
Scalable Design Space Exploration via Answer Set
Programming∗

Philipp Wanko

University of Potsdam, Institute for Computer Science, Potsdam, Germany
wanko@cs.uni-potsdam.de

Abstract
The design of embedded systems is becoming continuously more complex such that the application
of efficient high level design methods are crucial for competitive results regarding design time
and performance. Recently, advances in Boolean constraint solvers for Answer Set Programming
(ASP) allow for easy integration of background theories and more control over the solving process.
The goal of this research is to leverage those advances for system level design space exploration
while using specialized techniques from electronic design automation that drive new application-
originated ideas for multi-objective combinatorial optimization.

1998 ACM Subject Classification D.1.6 Logic Programming

Keywords and phrases Answer Set Programming, System Synthesis, Multi-Objective Optimiz-
ation

Digital Object Identifier 10.4230/OASIcs.ICLP.2016.23

1 Introduction and problem description

Embedded computing systems are application-specific computers. They typically have to
satisfy among others real-time, power, and area constraints while being at the same time
reliable and cost efficient. These often conflicting design goals can only be met because each
embedded computing system is designed for a specific and thus restricted set of applications.
Examples of embedded computing systems can be found in smart phones, automation systems,
automotive electronics, medical devices, industrial automation systems, train control systems,
etc. However, increasing application complexity paired with increasingly complex computing
platforms hamper good design decisions and, thus, the optimization of the final product. As
a consequence, new tools and methodologies are required, which permit to automatically
and effectively explore design options at system level. The goal of this research is to leverage
advances in Boolean constraint technology for system level design space exploration. In turn,
specialized techniques from electronic design automation drive new application-originated
ideas into multi-objective combinatorial optimization.

2 Background and overview of the existing literature

2.1 Design Space Exploration
(DSE) can be performed at various abstraction levels. The goal is always to identify an optimal
implementation for the given set of applications. Depending on the level of abstraction, the
considered applications can be as complex as a video decoder or as simple as a single logic

∗ This work was partially supported by DFG-SCHA-550/11.

© Philipp Wanko;
licensed under Creative Commons License CC-BY

Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 23; pp. 23:1–23:11

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

23:2 Scalable Design Space Exploration via Answer Set Programming

operation. All possible implementations, also called design points, of the given applications
define the design space, denoted by X. The problem of DSE is twofold [17]: (1) How to
evaluate the quality of a single design point and (2) how to cover the design space during
exploration? Again, depending on the abstraction level, the implementation can be as
complex as a heterogeneous many-core system or as simple as a single logic gate. Our
research targets the electronic system level and assumes a top-down design methodology [14].
At this level, applications are typically of the complexity of video decoders and computing
platforms are many-core systems.

Starting from a given set of applications, a computing platform has to be allocated and
the applications have to be bound and scheduled onto the allocated hardware resources [42].
Each application is typically assumed to consist of communicating tasks. During allocation,
processing and interconnection resources including memories are selected and configured. In
general, the result is a heterogeneous many-core computing platform, consisting of software-
programmable processors and hardware accelerators interconnected by a network equipped
with a memory hierarchy. During binding, tasks are assigned to processors and hardware
accelerators as well as variables are assigned to memory locations. Moreover, transactions are
routed on the interconnection resources. This step is crucial as infeasible implementations can
be generated by binding two communicating tasks to virtually unconnected resources. The
set of feasible implementations is denoted by Xf ⊆ X. Finally, scheduling resolves resource
conflicts by precomputing either dedicated computing and communication times or priorities.
According to the design decisions during allocation, binding, and scheduling, the set of
applications can be refined. With respect to the resulting system decomposition, the design
process can be continued at a lower level of abstraction [42]. The motivation for making as
many decisions as possible during design time stems from the fact that embedded computing
systems often have to guarantee many properties like safety, reliability, performance, etc.
and, hence, demand for a high degree of predictability.

Depending on the made design decisions, the resulting system level implementations show
different qualities. Typically, more than a single property is assessed to measure the quality
of an implementation. Important properties are power and area consumption, throughput
and response time, or mean time to failure. As an example, a video decoder implemented
in a handheld system has to meet timing constraints in order to provide some quality of
service, while simultaneously being power efficient. During DSE, appropriate evaluation
methods have to be applied in order to estimate the quality (see below). Given a feasible
implementation x ∈ Xf , its quality can be represented by a vector, which is commonly
referred to as quality vector f(x), where f(x) = (f1(x), . . . , fk(x)) is a k-dimensional function
consisting of k objective functions. Note that the notion of quality vectors, even if possible
to compute, does not have any meaning for infeasible implementations.

Often several conflicting design goals are considered simultaneously. As a consequence, a
set of Pareto-optimal solutions has to be found [36]. A solution is said to be Pareto-optimal,
if it is not dominated by any other solution. For minimization problems and any two feasible
implementations x1, x2 ∈ Xf , we say (cf. [45]):

x1 � x2 (x1 dominates x2) iff ∀i : fi(x1) ≤ fi(x2) ∧ ∃i : fi(x1) < fi(x2)
x1 ∼ x2 (x1 is indifferent to x2) iff ∀i : fi(x1) = fi(x2)
x1 ‖ x2 (x1 is incomparable to x2) iff ∃i, j : fi(x1) > fi(x2) ∧ fj(x1) < fj(x2).

This is illustrated in Figure 1(a): For design point x, the regions containing other design
points by which x is dominated, which are dominated by x, and which are incomparable
to x are shown. Typically, additional quality constraints gi(x) ≤ bi are imposed on each

P. Wanko 23:3

�����������������
�����������������
�����������������
�����������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

f2,max

dominates

is dominated

incomparable

incomparable

0

f2

f1

x

f2

0 f1

xp,1

xp,2

xp,3

xp,4

f1,max

valid region

Pareto-optimal front(a) (b)

Figure 1 (a) Dominance in MOPs. (b) 2-dimensional objective space of a minimization problem.

implementation. In Figure 1(b) maximum values for both objectives f1 and f2 are given.
Feasible implementations in Xf obeying all m constraints g1(x) ≤ b1, . . . , gm(x) ≤ bm are
said to be valid, i.e., Xv ⊆ Xf . Among all valid implementations in Xv, the non-dominated
ones are called Pareto-optimal. The set of Pareto-optimal implementations is denoted by
Xp ⊆ Xv. The Pareto-optimal front Yp is given by their corresponding quality vectors , i.e.,
Yp = {f(x) | x ∈ Xp}. Without loss of generality, only minimization problems are considered
in the proposal at hand.

2.2 Covering the Design Space

Nearly all approaches to DSE at the electronic system level follow the commonly known
Y-chart approach [24] to represent the design space. Prominent examples are DOL [43],
Daedalus [35], openDF [7], Octopus [5] and our approach SystemCoDesigner [23]. The
Y-chart methodology starts by defining the set of applications and a target architecture
template. Next, all possible mappings of tasks to resources in the target architecture template
are defined. Such a specification is often represented by a graph structure [9]. Graph elements
are annotated with implementation characteristics like task (worst case) execution times,
required area, power, etc. These values are used by the objective functions and constraints
to determine implementation properties. The values have to be provided in a preceding
characterization phase [19, 25]. With this information, the exploration can be performed
automatically by selecting resources from the target architecture template and by selecting the
actual binding of tasks [9]. As state-of-the-art computing platforms are often heterogeneous
many-core architectures including a Network-on-Chip (NoC) communication infrastructure,
transaction routing is an additional complex synthesis task. A simple example is shown in
Figure 2. The specification is shown in Figure 2(a). It consists of a task graph with three
tasks (yellow circles) and a 3× 3 meshed NoC architecture template. The mapping options
are shown as green dashed edges m1 to m9. Figure 2(b) shows one feasible implementation.
All resources and their interconnects are allocated. Task t1 is bound onto resource r1,1, t2
onto r2,3, and t3 onto r3,1. The transaction routing is shown by blue arrows.

The main benefit of the Y-chart approach is the opportunity to formulate the synthesis
step as a selection problem [20]. As a consequence, DSE can be formally specified as a multi-
objective combinatorial optimization problem [32], or for short Multi-objective Optimization
Problem (MOP). With this abstraction, different optimization strategies such as enumerative
optimization (e.g., exhaustive search), deterministic optimization, (e.g., hill climbing or
branch and bound), or stochastic optimization, (e.g., simulated annealing, tabu search, or
evolutionary algorithms) can be used to perform the search and, thus, to cover the design
space.

ICLP 2016 TCs

23:4 Scalable Design Space Exploration via Answer Set Programming

t3

t2

t1 r1,1

r2,1

r3,1

r1,2 r1,3

r2,2 r2,3

r3,3r3,2

m2

m3

m4

m6

m5

m8

m7

m9

r1,1

r2,1

r3,1

r1,2 r1,3

r2,2 r2,3

r3,3r3,2

m1(a) (b)

t1

t2

t3

Figure 2 (a) Example of a specification and (b) a resulting implementation.

Due to the sheer size of typical design spaces, enumerative approaches are prohibitive.
On the other hand, deterministic approaches often fail in the presence of non-linear objective
functions and constraints. Among the stochastic approaches, population-based optimization
strategies often perform best in the presence of MOPs [11]. The reason lies in the simultaneous
approximation of the entire Pareto front by the individuals in the population, which preserves
diversity among solutions while simultaneously converging to the true Pareto front by
constantly improving good solutions. Examples of population-based optimization strategies
are particle swarm optimization, ant colony optimization, and evolutionary algorithms. In
particular, Multi-Objective Evolutionary Algorithms (MOEAs) [11] have been successful in
the DSE domain [40]. Especially elitist MOEAs, which store the best found solutions in an
external archive, show good properties in converging to the Pareto front [27].

Beside these advantages, MOEAs suffer from similar problems as many other stochastic
optimization strategies: in the presence of design spaces only containing few feasible solutions,
MOEAs spend most of their computing time in finding feasible solutions instead of optimizing
feasible ones [40]. As a consequence, exploration time is not used efficiently. Due to the
combinatorial nature of the optimization problem, this drawback can be alleviated by
incorporating symbolic methods into MOEAs. In that case, symbolic methods are applied to
perform the actual synthesis step, i.e., allocation, binding, and scheduling, which guarantees
that feasible implementations are found if they exist. As a consequence, the MOEA now
can focus on the optimization of feasible implementations. The idea of using symbolic
methods in system synthesis is not new. In [34], a symbolic hardware/software partitioning
based on Integer Linear Programming (ILP) is proposed. A symbolic system synthesis
approach based on Binary Decision Diagrams (BDD) is presented in [33]. [20] presents
an encoding as Boolean satisfiability problem (SAT), which enables system synthesis by
programs known as SAT solvers. For this purpose, all design decisions (allocation, binding,
routing, scheduling) are represented by Boolean variables zi. Linear (feasibility) constraints
h1(z1, . . . , zl) ≤ c1, . . . , hn(z1, . . . , zl) ≤ cn ensure that satisfying assignments represent
design decisions leading to feasible implementations x = ψ(z1, . . . , zl) ∈ Xf , where ψ is the
decoding function that transforms a satisfying variable assignment into the corresponding
feasible implementation. Nevertheless, all these approaches do not perform a Multi-Objective
Optimization (MOO) as required by an unbiased DSE. An effective way to split the work
among a SAT solver and the MOEA was presented in [31]: The MOEA triggers the SAT
solver to generate a new satisfying assignment to the variables zi (which represents a feasible
implementation x) if possible. Afterwards, the MOEA computes the quality vectors and

P. Wanko 23:5

checks the quality constraints gi(x) ≤ bi. In all, the DSE can be modeled as an MOP:

min (f1(ψ(z1, . . . , zl)), . . . , fk(ψ(z1, . . . , zl))) Checked by the MOEA
subject to g1(ψ(z1, . . . , zl)) ≤ b1, . . . , gm(ψ(z1, . . . , zl)) ≤ bm Checked by the MOEA

h1(z1, . . . , zl) ≤ c1, . . . , hn(z1, . . . , zl) ≤ cn Checked by the SAT solver

In the following, we will use the terms quality constraints and feasibility constraints in
order to distinguish both kinds of constraints gi(ψ(z1, . . . , zl)) ≤ bi and hi(z1, . . . , zl) ≤ ci,
respectively.

2.3 Decision Procedures
As system design problems are becoming more and more stringent, the identification of feasible
implementations in Xf is gaining importance in DSE. The formulation of the underlying
system synthesis task as a Boolean satisfiability problem increases the interest in techniques
for finding satisfying variable assignments. SAT solvers have been successfully applied to
system verification in the past. Their success is largely boosted by the significant progress in
Boolean constraint technology, often performing successfully even on huge instances with
millions of variables and clauses. Though rooted in the classical DPLL algorithm, modern
SAT solvers are mostly based on Conflict-Driven Constraint Learning (CDCL); see [8].
While both rely on unit propagation, CDCL basically extends DPLL by backjumping and
constraint learning. Further essential supporting roles are played by dynamic conflict driven
heuristics, lazy data structures, and restart policies (cf. [8]). Meanwhile, this advanced
Boolean constraint technology is also used in many neighboring areas, like Maximum SAT
(MAXSAT; [28]), Pseudo Boolean solving (PB; [38]), as well as Answer Set Programming
(ASP; [4]).

A major weakness of the SAT-based approaches is, however, that reachability cannot
be natively expressed. As a consequence, multi-hop communication has to be encoded as a
sequence of communication steps, leading to unnecessarily huge (Pseudo-)Boolean formulas
hi(z1, . . . , zl) ≤ ci and, thus, long solving times. This is especially true for computing
platforms with many different routing options, as we have shown for meshed-based NoCs
[2, 3]. An approach similar to that of SAT yet directly supporting reachability is Answer
Set Programming. ASP is an alternative approach to Boolean constraint solving tailored to
knowledge representation and reasoning. As such, it combines a rich yet simple modeling
language with advanced Boolean constraint technology. ASP’s first-order language does not
only offer scalability in terms of modeling and maintenance but moreover provides advanced
language constructs like cardinality and weight constraints as well as optimization constructs.
As a consequence, ASP’s solving capacities do not only match the high performance of
modern SAT solvers, but go well beyond clause-oriented satisfiability testing in integrating
pseudo-Boolean constraints as well as optimization. The aforementioned representational
edge of ASP over SAT is due a more stringent semantics that allows for more succinct
Boolean problem representations [29]. Moreover, full-fledged ASP allows for solving all search
problems in NPNP in a uniform way. Given this expressiveness, it cannot only be used for
computing feasible implementations in Xf but principally to even identify Pareto-optimal
ones.

Finally, ASP solvers feature a whole spectrum of combinable reasoning modes surpassing
satisfiability testing, among them, different forms of enumeration of solutions, intersection
or union, as well as multi-criteria and -objective optimization. Notably, ASP supports
polynomial space enumeration algorithms [12], which allows us to enumerate Pareto frontiers
without risking an exponential blow-up in memory.

ICLP 2016 TCs

23:6 Scalable Design Space Exploration via Answer Set Programming

2.4 Evaluating Design Points

Independent of the selected optimization strategy, different design points can be constructed
from the specification. Each of these solutions can be evaluated regarding feasibility and
different objective functions. Important objective functions are power and area consumption,
throughput and response time, or mean time to failure. In particular, assessing performance
in terms of throughput and response time is often critical, as it is a foundation for determining
other system properties like power efficiency and reliability. In our research, we are not
going to develop new performance estimation methods. Instead, we rely on existing ones1
and focus on a different problem: After evaluating a single design point x, it is known
whether it obeys the quality constraints gi(x) ≤ bi. If so, the implementation is called valid,
otherwise invalid. All the above presented DSE approaches suffer from poor solving times if
only a small fraction of feasible solutions is valid, i.e., |Xv| << |Xf |. The reason lies in an
insufficiently strong feedback to the stochastic optimization method. Often a weak feedback
exists by punishing invalid solutions by assigning uncompetitive objective values to them.
However, as a consequence, invalid solutions might still be revisited again and again. A
better strategy is to incorporate knowledge about the validity into the search process. Ideally,
the decision procedure is used for this purpose. For constraints, which could be represented
as continuous programming models, the classical Benders’ decomposition [6] can be used.
Benders’ decomposition is a common method for solving mixed logical linear problems, where
Boolean indicator variables are used to link different constrained problems. Thus, huge
propositional logic formulas can be avoided. However, embedded systems design usually relies
on combinatorial optimization. In this case Logic-Based Benders Decomposition (LBBD)
could be used instead [21]. Its application to system synthesis is shown first in [39].

As LBBD only allows to test complete and consistent assignments of indicator variables,
inconsistencies in linked programming models are thus lazily detected. This is avoided by
using Satisfiability Modulo Theories (SMT; [8]) solvers, which permit working on partial
assignments of indicator variables. Hence, larger regions of inconsistent assignments can be
pruned and the search process is accelerated. This, however, requires monotonic constraints
[1]. Unfortunately, this is not the case in embedded systems design, e.g., adding tasks to
a partial implementation might decrease the response time. SMT is widely accepted in
the domain of hardware and software verification. In SMT solving, a formula is tested for
satisfiability with respect to a given background theory, e.g., Linear Real Arithmetics [41],
Equality and Uninterpreted Functions [10]. SMT solvers are today typically indirect solvers,
i.e., they are traditionally combinations of SAT solvers with background theory solvers. The
SAT solver controls the solving process and assigns values to regular Boolean as well as
indicator variables in the background theory. The background solver afterwards tries to find
a corresponding variable assignment in the background theory to match the assignment of
indicator variables. If a conflict is detected in the background theory, the reason could be
learned by the SAT solver via the indicator variables.

In [30], the usage of SMT solving in systems synthesis is shown. The authors use a
latency computation as background theory and perform optimization by a branch and bound
strategy incorporated into the SMT solver. The system model, however, is based on a simple
application model and communication architecture. Moreover, the proposed optimization is
only applicable to single-objective optimization problems. Another SMT-based approach

1 To be more precise, we consider Scenario-Aware Data Flow Graphs (SA-DFGs) [13] as application model
of computation. For SA-SDFGs a performance analysis based on (max,+)-algebra exists [15, 16].

P. Wanko 23:7

to synthesis is proposed in [22]. The underlying platform is a time-triggered architecture.
As background theory, the authors use linear arithmetics for adding worst-case execution
times. Thus, they stick with linear (monotonic) quality constraints. It was shown in [37] how
to use Modular Performance Analysis (MPA) [44] as background theory to test real-time
constraints, and, hence, how to integrate non-monotonic quality constraint checking into a
SAT-based symbolic synthesis approach. Another group shows in [26] how SMT-solving with
MPA as background theory can be used to compute processor frequency settings to meet
delay, buffer, and energy constraints.

2.5 Assessing Exploration Quality
When developing different optimization approaches, it becomes mandatory to define appro-
priate performance measures to compare these approaches. In MOO, there are two different
goals which must be considered when assessing optimization strategies: (1) The convergence
towards the true Pareto-optimal front and (2) the diversity of the found non-dominated
solutions [11]. In [45], a framework for comparing different performance assessment methods
for multi-objective optimizers is presented. As a key result, it has been shown that binary
quality indicators have to be used in order to decide whether an approximation set computed
by an optimization strategy is better than one computed by another optimization strategy.

One of the best known binary quality indicators is ε-dominance [27]: A quality vector
a is said to weakly ε-dominate (in a minimization problem) a quality vector b, denoted by
a �ε b, if and only if a � ε · b. By scaling quality vector b by a factor ε, quality vector a
is superior to quality vector b. Complementary to ε-dominance, which is primarily used to
measure convergence, we use entropy [18] to measure diversity and keep diversity high when
selecting representative design points.

3 Goal of the research

The state-of-the-art section has presented in detail that today’s Design Space Exploration
(DSE) approaches at the Electronic System Level (ESL) have the following drawbacks:
1. Often complex multi-hop communication is not supported. This neglects state-of-the-

art computing platforms like many-core systems. Approaches that support multi-hop
communication fail in the presence of computing platforms with many routing options,
as can be typically found in Networks on Chip (NoCs).

2. Typically, no strong feedback from constraint checking to the optimization strategy exists.
As a consequence, invalid solutions might be revisited again and again. This significantly
lowers the exploration performance, which is particularly problematic when designs are
becoming more stringent.

3. The specification of the target architecture template and all mapping options is a time
consuming task. On the other hand, this specification allows to formulate the system
synthesis problem as a selection problem and, thus, the automatic DSE.

From these shortcomings, we derive the following objectives from the perspective of electronic
design automation:
O1: Accelerate DSE by integrating routing computation and dominance checking into the

decision procedure.
O2: Extend the applicability of DSE at ESL by tightly incorporating non-monotonic quality

constraint checking.
O3: Improve the usability of DSE at ESL by moving from selective methods to novel

generative approaches.

ICLP 2016 TCs

23:8 Scalable Design Space Exploration via Answer Set Programming

From the viewpoint of Answer Set Programming (ASP), the general objective is to invent
new solving strategies inspired from novel application-specific problems. More specifically,
(i) the integration of application-specific knowledge and strategies into ASP solving should
be improved and (ii) the applicability of ASP towards robust Multi-Objective Optimization
(MOO) should be extended.

4 Current status and preliminary results of the research

Right now, the main focus is on exploring technologies and techniques to efficiently implement
O1-O3. While no new publications have been made for Design Space Exploration specifically,
the following contributions laid the groundwork for future applications:
Theory Solving made easy with Clingo 5 by M. Gebser, R. Kaminski, B. Kaufmann, M.

Ostrowski, T. Schaub, and P. Wanko to appear as Technical Communication in ICLP’16.
The new theory framework in Clingo 5 allows for a tight coupling of decision procedures
and efficient Boolean constraint solving. As an example, Difference Logic is implemented
in the paper which is an efficient theory to implement temporal constraints which can be
used to encode the scheduling needed in DSE.

Computing Diverse Optimal Stable Models by J. Romero, T. Schaub, and P. Wanko to
appear as Technical Communication in ICLP’16. The paper introduces a system to pose
queries over and enumerate diverse optimal solutions. This can be used for covering the
Design Space and finding representative Pareto optimal solutions.

5 Open issues and expected achievements

We expect to achieve the following during our research:
1. ASP-Based Synthesis that includes Encodings for Many-Core Synthesis of Streaming

Applications
2. Application-Specific Search and Enumeration Methods Based on ASP
3. Application-Specific Multi-Objective Optimization based on ASP
4. Application-Specific Theory Solving

References
1 Santosh G. Abraham, B. Ramakrishna Rau, and Robert Schreiber. Fast Design Space

Exploration Through Validity and Quality Filtering of Subsystem Designs. Technical report,
Hewlett Packard, Compiler and Architecture Research, HP Laboratories Palo Alto, July
2000.

2 B. Andres, M. Gebser, M. Glaß, C. Haubelt, F. Reimann, and T. Schaub. A combined
mapping and routing algorithm for 3D NoCs based on ASP. In C. Haubelt and D. Tim-
mermann, editors, Sechzehnter Workshop für Methoden und Beschreibungssprachen zur
Modellierung und Verifikation von Schaltungen und Systemen (MBMV’13), pages 35–46.
Institut für Angewandte Mikroelektronik und Datentechnik, Universität Rostock, 2013.

3 B. Andres, M. Gebser, M. Glaß, C. Haubelt, F. Reimann, and T. Schaub. Symbolic system
synthesis using answer set programming. In P. Cabalar and T. Son, editors, Proceedings of
the Twelfth International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’13), volume 8148 of Lecture Notes in Artificial Intelligence, pages 79–91. Springer,
2013.

4 C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2003.

P. Wanko 23:9

5 T. Basten, M. Hendriks, L. Somers, and N. Trcka. Model-Driven Design-Space Exploration
for Software-Intensive Embedded Systems. In Proceedings of the International Conference
on Formal Modeling and Analysis of Timed Systmes (FORMATS), pages 1–6, 2012.

6 J. F. Benders. Partitioning Procedures for Solving Mixed-Variables Programming Problems.
Numerische Mathemathik, 4(3):238–252, 1962.

7 S. Bhattacharyya, G. Brebner, J. Janneck, J. Eker, C. von Platen, M. Mattavelli, and
M. Raulet. OpenDF: A Dataflow Toolset for Reconfigurable Hardware and Multicore
Systems. ACM SIGARCH Computer Architecture News, 36(5):29–35, 2009.

8 A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.

9 T. Blickle, J. Teich, and L. Thiele. System-Level Synthesis Using Evolutionary Algorithms.
In Design Automation for Embedded Systems, 3, pages 23–62. 1998.

10 J. R. Burch and D. L. Dill. Automatic Verification of Pipelined Microprocessor Control. In
Proceedings of the International Conference on Computer Aided Verification (CAV), pages
68–80, 1994.

11 K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons,
Inc., Chichester, New York, Weinheim, Brisbane, Singapore, Toronto, 2001.

12 M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub. Conflict-driven answer set enu-
meration. In C. Baral, G. Brewka, and J. Schlipf, editors, Proceedings of the Ninth Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’07),
volume 4483 of Lecture Notes in Artificial Intelligence, pages 136–148. Springer, 2007.

13 M. Geilen and S. Stuijk. Worst-Case Performance Analysis of Synchronous Dataflow Scen-
arios. In Proceedings of the Conference on Hardware/Software Codesign and System Syn-
thesis (CODES+ISSS), pages 125–134, 2010.

14 A. Gerstlauer, C. Haubelt, A. D. Pimentel, T. P. Stefanov, D. D. Gajski, and J. Teich.
Electronic System-Level Synthesis Methodologies. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 28(10):1517–1530, 2009.

15 A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, A. J. M. Moonen, M. J. G.
Bekooij, B. D. Theelen, and M. R. Mousavi. Throughput Analysis of Synchronous Data
Flow Graphs. In Proceedings of the International Conference on Application of Concurrency
to System Design (ACSD), pages 25–36, 2006.

16 A. H. Ghamarian, S. Stuijk, T. Basten, M. C. W. Geilen, and B. D. Theelen. Latency Min-
imization for Synchronous Data Flow Graphs. In Proceedings of the Euromicro Conference
on Digital System Design Architectures, Methods and Tools (DSD), pages 189–196, 2007.

17 M. Gries. Methods for Evaluating and Covering the Design Space during Early Design
Development. Integration, The VLSI Journal, 38(2):131–183, 2004.

18 S. Gunawan, Ali Farhang-Mehr, and Shapour Azarm. Multi-Level Multi-Objective Ge-
netic Algorithm Using Entropy to Preserve Diversity. In Proceedings of the International
Conference on Evolutionary Multi-Criterion Optimization (EMO), pages 148–161, 2003.

19 W. Haid, M. Keller, K. Huang, I. Bacivarov, and L. Thiele. Generation and Calibration of
Compositional Performance Analysis Models for Multi-Processor Systems. In Proceedings
of the International Conference on Embedded Computer Systems: Architectures, Modeling
and Simulation (SAMOS), pages 92–99, 2009.

20 C. Haubelt, J. Teich, R. Feldmann, and B. Monien. SAT-Based Techniques in System
Design. In Proceedings of the Design, Automation and Test in Europe (DATE), pages
1168–1169, 2003.

21 J. N. Hooker and G. Ottosson. Logic-Based Benders Decomposition. Mathematical Pro-
gramming, 96(1):33–60, 2003.

ICLP 2016 TCs

23:10 Scalable Design Space Exploration via Answer Set Programming

22 E. Jackson, E. Kang, M. Dahlweid, D. Seifert, and T. Santen. Components, Platforms and
Possibilities: Towards Generic Automation for MDA. In Proceedings of the International
Conference on Embedded Software (EMSOFT), pages 39–48, 2010.

23 J. Keinert, M. Streubühr, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt, J. Teich, and
M. Meredith. SystemCoDesigner – An Automatic ESL Synthesis Approach by Design Space
Exploration and Behavioral Synthesis for Streaming Applications. ACM Transactions on
Design Automation of Electronic Systems (TODAES), 14(1):1–23, 2009.

24 B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf. An Approach for Quantitat-
ive Analysis of Application-Specific Dataflow Architectures. In Proceedings of the Confer-
ence on Application-Specific Systems, Architectures and Processors (ASAP), pages 338–349,
1997.

25 R. Kiesel, M. Streubühr, C. Haubelt, O. Löhlein, and J. Teich. Calibration and Validation
of Software Performance Models for Pedestrian Detection Systems. In Proceedings of the
International Conference on Embedded Computer Systems: Architectures, Modeling and
Simulation (SAMOS), pages 182–189, 2011.

26 P. Kumar, D. B. Chokshi, and L. Thiele. A Satisfiability Approach to Speed Assignment
for Distributed Real-Time Systems. In Proceedings of the Design, Automation and Test in
Europe (DATE), pages 749–754, 2013.

27 M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining Convergence and Diversity
in Evolutionary Multi-Objective Optimization. Evolutionary Computation, 10(3):263–282,
2002.

28 C. Li and F. Manyà. MaxSAT. In Biere et al. [8], chapter 19, pages 613–631.
29 V. Lifschitz and A. Razborov. Why are there so many loop formulas? ACM Transactions

on Computational Logic, 7(2):261–268, 2006.
30 W. Liu, Z. Gu, J. Xu, X. Wu, and Y. Ye. Satisfiability Modulo Graph Theory for Task

Mapping and Scheduling on Multiprocessor Systems. IEEE Transactions on Parallel and
Distributed Systems, 22(8):1382–1389, 2011.

31 M. Lukasiewycz, M. Glaß, C. Haubelt, and J. Teich. SAT-Decoding in Evolutionary Al-
gorithms for Discrete Constrained Optimization Problems. In Proceedings of the Congress
on Evolutionary Computation, pages 935–942, 2007.

32 M. Lukasiewycz, M. Glaß, C. Haubelt, and J. Teich. Efficient Symbolic Multi-Objective
Design Space Exploration. In Proceedings of the Asia and South Pacific Design Automation
Conference (ASPDAC), pages 691–696, 2008.

33 S. Neema. System Level Synthesis of Adaptive Computing Systems. PhD thesis, Vanderbilt
University, Nashville, Tennessee, 2001.

34 R. Niemann and P. Marwedel. An Algorithm for Hardware/Software Partitioning Using
Mixed Integer Linear Programming. Design Automation for Embedded Systems, 2(2):165–
193, 1997.

35 H. Nikolov, M. Thompson, T. Stefanov, A. D. Pimentel, S. Polstra, R. Bose, C. Zissulescu,
and E. F. Deprettere. Daedalus: Toward Composable Multimedia MP-SoC Design. In
Proceedings of the Design Automation Conference (DAC), pages 574–579, 2008.

36 V. Pareto. Cours d’Économie Politique, volume 1. F. Rouge & Cie., 1896.
37 F. Reimann, M. Glaß, C. Haubelt, M. Eberl, and J. Teich. Improving Platform-Based Sys-

tem Synthesis by Satisfiability Modulo Theories Solving. In Proceedings of the Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages 135–144,
2010.

38 O. Roussel and V. Manquinho. Pseudo-Boolean and cardinality constraints. In Biere et al.
[8], chapter 22, pages 695–733.

P. Wanko 23:11

39 N. Satish, K. Ravindran, and K. Keutzer. A Decomposition-Based Constraint Optimization
Approach for Statically Scheduling Task Graphs with Communication Delays to Multipro-
cessors. In Proceedings of the Design, Automation and Test in Europe (DATE), pages 57–62,
2007.

40 T. Schlichter, C. Haubelt, and J. Teich. Improving EA-based Design Space Exploration by
Utilizing Symbolic Feasibility Tests. In Proceedings of Genetic and Evolutionary Computa-
tion Conference> (GECCO), pages 1945–1952, 2005.

41 H. M. Sheini and K. A. Sakallah. A Scalable Method for Solving Satisfiability of Integer
Linear Arithmetic Logic. In Theory and Applications of Satisfiability Testing, pages 241–
256, 2005.

42 J. Teich and C. Haubelt. Digitale Hardware/Software-Systeme – Synthese und Optimierung.
Springer, Berlin, Heidelberg, 2007. 2. erweiterte Auflage.

43 L. Thiele, I. Bacivarov, W. Haid, and K. Huang. Mapping Applications to Tiled Multipro-
cessor Embedded Systems. In Proceedings of the International Conference on Application
of Concurrency to System Design (ACSD), pages 29–40, 2007.

44 L. Thiele and E. Wandeler. Performance Analysis of Distributed Embedded Systems. In
Embedded Systems Handbook, pages 15.1–15.18. CRC Press, Boca Raton, FL, 2006.

45 E. Zitzler, L. Thiele, M. Laumanns, C. Fonseca, and V. Grunert da Fonseca. Performance
Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on
Evolutionary Computation, 7(2):117–132, 2003.

ICLP 2016 TCs

	Introduction and problem description
	Background and overview of the existing literature
	Design Space Exploration
	Covering the Design Space
	Decision Procedures
	Evaluating Design Points
	Assessing Exploration Quality

	Goal of the research
	Current status and preliminary results of the research
	Open issues and expected achievements

