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Abstract
Branching story games have gained popularity for creating unique playing experiences by adapt-
ing story content in response to user actions. Research in interactive narrative (IN) uses auto-
mated planning to generate story plans for a given story problem. However, a story planner can
generate multiple story plan solutions, all of which equally-satisfy the story problem definition
but contain different story content. These differences in story content are key to understanding
the story branches in a story problem’s solution space, however we lack narrative-theoretic met-
rics to compare story plans. We address this gap by first defining a story plan summarization
model to capture the important story semantics from a story plan. Secondly, we define a story
plan comparison metric that compares story plans based on the summarization model. Using the
Glaive narrative planner and a simple story problem, we demonstrate the usefulness of using the
summarization model and distance metric to characterize the different story branches in a story
problem’s solution space.
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1 Introduction

Branching story games, such as Mass Effect and The Walking Dead, have gained popularity
for creating unique playing experiences by adapting story content in response to user
actions. Research in interactive narrative (IN) uses automated planning to generate story
plans as they offer an action-oriented and causally-related representation consistent with
narrative [3, 19, 34]. For a given story problem, a story planner can generate multiple story
plan solutions, all of which equally-satisfy the story problem definition but contain different
story content. Characterizing the qualitatively different story plans in a story problem’s
solution-space would capture the story branches experienced by a user and enable plan-based
INs to adapt in a story-theoretic manner to user actions.

A first step to characterizing the different story branches in a story plan problem is
to develop the capability to compare two story plans based on their narrative-theoretic
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properties. Conflict Partial Order Causal Link (CPOCL) plans represents story plans with
additional narrative-theoretic structures, namely character subplans and conflict, derived
from classical plan structures. While conforming to the formal structures of classical planning
limits the narrative representation, it allows us to directly leverage the automated planning
community of research for topics such as plan comparison. Thus, in this paper we limit the
scope of narrative-theoretic plan comparisons to those with a CPOCL representation.

Historically, plan comparison research has focused on metrics to assess minimal length
or optimal plans. More recently however, mixed-initiative planning systems have employed
additional advanced distance metrics to capture the differences in plan syntax. Still, these
distance metrics have been restricted to domain-independent properties and do not account
for domain-specific semantics of story plans. We address this limitation by differentiating
between the necessary syntactical structure required by a story plan to be considered a valid
plan and the additional semantic structures derived by CPOCL. This difference allows us to
define a story plan summary. By first summarizing a story plan’s narrative-theoretic content
and then making comparisons allows us to emphasize the narrative-theoretic representation
in story plans to more accurately capture a users experience.

The first contribution we make is the definition of a computational model to summarize
the story semantics of CPOCL story plans. The model captures key story semantics of
the logical progression of plot and character believability, both factors associated with
narrative comprehension. Our second contribution is the definition of a CPOCL story plan
distance metric. This metric builds upon previous work on plan distance metrics to calculate
differences in story semantics between plans. We bring these two models into operation
together on a story domain-problem pair to demonstrate their sensitivity to changes in story
plan semantics and contrast them to existing domain-independent plan distance metrics.

2 Previous Work

In this section, we review key areas of research that support developing a model of CPOCL
story plan summarization and distance metric. First, we outline previous work in story
planning to highlight the specific story plan structures that are applicable to plan summa-
rization research. This is followed by assessing research on plan comparison for concepts that
translate to story plan comparison. Finally, we discuss story comparison from a wide variety
of disciplines to identify principles to operationalize in story plan comparison.

2.1 Story Plan Summarization
The origins of automated story generation can be traced to the Tale-Spin system [17]. Tale-
Spin makes use of an inference engine to direct character action when an initial state and
environment are provided. Automated planning was later used to capture author goals
in the Universe system [15], which focused on causal coherence of actions in the stories it
generated and ensured specific author outcomes in a goal state. Following the advances made
by Universe, the Fabulist system [26] developed the Intent-driven Partial Order Causal-Link
(IPOCL) planner which determines the intentions each character could have and motivates
these intentions through story actions. This supports character believability which is linked
to narrative comprehension. Conflicting character goals are viewed as an essential literary
element of stories [1, 12]. Work to operationalize a notion of conflict by Ware et al. [33]
resulted in the Conflict Partial Order Causal Link (CPOCL) algorithm, which uses non-
executed steps to model foiled character goals. While other story generation mechanisms are
less formal and explore less quantifiable aspects of narrative (e.g MEXICA [25]), we limit
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the scope of this paper to story plans with more formal representation as it allows the direct
application of previous work in classical planning to plan summarization and comparison.

The work of Clement et al. [5] uses abstraction in a Hierarchical Task Network (HTN)
planner to dramatically reduce the run time of planning algorithms. Myers et al. [20]
investigated more appropriate ways to interact with a user with an approach that seeks an
explanation of a plan from the knowledge stored in a meta-theory, rather than from the
syntax of a plan. Another attempt to provide a human-centric interface to plan summaries
was the research by Mellish et al. [18] that used Natural Language Generation (NLG) to
elucidate the steps of a generated plan. Additional work by Myers [21] uses a temporal
based domain-theory to summarize key temporal regularities and exceptions in support of
domain-independent summarization techniques in temporal plans.

The use of Grice’s maxim of quantity [11] motivated the work of Young [35] to find an
equilibrium between the level of detail and abstraction communicated from plan structures.
Plan summaries using the Local Brevity Algorithm (LBA) are computed by weighting the
importance of individual plan steps based on the causal inferences of story events as identified
by Trabasso and Sperry [31]. Specifically, Trabasso and Sperry [31] define a causal chain to
contain an opening, a closing, and to continue the chain of events. The causal chains of six
folk-tales were used to compute both a story event’s membership on the causal chain and
causal connectedness. The experimental results showed that these two factors account for a
significant portion of the variance in agreement of story event recall among study participants
and did not have a statistically significant interaction. This leads the authors to conclude
that causal inferences are foundational to the process of story representation in memory and
a source of how we privilege information. This finding will prove to be valuable research, as
it will form the basis for our arguments in Section 3.2.

2.2 Story Plan Comparison
Like plan summarization, many plan distance metrics are domain independent. In classical
planning, plan distance is well-served by assessing a candidate plan’s syntactic structure to
determine whether it isminimal or redundant with respect to an optimal plan. The application
of planning algorithms to new domains where human decision-making is augmented, termed
mixed-initiative planning, has increased interest in developing more robust plan distance
metrics to capture differences in plan structure.

Research by Srivastava et al. [30] and subsequently by Nguyen et al. [23] into domain-
independent plan distance metrics founded on Jaccard distance resulted in the action,
causal-link and state-space distance metrics. The authors define action distance as

δA(p, p′) = 1− |A(p) ∩A(p′)|
|A(p) ∪A(p′)| , (1)

where A is the actions of a plan and p, p′ are complete plans. Similarly, the causal link
distance is

δC(p, p′) = 1− |C(p) ∩ C(p′)|
|C(p) ∪ C(p′)| , (2)

where C is the set of causal links between plan actions of a plan and p, p′ are complete plans.
These two metrics are of particular interest, as they capture the differences in actions and
causal links, which enable plans to model story properties.

There have also been several other domain-independent distance metrics developed.
Goldman and Kuter [10] designed normalized compression distance as a way to measure
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the conditional information from one plan to another. Plan landmarks, on the other hand,
capture the essential conditions all solution plans must contain and are used by Bryce [4]
to assess the differences between plans in the landmark distance metric. Lastly, Roberts
et al. [28] use the differences in plan length to compute parsimony. Each of these metrics
capture syntactic differences between plans; however, none can be immediately applied to
story plan semantics.

To date, computational models of story comparison have tended to apply comparison
methods from other disciplines. For example, representing story actions as a sequence of
string characters enables the use of sequence-alignment tools commonly used in textual
analysis (spell-checking) and bioinformatics (DNA sequence alignment). Porteous et al. [24]
manipulate characters’ social relationships to explore the qualitative differences in interactive
narratives as reflected in Levenshtein distance [16]. Another sequence-alignment algorithm is
evaluated by Fay et al. [8] who make use of the Needleman-Wunsch algorithm [22] to compare
linear story sequences from Genesis and show its ability to greatly reduce the compute time
for matching and comparison of stories. Finally, the use of an intelligent Drama Manager
(DM) to negotiate the balance between authorial intent and player autonomy in interactive
systems motivated the work of Jones and Isbell [13], who empirically evaluated story similarity
metrics when gameplay is represented as a Targeted Trajectory Distribution-Markov Decision
Process (TTD-MDP) [27]. While methods from other disciplines have shown to be helpful
in computing the differences in stories, they do not make use of human-centered models of
story comparison.

Human-centered research on story comparison has also been a recent focus, such as the
work by Fisseni and Lowe [9] on non-structural dimensions of narratives for the purpose of
story equivalence. Of particular relevance to the work presented in this paper, Kypridemou
and Michael [14] validate the common summary of two stories as a model of their similarity.
Through human subject validation, the authors confirm that the more appropriate a common
summary of two stories, the more similar the two stories are judged to be. While they did
not employ a computational model for generating summaries of the stories, their work offers
a valuable human-centered principle upon which to define a computational model of a story
summary for use in story comparisons.

2.3 Summary of Previous Work
Story generation models that adhere to classic planning principles offer a rich causal repre-
sentation of events, which has lead to the capability to represent character intentions [26]
and conflict [32] as story plan semantics. Unfortunately, plan comparison metrics have
focused on syntactic properties of plans [4, 10, 23, 28, 30] not domain-specific semantics
related to story plan semantics. Reasonably, computational models of story comparison
have leveraged methods from other disciplines [8, 13, 24]; however, human-centered models
of story comparison have shown that a common summary of two stories is important to
similarity assessments [14]. A plan summarization model based on a story event’s causal
degree and membership on the causal chain [35] offers a principled plan-based representation
to begin comparing CPOCL story plans.

3 Story Planning

As discussed in Section 2.3, a limitation of domain-independent comparison metrics is their
focus on measuring syntactic differences between plans. This results in the difference between
the story semantics of two plans not being represented in current plan comparison metrics.
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We address this limitation by first defining the story plan semantics that support a story
plan summarization model. This narrative-theoretic summarization model captures character
intentions and causally significant actions from the syntax required to conform to planning
formalisms. This is followed by defining a story plan distance metric which computes the
differences between two story plan summaries.

3.1 Story Plan Semantics
Story planning algorithms generate story plans to solve a story planning problem, of which
there can be many equally-satisfying solutions. The story semantics between these story
plan solutions can vary and are not captured in current plan distance metrics. We provide
precise definitions of story plans and their related parts to both leverage previous work in
classical planning and to ground work from other disciplines in this context. In the tradition
of being precise, the following definitions are formalized based on the established body of
work in story planning.

A planning domain theory models the way in which the world can change through the
application of actions to a world state. Story planners implement algorithms which instantiate
and combine actions from a domain theory to reach a goal state from some initial state.

I Definition 1 (Action). An action is defined as the preconditions that must be satisfied
before its execution and the effects that result. A precondition is a function-free positive
literal in a state space and the conjunction of an action’s preconditions must evaluate to true
before it can execute. An action’s effects are function-free positive literals whose conjunction
is the result of the change in state space when an action is executed.

Together with an action’s name and parameter list, the precondition and effects describe
an action schema. An action schema can be instantiated into various forms, dependent on
the literals to which the variables unify. Note that the use of the terms action, step, and
operator are used interchangeably.

I Definition 2 (Story planning problem). A story planning problem Φ is a four-tuple〈
I, A,G,Λ

〉
where I is a conjunction of function-free ground literals which are true in

the initial state, A the set of symbols referring to character agents, G a conjunction of
function-free ground literals which are true in the goal state, and Λ a set of action schemata.
This definition is in the way of Riedl & Young [26].

An action’s preconditions are satisfied through causal links to an earlier step’s effects and,
in turn, its effects can satisfy preconditions to later steps.

I Definition 3 (Causal Links). Causal links are denoted s p,q→ u, where s, u are steps in S of
story plan P , with an effect p and precondition q respectively. In this case, q is satisfied for
u because s had p as an effect and there exists a literal r that unifies with p and q. The step
s is a causal parent of u, while u is the causal child of s. The causal parents of s are causal
ancestors of u and the causal children of u are the causal descendants of s. These transitive
relations extend until an action with no parents or children is reached.

Steps which establish causal links for subsequent steps are at risk of some other step’s
effect undoing a causal parent’s effect, thereby transforming the state of the world into one
which the causal child action cannot execute.

I Definition 4 (Causal link threat). A causal link threat occurs when a causal link is
established s p,q→ u, and some other step w has the effect ¬p and could be executed after s
but before u. Executing w in this interval means the precondition q of u is no longer satisfied
by s and u will not execute.
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A causal link threat to s p,q→ u can be resolved by introducing an ordering constraint such
that w is executed before s or after u. Resolving all causal link threats to this causal link
guarantees that p remains true after s is executed until u is executed, preserving the causal
link with u.

I Definition 5 (Ordering constraint). An ordering constraint is of the form w ≺ s and is
interpreted as w must be executed at some time before s.

Establishing causal links between steps requires maintaining which precondition and
effect variable pairs must unify. Additionally, it may be desired that the free variables in
action parameters are not equivalent. Binding constraints are used to capture both these
conditions.

I Definition 6 (Binding constraint). A binding constraint is a pair of variables (u, v) or
negated pair ¬(u, v) where the pair must unify or not be allowed to unify, respectively.

Characters are an important element of stories. In support of this, character intention
frames were implemented in story plans to justify individual character actions in service of
their goals.

I Definition 7 (Intention Frame). An intention frame in a plan P is a tuple of five elements〈
c, g,m, σ, T

〉
where c is a character, a goal that c intends to make true is represented by g.

The motivating step m is in S(P ) with the effect intends(c, g), the satisfying step σ is also
in S(P ) and has g as an effect. The set of steps T is a subset of steps from S(P ) taken by c
to achieve the goal effect g. T is called the character’s subplan to achieve the goal effect g.
All steps in T must occur after the motivating step m and before σ.

The POCL (Partial Order Causal Link) family of planners searches through a story plan
space to produce story plans of the form defined below.

I Definition 8 (Story plan). A story plan P is a tuple of five elements
〈
S,B,O,L, I

〉
where

the set of steps is S (with executed steps denoted Se and non-executed Sne), the set of
binding constraints on the free variables of S is defined as B, the partial ordering of the
steps in S defined as O, L the set of causal links joining steps from S, and finally I, the set
of intention frames which define character subplans in S. This definition is consistent with
the definition of a CPOCL plan in Ware et al. [33].

The differentiation of executed and non-executed steps is made in support of representing
character conflict. Non-executed steps are part of foiled sub-plans that a character had the
intent of completing, but could not due to an unresolved causal link threat with another step.

I Definition 9 (Story plan solution). A story plan P is a solution to the story plan problem
Φ if its actions, which has I(Φ) as effects of the first action and G(Φ) as preconditions to the
goal step, have no open preconditions and is consistent. A story plan is consistent if there
are no cycles in the ordering constraints O(P ) and no causal link threats remain between
two executed steps in Se(P ).

While these definitions may appear verbose, they are necessary to formally characterize
the representation of a story plan solution. This representation leads to a story planning
problem to, in fact, have many story plan solutions and they can differ in both their syntax
(e.g. actions) and in more human centric ways. The next sections focus on operationalizing
the ability of humans to recall certain events as a model of summarization and comparison.

3.2 Story Plan Summarization
The story semantics detailed in Section 3.1 lay the principles for a computational model
of a story plan summary. The importance of causal degree and the causal chain in the
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recall of story events [31] suggests a mechanism to summarize the logical progression of
plot. Additionally, intention frame summaries play an important role in the comprehension
of a story. These two properties will form the basis of a story plan summary, which is
incrementally defined below.

We capture a story plan’s causal links in the n× n causal matrix SP ,

SP =



0 s12 s13 . . . s1n
0 0 s23 . . . s2n

0 s32
. . . . . .

...
...

...
... . . . sn−1n

0 0 . . . . . . 0

 . (3)

where n = |S(P )| . The sij entry contains the number of effects of step i used as preconditions
by step j. Note the zeroes in the initial state’s column (s1) and of the goal state’s row (sn),
which denote the lack of preconditions and effects, respectively. It is necessary to compute
SP for each story plan solution, and not for the action schemata, as SP captures the number
of times the effects of a step are used in a story solution plan, which can be equal to, greater
than, or less than the effects in the action schema.

To support the identification of important events in a story plan, the causal degree of the
step i, si, is computed directly from SP by adding both the ith row sum,

deg−c (si) =
n∑
j=1

sji, (4)

a step’s used effects, and column sum,

deg+
c (si) =

n∑
j=1

sij , (5)

a step’s satisfied preconditions.

I Definition 10 (Causal degree). The causal degree of a step si in a plan P is the sum of the
step’s preconditions deg−c (si) and the sum of the effects used by each causal child deg+

c (si),
defined in Equation6:

degc(si) = deg−c (si) + deg+
c (si). (6)

The criteria for a causal chain having a motivation, beginning, and end emerged from
Trabasso and Sperry’s work [31] and is directly applicable to story plans as character goals,
the initial state, and the goal state, respectively.

I Definition 11 (Causal chain). A causal chain C of a story plan solution P , C(P ), is a
subset of S(P ), which consists of all the steps that are causal ancestors of the goal step, plus
those steps’ causal descendants. The causal chain excludes both the initial and goal step, s1
and sn, respectively.

The causal chain excludes the initial and goal steps. While they are both elements of
S(P ), they are never executed by the planner. Rather they are only states to delineate
the start and end of a plan. Including these steps in the causal chain would only serve to
complicate deriving story plan summaries.

I Definition 12 (Important steps). The important steps E of a story plan solution P is the
set of executed steps in the causal chain C(P ) with the highest causal degree computed from
the matrix SP .

CMN 2016
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While non-executed steps provide a construct to identify conflicts between characters,
they are excluded from important step calculations as their effects are not realized in the
story world state. Additionally, we use highest causal degree to mean an exact number, and
it is expected that the number of important steps in story plan will be small.

The set of steps T of an intention frame I =
〈
c, g,m, σ, T

〉
(Definition 7) captures the

means by which a character achieves a goal and it has been used to reflect character traits [2];
however, this could include steps without any story plan semantics, such as movement actions.
While such actions are necessary for the progression of the story plan, we do not have a
character-centric model to capture which steps are meaningful in story plans. In order to
avoid these steps influencing our comparisons, we simply remove T to form an intention
frame summary, until such a time that plan steps can be validated as a robust character trait
model.

I Definition 13 (Intention frame summary). An intention frame summary j of some intention
frame in I from the story plan P is a four-tuple

〈
c, g,m, σ

〉
where c,g,m and σ are preserved

from Definition 7. The set of intention frame summaries of P is denoted as J(P ), where each
intention frame in I(P ) has a corresponding intention frame summary in J(P ).

We combine the causally important steps (Definition 12) and intention frames summaries
(Definition 13) to define the Important-Step Intention-Frame story plan summary as

ψISIF(P ) =
〈
E, J

〉
, (7)

where P is a story plan solution, important steps E are computed from the steps S(P ) and
intention frame summaries J(P ) derived from the intention frames I(P ).

3.3 Story Plan Distance Metric
Previous plan comparison metrics compare, on a limited basis, the semantics between story
plans as they apply uniform importance to all plan syntax. We address this limitation by
using the formalization of story plan summaries in Section 3.2, which extracts the story plan
semantics to make them available for direct comparison. We first define the notion of the
distance between two story plan summaries formally.

I Definition 14 (Story plan distance metric). A distance metric between two story plan
summaries, ψ1 and ψ2, is a function ∆ where ∆(ψ1, ψ2) −→ [0, 1]. The value of zero
represents perfect similarity between the two summaries, where the value of one denotes
perfect dissimilarity.

In order for any ∆ to be mathematically consistent as a distance metric, it needs to satisfy
the identity, symmetry, and triangle inequality properties. As a result, proper subsets of
plans must not be made by the metric itself, as it violates the identity property of a distance
metric. As an example, a metric that only compared the penultimate steps of two plans
would assess them as being identical when their penultimate step is equal, when in fact the
rest of the steps of the plan could be all different. To maintain mathematical consistency,
the distance metric defined in this section is based on story plan summaries.

Previous work in plan comparison has made use of the Jaccard distance metric to compare
plans. While not theoretically motivated or explicitly denoted by the authors in [23, 30],
Jaccard distance is often used as a simple distance metric for assessing non-normal data,
with no underlying distribution and no linear relationships. A key feature of the Jaccard
distance is the use of the intersect set operator in the numerator as it accounts for the



A. Amos-Binks, D. L. Roberts, and R.M. Young 9:9

(a) Ground actions (S) per plan (b) Ground causal links (L) per plan

(c) Ground important steps (E) per plan (d) Unique intention frames (I) per plan

Figure 1 Solution space distributions of Π.

common elements between two story plan summaries, a factor for human judgment of story
similarity [14].

We define the Jaccard distance metric between two story plan summaries as

δISIF(ψISIF
1 , ψISIF

2 ) = 1− 1
2

(∣∣E(ψISIF
1 ) ∩ E(ψISIF

2 )
∣∣∣∣E(ψISIF

1 ) ∪ E(ψISIF
2 )

∣∣ +
∣∣J(ψISIF

1 ) ∩ J(ψISIF
2 )

∣∣∣∣J(ψISIF
1 ) ∪ J(ψISIF

2 )
∣∣
)
, (8)

where ψISIF
1 and ψISIF

2 are ISIF story plan summaries (Equation 7), E is the important
events of a story plan summary, and J is the intention frame summaries of a story plan
summary. We introduce a factor of 1

2 over the Jaccard similarity of E and J to ensure the
metric remains between 0 and 1. This also has the consequence of equally weighting both E
and J . We can interpret the δISIF distance metric as story plan summaries which have little
in common in terms of intention frames and causally important steps will have a score close
to 1, whereas similar summaries will have a δISIF close to 0.

3.4 Summary of Definitions

Past research in plan comparison has classified distance metrics into domain-independent
and domain-specific. While the distance metric described in Section 3.3 can be classified as
a domain-specific metric, the use of narrative-theoretic constructs in the story plan summary
affords the metric to generalize to all story domains and would classify as a Narrative Metric
under the StoryEval framework [29]. In practice, story plan distance metrics are constrained
to the representational capability of story planners. In Section 4, we turn our focus to
determining whether the δISIF distance metric can capture differences in story semantics in
the solution space of a simple story planning problem.

CMN 2016
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4 Experimental Results

We desire to characterize the story branches in an IN that uses automated planning for story
generation. This requires differentiating between story plans which equally-satisfy a single
story planning problem. With this in mind, the evaluation uses a single solution plan-set
generated from the Glaive narrative planner [32], which has been previously used for IN
story generation, and does not consider comparing plans across story planning problems or
story planning domains.

Our commitment to the CPOCL story plan representation introduces another considera-
tion in evaluating the δISIF story plan distance metric. We must consider what alternative
methods exist to compare two CPOCL story plans. Previous story comparison efforts fall
into two classes. The first are human judgments of story comparisons [9, 14], making them
difficult to formalize to a CPOCL representation. A second class uses existing domain-
independent measures that accept the author’s representation as input, such as the use of
string comparison [8, 24] and subgraph isomorphism [7]. In short, previous story comparison
methods either require capturing the stories in CPOCL story plans or adapting CPOCL
story plans to the method’s required input. Rather than undertake the task of further
formalization, we use CPOCL plans’ adherence to automated planning formalisms to find
appropriate plan-based domain-independent distance metrics to compare the δISIF story plan
distance metric. Conveniently, established plan-based distance metrics which capture the
action-oriented and causally-linked representation overlaps between narrative and automated
planning already exist, namely the action (δA) and causal-link (δC) distance metrics.

The goal in the preliminary evaluation in the following section is two-fold. Firstly, to
investigate the ability of δISIF story plan distance metric and existing distance metrics to
capture the story branches in an IN story problem’s solution plan-set. Secondly, demonstrate
that when comparing a pair of plans the δISIF• story plan distance metric is more sensitive
to small syntactical differences that result in significant story semantic differences than
existing automated-planning distance metrics.

4.1 Story Domain and Problem
To demonstrate the differences between the different distance metrics, we use the space
story domain, which was previously defined to evaluate the Glaive planner and highlight
the CPOCL representation [32]. The space story domain was the simplest of the domains
used in the evaluation and consists of two variable types, eleven predicates, and ten actions.
This domain was used as it presents enough complexity to highlight the differences between
distance measures, but not so much as to lead the analysis into extreme cases.

The story problem used is one in which an astronaut (“Zoe”) must resolve conflicting
intentions of exploration and self-preservation as a volatile planet becomes inhospitable. This
story problem is referred to as the exploration problem. The initial state of the exploration
problem consists of fourteen predicates and five character intentions, three belonging to
Zoe and two to an alien. A key feature of this problem is the goal step consisting of a
single predicate; ¬(habitable surface), which is only possible by one action in the domain;
begin-erupt.

4.2 Solution Plan-Set Analysis
The Glaive heuristic search planner (HSP) [32] was able to generate a solution plan-set of
10, 000 CPOCL solution plans, Π, to the exploration problem. While each story plan is
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Figure 2 Solution diversity using different distance metrics.

equally-satisfying in their ability to solve the story planning problem, significant differences
exist between their story semantics. Of the plan comparison metrics reviewed, δA (Equation 1)
and δC (Equation 2) are the most relevant to compare with δISIF as they capture first principle
overlaps between planning and stories: namely, action-oriented nature and causally-related
events. Additionally, the metrics do not require total orderings, a necessary criteria when
comparing partial order plans.

We can obtain some insight of the pertinent elements of Π to each distance metric
in Figures 1a–1d. Specifically, both the distribution of steps (Ground actions, Figure 1a)
and causal links (Figure 1b) show that a non-trivial number of elements are used in the
calculations made by the δA and δC distance metrics. While the number of important steps
(Figure 1c) and intention frames (Figure 1d) are smaller relative to ground actions and causal
links, they are combined together in the δISIF metric to achieve greater size. To sum, we
can see from Figures 1a–1d that despite the simplicity of the space exploration problem, the
distribution of the relevant properties in plans of Π support substantive syntactic and story
semantic comparisons.

We use a standard calculation from the automated planning community to capture the
differences in the solution space. The plan-set diversity [6] is a pairwise comparison made
between every solution plan in Π,

Div(Π) =

∑
π,π′∈Π

D(π, π′)

|Π| × (|Π| − 1)
2

, (9)

where π and π′ are plans in a plan-set, Π, and D(π, π′) is a distance metric. The distribution
of plan-pair comparisons using the three distance metrics and their associated diversity
measures are shown in Figure 2.

We can observe the agreement in plan-set diversity using the three metrics (0.325, 0.305,
0.313); yet, this does not capture the differences in distribution. Take for instance the lack of
scores near 1.0 for the δA metric but the presence of such scores for δISIF . This is an artifact
of the exploration problem’s goal state containing the ¬(habitable surface) predicate, which
requires all solutions to have the erupting volcano action as it is the only action with this

CMN 2016
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(a) Plan π1

(b) Plan π2

Figure 3 Story plans with intention frames in color.

Table 1 Story plan properties.

πi |S(πi)| |L(πi)| |I(πi)| |E(πi)| C(πi) E(π1)

π1 8 (6 executed, 2 non-executed) 35 2 2 {s2, s3, s4, s7} {s2, s4}
π2 8 (5 executed, 3 non-executed) 35 1 1 {s2, s3, s7} {s2}

predicate as an effect. The presence of scores at 1.0 when using the δISIF metric indicates
that there is more than a single narrative experience in the solution plan-set. While we can
glean some insights from the plan-set diversity measure when using the δISIF metric, plan-set
diversity does not capture, for instance, the exact number of branches in a story problem’s
solution space. We leave the development and application of other plan-set measures that
capture important IN characteristics for future work.

4.3 Solution Plan-Pair Analysis
The solution space distance metric results presented in Section 4.2 illustrate qualities of the
solution space coupled to properties of the story domain and story problem; however, specific
examples of the story plan distance measure are needed to demonstrate the effectiveness of
the story summary distance metric. The following example uses two story plans, π1 and π2,
from Π to illustrate when small syntactic differences have large semantic differences between
story plans.

We observe the difference in structure of the two plans in Figure 3, where executed
actions are solid rectangles, non-executed actions dashed rectangles, and the links between
them represent the existence of one or more causal links. The plans have a similar syntactic
structure, containing the same number of steps and causal links (8 and 35 respectively) with
a single difference in s4 (executed vs non); however, this single syntactic difference changes
the story semantics in a significant manner by affecting the number of important events and
intention frames.

We capture the common intention frame between the two plans in purple and the
additional intention frame in π1 with blue. The common intention frame in each plan is Zoe’s
goal to make peace with the alien, which is motivated in s1, and her first action towards



A. Amos-Binks, D. L. Roberts, and R.M. Young 9:13

Sπ1


deg

+
c

0 6 1 5 5 6 23
0 1 1
0 1 1
0 1 1
0 x
0 x
0 1 1
0 0 0 0 0 0 0 0 0

deg
−
c 0 6 1 6 x x 1 1

 Sπ2


deg

+
c

0 6 1 5 5 6 23
0 1 1
0 1 1
0 x
0 x
0 x
0 1 1
0 0 0 0 0 0 0 0 0
0 6 1 x x x 1 1



Figure 4 Causal Matrices.

Table 2 Example story plan-pair properties.

πi, πk δA(πi, πk) δC(πi, πk) δISIF(πi, πk)

π1, π2 0.11 (1 - 8
9 ) 0.00 (1− 35

35 ) 0.50 (1− 1
2 ( 1

2 + 1
2 ))

completing this goal is s2; however, the surface begins to erupt in s3 making Zoe ¬safe. Zoe
now has conflicting goals and must choose between continuing her existing goal while ¬safe
or adopting a new goal of ensuring her life is preserved by teleporting back to the ship and
becoming safe. We can observe that s4 is executed in π1, which constitutes Zoe’s first and
satisfying step of her goal to be safe instead of continuing her intention to make peace with
the alien. This additional intention frame contrasts with π2 where s4 is a non-executed step,
indicating Zoe does not adopt the goal of being safe, thus only a single intention frame of
her search for the alien.

The change of s4 from non-executed to executed step also affects the number of causally-
important steps. Both plans have s2 as an important step, since it is both on the causal
chain and has the highest causal degree, seven as deg−c (s2) = 6 and deg+

c (s2) = 1 (see
Figure 4). Identically, we observe that the causal degree of s4 is also seven, deg−c (s4) = 6 and
deg+

c (s4) = 1; however since the definition of a causal chain requires steps to be executed, s4
is excluded from E(π2). This additional member of E(π1) demonstrates how important steps
can vary from equally-satisfying solutions and have a semantic impact on story plan content.

The semantic properties, as well as the syntactic properties, which are relevant for
computing the three distance metrics between π1 and π2, are shown in Table 1. We observe
in Table 2 that the syntactic change in s4 between the plans results in a difference of 0.11
when calculated using the δA metric. The same change results in the δC metric calculated
as 0.00, as the causal structure is identical from π1 to π2. In contrast, the δISIF calculation
results in a much more significant 0.50 as it captures the semantic importance of the small
syntactic change. This relatively large difference between the domain-specific (δISIF) and
domain-independent (δA, δC) metrics demonstrates the ability of a metric based on story
plan semantics to more accurately capture subtle differences in story plan syntax.

4.4 Summary of Experimental Results
In this section, we described the space domain’s exploration problem then evaluated three
plan distance metrics on their ability to compare two equally-satisfying story plans. The δA
metric provided a useful insight into the composition of the problem definition, namely all
solution plans will contain the begin-erupt step. It further suggests that meaningful insights
could be ascertained by describing the solution space using the δISIF metric. Lastly, we used
two equally-satisfying story plans with a single syntactic difference to illustrate the difference
in story plan semantics that δISIF captures. These results support semantic summaries as a
promising approach to story plan comparison.

CMN 2016
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5 Limitations

We have presented and demonstrated formalized models of story plan summarization and
comparison for a CPOCL story plan representation. It is worth emphasizing that while
CPOCL represents validated forms of character intentions and conflict, its adherence to
a strict automated planning formalism limits its capability to represent narrative. Story
comparisons extend far beyond those stories which CPOCL and the models presented in the
paper capture. As more advances are made in deriving story semantics from classic plan
representations into story plans, summarization models and comparison metrics will be able
to build on the contributions of this paper.

6 Conclusions

Branching stories have enjoyed success in recent games and quantifying the story branches
in a narrative planner requires a story-plan comparison metric. In support of addressing this
need, this paper draws together research from both computer science and narrative theory
to synthesize two primary contributions to advance CPOCL story plan comparison.

The first is the definition of a computational model for a story plan summary supported
by cognitive psychology and narratology. A story plan summary uses story plan steps’ causal
degrees, in addition to character intention frame summaries to capture story plan semantics
while ignoring syntactic structure of less importance. The resulting story plan summary is a
concise semantic representation of a story plan and provides a foundation upon which to
compare other story plans.

A second contribution is the definition of the δISIF story plan distance metric. The
distance metric leverages previous work in plan comparison, namely the use of Jaccard
similarity, to compare domain-specific properties. While the formulation of the distance
metric weights the score equally over the important step and intention frame components, it
avoids learning weighted parameters and violating the definition of a distance metric.

We demonstrated the above contributions using a CPOCL solution plan-set to the
exploration problem. At both the solution plan-set level and in specific story plan-pair
examples, we calculate the differences between two existing syntactic plan comparison metrics
and the δISIF story plan comparison metric. We exhibit that when using the δISIF distance
metric in plan-set comparisons it can confirm the existence of mutually-exclusive story plan
summaries, while at the story plan-pair level it captures small syntactic differences that
have larger semantic differences. These results are significant, not only do the story plan
summarization model and distance metric enable more robust comparisons of story plans but
we expect them to generalize to all story plan domains due to their cognitive psychology and
narratology foundations. We expect to validate these models in a human subject evaluation
in the near future.
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