Computing Diverse Optimal Stable Models*

Javier Romero?!, Torsten Schaub?, and Philipp Wanko?®

1 University of Potsdam, Potsdam, Germany

2 University of Potsdam, Potsdam, Germany; and
INRIA, Rennes, France

3 University of Potsdam, Potsdam, Germany

—— Abstract

We introduce a comprehensive framework for computing diverse (or similar) solutions to logic
programs with preferences. Our framework provides a wide spectrum of complete and incomplete
methods for solving this task. Apart from proposing several new methods, it also accommodates
existing ones and generalizes them to programs with preferences. Interestingly, this is accom-
plished by integrating and automating several basic ASP techniques — being of general interest
even beyond diversification. The enabling factor of this lies in the recent advance of multi-shot
ASP solving that provides us with fine-grained control over reasoning processes and abolishes the
need for solver modifications and wrappers that were indispensable in previous approaches. Our
framework is implemented as an extension to the ASP-based preference handling system asprin.
We use the resulting system asprin 2 for an empirical evaluation of the diversification methods
comprised in our framework.

1998 ACM Subject Classification D.1.6 Logic Programming, F.4.1 Mathematical Logic
Keywords and phrases Answer Set Programming, Diversity, Similarity, Preferences

Digital Object Identifier 10.4230/0OASIcs.ICLP.2016.3

1 Introduction

Answer Set Programming (ASP; [5]) has become a prime paradigm for solving combinatorial
problems in Knowledge Representation and Reasoning. As a matter of fact, such problems
have an exponential number of solutions in the worst-case. A first means to counterbalance
this is to impose preference relations among solutions to filter out optimal ones. Often
enough, this still leaves us with a large number of optimal models. A typical example
is the computation of Pareto frontiers for multi-objective optimization problems [19], as
we encounter in design space exploration [3] or timetabling [4]. Other examples include
configuration, planning, and phylogeny, as discussed in [9]. This calls for computational
support that allows for identifying small subsets of diverse solutions. The computation of
diverse stable models was first considered in ASP by [9]. The analogous problem regarding
optimal stable models is addressed in [25] in the case of answer set optimization [8]. Beyond
ASP, the computation of diverse solutions is also studied in CP [17] and SAT [18].

In this paper, we introduce a comprehensive framework for computing diverse (or similar)
solutions to logic programs with preferences. One of its distinguishing factors is that it
allows for dealing with aggregated (or plain) qualitative and quantitative preferences among
stable models of logic programs. This is accomplished by building on the preference handling
capacities of asprin [6]. The other appealing factor of our framework is that it covers a wide

* This work was partially supported by DFG-SCHA-550/9 and 11.

© Javier Romero, Torsten Schaub, and Philipp Wanko;

licensed under Creative Commons License CC-BY
Technical Communications of the 32nd International Conference on Logic Programming (ICLP 2016).
Editors: Manuel Carro, Andy King, Neda Saeedloei, and Marina De Vos; Article No. 3; pp. 3:1-3:14

\\v Open Access Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP.2016.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

3:2

Computing Diverse Optimal Stable Models

spectrum of methods for diversification. Apart from new techniques, it also accommodates and
generalizes existing approaches by lifting them to programs with preferences. Interestingly,
this is done by taking advantage of several existing basic ASP techniques that we automate
and integrate in our framework. The enabling factor of this is the recent advance of multi-
shot ASP solving that allows for an easy yet fine-grained control of ASP-based reasoning
processes (cf. [13]). In particular, this abolishes the need for internal solver modifications
or singular solver wrappers that were often unavoidable in previous approaches. We have
implemented our approach as an extension to the preference handling framework asprin.
The resulting system asprin 2 is then used for an empirical evaluation contrasting several
alternative approaches to computing diverse solutions. Last but not least, note that although
we concentrate on diversity, our approach applies just as well to the dual concept of similarity.
This is also reflected by its implementation supporting both settings.

2 Background

In ASP, problems are described as (disjunctive) logic programs, being sets of rules of the form

arj;...3@m = @m4ls---,an,N0t aApti,...,N0t a,

where each a; is a propositional atom and not stands for default negation. We call a rule a fact
if m = o0 =1, normal if m = 1, and an integrity constraint if m = 0. We may reify a rule r with
the set of facts R(r) = {rule(r)} U {head(r,a,)| 1 <i < m} U {body(r,pos,a;)| m+1<i<n}U
{body(r,neg,a;)| n+ 1 < i < o}, and we reify a program by joining its reified rules. Semanti-
cally, a logic program induces a collection of stable models, which are distinguished models of
the program determined by stable models semantics; see [16] for details.

To ease the use of ASP in practice, several extensions have been developed. First of all,
rules with variables are viewed as shorthands for the set of their ground instances. Further
language constructs include conditional literals and cardinality constraints [24]. The former
are of the form a:by,...,b,,, the latter can be written as s{c1;...;cn}t, where a and b, are
possibly default-negated literals and each c; is a conditional literal; s and t provide lower
and upper bounds on the number of satisfied literals in the cardinality constraint. We refer
to b1, ...,bm as a condition. The practical value of both constructs becomes apparent when
used with variables. For instance, a conditional literal like a(X) :b(X) in a rule’s antecedent
expands to the conjunction of all instances of a(X) for which the corresponding instance of
b(X) holds. Similarly, 2{a(X) :b(X)}4 is true whenever at least two and at most four instances
of a(X) (subject to b(X)) are true. Specifically, we rely in the sequel on the input language of
the ASP system clingo [13]; further language constructs are explained on the fly.

In what follows, we go beyond plain ASP and deal with logic programs with preferences.
More precisely, we consider programs P over some set A of atoms along with a strict
partial order = C A x A among their stable models. Given two stable models X,Y of
P, X > Y means that X is preferred to Y. Then, a stable model X of P is optimal
wrt>-, if there is no other stable model Y such that Y > X. In what follows, we often
leave the concrete order implicit and simply refer to a program with preferences and its
optimal stable models. We restrict ourselves to partial orders and distance measures (among
pairs of stable models) that can be computed in polynomial time. For simplicity, we focus
on the Hamming distance, defined for two stable models X,Y of a program P over A as
dX,)Y) =|(A-=X)=-Y|+ |X NY]|. Given a logic program P with preferences and a
positive integer n, we define a set X of optimal stable models of P as most diverse, if
min{d(X,Y) | X, Y € X, X #Y} >min{d(X,Y) | X,Y € X', X £ Y} for every other set

J. Romero, T. Schaub, and P. Wanko

X’ of optimal stable models of P. We are thus interested, following [9], in the problem n
Most Diverse Optimal Models: Given a logic program P with preferences and a positive
integer n, find n most diverse optimal stable models of P.

For representing logic programs with complex preferences and computing their optimal
models, we built upon the preference framework of asprin [6], a system for dealing with
aggregated qualitative and quantitative preferences. In asprin, the above mentioned preference
relations are represented by declarations of the form #preference (p,t){ti:b1,...,tn:by} where
p and t are the name and type of the preference relation, and t; and b; are tuples of terms
and conditions, respectively,! serving as arguments of p. The directive #optimize (p) instructs
asprin to search for stable models that are optimal wrtthe strict partial order >, associated
with p. While asprin already comes with a library of predefined primitive and aggregate
preference types, like subset or pareto, respectively, it also allows for adding customized
preferences. We illustrate this by implementing preference type maxmin in Section 4.

Finally, we investigate whether the heuristic capacities of clingo allow for boosting our
approach. In fact, clingo 5 features heuristic directives of the form ‘#heuristic c. [k,m]’
where ¢ is a conditional atom, k is a term evaluating to an integer, and m is a heuristic
modifier among init, factor, level, or sign. The effect of the heuristic modifiers is to bias
the score of clasp’s heuristic by initially adding or multiplying the score, prioritizing variables,
or preferably assigning a truth value, respectively. The value of k serves as argument to the
respective modification. A more detailed description can be found in [15].

3 Our Diversification Framework at a Glance

We begin with an overview over the various techniques integrated in our framework.

3.1 Basic solving techniques

We first summarize several basic solving techniques that provide essential pillars of our
framework and that are also of interest for other application areas.

Mazmin optimization is a popular strategy in game theory and beyond that is not
supported by existing ASP systems. We address this issue and consider mazmin (and
minmaz) optimization that, given a set of sums, aims at maximizing the value of the
minimum sum. We have implemented both preference types and made them available via
asprin 2’s library.

Guess and Check automation. [11] defined a framework for representing and solving
YL problems in ASP. Given two normal logic programs P and @ capturing a guess-and-
check (G&C) problem, X is a solution to (P, @) if X is a stable model of P and Q U X
is unsatisfiable. We automatize this by using reification along with the meta-encoding
methodology of metasp [14]. In this way, the two normal programs P and @ are transformed
into a single disjunctive logic program. The resulting mini-system metagnc is implemented in
Python and available at [1]. We build upon this approach for computing optimal models of
logic programs with preferences, providing an alternative method to the iterative one of [6].
For this, asprin translates a logic program with preferences into a G&C problem, which is
then translated by metagnc into a disjunctive logic program and solved by an ASP system.

Querying programs with preferences consists of deciding whether there is an optimal
stable model of a program P with preferences that contains a given query atom ¢. To this
end, we elaborate upon four alternatives:

L See [6] for more general preference elements.

3:3

ICLP 2016 TCs

3:4

Computing Diverse Optimal Stable Models

Q-1. Enumerate models of P U {L « not ¢} until one is an optimal model of P.

Q-2. Enumerate optimal models of P until one contains q.

Q-3. Enumerate optimal models of P U {L + not ¢} until one is an optimal model of P.
Q-4. Enumerate optimal models of P until one contains ¢ while alternately adding

{L < not ¢} or {L « ¢} during model-driven optimization.

The first two methods were implemented by [25] in the case of programs with aso prefer-
ences [8]. We generalize both to arbitrary preferences, propose two novel ones, and provide
all four methods in asprin 2. Applications of querying programs with preferences are clearly
of greater interest and go well beyond diversification.

Preferences over optimal models allow for further narrowing down the stable models
of interest by imposing a selection criterion among the optimal models of a logic program
with preferences. For one thing, this is different from a lexicographic preference, since the
secondary preference takes into account all optimal models wrtthe first preference, no matter
whether they are equal or incomparable. For another, it aims at preference combinations
whose complexity goes beyond the expressiveness of ASP and thus cannot be addressed
via an encoding in asprin. Rather, we conceived a nested variant of asprin’s optimization
algorithm that computes the preferred optimal models. Interestingly, this makes use of our
querying capacities in posing the “improvement constraint” as a query.

3.2 Advanced diversification techniques

We elaborate upon three ways of diversification, viz. enumeration, replication, and approx-
imation, for solving the n Most Diverse Optimal Models problem. While the two former
return an optimal solution, the latter simply approximates it.
Enumeration consists of two steps:
1. Enumerate all optimal models of the logic program P with preferences.
2. Find among all computed optimal models, the n most diverse ones.
While we carry out the first step by means of asprin’s enumeration mode, we cast the second
one as an optimization problem and express it as a logic program with preferences. This
method was first used by [9] for addressing diversity in the context of logic programs without
preferences; we lift it here to programs with preferences.
Replication consists of three steps:
1. Translate a normal logic program P with preferences into a disjunctive logic program D
by applying the aforementioned guess-and-check method.
2. Reify D into R(D), and add a meta-encoding M replicating D such that each stable
model of M UR(D) corresponds to n optimal models of the original logic program P.
3. Turn the disjunctive logic program M U R(D) into a mazmin optimization problem by
applying the aforementioned method such that its optimal stable models correspond to n
most diverse optimal stable models of the original program P with preferences.
This method was outlined for logic programs without preferences in [9] but not automated. We
generalize this approach to normal programs with preferences and provide a fully automated
approach.
Approximation. Our approximation techniques can be understood as instances of the
following algorithm, whose input is a logic program with preferences P:
1. Find an optimal model X of P. If P is unsatisfiable then return { L}, else assign X = {X}.
2. While test(X) is true, call solve(P, X) and add the solution to X.
3. Return solution(X).

J. Romero, T. Schaub, and P. Wanko

In the basic case, test(X) returns true until there are n solutions in X, solution(X) returns

the set X', and the algorithm simply computes n solutions by successively calling solve(P, X).

More elaborate approaches are obtained, for example, computing n+ k& solutions and returning

the n most diverse among them in solution(X).

The implementation of solve(P, X’) leads to different approaches:

A-1. solve(P,X) returns an optimal model of P maximizing the minimum distance to the
solutions in X. We accomplish this by defining a maxmin preference, and imposing this
on top of the optimal models of P by applying the two aforementioned approaches to
maxmin optimization and preferences over optimal models. This method was first used
by [9] for addressing diversity in the context of logic programs without preferences; we
lift it here to programs with preferences.

A-2. solve(P,X) first computes a partial interpretation I of P maximizing the minimum
distance to the solutions in X, and then returns an optimal model of P closest to I:

(a) Select a partial interpretation I of P in one of the following ways: (i) a random
one, (ii) a heuristically chosen one, (iii) one most diverse wrtthe solutions in X, or
(iv) one complementary to the last computed optimal model.

(b) Use a cardinality-based preference minimizing the distance to I, and apply the
aforementioned approach to preferences over optimal models to enforce this preference
among the optimal models of P.

A-3. solve(P, X) approximates A-2 using heuristics. To this end, we select a partial inter-
pretation I as in A-2, and then guide the computation of the optimal model fixing the
sign of the atoms to their value in I. The approach is further developed prioritizing the
variables in I. A similar method was used in [18] for SAT.

4 Basic Solving Techniques

We first show how the Most Distant (Optimal) Model problem can be represented in asprin
using the new preference type mazmin: Given a logic program P (with preferences) over
A, and a set X = {X3,..., X} of (optimal) stable models of P, find an (optimal) stable
model of P that maximizes the minimum distance to the (optimal) stable models in X. The
Most Distant (Optimal) Model is used by our approximation algorithms in Section 5.

Maxmin optimization in asprin. Let Hx be the set of facts {holds(a,i).|a € X;, X; € X}
reifying the stable models in &X', and let distance be the following preference statement:
#preference (distance ,maxmin){

I,1,X : holds(X,0), not holds(X,I), I
I,1,X : not holds(X,0), holds(X,I), I

1..m;
1..m }.

Then, the Most Distant Model problem is solved by the following program with preferences:
PU{holds(a,0) :- a. |a€ A} UHxyx U {distance} U {#optimize(distance).}. P generates
stable models that are reified with holds(a,0) for a € A. The preference statement distance
represents a maxmin preference over m sums, where the value of each sum I (with I=1..m)
amounts to the distance between the generated stable model and X1. Finally, the optimize
statement selects the optimal stable models wrt>g;istance-

Formally, the preference elements of preference type maxmin have the restricted form
‘s,w,t:B’ where s, w, t are terms, and B is a condition. Term s names different sums, whose
value is specified by the rest of the element ‘w,t:B’ (similar to aggregate elements). For
defining the semantics of mazmin, preference elements stand for their ground instantiations,
and we consider a set E of such ground preference elements. We say that s is (the name of)

3:5

ICLP 2016 TCs

3:6

Computing Diverse Optimal Stable Models

a sum of F if it is the first term of some preference element. Given a stable model X and a
sum s of E, the value of s in X is:

U(S, X) = Z(w,t)6{“7t|57“1t:B6E’X|:B} v

For a set F of ground preference elements for preference statement p, mazmin defines the

following preference relation: 2

X >p Y if min{v(s, X) | s is a sum of E} > min{v(s,Y) | s is a sum of E}

Applying this definition to the preference statement distance gives the partial order >gistance-

In asprin, partial orders > are implemented by so-called preference programs. For our
example, we say that @ is a preference program for =4istance if it holds that X >=gistance Y iff
QU Hx U Hy, is satisfiable, where Hx = {holds(a).| a € X} and H{,= {holds’(a).|a € Y}.
In practice, the preference program) consists of three parts.

First, each preference statement is translated into a set of facts, and added to Q. Our exam-
ple preference statement distance results in preference(distance,maxmin) and the instantia-
tions of preference(distance,1, (I,X),for(t1),(I,1,X)) and preference(distance,2, (I,X),
for(t,), (I,1,X)) where t; and t, are terms standing for the conditions of the two non-ground
preference elements.

Second,) contains the implementation of the preference type p, consisting of rules
defining an atom better (p) that indicates whether X >, Y holds for two stable models X,Y".
The sets X and Y are provided by asprin in reified form via unary predicates holds and holds’.
3 Further rules are added by asprin to define holds and holds’ for the conditions appearing
in the preference statement (t; and t, in our example). The definition of better(p) then
draws upon the instances of both predicates for deciding X =, Y. For the new preference
type maxmin (being now part of asprin 2’s library), we get the following rules:

#program preference (maxmin).
sum(P,S) :- preference(P,maxmin), preference(P,_,_,_,(S,_,_)).

value (P,S,V) :- preference(P,maxmin), sum(P,S),
V = #sum { W,T : holds’(X), preference(P,_,_,for(X),(S,W,T)).

minvalue (P,V) :- preference(P,maxmin), V = #min { W : value(P,S,W) .

better(P,S) :- preference(P,maxmin), sum(P,S), minvalue(P,V),
V < #sum { W,T : holds(X), preference(P,_,_,for(X),(S,Ww,T)).

better (P) :- preference (P,maxmin), better(P,S) : sum(P,S).

Predicate sum/2 stores the sums S of the preference statement P, while value/3 collects the
value V of every sum for the stable model Y, and minvalue/2 stores the minimum of them.
In the end, better(P) is obtained if better (P,S) holds for all sums S, and this is the case
whenever the value of the sums for the stable model X is greater than the minimum value
for the stable model Y.

Third, the constraint ‘:- not better(distance).’ is added to), enforcing that the set of
rules is satisfiable iff better(p) is obtained, which is the case whenever X >gistance Y -

We can show that for any preference statement p of type maxmin, the union of the above
three sets of rules constitutes a preference program for >.

2 For defining minmaz, we simply switch min by max, and > by <.
3 That is, holds(a) (or holds(a)) is true iff a€ X (or a€Y).

J. Romero, T. Schaub, and P. Wanko

Automatic Guess and Check in clingo. Given a logic program P over A, and a pref-
erence statement s with preference program s, the optimal models of P wrt>g corre-
spond to the solutions of the G&C problem (P U Ry, PUR4 U Q;), where R’y stands for
{holds’(a) :- a.|a € X}, and Ry for {holds(a) :- a.|a € X} given some set X. * The
guess program generates stable models X of P reified with holds’/1, while the check program
looks for models better than X wrts reified with holds/1, so that X is optimal whenever the
checker along with the holds’/1 atoms of X becomes unsatisfiable. This correspondence is
the basis of a method for computing optimal models in asprin, where the logic program with
preferences is translated into a G&C problem, that metagnc translates into a disjunctive
logic program, which is then solved by clingo. This allows, for example, for solving the Most
Distant Model problem using the logic program P U {holds(a,0) :- a. |a € A} U Hx and
the preference statement distance, with the corresponding preference program comprising
the three sets of rules described before.

In general, the G&C framework [11] allows for representing 5 problems in ASP, and
solving them using the saturation technique by Eiter and Gottlob in [10]. The idea is to
re-express the problem as a positive disjunctive logic program, containing a special-purpose
atom bot. Whenever bot is obtained, saturation derives all atoms (belonging to a “guessed”
model). Intuitively, this is a way to materialize unsatisfiability. We automatize this process in
metagnc by building on the meta-interpretation-based approach of [14]. For a G&C problem
(G,C) over (Ag, Ac), the idea is to reify the program C U {{a}.| a € Ac} into the set of
facts R(C U {{a}.| a € Ag}). The latter are combined with the meta-encoding M from [14]
implementing saturation. This leads to the positive disjunctive logic program:

R(CU{{a}.|a € Ac}) UM

This program has a stable model (excluding bot) for each X C Ag such that C U X is
satisfiable, and it has a saturated stable model (including bot) if there is no such X. Next,
we just have to add the generator program G, map the true and false atoms of G to their
counterparts in the positive disjunctive logic program (represented by predicates true/1 and
false/1, respectively), and enforce the atom bot to hold:

R(CU{{a}.|a€ Ag})UMU
GU{true(a) :- a.|la€ Ag}U{false(a) :- not a.|a€ Ag}U{:- not bot.}

The stable models of the resulting program correspond to the solutions of the G&C problem.

Solving queries in asprin. Given a logic program with preferences P and a query atom q,
the query problem is to decide whether there is an optimal stable model of P that contains
q. From the point of view of complexity theory, the problem is X5-complete when P is
normal. Membership holds because for solving this problem, we can use the G&C method by
translating the logic program with preferences into a disjunctive logic program and adding
the query as a constraint ‘:- not q.’. Hardness can be proved by a reduction of the problem
of deciding the existence of a stable model of a disjunctive logic program P (see [20]).

Alternatively to the G&C approach, we propose four enumeration-based algorithms for
solving this problem. All of them search for an optimal model containing the query, and
their worst case occurs when there is none and they have to enumerate all solutions.

4 To avoid the conflict between the atoms of P appearing in both the guesser and the checker, given
a model X of P U R/4, only the atoms of predicate holds’/1 in X are passed to the checker. In the
system metagnc this is declared via directive ‘#guess holds’/1.’

3:7

ICLP 2016 TCs

3:8

Computing Diverse Optimal Stable Models

Algorithm Q-1 enumerates stable models of P U {:- not q.} and tests them for optimality,
until one test succeeds. In the worst case, Q-1 enumerates all stable models of the program,
but still it runs in polynomial space given that it enumerates normal stable models.

Algorithm Q-2 enumerates optimal models of P, until one contains ¢. In the worst case,
Q-2 enumerates all optimal models of P, and this enumeration may need exponential space
(see [6]). Note that this exponential blow-up may also occur with the other algorithms Q-3
and Q-4. In addition, even when Q-2 succeeds in finding an optimal model containing the
query, it may have to enumerate many optimal models without the query.

For alleviating this problem, algorithm Q-3 enumerates optimal models of PU {:- not q.},
and tests whether they are also optimal for P, until one test succeeds. However, Q-3 may
have to enumerate many non optimal models of P containing the query before finding an
optimal one.

Algorithm Q-4 follows a different approach, enumerating optimal models of P (as Q-2)
but modifying the iterative algorithm of asprin [6] for computing optimal models. The input
of asprin’s algorithm is a logic program P and a preference statement s with preference
program Q. It follows these steps:

1. Solve program P and assign the result to Y. Return Y if it is L.
2. Assign Y to X, and solve program P U Qs U R4 U HY assigning the result to Y.

If Y is L, return X, else repeat this step.

Step 2 searches iteratively for better models of P wrts. In Algorithm Q-3, it may be the case
that first Step 2 is repeated many times computing models of P with the query, and then
the test finds a model of P without the query that is better than all those previous models.
Algorithm Q-4 tries to find earlier those models of P without the query. For this, it adds
{:- not q.} to P in Step 1 and in the even iterations of Step 2, and it adds {:- q.} in the
odd iterations of Step 2. Whenever an even iteration fails to find a model, no better model
with the query exists, and the enumeration algorithm restarts the search at Step 1. On the
other hand, whenever an odd iteration fails, this shows that there is no better model without
the query, proving that the query holds in an optimal model.®

Preferences over optimal models in asprin. Formally, this extension of asprin is defined
as follows. Let P be a logic program over A, and let s and ¢ be two preference statements. A
stable model X of P is optimal wrts and then t if it is optimal wrts, and there is no optimal
model Y of P wrts such that Y >; X. From the point of view of complexity theory, when
P is normal, finding a stable model optimal wrts and then ¢ is FA%-hard. We prove this
by reducing the problem of finding an optimal stable model of a disjunctive logic program
with weight minimization (see [20]). We note that finding a stable model of a normal logic
program P with preferences is in F’¥5, given the translation to disjunctive logic programs
using the G&C method. Therefore, assuming FX5 # FAL we cannot find a polynomial
translation to a normal program with preferences.

It turns out that the Most Distant Optimal Model problem can be easily formulated
and solved within this approach. Given a logic program P with a preference statement
s, and a set X = {X1,...,X,,} of optimal stable models of P, the most distant op-
timal models for this problem correspond to the stable models of the logic program
PuU{holds(a,0) :- a. |a € A}U Hx that are optimal wrts and then distance. In asprin,

5 For finding an optimal model with the query and not simply deciding its existence, Step 2 is repeated
with {:- not q.} until the search fails, proving that an optimal model has been found.

J. Romero, T. Schaub, and P. Wanko

this is represented simply by adding to the resulting logic program the preference statements
s and distance, along with the declarations ‘#optimize(s).’ and ‘#reoptimize(distance).’.
For computing optimal models of a logic program P over A wrtpreference statements s
and then ¢, we propose a variant of asprin’s iterative algorithm [6]. Let solveOpt(P, s) be the
asprin procedure for computing one optimal model of P wrts, and let solveQuery(P, s, q) be
any of our algorithms for solving the query problem given a logic program P with preference
statement s and query atom q. The algorithm follows these steps:
1. Call solveOpt(P,s) and assign the result to Y. Return Y if it is L.
2. Assign Y to X, and call solveQuery(PUQ; URAUHY, s, better(t)) assigning the result
toY. If Y is L, return X, else repeat this step.
where @)} is the result of deleting the constraint ‘:- not better(t).’ from a preference program
Q@ for t. The first step of the algorithm computes an optimal model of P wrts. Then Step 2,
like in asprin’s basic algorithm, searches iteratively for better models. Specifically, it searches
for optimal models of P wrts that are better than X wrtt. Note that by construction of @},
the stable models Y of PUQ; U R4 U HY are better than X wrtt iff better(t)e Y. Then if
solveQuery returns a model Y, it contains better(t), and therefore it is better than X wrtt.
On the other hand, if solveQuery returns |, there is no optimal model of P wrts that is
better than X wrtt, and this implies that X is an optimal model wrts and then t.

5 Advanced Diversification Techniques

Enumeration. With this technique, we first enumerate all optimal stable models of P
with asprin and afterwards we find, among all those stable models, the n most diverse.
For the initial step, we use asprin’s enumeration algorithm (see [6]). For the second, let
X ={Xi1,...,X;n} be the set of m optimal stable models of P. Then, the following encoding
along with the facts Hy reifying X provides a correct and complete solution to the n Most
Diverse Optimal Models problem:

n { sol(1..m) } n.

#preference (enumeration ,maxmin) {
(I,J),1,X : holds(X,I), not holds(X,J), sol(I), sol(J), I < J;
(I,J),1,X : not holds(X,I), holds(X,J), sol(I), sol(J), I < J;
(I,J),#sup,0 : sol(I), not sol(J), I < J ;
(I,J),#sup,0 : not sol(I), sol(J), I < J }.

#optimize (enumeration) .

The choice rule guesses n solutions among m in X', and the enumeration preference statement
selects the optimal ones. In enumeration, there is a sum for every pair (I,J) with I < J. If
both I and J are chosen (first two preference elements) then the sum represents their actual
distance. In the other case (last two elements) the sum has the maximum possible value in
asprin (viz. #sup). This allows for comparing only sums of pairs (I,J) of selected solutions.

Replication. With this technique asprin begins translating a normal logic program with
preferences P into a disjunctive logic program D applying the G&C method. Next, D is
reified onto R(D) and combined with a meta-encoding M,, replicating D: 6

sol(1..n).
holds (A,S) : head(R,A) :- rule(R); so0l(S); holds(A,S) : body(R,pos,A);
not holds(A,S) : body(R,neg,A).

6 The actual encoding handles the whole clingo language [13] and is more involved.

3:9

ICLP 2016 TCs

3:10

Computing Diverse Optimal Stable Models

The stable models of M,, UR(D) correspond one to one to the elements of Opt(P)™, where
Opt(P) stands for the set of all optimal models of P. Further rules are added for having
exactly one stable model for every set of n optimal stable models, but we do not detail them
here for space reasons. Finally, adding the following preference and optimize statements
results in a correct and complete solution to the n Most Diverse Optimal Models problem:

#preference(replication ,maxmin) {
(I,J),1,X : hold(A,I), not hold(A,J), sol(I), sol(J),
(I,J),1,X : not hold(A,I), hold(A,J), sol(I), sol(J),
#optimize (replication).

The preference statement is similar to the one for Enumeration, but now the n solutions are
generated by the meta-encoding, and all of them are used for calculating the sums.

Approximation. We describe the different implementations of the procedure solve(P, X)
outlined in Section 3.

In Algorithm A-1, solve(P, X) solves the Most Distant Optimal Model problem given the
optimal stable models in X', applying the solution described at the end of Section 4.

In Algorithm A-2, solve(P, X) first computes a partial interpretation I distant to X in
one of the following ways:

1. A random one (named rd).

2. A heuristically chosen one, following the pguide heuristic from [18] (pg): for an atom a, a
is added to I if it is true in X more often than false, —a is added in the opposite case,
and nothing happens if there is a tie.

3. One most distant to the solutions in X (dist), computed applying the solution to the
Most Distant Model problem described at the beginning of Section 4, where the program
P is ‘{{holds(a)}.| a € A}

4. One complementary to the last computed optimal model L taking into account either true
({—a | a € L}), false ({a | a ¢ L}), or both types of atoms ({—a | a € L} U{a | a ¢ L}).
They are named true, false and all, respectively.

For selecting an optimal model closest to I, the technique is similar to the one for the

Most Distant Optimal Model problem: we start with the logic program P with preference

statement s, and we add the rules { holds(a,0) :-a.|a € A} reifying the atoms of P, the

facts { holds(a,1).|a € INA}U{nholds(a,1). | —a € I,a € A} reifying I, and define the
following preference statement:

#preference (partial ,less(cardinality)) {
holds(X,0), nholds(X,1); not holds(X,0), holds(X,1) }.

Finally, we compute the optimal models of this program wrts and then partial using the
method for preferences over optimal models described in Section 4. In A-3, we select a distant
solution I as we do for A-2, and we add the same reifying rules, along with the following
heuristic rules for approximating an optimal model of P close to I:

#heuristic hold(X,0) : holds(X,1). [1, sign]
#heuristic hold(X,0) : nholds(X,1). [-1, sign]

For prioritizing the variables in I, we add another two heuristic rules like the previous ones,
but replace both [1, sign] and [-1, sign] by [1, level 1, respectively.

J. Romero, T. Schaub, and P. Wanko

Table 1 Comparison of approximation techniques by (a) runtime and timeouts, (b) diversification
quality, and (¢) minimum distance.

Class T | TO Class S avg Class S avg
A-3 165 70 A-1 15 0.13 A-1 15 12.25
A-3-true 200 | 113 A-2-dist-to 14 | 0.14 A-2-dist-to 13 10.38
A-3-all 202 | 118 A-2-pg 13 | 0.18 A-3-pg-l-rd 13 11.82
A-3-rd 277 | 280 A-3-pg-1 11 0.17 A-2-dist 12 5.31
A-3-pg 317 | 351 A-3-pg-l-rd 10 | 0.16 A-3-pg-1 12 | 11.10
A-3-pg-l-rd 354 | 442 A-2-qall 10 | 0.15 A-2-pg 10 | 12.86
A-3-false 351 | 443 A-2-dist 8 | 0.07 A-2-rd 9 8.77
A-3-pg-1 351 | 443 A-2-false 8 | 0.15 A-3-all 7 3.99
A-2-true 482 | 618 A-2-true 7| 0.12 A-3-true 6 4.00
A-2-rd 474 | 648 A-3-false 6 | 0.16 A-3-false 6 7.07
A-1 482 | 672 A-2-rd 5 0.12 A-2-false 6 6.80
A-2-dist-to 528 | 689 A-3-all 5 0.08 A-2-all 4 6.98
A-2-all 515 | 696 A-3-true 4 | 0.08 A-2-true 3 5.31
A-2-false 532 | 696 A-3-rd 2| 0.09 A-3-rd 2 6.43
A-2-pg 542 | 708 A-3-pg 1 0.09 A-3 2 4.28
A-2-dist 572 | 773 A-3 0| 0.06 A-3-pg 0| 279

6 Experiments

In this section, we present experiments focusing on the approzimation techniques of the
asprin system for obtaining most dissimilar optimal solutions. While enumeration and
replication provide exact results, they need to calculate and store a possibly exponential
number of optimal models or deal with a large search space, respectively. Those techniques
are therefore not effective for most practical applications. For Algorithm A-2, we considered
the variations rd, pg, true, false, and all . In dist, we issued no timeout for the computation
of the partial interpretation, while in dist-to, we set a timeout for this computation of half
the total possible runtime. For Algorithm A-3, we consider the variations that include no
extra ASP computation, namely, rd, pg, true, false, and all . We also evaluated a version
without any heuristic modification (named simply A-3). Furthermore, following [18], we
considered a variation of pg, viz. pg-l, where the atoms of the selected partial interpretation
are given a higher priority, and pg-l-rd, extending pg-I by fixing initially a random sign to all
atoms not appearing in the partial interpretation.

We gathered 186 instances from six different classes: Design Space exploration (DSE)
from [3], Timetabling (CTT) from [4], Crossing minimization from the ASP competition
2013, Metabolic network expansion from [21], Biological network repair from [12] and Cir-
cuit Diagnosis from [23]. Since we required instances with multiple optimal solutions, we
exclusively focused on Pareto optimality. DSE and CTT are inherently multi-objective and
therefore we could naturally define a Pareto preference for them. For the other classes,
we turned single-objective into multi-objective optimization problems by distributing their
optimization statements. First, we split the atoms in the optimization statements into four
or eight groups evenly. We chose for each group the same preference type, either cardinality
or subset minimization, and aggregated them by means of Pareto preference. We calculated
optimal solutions regarding these Pareto preferences. The same was done for CTT and
DSE. An instance was selected if for some Pareto preference ten optimal solutions could
be obtained within 600 seconds by asprin. This method generated 816 instances in total.
We ran the benchmarks on a cluster of Linux machines with dual Xeon E5520 quad-core

3:11

ICLP 2016 TCs

3:12

Computing Diverse Optimal Stable Models

2.26 GHz processors and 48 GB RAM. We restricted the runtime to 600 seconds and the
memory usage to 20 GB RAM.

Since algorithms A-1 and A-2 involve querying programs over preferences, we started by
evaluating the different query techniques. For that, we executed A-1 with query methods Q-1
to Q-4 on all selected instances, stopping after the first solveQuery call was finished. The
performance of query techniques Q-2, Q-3, and Q-4 was similar regarding runtime and only
Q-1 was clearly worse. We selected Q-4 for the remaining experiments due to its slightly
lower runtime. For more detailed tables, we refer to [20].

Next, we approximated four most diverse optimal models with methods A-1 to A-3. We
measured runtime and two quality measures. The first, called diversification quality [18],
gives the sum of the Hamming distances among all pairs of solutions normalized to values
between zero and one. The second is the minimum distance among all pairs of solutions of a
set in percent. The solution set size of four was chosen because [22] claims that three solutions
is the optimal amount for a user, and considering one additional solution provides further
insight into the different quality measures. For all algorithms that do not use heuristics
for diversification, we instead enabled heuristics preferring a negative sign for the atoms
appearing in preference statements. This was observed in [7] to improve performance.

Table 1(a) provides in column T the average runtime and in column TO the sum of
timeouts. The different methods are ordered by the number of timeouts. The best results in
a column are shown in bold. We see that A-3 is by far the fastest with 70 timeouts, solving
91% of the instances. Heuristic variations of A-3 perform the best after that. Less invasive
heuristics achieve similar runtimes with 113-118 timeouts. More sophisticated heuristics
perform worse at 349-443 timeouts. In a range from 618 to 773 timeouts, non-heuristic
methods solve the least instances by a significant margin. The results are in tune with the
nature of the methods. Heuristics modifying the solving process for diversity decrease the
performance in comparison with solving heuristics aimed at performance, but not as much
as more complex methods involving preferences over optimal models.

In particular, non-heuristic methods show many timeouts. If we tried to analyze the
quality of the solutions by assuming worst possible values for the instances that timed out,
the results would be dominated by these instances. To avoid that, we calculated a score
independent of the runtime. We considered all possible parings of the different methods. For
each pair, we compared only instances where both found a solution set. The method with
better quality value for the majority of instances receives a point. Finally, we ordered the
subsequent tables according to that score.

In Table 1(b), for each method we see the score in column S, and the average of the
diversification quality (over the instances solved by the method) in column avg. This way,
we can examine the quality a method has achieved compared to other methods, and also the
individual average quality. A-1 has the best quality with a score of 15, followed by A-2-dist-to,
A-2-pg, A-3-pg-l and A-3-pg-l-rd. All of those techniques regard the whole previous solution set
to calculate the next solution and guide the solving strictly to diversity. A-2-pg, A-3-pg-l and
A-3-pg-l-rd are also the first, second and third place, respectively, for average diversification
quality. Next, with scores ranging from 10-7, we see A-2 methods that do not take into
account the whole previous set, or that were simply unable to find many solutions at all,
as in the case of A-2-dist. Finally, we observe that A-3 variations only regarding the last
solution or no previous information perform worst in score and average. In these cases, the
heuristic does not seem to be strong enough to steer the solving to high quality solution sets,
and A-3 uses no heuristic or optimization techniques to ensure diverse solutions.

In analogy to Table 1(b), Table 1(c) provides information for the minimum distance
among the solutions. The best methods considering score and average minimum distance,

J. Romero, T. Schaub, and P. Wanko

viz. A-1, A-2-dist-to, A-3-pg-I-rd, A-3-pg-I, A-2-pg, utilize information from the whole previous
solution set and have strict diversification techniques.

Overall, plain heuristic methods perform better in regards to runtime while more complex
methods, depending on all previous solutions, lead to better quality. Furthermore, A-3-pg-
[-rd and A-3-pg-l provide the best trade-off between performance and quality. While A-1,
A-2-dist-to and A-2-pg achieve higher quality, they could solve only 18%, 16% and 13% of the
instances. On the other hand, A-3-pg-l-rd and A-3-pg-I provide good diversification quality
and minimum distance while solving 46% of the instances.

7 Discussion

We presented a comprehensive framework for computing diverse (or similar) solutions to logic
programs with generic preferences and implemented it in asprin 2, available at [1]. To this
end, we introduced a spectrum of different methods, among them, generalizations of existing
work to the case of programs with general preferences. Hence, certain fragments of our
framework provide implementations of the proposals in [9, 25]. While the latter had to resort
to solver wrappers or even internal solver modifications, asprin heavily relies upon multi-shot
solving that allows for an easy yet fine-grained control of reasoning processes. Moreover,
we provided several generic building blocks, such as mazmin (and minmaz) preferences,
query-answering for programs with preferences, preferences among optimal models, and an
automated approach for the guess and check methodology of [11], all of which are also of
interest beyond diversification. Finally, we took advantage of the uniform setting offered by
asprin 2 to conduct a comparative empirical analysis of the various methods for diversification.
Generally speaking, there is a clear trade-off between performance and diversification quality,
which allows for selecting the most appropriate method depending on the hardness of the
application at hand.

—— References

1 asprin. http://www.cs.uni-potsdam.de/asprin.

2 Proceedings of the Twelfth International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’18). Springer, 2013.

3 B. Andres, M. Gebser, M. Gla}, C. Haubelt, F. Reimann, and T. Schaub. Symbolic
system synthesis using answer set programming. In Proceedings of the Twelfth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’18) 2], pages
79-91.

4 M. Banbara, T. Soh, N. Tamura, K. Inoue, and T. Schaub. Answer set programming as
a modeling language for course timetabling. Theory and Practice of Logic Programming,
13(4-5):783-798, 2013.

5 C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, 2003.

6 G. Brewka, J. Delgrande, J. Romero, and T. Schaub. asprin: Customizing answer set
preferences without a headache. In Proceedings of the Twenty-Ninth National Conference
on Artificial Intelligence (AAAI’15), pages 1467-1474. AAAT Press, 2015.

7 G. Brewka, J. Delgrande, J. Romero, and T. Schaub. Implementing preferences with
asprin. In Proceedings of the Thirteenth International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’15), pages 158-172. Springer, 2015.

8 G. Brewka, I. Niemeld, and M. Truszczynski. Answer set optimization. In Proceedings of
the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI’03), pages
867-872. Morgan Kaufmann, 2003.

3:13

ICLP 2016 TCs

http://www.cs.uni-potsdam.de/asprin

3:14

Computing Diverse Optimal Stable Models

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

T. Eiter, E. Erdem, H. Erdogan, and M. Fink. Finding similar/diverse solutions in answer
set programming. Theory and Practice of Logic Programming, 13(3):303-359, 2013.

T. Eiter and G. Gottlob. On the computational cost of disjunctive logic programming.
Annals of Mathematics and Artificial Intelligence, 15(3-4):289-323, 1995.

T. Eiter and A. Polleres. Towards automated integration of guess and check programs
in answer set programming: a meta-interpreter and applications. Theory and Practice of
Logic Programming, 6(1-2):23-60, 2006.

M. Gebser, C. Guziolowski, M. Ivanchev, T. Schaub, A. Siegel, S. Thiele, and P. Veber.
Repair and prediction (under inconsistency) in large biological networks with answer set
programming. In Proceedings of the Twelfth International Conference on Principles of
Knowledge Representation and Reasoning (KR’10), pages 497-507. AAAT Press, 2010.

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Clingo = ASP + control: Prelim-
inary report. In Technical Communications of the Thirtieth International Conference on
Logic Programming (ICLP’14), volume 14 of Theory and Practice of Logic Programming,
2014.

M. Gebser, R. Kaminski, and T. Schaub. Complex optimization in answer set programming.
Theory and Practice of Logic Programming, 11(4-5):821-839, 2011.

M. Gebser, B. Kaufmann, R. Otero, J. Romero, T. Schaub, and P. Wanko. Domain-specific
heuristics in answer set programming. In Proceedings of the Twenty-Seventh National
Conference on Artificial Intelligence (AAAI’'13), pages 350-356. AAAT Press, 2013.

M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9:365-385, 1991.

E. Hebrard, B. Hnich, B. O’Sullivan, and T. Walsh. Finding diverse and similar solutions in
constraint programming. In Proceedings of the Twentieth National Conference on Artificial
Intelligence (AAAI05), pages 372-377. AAAI Press, 2005.

A. Nadel. Generating diverse solutions in SAT. In Proceedings of the Fourteenth Inter-
national Conference on Theory and Applications of Satisfiability Testing (SAT’11), pages
287-301. Springer, 2011.

V. Pareto. Cours d’economie politique. Librairie Droz, 1964.

J. Romero, T. Schaub, and P. Wanko. Computing diverse optimal stable models (extended
version). Available at http://www.cs.uni-potsdam.de/wv/publications/, 2016.

T. Schaub and S. Thiele. Metabolic network expansion with ASP. In Proceedings of the
Twenty-fifth International Conference on Logic Programming (ICLP’09), pages 312-326.
Springer, 2009.

H. Shimazu. Expertclerk: Navigating shoppers’ buying process with the combination of
asking and proposing. In Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence (IJCAI'01), pages 1443-1448. Morgan Kaufmann, 2001.

S. Siddiqi. Computing minimum-cardinality diagnoses by model relaxation. In Proceedings
of the Twenty-second International Joint Conference on Artificial Intelligence (IJCAI’11),
pages 1087-1092. IJCAI/AAAI Press, 2011.

P. Simons, I. Niemeld, and T. Soininen. Extending and implementing the stable model
semantics. Artificial Intelligence, 138(1-2):181-234, 2002.

Y. Zhu and M. Truszczynski. On optimal solutions of answer set optimization problems. In
Proceedings of the Twelfth International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’13) [2], pages 556-568.

http://www.cs.uni-potsdam.de/wv/publications/

	Introduction
	Background
	Our Diversification Framework at a Glance
	Basic solving techniques
	Advanced diversification techniques

	Basic Solving Techniques
	Advanced Diversification Techniques
	Experiments
	Discussion

