PpLog: Combining Logic Programming with
Conditional Transformation Systems
(Tool Description)*

Besik Dundua!, Temur KutsiaZ, and
Klaus Reisenberger-Hagmayer3

1 Vekua Institute of Applied Mathematics, Thilisi State University, Tbilisi,
Georgia

RISC, Johannes Kepler University Linz, Linz, Austria

3 Johannes Kepler University Linz, Linz, Austria

N

—— Abstract

PpLog extends Prolog by conditional transformations that are controlled by strategies. We give

a brief overview of the tool and illustrate its capabilities.

1998 ACM Subject Classification D.1.6 Logic Programming, F.4.2 Grammars and Other Re-
writing Systems, D.3.2 Language Classifications

Keywords and phrases Conditional transformation rules, strategies, Prolog

Digital Object Identifier 10.4230/0OASIcs.ICLP.2016.10

1 Brief overview

PpLog is a tool that combines, on the one hand, the power of logic programming and, on
the other hand, flexibility of strategy-based conditional transformation systems. Its terms
are built over function symbols without fixed arity, using four different kinds of variables:
for individual terms, for sequences of terms, for function symbols, and for contexts. These
variables help to traverse tree forms of expressions both in horizontal and vertical directions,
in one or more steps. A powerful matching algorithm helps to replace several steps of
recursive computations by pattern matching, which facilitates writing short and intuitively
quite clear code. By the backtracking engine, nondeterministic computations are modeled
naturally. Prolog’s meta-programming capabilities allowed to easily write a compiler from
PpLog programs (that consist of a specific Prolog code, actually) into pure Prolog programs.
PpLog program clauses either define user-constructed strategies by transformation rules
or are ordinary Prolog clauses. Prolog code can be used freely in PpLog programs, which is
especially convenient when built-ins, arithmetics, or input-output features are needed.
PpLog is based on the pLog calculus [15], whose inference system is basically the SLDNF-
resolution, with normal logic program semantics [14]. Therefore, Prolog was a natural choice
to implement it. The pLog calculus has been influenced by the p-calculus [5], which, in
itself, is a foundation for the rule-based programming system ELAN [2]. There are some
other languages for programming by rules, such as, e.g., ASF-SDF [16], CHR [11], Claire [4],
Maude [6], Stratego [17], Tom [1]. The pLog calculus and, consequently, PpLog differs from

* This research is partially supported by the Austrian Science Fund (FWF) under the projects P 24087-N18
and P 28789-N32, and by the Rustaveli National Science Foundation under the grants FR/508/4-120/14,
FR/325/4-120/14, and YS15 2.1.2 70.

© Besik Dundua, Temur Kutsia, and Klaus Reisenberger-Hagmayer;
oY licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).

Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 10; pp. 10:1-10:5

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

10:2

PplLog (Tool Description)

them, first of all, by its pattern matching capabilities. Besides, it adopts logic programming
semantics (clauses are first class concepts, rules/strategies are expressed as clauses) and
makes a heavy use of strategies to control transformations. We showed its applicability for
XML transformation and Web reasoning [7], and in modeling rewriting strategies [9].

Here we briefly describe the current status of PpLog. A more detailed overview can
be found in [10]. The system can be downloaded from its Web page http://www.risc.
jku.at/people/tkutsia/software/prholog/. The current version has been tested for
SWI-Prolog [18] version 7.2.3 or later.

2 How PplLog works

PpLog atoms are supposed to transform term sequences. Transformations are labeled by
what we call strategies. Such labels (which themselves can be complex terms, not necessarily
constant symbols) help to construct more complex transformations from simpler ones.

An instance of a transformation is finding duplicated elements in a sequence and removing
one of them. We call this process double merging. The following strategy implements it:

merge doubles :: (s X, i z, s Y, i z,8 7)== (s X, i z,8 Y, s 7).

Here merge_doubles is the strategy name. It is followed by the separator :: which separates
the strategy name from the transformation. Then comes the transformation itself in the
form [hs = rhs. It says that if the sequence in lhs contains duplicates (expressed by two
copies of the variable i_x, which can match individual terms and therefore, is called an
individual variable) somewhere, then from these two copies only the first one should be kept
in Ths. That “somewhere” is expressed by three sequence variables, where s X stands for the
subsequence of the sequence before the first occurrence of i_z, s_ Y takes the subsequence
between two occurrences of iz, and s_Z matches the remaining part. These subsequences
remain unchanged in the rhs. Note that one does not need to code the actual search process
of doubles explicitly. The matching algorithm does the job instead, looking for an appropriate
instantiation of the variables. There can be several such instantiations.

Now one can ask a question, e.g., to merge doubles in a sequence (1, 2, 3, 2, 1):

?- merge_doubles :: (1, 2, 3, 2, 1) = s_ Result.

PpLog returns two different substitutions: {s_Result — (1, 2, 3, 2)} and {s_Result —
(1, 2, 3, 1)}. They are computed via backtracking. Each of them is obtained from (1, 2, 3, 2, 1)
by merging one pair of duplicates. A completely double-free sequence is just a normal form
of this single-step transformation. PpLog has a built-in strategy for computing normal forms,
denoted by nf, and we can use it to define a new strategy merge_all_doubles in the following
clause (where :-, as in Prolog, stands for the inverse implication):

merge_all doubles:: s X = s Y :- nf(merge doubles) ::s X = s Y, |

The effect of nf here is that it starts applying merge_doubles to s_X, and repeats this
process iteratively as long as it is possible, i.e., as long as doubles can be merged in the
obtained sequences. When merge doubles is no more applicable, it means that the normal
form of the transformation is reached and it is returned in s_Y. The Prolog cut at the end
cuts the alternative ways of computing the same normal form. In general, Prolog primitives
and clauses can be used freely in PpLog. Now, for the query

?- merge_all doubles :: (1, 2, 3, 2, 1) = s_Result.

http://www.risc.jku.at/people/tkutsia/software/prholog/
http://www.risc.jku.at/people/tkutsia/software/prholog/

B. Dundua, T. Kutsia, and K. Reisenberger-Hagmayer

we get a single answer s_Result — (1, 2, 3). Instead of using the cut, we could have defined
merge_all_doubles purely in PpLog terms, with the help of a built-in strategy first_one.
It applies to a sequence of strategies (in the clause below there is only one such strategy,
nf (merge _doubles)), finds the first one among them which successfully transforms the input
sequence (s_X below), and gives back just one result of the transformation (in s_Y):

merge_all _doubles :: s X = s Y :- first_one(nf(merge_doubles)) : s X = s Y.

PpLog is good not only in selecting arbitrarily many subexpressions in “horizontal
direction” (by sequence variables), but also in working in “vertical direction”, selecting
subterms at arbitrary depth. Context variables provide this flexibility, by matching the
context above the subterm to be selected. A context is a term with a single “hole” in it.
When it applies to a term, the latter is “plugged in” the hole, replacing it. There is yet
another kind of variable, called function variable, which stands for a function symbol. With
the help of these constructs and the merge_doubles strategy, it is pretty easy to define a
transformation that merges two identical branches in a tree, represented as a term:

merge_double_branches :: ¢ Con(f_Fun(s_X)) = ¢_Con(f_Fun(s_Y)) :-
merge_doubles:: s X = s Y.

Here ¢_Con is a context variable and f Fun is a function variable. This is a naming
notation in PpLog, to start a variable name with the first letter of the kind of variable
(individual, sequence, function, context), followed by the underscore. After the underscore,
there comes the actual name. For anonymous variables, we write just ¢_, s , f_, c_.

Now, we can ask to merge double branches in a given tree:
?- merge_double_branches :: f(g(a,b,a, h(c,c)), g(a,b, h(c))) = i_Result.
PpLog returns two different substitutions via backtracking:

{i_Result — f(g(a,b,h(c,c)), g(a,b,h(c)))},
{i_Result — f(g(a,b,a,h(c)), g(a,b,h(c)))}.

To obtain the first one, ¢_Con matched to the context f(o, g(a,b, h(c))) (where o is the
hole), f_Fun to the symbol g, and s_X to the sequence (a,b,a,h(c,c)). merge_doubles
transformed (a, b, a, h(c, ¢)) to (a, b, h(c,c)). The other result is obtained by matching ¢ Con
to f(g(a,b,a,o), g(a,b,h(c))), f_Fun to h, s_X to (c,c), and merging the ¢’s in the latter.

One can have an arbitrary sequence (not necessarily a variable) in the right hand
side of transformations in the queries, e.g., instead of i_Result above we could have had
¢_C(h(c,c)), asking for the context of the result that contains h(c,c¢). Then the output
would be {¢_C — f(g(a,b,0), g(a,b,h(c)))}.

Similar to merging all doubles in a sequence above, we can also define a strategy that
merges all identical branches in a tree repeatedly, as first _one(nf (merge_double branches)).
It would give f(g(a,b, h(c))) for the input term f(g(a,b,a,h(c,c)), g(a,b, h(c))).

PpLog execution principle is based on depth-first inference with leftmost literal selection
in the goal. If the selected literal is a Prolog literal, then it is evaluated in the standard
way. If it is a PpLog atom of the form st :: 51 = §5, due to the syntactic restriction called
well-modedness (formally defined in [9]), st and $; do not contain variables. Then a (renamed
copy of a) program clause st’ :: §) = 84 :- body is selected, such that st’ matches st and &)
matches §; with a substitution o. Next, the selected literal in the query is replaced with

10:3

ICLP 2016 TCs

10:4

PplLog (Tool Description)

the conjunction (body)o, id :: §bc = 35, where id is the built-in strategy for identity: it
succeeds iff its rhs matches the lhs. Evaluation continues further with this new query. Success
and failure are defined in the standard way. Backtracking explores other alternatives that
may come from matching the selected query literal to the head of the same program clause
in a different way (since context/sequence matching is finitary, see, e.g., [8, 12, 13]), or to
the head of another program clause. Negative literals are processed by negation-as-failure.

The PpLog distribution consists of the main file, parser, compiler, the library of built-in
strategies, and a part responsible for matching. PpLog programs are written in files with
the extension .rho. A PpLog session is initiated withing Prolog by consulting the main file.
After that, the user can load a .rho file, which is parsed and compiled into a Prolog code.
PpLog queries are also transformed into Prolog queries, which are then executed.

PpLog can be used in any development environment that is suitable for SWI-Prolog. We
provide a special Emacs mode for PpLog, which extends the Prolog mode for Emacs [3]. It
supports syntax highlighting, makes it easy to load PpLog programs and anonymize variables
via the menu, etc. A tracing tool for PpLog is under development.

One can summarize the main advantages of PpLog as follows: compact and declarative
code; capabilities of expression traversal without explicitly programming it; the ability to
use clauses in a flexible order with the help of strategies. Besides, PpLog has access to the
whole infrastructure of its underline Prolog system. These features make PpLog suitable for
nondeterministic computations, manipulating XML documents, implementing rule-based
algorithms and their control, etc.

—— References

1 Emilie Balland, Paul Brauner, Radu Kopetz, Pierre-Etienne Moreau, and Antoine Reilles.
Tom: Piggybacking rewriting on Java. In Franz Baader, editor, Term Rewriting and Ap-
plications, 18th International Conference, RTA 2007, volume 4533 of Lecture Notes in
Computer Science, pages 36—47. Springer, 2007.

2 Peter Borovansky, Claude Kirchner, Héléne Kirchner, Pierre-Etienne Moreau, and Marian
Vittek. Elan: A logical framework based on computational systems. ENTCS, 4, 1996.

3 Stefan D. Bruda. Prolog mode for Emacs (version 1.25), 2003. Available from
https://bruda.ca/emacs/prolog_mode_for_emacs.

4 Yves Caseau, Francois-Xavier Josset, and Frangois Laburthe. CLAIRE: combining sets,
search and rules to better express algorithms. TPLP, 2(6):769-805, 2002.

5 Horatiu Cirstea and Claude Kirchner. The rewriting calculus - Parts I and II. Logic Journal
of the IGPL, 9(3):339-410, 2001.

6 Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso Marti-Oliet, José
Meseguer, and Jose F. Quesada. Maude: specification and programming in rewriting logic.
Theor. Comput. Sci., 285(2):187-243, 2002.

7 Jorge Coelho, Besik Dundua, Mario Florido, and Temur Kutsia. A rule-based approach to
XML processing and web reasoning. In Pascal Hitzler and Thomas Lukasiewicz, editors,
RR 2010, volume 6333 of LNCS, pages 164—-172. Springer, 2010.

8 Hubert Comon. Completion of rewrite systems with membership constraints. Part II: Con-
straint solving. J. Symb. Comput., 25(4):421-453, 1998.

9 Besik Dundua, Temur Kutsia, and Mircea Marin. Strategies in PpLog. In Maribel Fernan-
dez, editor, 9th Int. Workshop on Reduction Strategies in Rewriting and Programming,
WRS 2009, volume 15 of EPTCS, pages 32-43, 2009.

10 Besik Dundua, Temur Kutsia, and Klaus Reisenberger-Hagmayer. An overview of PpLog.
RISC Report Series 16-05, Research Institute for Symbolic Computation, Johannes Kepler
University Linz, Austria, 2016.

B. Dundua, T. Kutsia, and K. Reisenberger-Hagmayer

11

12

13

14

15

16

17

18

Thom W. Frithwirth. Theory and practice of Constraint Handling Rules. J. Log. Program.,
37(1-3):95-138, 1998.

Temur Kutsia. Solving and Proving in Equational Theories with Sequence Variables and
Flexible Arity Symbols. RISC Report Series 02-09, RISC, University of Linz, 2002. PhD
Thesis.

Temur Kutsia and Mircea Marin. Matching with regular constraints. In Geoff Sutcliffe
and Andrei Voronkov, editors, LPAR, volume 3835 of Lecture Notes in Computer Science,
pages 215-229. Springer, 2005.

John Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.
Mircea Marin and Temur Kutsia. Foundations of the rule-based system pLog. Journal of
Applied Non-Classical Logics, 16(1-2):151-168, 2006.

Mark van den Brand, Arie van Deursen, Jan Heering, Hayco de Jong, Merijn de Jonge,
Tobias Kuipers, Paul Klint, Leon Moonen, Pieter A. Olivier, Jeroen Scheerder, Jurgen J.
Vinju, Eelco Visser, and Joost Visser. The Asf-+Sdf meta-environment: a component-based
language development environment. Electr. Notes Theor. Comput. Sci., 44(2):3-8, 2001.
Eelco Visser. Stratego: A language for program transformation based on rewriting
strategies. In Aart Middeldorp, editor, Rewriting Techniques and Applications, 12th In-
ternational Conference, RTA 2001, volume 2051 of Lecture Notes in Computer Science,
pages 357-362. Springer, 2001.

Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjorn Lager. SWI-Prolog. Theory
and Practice of Logic Programming, 12(1-2):67-96, 2012.

10:5

ICLP 2016 TCs

	Brief overview
	How PrhoLog works

