx.doi.org/10.1145/2380116.2380145

Building a Dictionary Using XML Technology
Alberto Simões1, José João Almeida2, and Ana Salgado3

1 Centro de Estudos Humanísticos, Universidade do Minho, Braga, Portugal
ambs@ilch.uminho.pt

2 Centro Algoritmi, Universidade do Minho, Braga, Portugal
jj@di.uminho.pt

3 Instituto de Lexicologia e Lexicografia da Língua Portuguesa, Academia das
Ciências de Lisboa, Lisbon, Portugal
anacastrosalgado@gmail.com

Abstract
In this article we describe the workflow implemented to convert a dictionary saved as a PDF file
into an XML document and posterior importation into an XML aware database, and the process
to edit, add and delete new entries. The conversion process was challenging given the format of
the PDF file, and the fine grained detail of the XML schema that was used. For that, an iterative
filtering approach was used. To store the dictionary we decided to use an XML aware database
(eXist-DB), that stores each dictionary entry as a separate resource. It can be queried used
a web interface developed using XQuery. The lexicographers can edit entries using the oXygen
XML editor, reading and storing them directly in the database. In order to guarantee incremental
backups, it was defined a mechanism to import the XML database into a GIT repository. Finally,
a couple of programs were created in order to prepare regular reports on the dictionary revision
process, as well as to backup it in a GIT repository.

1998 ACM Subject Classification I.7.2 Document Preparation / Markup languages

Keywords and phrases XML databases, dictionaries, XQuery, PDF files

Digital Object Identifier 10.4230/OASIcs.SLATE.2016.14

1 Introduction

After the release of the Dicionário da Academia das Ciências de Lisboa (DACL) in 2001 [1],
our goal is to recover that work, update the dictionary data and publish it both on the
Internet, as a web application, and as a conventional paper dictionary.

We do not intend to publish the dictionary, or even make it available to the public, as it
is. Our aim is to manually revise the full dictionary, fixing known errors, detecting others,
and including new terms. That is, we want to create a new version of the dictionary to be
made available in the web for free by the end of the next year.

The main problem arose when it was found that the only source for the dictionary itself,
was from a PDF file. 1. There was no time nor money to allow the full transcription of
the document. This required an automated process to recover the data from the PDF file.
In order to achieved this, our previous recovering other dictionaries [3, 5] was crucial, and
allowed this process to be faster.

1 This PDF file was created from a Word document, that was generated from a Microsoft Access file, but
none of these files were still available.

© Alberto Simões, José João Almeida, and Ana Salgado;
licensed under Creative Commons License CC-BY

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira; Article No. 14; pp. 14:1–14:8

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2016.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

14:2 Building a Dictionary Using XML Technology

This process resulted in a text file with font face and size information. Then, a set of
rewriting rules were written, to convert this information into a basic XML structure that
was later enriched using an iterative filtering approach, as we will describe.

The resulting XML was split into smaller documents, one for each dictionary entry.
These documents were later imported into an XML aware database. In this case, we chose
eXist-DB [4].

In order to allow the revision and enrichment of the dictionary, it was needed an interface
or some other mechanism to allow linguists to edit the dictionary records. With that in mind,
we created an application based on XQuery to allow the navigation of the dictionary, and
rendering of links using the XMLDB protocol, that oXygen XML editor2 could understand,
making it possible to edit an entry using a single mouse click.

Finally a set of reporting and export tools were developed in order to monitor the pace
of the dictionary revision, and the export of the dictionary into different formats.

In the next section we will focus on the task of understanding the PDF document format
and exporting it into XML TEI [7]. Follows Section 3 that explains how the dictionary was
imported and indexed into a XML-aware database. Section 4 present the developed tools to
help maintaining and validating the dictionary. Finally, we conclude in Section 5 with some
insights on next steps on the development of the new dictionary.

2 Rewriting PDF into XML

In previous projects we had already applied techniques in order to convert dictionaries
encoded in different formats into some XML schema. Each one of these data conversion tasks
resulted in very different challenges. The same holds true for the PDF format conversion of
the Dicionário da Academia das Ciências de Lisboa.

As described earlier, the PDF file was generated from a Microsoft Word document. The
format is a two column template, using mostly text in a same font-size, but changing its
style, including normal, italic, bold and small capitals. The tools we tried to convert the
PDF to text did not provide satisfactory results:

pdftotext command line utility loses all formatting, which means that all the information
codified as different font styles is completely lost.
pdftohtml as similar problems, including the fact that it also lost all non-ASCII characters,
namely the phonetic transcriptions (using modified IPA) and the etymological information
which could include Greek words. Note that pdftohtml includes an option to output
XML, but it is unable to detect some user-defined fonts. Although not tested, we expect
pdf2xml3 to behave similarly, given it uses, just like pdftohtml, the Xpdf library. It was not
tested as its source code is not prepared for easy installation, lacking the usual configuring
mechanism present on most OpenSource tools4.
OCR tools, like the free Tesseract OCR, and commercial tools, like Omnipage Pro and
Abbyy Fine Reader converted the vectorial PDF files into images, and then tried to
recognize the text. Their results were also far from satisfactory even when using high
quality images. Also, during this process, when specifying Portuguese as the main
language, they would miss the detection of non Portuguese words.

2 https://www.oxygenxml.com/
3 https://github.com/eliask/pdf2xml
4 There are some binaries for the pdf2xml tool in SourceForge, but it is known that SourceForge was

hacked more than once, and therefore binaries available there are not to be trusted.

https://www.oxygenxml.com/
https://github.com/eliask/pdf2xml

A. Simões, J. J. Almeida, and A. Salgado 14:3

<text font="KIKNHC+Garamond-Redondo" size="9.548">v</text>
<text font="KIKNHC+Garamond-Redondo" size="9.548">o</text>
<text font="KIKNHC+Garamond-Redondo" size="9.548">g</text>
<text font="KIKNHC+Garamond-Redondo" size="9.548">a</text>
<text font="KIKNHC+Garamond-Redondo" size="9.548">l</text>
<text font="KIKNHC+Garamond-Redondo" size="9.548"> </text>
<text font="KIKNHC+Garamond-Redondo" size="9.548">c</text>
<text font="KIKNHC+Garamond-Redondo" size="9.548">e</text>
<text font="KIKNHC+Garamond-Redondo" size="9.548">n</text>
<text font="KIKNHC+Garamond-Redondo" size="9.548">t</text>
<text font="KIKNHC+Garamond-Redondo" size="9.548">r</text>
<text font="KIKNHC+Garamond-Redondo" size="9.548">a</text>
<text font="KIKNHC+Garamond-Redondo" size="9.548">l</text>

Figure 1 XML as generated by PDFBox to the “vogal central” string.

Apache PDFBox tools5, on other hand, proved to be very effective.. This tool is able to
process a PDF file and generate a (large) XML file, where each character in the PDF file is
encoded into an entity with the typeface and font size, as shown in figure 1. This XML file
takes 2.7GB of disk space, with 28.5 million text tags.

This XML was then simplified, joining all text with he same typeface and font size into
single elements. Then, a list of different pairs (font, size) was created, and mapped to
different tag elements. For the common typeface and font size adding a bold, italic or small
caps were used the elements b, i or sc. For other, less clear strings, other ad-hoc elements
were defined.

A set of rewrite rules were then written in order to process this file and identify what
role each string played in the dictionary, determine what was the entry term, its phonetic
transcription, sense identifiers, synonyms, quotes, etc. The techniques employed here were
similar to the ones applied previously [5].

After this step, our main challenge was the granularity of the desired markup, which was
more fine-grained than in previous works which made the XML processing time step take
too much time. A simple addition of a rewrite rule could make the entire process to take up
to 30 minutes. This kind of approach was hard to maintain, as it was not easy to perform
simple tests. Also,

At some point we noticed that some entries were already correctly formatted, and we
were concerned that writing rules for more complex ones could affect the correct entries. At
this point, we implemented an iterative filtering mechanism. First, the XML file was divided
into multiple files, one for each entry. Then, the following algorithm was applied:
1. define a basic DTD for simple entries;
2. test all single entry files against the DTD and move the valid ones into another folder;
3. include a set of new rules to process the remaining files in order to annotate extra

information;
4. update the DTD to support the new elements and structure, while maintaining the

validity of previous validated files;
5. go to the step 2.

5 https://pdfbox.apache.org/

SLATE’16

https://pdfbox.apache.org/

14:4 Building a Dictionary Using XML Technology

This approach was quite useful, not only because we guaranteed that new rules would not
damage entries already correctly formatted, but also allowed us to define the minimum
needed DTD: elements, their arity and attributes were added only when there was an entry
needing for them.

In the end, a list of about two hundred entries were not validated by the DTD. At this
point we noticed that most of the errors were related to mistakes (incoherences, mostly) of
the original edition. As the original dictionary was created based on a Microsoft Access
database6 without integrity constraints on the entry contents, it was not possible to guarantee
the quality of the work. Due to this, mistakes that were found after producing the dictionary
Word document were correct manually on the document itself. Also, some characters were
added or removed in order to guarantee some graphical format but, at the same time, break
the consistency with the dictionary entry format that was enforced by the Word document
generation process. These entries were edited manually using a tool developed specifically for
this purpose. This tool allowed the user to edit an entry and save it after being validated.

This iterative process made it possible for all 69,428 entries of this dictionary to be
validated against the created DTD.

3 Indexing the XML dictionary

The obtained dictionary has some errors, such as words broken in two, given the transliteration
not being detected by our previous tools, or some of the phonetic and Greek letters not being
detected. Unfortunately most of these errors will need to be fixed manually.

If we had only one lexicographer working on this dictionary, it could be possible to use a
single file, and allow to edit it at once in an XML aware editor. With the intent of allowing
more than one person to edit the dictionary, and given that the complete dictionary is,
formally, a sequence of the same element (entry), we split the file into 69,428 smaller XML
files. This also allows the editor to open and validate each entry much faster, than analyzing
the full file. In order to allow the better understanding of the discussion that follows, listing 1
presents the content of the dictionary entry for the terms vassoura/vassoira.

A dictionary entry can have more than one headword. As a simple example, the term
“vassoura” (broom) can also be written as “vassoira”. So, it is not possible to rename each
one of the XML files to the term it defines (at least, not for every entry, or we would have
duplicated entries, saved with different names). To suppress this problem, we decided to use
the first orthographic form of the entry. In case of polysemous words (words appearing as
the first orthographic form in more than one entry) we concatenated the word name with
the acception number (separated by an underscore).

This process makes it easier to find an entry. But for some situations it is still difficult.
How will the lexicographer know if a specific word is the first orthographic form of its entry,
or even, if a specific word has more than one meaning registered in the dictionary? Therefore,
we needed to develop a mechanism to allow the lexicographer to search for specific terms,
and looking to their entries’ contents, choose the one to be edited.

Instead of developing an in-house solution for this problem, we decided to give a try with
an XML-aware database. The choice was the well known eXist-DB [4], not just because it is
free and open-source, but also because it has extensive documentation.

Our long term plan is to develop a simple interface to allow the maintenance of the
dictionary, based on the XForms [2] standard. Meanwhile, while that is not possible, and in
order to allow lexicographers to start their work revising the dictionary, we adopted oXygen

6 Unfortunately this database is lost, explaining why all the work on re-engineering the PDF document.

A. Simões, J. J. Almeida, and A. Salgado 14:5

Listing 1 Entry for the word vassoura/vassoira encoded in XML.
<entry [. . .]>

<term>
<orth>vassoura</ orth> <orth>va s s o i r a</ orth>
<pron>v5 s ’ or 5</pron> <pron>v5 s ’ o j r 5</pron>

</term>
<gramGrp>s . f .</gramGrp>
<etym>Do l a t . <mentioned>∗ v e r s o r i a</mentioned> , de <mentioned>ver sus

</mentioned> , part . pas . de <mentioned>ver r ĕ re</mentioned> ’ va r r e r ’</etym>
<sense n=" 1 ">

<def> Utens í l i o domé s t i c o formado por um cabo longo ou curto ao qual é
f ixado , numa das extremidades , um f e i x e de f o l h a s de palma , p ia çaba ,
sorgo , pê l o s na tu ra i s ou a r t i f i c i a i s . . . e que s e rve para va r r e r o l i x o .
<quote type=" example ">O cabo da vassoura part iu−se . Deitou f o r a a vassoura
porque t inha os pê l o s ga s to s .</quote></ de f>
[. . .]
<sense n=" 7 "><usg type=" geo ">Bras .</usg>

<def>Pessoa que ganha sempre ou quase sempre em so r t e i o s , j ogo s de
azar . . . </ de f></ sense>
[. . .]
</ entry>

XML Developer7. This choice was backed by the tight cooperation between the developers
of eXist-DB and oXygen. Example of that cooperation is the wizard available to connect to
eXist-DB from oXygen. With some extra work it was also possible to tweak Mozilla Firefox
to open URIs using the oxygen:// protocol. This allows the lexicographers to do a query in
the eXist web pages, search for the entry to edit, and open it with a simple click on a link.

Finally, to make the 69K documents searchable, the eXist-DB collection was configured
to be indexed by Lucene8. Note that Lucene is part of eXist-DB and does not need to be
installed separately. The only requirement is the creation of a configuration file, to enable
full text search, and specifying which elements of the XML documents are to be indexed.
For the dictionary we created two different indexes with two very distinct goals:

The first is an index for the entries’ orthographic form. These index allows the lexico-
graphers to search for a specific term entry. Given the index is only over the content of
an element, it is quite small and efficient.
The second index allows the reverse-search [6] of the dictionary. This type of search
mechanism is quite interesting when analyzing a dictionary, as it allows to search for
entries not by their head word, but using their definition. This index is quite large, as it
contains all the dictionary text.

4 Developed Tools

When choosing eXist-DB to store our XML documents we ended up choosing a complete
solution for web application development. Although the database can be used using different
APIs, like REST or xmldb protocols, eXist-DB suggest users to create applications on top of
it. eXist-DB allows the development of web applications using standard W3C protocols, like
XQuery and XForms. It also includes a full web Integrated Development Editor that allows
the programmer to run queries but also to edit the application code.

7 http://oxygenxml.com/
8 https://lucene.apache.org/

SLATE’16

http://oxygenxml.com/
https://lucene.apache.org/

14:6 Building a Dictionary Using XML Technology

Listing 2 XQuery script to validate the dictionary collection.
xquery ve r s i on " 1 .0 " ;
d e c l a r e namespace va l i d a t e=" h t tp : // ex i s t−db . org /xquery/ va l i d a t i o n " ;

<r epo r t s> {
f o r $doc in c o l l e c t i o n (" /db/academia ")
l e t $ f i l e := fn :base−u r i ($ doc)
re turn < f i l e u r i=" {␣$ f i l e ␣} "> {

va l i d a t e : j a xp −r epor t (doc ($ f i l e) , t rue ())
} </ f i l e>

} </ r epo r t s>

Instead of developing our tools in an external programming language, we decided to test
how far we could go with eXist-DB. Not just for the sake of analysis of the tool, but also for
portability. It would be much easier to port the dictionary application to the final servers if
it uses just one technology.

The next list describes briefly the tools we implemented to help in the management of
the dictionary. Note that some are simple XQuery scripts, to be run in the terminal, while
other are end-user interfaces, developed for the web.

Validator
The first task was the development of a script to validate every entry in the database.
Although eXist-DB supports different kind of validations, we preferred to create a
standalone tool. This allows us to remove liberty points in the schema, turning it more
restrict, and test how many entries would be affected. As simple as this script may seem,
it took some time before it could validate all the collection entries in a reasonable time.
Therefore, listing 2 presents our XQuery script. This script takes about 3 minutes to
validate the 69K entries in a Quad-core Xeon 2.40GHz, outputting an XML document
with existing errors.

Search
As explained before, the lexicographers use a web application to query the dictionary
and obtain the filename where the entry is encoded. This script allows both the search
by an orthographic form (searching entries in the orth element) or doing reverse search
(looking up in every PCDATA section of the XML document). The XQuery script returns
the complete entries, in the original XML format. A Cascading Style Sheet is then
used to make the content adequate to be viewed in a web browser. Figure 2 shows the
vassoura/vassoira entry as presented currently in the web application9.

New entry
As stated earlier, at the moment the lexicographers are using oXygen to edit the dictionary.
To create from scratch a dictionary entry is not a simple thing, specially when the user
XML competences are not strong. To simplify this process, a small XQuery script that,
based on the term, validates if it already exists, and in case it does not, create a boilerplate
XML document in the database, that can then be edited.

List domains
Although lexicographers will review all dictionary entries, before the dictionary publication,
the definitions of some words are prepared by specialists in different areas (like mineralogy
or astronomy experts). For those, the entries are exported as rendered in the browser, so

9 Note that currently the CSS is hiding the phonetic transcription, and that the last part of the entry,
with the diminutive form of the word, is being wrongly considered part of the last definition, and
therefore, appearing in the wrong position.

A. Simões, J. J. Almeida, and A. Salgado 14:7

Figure 2 Entry for vassoura/vassoira as presented to the lexicographer in the browser.

they can validate them. As most of them are elder and prefer not to use the computer,
these lists can be printed. So, a XQuery script was prepared that list all available areas
of knowledge, and allow the visualization of all related entries.

Change reports
Another developed tool is the creation of Changes Reports. This XQuery scripts extract
the entries that were edited or created in the last week, creating a list of these entries.
This script is just a search looking into all documents last write access time.

Backup system
We use a quite original approach for backing up an eXist Database. eXist includes tools
to export an entire collection either as a ZIP file, including all the collection documents,
or exporting these documents to a folder in the disk (or a complete folder structure). To
backup or dictionary we have a regular job, being executed every night, to export the
collection to a folder. Then, this folder is committed to a GIT repository. This allows
us to have a regular backup, but also a quite incremental system (using less disk space),
and easy to replicate (at the moment we are pushing this repository into BitBucket10).

5 Conclusions and Future Work

In this article we presented our approach in the process of reverse engineering a dictionary
published in PDF, in order to convert it to a fine-grained XML document. We discuss not
just the process of reverse engineering (a task that is not new, although it was the first
time we did it from a PDF document), but also why and how we store it in an XML aware
database.

With the goal of making the dictionary available for editing and validation by different
lexicographers, we split the dictionary into various XML documents, one for each dictionary
entry. Also, as the process of searching these documents was not easy, a web application

10 http://bitbucket.org/

SLATE’16

http://bitbucket.org/

14:8 Building a Dictionary Using XML Technology

was developed to search the document collection, and create links that allow the immediate
access to each file using the oXygen XML Developer editor.

Having the dictionary being edited by lexicographers, a set of other tools required our
attention. For those, we wrote small XQuery scripts that run on top of eXist and allow very
different kinds of resources to be built.

Nevertheless, a set of other scripts need to be developed:
Instead of creating HTML reports of each week work, we intend to create daily and weekly
reports of editions, generated as XML documents, imported into another collection. This
is a very interesting resource to have, in order to monitor the activity in the dictionary,
and having a log on all performed changes.
A paper dictionary can be born, developed, printed and die. But a dictionary to be
available on the Internet needs to be dynamic, allowing the dictionary to evolve following
the language and culture. Editing directly the XML file is versatile, but not easy to use.
So, we expect to develop a user-friendly editor.
Currently our web application is restricted to authenticated users. In the future an open
interface needs to be available to end-users. Although the simple mechanisms to search
for entries are already developed (although restricted), we think there is a couple of other
interesting approaches. For example, the synonyms and antonyms annotation can be
used to present the dictionary as a graph/WordNet-like structure.
Although we will make the dictionary available on-line, we still want to be able to create
other media, like eBooks or even printed books. For that we expect to create a set of
exporting tools.

References
1 João Malaca Casteleiro, editor. Dicionário da Língua Portuguesa Contemporânea. Aca-

demia das Ciências de Lisboa, Verbo, 2001.
2 Micah Dubinko. XForms Essentials. O’Reilly Media, Inc., August 2003.
3 Xavier Gómez Guinovart and Alberto Simões. Retreading Dictionaries for the 21st Cen-

tury. In José Paulo Leal, Ricardo Rocha, and Alberto Simões, editors, 2nd Symposium on
Languages, Applications and Technologies, volume 29 of OpenAccess Series in Informatics
(OASIcs), pages 115–126, Dagstuhl, Germany, 2013. doi:10.4230/OASIcs.SLATE.2013.
115.

4 Wolfgang Meier. exist: An open source native xml database. In Akmal B. Chaudhri,
Mario Jeckle, Erhard Rahm, and Rainer Unland, editors, Web, Web-Services, and Database
Systems: NODe 2002 Web- and Database-Related Workshops Erfurt, Germany, October 7–
10, 2002 Revised Papers, pages 169–183. Springer, Berlin, Heidelberg, 2003. doi:10.1007/
3-540-36560-5_13.

5 Alberto Simões and José João Almeida. Processing XML: a rewriting system approach.
In Alberto Simões, Daniela da Cruz, and José Carlos Ramalho, editors, XATA 2010 – 8ª
Conferência Nacional em XML, Aplicações e Tecnologias Associadas, pages 27–38, 2010.

6 Alberto Simões, Álvaro Iriarte, and José João Almeida. Dicionário-Aberto: Construção
semiautomática de uma funcionalidade codificadora. In Alain Lemaréchal, Peter Koch,
and Pierre Swiggers, editors, Actes du XXVIIe Congrès international de linguistique et de
philologie romanes, Nancy, 15-20 july 2013 2014. ALTIF. Section 16 : Projets en cours;
ressources et outils nouveaux.

7 Edward Vanhoutte. An Introduction to the TEI and the TEI Consortium. Literary and
Linguistic Computing, 19(1):9–16, 2004. doi:10.1093/llc/19.1.9.

http://dx.doi.org/10.4230/OASIcs.SLATE.2013.115
http://dx.doi.org/10.4230/OASIcs.SLATE.2013.115
http://dx.doi.org/10.1007/3-540-36560-5_13
http://dx.doi.org/10.1007/3-540-36560-5_13
http://dx.doi.org/10.1093/llc/19.1.9

Automata Serialization for Manipulation and
Drawing∗

Miguel Ferreira1, Nelma Moreira2, and Rogério Reis3

1 CMUP & DCC, Faculdade de Ciências da Universidade do Porto, Porto,
Portugal
miguelferreira108@gmail.com

2 CMUP & DCC, Faculdade de Ciências da Universidade do Porto, Porto,
Portugal
nam@dcc.fc.up.pt

3 CMUP & DCC, Faculdade de Ciências da Universidade do Porto, Porto,
Portugal
rvr@dcc.fc.up.pt

Abstract
GUItar is a GPL-licensed, cross-platform, graphical user interface for automata drawing and
manipulation, written in C++ and Qt5. This tool offers support for styling, automatic layouts,
several format exports and interface with any foreign finite automata manipulation library that
can parse the serialized XML or JSON produced. In this paper we describe a new redesign of the
GUItar framework and specially the method used to interface GUItar with automata manipulation
libraries.

1998 ACM Subject Classification D.2.2 State diagrams

Keywords and phrases automata, serialization, visualization

Digital Object Identifier 10.4230/OASIcs.SLATE.2016.15

1 Introduction

Software environments for symbolic manipulation of formal languages and models of compu-
tation are widely recognized as important tools for theoretical and practical research, as well
as pedagogical tools for teaching automata theory and formal languages. Examples include
Grail+ [18, 12], OpenFST [13], FAdo [6, 1] and Vaucanson [11, 10]. The visualisation and
interactive drawing of the diagrams of the computational models is also an important com-
ponent, but few tools are available. Namely, JFLAP [15, 14] is mainly used for pedagogical
purposes (and includes its own symbolic manipulator) and other alternatives include the use
of generic graph visualization tools such as Graphviz [17].

The GUItar project aims to develop an extensible graphical environment for several
combinatorial objects and models of computation, such as finite automata, pushdown
automata, transducers, Turing machines, etc. Its functionalities include visualisation and
interactive editing, i.e. automatic and assisted diagram drawing; and export/import filters
that allow the interaction with several symbolic manipulators. Comparing with generic graph
visualization tools several requirements are distinct and are analised in the following.

∗ This work was partially supported by CMUP (UID/MAT/00144/2013), which is funded by FCT
(Portugal) with national (MEC) and european structural funds through the programs FEDER, under
the partnership agreement PT2020.

© Miguel Ferreira, Nelma Moreira, and Rogério Reis;
licensed under Creative Commons License CC-BY

5th Symposium on Languages, Applications and Technologies (SLATE’16).
Editors: Marjan Mernik, José Paulo Leal, and Hugo Gonçalo Oliveira; Article No. 15; pp. 15:1–15:7

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2016.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

15:2 Automata Serialization for Manipulation and Drawing

Automatic graph drawing has been a very active research area and several (mainly)
commercial software packages are now available for general and specific applications (data
base design, information systems, bioinformatics, social networks,etc). In contrast, auto-
mata diagrams (alike labelled multi-digraphs) require additional aesthetics and graphical
constraints: left-to-right reading, initial states on the left and final states on the right, edge
shapes and label placements, etc. Another important issue is the visualisation of only some
parts of a larger automata.

For the interactive editing it should define constraints that correspond to boolean functions
of manipulators. For instance, if we are editing a deterministic finite automaton (DFA) no
multiple transitions with the same label should be allowed; or a state can only be deleted if
the resulting recognised language is the same.

For the interaction with the different symbolic manipulators (filters), it should be allowed
the dynamic definition of actions that can be invoked, as well as conversions between the
objects of the graphical framework and ones of the manipulators.

A first version of the software tool GUItar, was developed together with the FAdo system [1,
2, 3]. That version was implemented in wxPython [16] and included the visualisation and
interactive editing for various types of automata. FAdo is mainly implemented in Python
and currently includes most standard operations for the manipulation of regular languages
and regular transductions, as well as several uniform random generators for these objects.

In this paper we present a new redesign of the GUItar framework that allows the interaction
with several automata manipulators. In Section 2 we describe the main GUItar features
within its interface and the several algorithms we use to layout the manipulated automata.
The communication process between a library and GUItar is shown in Section 3. For the
communication between these two layers to be possible, we needed to serialize the automaton.
This is accomplished by the XML/JSON grammar presented in Section 4, along with the
description of style manipulation of the automaton and examples of conversion to portable
export formats. Section 5 concludes with some future work.

2 Graphical Interface for Automata Manipulation

The GUItar [8] is a graphical interface for automata drawing and manipulation, written in
C++ and Qt5 [5]. The program is licensed with the GNU General Public License version 3.

It includes functionalities such as:
Interactive “point and click” creation of automata;
XML and JSON description of the automaton structure, styling and geometry of the
states and transitions;
Socket communication for obtaining and drawing automata represented on the GUItar
XML or JSON language;
Layout algorithms for state positioning;
Embedded ipython shell for real time command line interaction;
Exporting for several formats: PDF, PGF/Tikz, GraphViz (dot).

Its main window is composed of a QGraphicsScene widget used as a canvas, a terminal for
interfacing with the scene automaton through command lines and selection buttons: insert
state, insert transition and select items.

Using the same mechanism for automata manipulation through serialization described in
Figure 1, GUItar supports file saving and opening, restoring all automaton style and geometry
properties.

M. Ferreira, N. Moreira, and R. Reis 15:3

GUI

Canvas
Style Editor
Undo/Redo
PDF Export
Interactive Console

Automaton

States / Transitions
Styles
Geometry
Layout Algorithms
Format Export

Automata
Manipulation Library

Socket

Cereal

C++11 Linkage

XML/JSON

Figure 1 GUItar organization.

Figure 2 GUItar square, circle and spring layout of an automaton.

Comparing with the previous version of GUItar, the whole interaction and communication
use a new paradigm (including the embedded shell), consisting on the complete separation of
the symbolic manipulation program and the display program. Additional layouts and export
formats where added.

2.1 Layouts
GUItar includes several implementations of graph layout algorithms, such as:

Square - states are distributed in a d
√

ne × d
√

ne virtual grid where n is the number of
states.
Circle - we calculate a circle radius as a function of the number of states and then each
state si gets positioned at radius× (cos (Θ× i), sin (Θ× i)) where Θ is 2π

n and n is the
number of states.
Two circle - based on the JFLAP implementation, we separate the automaton into two
parts: the inner circle, which includes all states with degree greater than 2, and the outer
circle which includes the remaining states.
Barycenter [4] - an iterative algorithm that given a fixed set of states, the remaining
states move towards the barycenter proportionally to its degree.
Spring energy - another iterative algorithm that simulates a force system where states
repel each other and transitions attract their states, working as springs. This algorithm
can run a user-defined number of iterations or until the particle system’s kinetic energy
is below a certain threshold.

An example of some of these layouts is presented in Figure 2.

SLATE’16

15:4 Automata Serialization for Manipulation and Drawing

Figure 3 Example manipulation of an automaton using GUItar and FAdo.

3 Interfacing with Automata Manipulation Libraries

Communication with the GUItar is made through local sockets. For the sake of simplicity on
the automata manipulation library side, we added support for the communication through
the GUItar binary itself, as this is a single instance application.

There is also support for communication with a command line embedded inside the
GUItar. This terminal has an ipython shell with the FAdo library loaded for a more natural
way of handling the visible automaton.

The action for obtaining the currently seen automaton consists of sending the string “GET”
through the GUItar socket and expecting a JSON/XML response. It is possible to draw using
an analogous approach with the string “PUT” followed by the JSON/XML representation
of the automaton, expecting empty answer in case of success and validation of the input
against a schema.

This simplistic approach allowed us to quickly interface with known libraries such as
FAdo and Vaucanson, by writing library-side methods for interpreting the JSON/XML GUItar
format. An example using FAdo is shown in Figure 3.

4 Automata Serialization and its XML Grammar

GUItar uses the cereal [7] serialization library to produce JSON and XML representations of
its automata to be understood by manipulation libraries. We chose this approach instead of
other alternatives based on other serialization methods not only for the sake of code simplicity
and parsing efficiency, but to allow any automata manipulation library programmer to easily
interact with GUItar, be it through JSON, XML or even binary form.

The C++11 library cereal allowed us to transform our structural representation into a
XML/JSON language that later can be parsed and validated using a schema. A fragment of
the language schema is shown in Listing 2.

The structure is completely passed back and forth between the GUItar and the library
through sockets and it is the library responsibility to maintain any state, if necessary, within

M. Ferreira, N. Moreira, and R. Reis 15:5

Listing 1 Partial JSON serialization
example for the GUItar automata class.
{

" automaton " : {
" t i t l e " : " Automaton 1" ,
" type " : " " ,
" s t a t e s " : [
{

"name " : "1461439542" ,
" l a b e l " : " s2 " ,
" output " : " " ,
" i n i t i a l " : f a l s e ,
" f i n a l " : t rue

} ,
] ,
" t rans " : [
{

"name " : "14614395790" ,
" orig_name " : "1461439542" ,
" dest_name " : "1461439542" ,
" l a b e l " : " a " ,
" weight " : " " ,
" compounds " : []

}
] ,

" a lphabet " : [" a "]
}

}

Listing 2 XML Relax NG Compact grammar for
the GUItar automata class.
s t a r t = element c e r e a l {

element automaton {
element t i t l e { t ex t } ,
element type { text } ,
element s t a t e s {

element s t a t e {
element name { xsd : i n t e g e r } ,
element l a b e l { t ex t } ,
element output { text } ,
element i n i t i a l { xsd : boolean } ,
element f i n a l { xsd : boolean }

}∗
} ,
element t rans {

element t r a n s i t i o n {
element name { xsd : i n t e g e r } ,
element orig_name { xsd : i n t e g e r } ,
element dest_name { xsd : i n t e g e r } ,
element l a b e l { t ex t } ,
element weight { text } ,
element compounds {

element compound {
element key { text } ,
element value { text }

}∗
}

}∗
} ,
element alphabet {

element symbol { t ext }∗
}

}

the extra branch of the grammar. This branch is guaranteed by GUItar to be returned exactly
as it was sent.

For different automaton types, we allow special transitions with compounds, in which a
format string is defined on the label field in the form of $compound1 · · · $compoundn, and
the values of the compounds are stored as key-value pairs on its branch.

4.1 Example of a XML Automaton with Styles

On this implementation of GUItar, we include support for styling inside the JSON/XML
grammar. Each drawable object can have style properties in GUItar defined for each object
class. There can be style templates defined inside the GUI besides the default one.

The correspondence between style XML, automaton visualization and style form can be
seen in Listing 3 and Figure 4.

4.2 Exporting to Visualization Formats

Our automata objects in GUItar can be exported to several known formats. At the moment, it
is possible to export to Vaucanson-G [9] and PGF/Tikz maintaining some level of similarity
between geometry and style. We can also export the automaton with some level of styling to
the GraphViz layout program in dot language.

SLATE’16

15:6 Automata Serialization for Manipulation and Drawing

Listing 3 An example of XML GUItar.
<?xml version=" 1 .0 " encoding=" utf −8" ?>
<c e r e a l>

<automaton>
< t i t l e>FAdo</ t i t l e>
. . .

<s t a t e s s i z e=" dynamic "> . . . </ s t a t e s>
<trans s i z e=" dynamic "> . . . </ t rans>

</automaton>
. . .

<s t y l e>
<s t a t e s s i z e=" dynamic ">

<value0>
<key>1458486283455</key>
<value>

<shape>0</ shape>
<lineWidth>5</ lineWidth>
<l i n e S t y l e>0</ l i n e S t y l e>
<lineRgb>255</ l ineRgb>
< f i l l S t y l e>0</ f i l l S t y l e>
<f i l l R g b>16777215</ f i l l R g b>

</ value>
</ value0>

</ s t a t e s>
</ s t y l e>

</automaton>

b

a

a

s1

s2

s0

Figure 4 Automaton state styling.

a

b
a

b
a

s_1 s_2

s_3

s_4 s4

s3

s2s1
a

b

a
b
a

Figure 5 GUItar native export and PGF/Tikz comparison.

It is possible to export to a PDF file, maintaining an exact layout, the visible drawing in
GUItar through Qt framework methods.

5 Conclusion

In this paper we presented a new implementation of the GUItar program for visually ma-
nipulating automata and interacting with libraries. This new version, although using some
ideas of the previous one, consisted in a new redesign of most of the features and addition of
new ones. Major improvement was the possibility of communicate with several automata
symbolic manipulators.

This project is still under continuous development. The simplistic socket interface
combined with the serialization procedure provides an almost transparent communication
with automata manipulation libraries.

M. Ferreira, N. Moreira, and R. Reis 15:7

There are still features to develop and add to this project, such as GraphML export
format, more layout algorithms focused on automata drawing and constrained edition driven
by manipulators functions.

Acknowledgements. We want to thank to the anonymous reviewers for their comments
that helped to improve this paper.

References
1 André Almeida, Marco Almeida, José Alves, Nelma Moreira, and Rogério Reis. FAdo

and GUItar: tools for automata manipulation and visualization. In Sebastian Maneth,
editor, 14th International Conference on Implementation and Application of Automata,
CIAA 2009. Proceedings, volume 5642, pages 65–74, Sidney, July 2009. Springer.

2 André Almeida, Nelma Moreira, and Rogério Reis. GUItar and FAgoo: Graphical interface
for automata visualization, editing, and interaction. In Luís S. Barbosa and Miguel P.
Correia, editors, Inforum, Simpósio de Informática, pages 317–328, Braga,Portugal, 9-10
Setembro 2010.

3 José Alves, Nelma Moreira, and Rogério Reis. XML description for automata manipulations.
In Alberto Simões, Daniela Cruz, and José Carlos Ramalho, editors, Actas XATA 2010,
XML: aplicações e tecnologias associadas, pages 77–88, ESEIG, Vila do Conde, 2010.

4 Giuseppe Di Battista. Graph drawing: algorithms for the visualization of graphs. Pretice
Hall, 1999.

5 The Qt Company. Qt, Access date:1.12.2015. URL: http://www.qt.io.
6 Project FAdo. FAdo: tools for formal languages manipulation, Access date:1.11.2015. URL:

http://fado.dcc.fc.up.pt/.
7 Shane Grant and Randolph Voorhies. cereal – A C++11 library for serialization, Access

date:4.14.2016. URL: http://uscilab.github.io/cereal/.
8 Project GUItar. GUItar, Access date:1.06.2016. URL: http://guitar.dcc.fc.up.pt/.
9 S. Lombardy and J. Sakarovitch. Vaucanson-G, Access date:1.12.2015. URL: http://igm.

univ-mlv.fr/~lombardy/Vaucanson-G/.
10 Sylvain Lombardy, Yann Régis-Gianas, and Jacques Sakarovitch. Introducing Vaucan-

son. Theor. Comput. Sci., 328(1-2):77–96, 2004. doi:http://dx.doi.org/10.1016/j.
tcs.2004.07.007.

11 Sylvain Lombardy and Jacques Sakarovitch. Vaucanson, Access date:1.12.2015. URL:
http://vaucanson-project.org.

12 Darrell Raymond and Derick Wood. Grail: A C++ Library for automata and expressions.
J. Symb. Comp., 17(4):341–350, 1994.

13 Michael Riley. OpenFst, Access date:1.3.2016. URL: http://www.openfst.org.
14 Susan Rodger and Thomas Finley. JFLAP: An Interactive Formal Languages and Automata

Package. Jones and Bartlett Publishers, 2006.
15 Susan H. Rodger. JFLAP, Access date:1.12.2015. URL: http://www.jflap.org.
16 Julian Smart, Robert Roebling, Vadim Zeitlin, and Robin Dunn. wxWidgets 2.6.3: A

portable C++ and Python GUI toolkit, 2006. URL: http://wxpython.org.
17 Graph Visualization Software. Graphviz, Access date:1.12.2015. URL: http://graphviz.

org/.
18 Sheng Yu and Cezar Campeanu. Grail+, Access date:1.3.2016. URL: http://www.csit.

upei.ca/~ccampeanu/Grail.

SLATE’16

http://www.qt.io
http://fado.dcc.fc.up.pt/
http://uscilab.github.io/cereal/
http://guitar.dcc.fc.up.pt/
http://igm.univ-mlv.fr/~lombardy/Vaucanson-G/
http://igm.univ-mlv.fr/~lombardy/Vaucanson-G/
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2004.07.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2004.07.007
http://vaucanson-project.org
http://www.openfst.org
http://www.jflap.org
http://wxpython.org
http://graphviz.org/
http://graphviz.org/
http://www.csit.upei.ca/~ccampeanu/Grail
http://www.csit.upei.ca/~ccampeanu/Grail

	p00-frontmatter
	Preface

	p01-skvorc
	Introduction
	Related work
	Automatic conference scheduling
	Problem overview
	Data set
	Enriching text with co-bidding preferences
	Constrained clustering

	The conference scheduling application
	Evaluation
	Comparing different clustering methods
	Effect of the co-bidding graph
	Scheduling evaluation

	Conclusion

	p01-ZZZ-Blank
	p02-mbarek
	Introduction
	Related Work
	A Re-ranking Method Based on Irrelevant Documents
	Vector product
	Scenario
	Compute of the absorbing document
	An illustrative example
	Strategies to select irrelevant documents

	Experiments
	Environnement
	Results
	Analysis of results

	Conclusion and future work

	p03-pinto
	Introduction
	Related Work
	Addressed Tasks
	Used Datasets
	Compared Tools
	Standard NLP toolkits
	Social Network-Oriented Toolkits
	Tools Summary

	Comparison Metrics
	Comparison Results
	Conclusions

	p04-costa
	Introduction
	Background
	SMComp
	Architecture
	Back-end
	Sandbox
	Front-end

	Validation
	Conclusion

	p04-ZZZ-Blank
	p05-slivnik
	Introduction
	Preliminaries
	The SLL(k) parsing
	The embedded left LR(k) parser

	Identifying conflicts
	Constructing the LLLR parser
	Reducing the LLLR Parser
	A test case: the Java Language
	Conclusions

	p05-ZZZ-Blank
	p06-sulir
	Introduction
	Method
	GUI Scraping
	Analysis

	Quantitative Results
	Occurrence Counts
	File Types

	Qualitative Results
	Strings Not Present in Code
	Strings Present in Code

	Threats to Validity
	Construct Validity
	External Validity
	Reliability

	Related Work
	GUI Ripping
	Feature Location Using GUIs
	Feature Location in General
	Other Studies

	Conclusion

	p06-ZZZ-Blank
	p07-seipel
	Introduction
	Background Concepts
	Declarative Programming
	Domain Specific Languages
	Deductive Databases and Logic Programming

	Declarative Rule Bases
	Declarative Rules in Change Management
	Deductive Databases and Logic Programming
	The Deductive Database System DDbase

	A Domain Specific Language for Rules
	Syntax of Formulas
	The Integrated Development Environment (IDE)

	Design Analysis of the Rule Base
	Declarative Queries
	Visualisation of Dependency Graphs

	Extensions of the Knowledge Base
	Provenance Information in Ontologies
	Annotation of the Rule Base

	Final Remarks

	p08-tezel
	Introduction
	Jason
	A metamodel for Jason
	Concrete Syntax
	Conclusion

	p08-ZZZ-Blank
	p09-ferreira
	Introduction
	Programmer Profiling: approaches and tools
	Programmer Profiling: Our proposal
	Programmer Profiles
	System architecture
	Tools being used
	AnTLR
	PMD

	Metrics extraction: source code analysis
	PP-Analyser
	PMD-Analyser

	Correlating metrics with profiles
	Conclusion

	p09-ZZZ-Blank
	p10-almeida
	Introduction
	Exercise generation and assessment
	Metagrammars for exercise generation
	Example
	Assessment

	Context-free grammars, formal power series, and nonlinear matrix equations
	Example
	Probabilistic assessment
	Application to real size grammars
	Conclusion and future research

	p11-challenger
	Introduction
	Methodology
	Development of MDD4CCA
	Problem Space Modelling
	Solution Space Modelling
	Model Transformations

	Industrial Use Case: TUPRAS TPY Project
	Conclusion and Future Work

	p12-leal
	Introduction
	State of the Art
	Design and implementation
	User interface
	Interoperability
	Extensibility
	Implementation

	Validation
	Conclusions

	p12-ZZZ-Blank
	p13-queiros
	Introduction
	Related work
	Snippets languages
	VS Code Snippet
	Textmate Code Snippet

	Code snippets API
	Bitbucket Snippet API
	Glot Snippet API
	SnippetStash API
	TagMyCode Snippet API
	Snippet API comparision

	Sni'per
	Architecture
	Service API
	Client library

	Conclusions

	p13-ZZZ-Blank
	p14-simoes
	Introduction
	Rewriting PDF into XML
	Indexing the XML dictionary
	Developed Tools
	Conclusions and Future Work

	p15-ferreira
	Introduction
	Graphical Interface for Automata Manipulation
	Layouts

	Interfacing with Automata Manipulation Libraries
	Automata Serialization and its XML Grammar
	Example of a XML Automaton with Styles
	Exporting to Visualization Formats

	Conclusion

	p15-ZZZ-Blank

