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Abstract
The periodic event scheduling problem (PESP) is a well studied problem known as intrinsically
hard. Its main application is for designing periodic timetables in public transportation. To
this end, the passengers’ paths are required as input data. This is a drawback since the final
paths which are used by the passengers depend on the timetable to be designed. Including the
passengers’ routing in the PESP hence improves the quality of the resulting timetables. However,
this makes PESP even harder.

Formulating the PESP as satisfiability problem and using SAT solvers for its solution has
been shown to be a highly promising approach. The goal of this paper is to exploit if SAT solvers
can also be used for the problem of integrated timetabling and passenger routing. In our model
of the integrated problem we distribute origin-destination (OD) pairs temporally through the
network by using time-slices in order to make the resulting model more realistic. We present a
formulation of this integrated problem as integer program which we are able to transform to a
satisfiability problem. We tested the latter formulation within numerical experiments, which are
performed on Germany’s long-distance passenger railway network. The computation’s analysis
in which we compare the integrated approach with the traditional one with fixed passengers’
weights, show promising results for future scientific investigations.
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1 Introduction

Since the introduction of the Periodic Event Scheduling Problem (PESP) in [26] this problem
has been investigated and analyzed in numerous publications. Early contributions about
the PESP in the context of timetabling include [16, 18, 19]. They show NP-hardness of
even the feasibility problem and develop different formulations as integer programs. It

∗ This work was partially supported by DFG under grant SCHO1140/8-1

© Philine Gattermann, Peter Großmann, Karl Nachtigall, and Anita Schöbel;
licensed under Creative Commons License CC-BY

16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’16).
Editors: Marc Goerigk and Renato Werneck; Article No. 3; pp. 3:1–3:15

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ATMOS.2016.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


3:2 Integrating Passengers’ Routes in Periodic Timetabling: A SAT approach

turns out that formulations using cycle-bases are the most efficient ones leading to several
further publications, e.g., [21, 20, 10, 22, 14, 11]. Success stories for timetabling in practice
based on PESP models are presented in [7, 12] where the Dutch railway timetable and the
timetable of Berlin Underground have been computed. Besides using integer programming,
the modulo simplex [17, 2] is a heuristic approach for tackling PESP. Recently, [8, 4] showed
that SAT solvers can be used successfully for solving PESP instances in the context of railway
timetabling.

When using PESP models for timetabling, it is always assumed that the precise passengers’
paths are known beforehand, i.e., which lines a passenger takes and at which stations he or
she wants to transfer. As noted in [24, 23] this is not realistic since the passengers’ behavior
crucially depends on the timetable which still has to be determined. Recently, [1] showed
that the error which can be made by this assumption can be arbitrarily large theoretically
and present a case study which shows that allowing a re-routing of passengers can improve
the transfer waiting time of periodic timetables by more than 20%.

Our contribution. In this paper we study an integrated problem of finding a timetable and
passengers’ routes in which we distribute the passengers temporally using time-slices. We
propose a formulation as satisfiability problem and study its computational behavior.

2 Definition of the integrated problem

When integrating timetabling and passenger routing we want to find a solution which
optimizes the travel quality of the passengers. The travel quality of the passengers is usually
measured as the sum of all traveling times over all passengers. For technical reasons we use
a slightly different measure here, namely the speedup compared to a maximal travel time
that a passenger is going to accept. In order to determine a passenger’s travel time, they are
routed through the network on shortest paths (according to the actual timetable) as part
of the optimization. To account for a more realistic distribution of passengers, an OD-pair
is distributed to different time slices. The time slice a passengers is allotted to specifies in
which part of the planning period his or her journey is supposed to start. Changing to a
different time slice is allowed but penalized in order to account for much shorter travel times
when starting earlier or later than planned. Every passenger whose travel time exceeds the
maximal one for the OD-pair is supposed to use another mode of transportation and is not
counted towards the objective function.

Our model only uses data which can be supplied when only the public transportation
network (V,E), with its set of stations V and direct connections E between them, the line
plan L and the planning period T are known. We especially need maximal and minimal
driving times Ldrive

e , Udrive
e for all edges, minimal and maximal waiting times Lwait

v , Uwait
v

in each stop as well as minimal and maximal transfer times Ltrans
v , U trans

v in each station
to define feasibility of a timetable. As mentioned above, we need origin-destination data
Ct

u,v for each time-slice t ∈ {1, . . . , Tu,v}, where Tu,v is the number of time slices for OD-pair
(u, v), and a penalty P t,t′

u,v for changing the start of a journey from time slot t to t′ as well as
a maximal traveling time Du,v for each passenger. The Timetabling Problem with Passenger
Routing hence is:

I Definition 1. For the input data mentioned above, find a timetable such that the speedup
of the passengers routed along their shortest paths according to travel time and time slice
changing penalty, is maximized.
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In the following we model this problem more formally as integer program and as satis-
fiability problem. To this end, we first have to introduce the extended event-activity network
(extended EAN ) as common basis for both formulations.

2.1 Extended EAN
The basis of both the integer programming (IP) and the satisfiability (SAT) formulation for
the integrated problem is an event-activity network, similar to the one used in a standard
PESP-formulation (see, e.g., [16, 11]). First we define the basic EAN N 0 = (E0,A0):

E0 = E0
arr ∪ E0

dep

as the set of all arrival and departures of all lines at all stations,
E0
arr = {(v, l, arr) : v ∈ V, v ∈ l, l ∈ L}
E0
dep = {(v, l, dep) : v ∈ V, v ∈ l, l ∈ L}
A0 = A0

drive ∪ A0
wait ∪ A0

trans

links the events in E0 by driving, waiting and transfer activities,
A0

drive = {((v1, l, dep), (v2, l, arr)) : {v1, v2} ∈ l, l ∈ L}
A0

wait = {((v, l, arr), (v, l, dep)) : v ∈ l, l ∈ L}
A0

trans = {((v, l1, arr), (v, l2, dep)) : v ∈ l1, v ∈ l2, l1, l2 ∈ L}.

Moreover, headway activities (which are not relevant for the passengers’ paths) are used to
model security distances between trains. The upper and lower bounds on the duration of the
activities are set according to the underlying edges E of the public transportation network.

La =


Ldrive
{v1,v2}, if a = ((v1, l, dep), (v2, l, arr))

Lwait
v , if a = ((v, l, arr), (v, l, dep))

Ltrans
v , if a = ((v, l1, arr), (v, l2, dep))

Ua =


Udrive
{v1,v2}, if a = ((v1, l, dep), (v2, l, arr))

Uwait
v , if a = ((v, l, arr), (v, l, dep))

U trans
v , if a = ((v, l1, arr), (v, l2,dep))

Additionally, we need nodes and arcs representing the OD-pairs. These nodes need not be
scheduled in the timetable. Thus we get N̄ = (Ē , Ā) with

Ē = E0 ∪ E0
OD

E0
OD = {(u, v, t, t′, source), (u, v, t, target) : u, v ∈ V, t, t′ ∈ {1, . . . , Tu,v}}

source and target nodes for passenger paths
Ā = A0 ∪ A0

time ∪ A0
to ∪ A0

from

A0
time = {((u, v, t, t, source), (u, v, t, t′, source)) : u, v,∈ V, t 6= t′ ∈ {1, . . . , Tu,v}}

arcs for changing the time slice
A0

to = {((u, v, t, t′, source), (u, l, dep)) : u ∈ l, u, v,∈ V, t, t′ ∈ {1, . . . , Tu,v}}
acrs to get from a source node into the network

A0
from = {((v, l, arr), (u, v, t, target)) : v ∈ l, u, v,∈ V, t ∈ {1, . . . , Tu,v}}

arcs to get from the network to a source node.
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Here, a node (u, v, t, t′, source) ∈ E0
OD corresponds to the OD-pair traveling from u to v which

was appointed to start in time slice t and actually starts in t′.

3 An IP formulation for the integrated problem

For the IP-formulation for the integrated problem, we combine a PESP-formulation for
timetabling with an IP-formulation for passenger flow for each OD-pair and each time slice.

Integer variables πi are used to model the time appointed to event i with corresponding
modulo parameters za. For the passengers we are using binary variables xt

u,v to determine if
there is there a path from u to v starting in time slice t which is used and variables zu,v,t

a to
decide if arc a is used by the passengers going from u to v starting in time slice t.

max
∑

u,v,∈V

Tu,v∑
t=1

Ct
u,v

(
Du,v · xt

u,v −
∑

a=(i,j)∈A0

zu,v,t
a · (πj − πi + za · T )

−
∑

a=((u,v,t,t′,source),•)∈A0
time

P t,t′

u,v · zu,v,t
a )

)
(1)

πj − πi + za · T ≥La ∀a = (i, j) ∈ A0 (2)
πj − πi + za · T ≤Ua ∀a = (i, j) ∈ A0 (3)

xt
u,v ≥zu,v,t

a ∀u, v ∈ V, t ∈ {1, . . . , Tu,v}, (4)
a ∈ Ā, l ∈ L :
a = (•, (•, l, •)), a = ((•, l, •), •)

Au,v,t · (zu,v,t
a )a∈Ā =bu,v,t ∀u, v,∈ V, t ∈ {1, . . . , Tu,v} (5)

πi ≥zu,v,t
a · Lt′

u,v ∀u, v ∈ V, t, t′ ∈ {1, . . . , Tu,v}, (6)
a = ((u, v, t, t′, source), i) ∈ A0

to

πi ≤U t′

u,v +M · (1− zu,v,t
a ) ∀u, v ∈ V, t, t′ ∈ {1, . . . , Tu,v}, (7)

a = ((u, v, t, t′, source), i) ∈ A0
to

πi ∈{0, T − 1} ∀i ∈ E0

za ∈Z ∀a ∈ A0

zu,v,t
a ∈{0, 1} ∀u, v,∈ v, t ∈ {1, . . . , Tu,v}, a ∈ Ā
xt

u,v ∈{0, 1} ∀u, v,∈ v, t ∈ {1, . . . , Tu,v}

As the model is non-linear, the objective function (1) has to be linearized by substituting

zu,v,t
a · (πj − πi + za · T ) = du,v,t

a

with

du,v,t
a ≥ 0
du,v,t

a ≥ πj − πi + za · T − (1− zu,v,t
a ) ·M ′

where M ′ is sufficiently large, e.g. M ′ ≥ maxa∈A0 Ua.
Constraints (2) and (3) are the standard timetabling constraints while constraint (4) makes
sure that an activity can only be used by a passenger, if a path for this passengers is
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chosen at all. The routing of passengers is modeled by constraint (5). Here, Au,v,t is a
node-arc-incidence-matrix and bu,v,t the corresponding demand vector:

Au,v,t ∈ {0, 1,−1}|Ē|×|Ā|

au,v,t
i,a =



1, if a = (i, j) ∈ A0
time ∪ A0

to, i = (u, v, t, t′, source)
−1, if a = (j, i) ∈ A0

time ∪ A0
to, j = (u, v, t, t′, source)

1, if a = (i, j) ∈ A0
from, j = (u, v, t, target)

−1, if a = (j, i) ∈ A0
from, i = (u, v, t, target)

1, if a = (i, j) ∈ A0

−1, if a = (j, i) ∈ A0

0, otherwise

bu,v,t ∈ {0, 1}|Ē|

bu,v,t
i =


xt

u,v, if i = (u, v, t, t, source)
−xt

u,v, if i = (u, v, t, target)
0, otherwise

Constraints (6) and (7) make sure that the first event of a path starting in time slice t′ lies
in the correct time slice. Here Lt′

u,v = (t′ − 1) · T
Tu,v

and U t′

u,v = t′ · T
Tu,v
− 1. M has to be

sufficiently large, e.g. M = T is large enough.
In case that all xt

u,v variables are set to one, the objective function minimizes the
traveling time

∑
a=(i,j)∈A0 zu,v,t

a · (πj − πi + za · T ) and the penalty for changing a time slice∑
a=((u,v,t,t′,source),•)∈A0

time
P t,t′

u,v · zu,v,t
a ). For technical reasons we, however, need an upper

bound Du,v on the length of a passengers’ path, and hence allow that a passenger is not
routed at all if his or her shortest path exceeds this length. Since the contribution of such
an non-routed passengers to the objective function is only zero, the model tries to avoid
non-routed passengers such that this happens only in exceptional cases.

4 A SAT formulation for the integrated problem

Now we model the same problem as a partial weighted MaxSAT problem. Therefore, we have
to formulate all constraints in conjunctive normal form and convert the objective into a set
of clauses with positive weight.

To emphasize the similarities of the problems, the variables we are using will be mostly
the same. We can directly use the binary variables xt

u,v for the usage of paths and zu,v,t
a

for the usage of arcs. Due to the definition of the satisfiability problem we cannot use the
integer variables πi but have to substitute them for binary variables πk

i which determine if
πi ≤ k holds.

4.1 Modeling feasibility

At first we show how to model the feasibility of the Timetabling Problem with Passenger
Routing as a SAT problem by extending the timetabling SAT model proposed in [5]. We
will discuss all sets of constraints in detail in the following paragraphs.

ATMOS 2016
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4.1.1 Timetabling
As shown in [5], the timetabling constraints can be modeled as conjunction of two sets of
clauses. One set, which we call ΩN 0 , is used for modeling the variable encoding and another
set, called ΨN 0 , for modeling the constraints.

4.1.2 Modeling passenger routes
For the passenger routes we simply model whether a path from u to v is used for time slice t
by the variables xt

u,v. If this is the case, we also have to model the corresponding passenger
path.
Therefore, we first have to make sure that for each OD-pair u, v and each time slice t a path
starts, if one is chosen at all. This can be realized either by moving to a different time slice
or by starting at a specified event in the allotted time slice.

xt
u,v ⇒

∨
a=((u,v,t,t,source),•)∈A0

time∪A
0
to

zu,v,t
a

⇐⇒ ¬xt
u,v ∨

∨
a=((u,v,t,t,source),•)∈A0

time∪A
0
to

zu,v,t
a︸ ︷︷ ︸

enc_start(u,v,t)

for all u, v ∈ V, t ∈ {1, . . . , Tu,v}

Additionally, we have to make sure that if an arc a = ((u, v, t, t′, source), i) ∈ A0
to is used, the

target event i ∈ E0 lies in the correct time slice.

zu,v,t
a ⇒ πi ∈ {(t′ − 1) · T

Tu,v
, . . . , t′ · T

Tu,v
− 1}

⇐⇒ ¬zu,v,t
a ∨ (¬π

(t′−1)· T
Tu,v

−1
i ∧ π

t′· T
Tu,v

−1
i )

⇐⇒ (¬zu,v,t
a ∨ ¬π

(t′−1)· T
Tu,v

−1
i )︸ ︷︷ ︸

enc_slice_1(a,u,v,t′)

∧ (¬zu,v,t
a ∨ π

t′· T
Tu,v

−1
i )︸ ︷︷ ︸

enc_slice_2(a,u,v,t′)

for all u, v ∈ V, t, t′ ∈ {1, . . . , Tu,v}, a = ((u, v, t, t′, source), i) ∈ A0
to

Next we have to ensure that if a path is started, this path continues throughout the network.
Let a = (i, j) ∈ A0 ∪ A0

to ∪ A0
time.

zu,v,t
a ⇒

∨
a′=(j,k)∈A0∪A0

to∪A0
from

zu,v,t
a′ ⇐⇒ ¬zu,v,t

a ∨
∨

a′=(j,k)∈A0∪A0
to∪A0

from

zu,v,t
a′

︸ ︷︷ ︸
enc_continue(a,u,v,t)

for all u, v ∈ V, t ∈ {1, . . . , Tu,v}, a = (i, j) ∈ A0 ∪ A0
to ∪ A0

time

We also have to make sure that the path ends at a node (u, v, t, target).

xt
u,v ⇒

∨
a=(k,(u,v,t,target))∈A0

from

zu,v,t
a ⇐⇒ ¬xt

u,v ∨
∨

a=(k,(u,v,t,target))∈A0
from

zu,v,t
a︸ ︷︷ ︸

enc_stop(u,v,t)

for all u, v ∈ V, t ∈ {1, . . . , Tu,v}
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In the end we have to ensure that there are no nodes where multiple arcs are used. First we
make sure that each node i ∈ Ē has only one successor.

¬(
∨

a,a′∈Ā:
a=(i,j),a′=(i,j′)

zu,v,t
a ∧ zu,v,t

a′ ) ⇐⇒
∧

a,a′∈Ā:
a=(i,j),a′=(i,j′)

(¬zu,v,t
a ∨ ¬zu,v,t

a′ )︸ ︷︷ ︸
enc_only_one_successor(a,a′)

for all u, v ∈ V, t ∈ {1, . . . , Tu,v}, i ∈ Ē

Next we make sure that each node j ∈ Ē has only one predecessor.

¬(
∨

a,a′∈Ā:
a=(i,j),a′=(i′,j)

zu,v,t
a ∧ zu,v,t

a′ ) ⇐⇒
∧

a,a′∈Ā:
a=(i,j),a′=(i′,j)

(¬zu,v,t
a ∨ ¬zu,v,t

a′ )︸ ︷︷ ︸
enc_only_one_predecessor(a,a′)

for all u, v ∈ V, t ∈ {1, . . . , Tu,v}, j ∈ Ē

To model the whole passenger behavior we get the following.

ΘN 0 : =
∧

u,v∈V

∧
t∈{1,...,Tu,v}

(
enc_start(u, v, t)

∧
a∈A0

to

enc_slice_1(a, u, v, t) ∧ enc_slice_2(a, u, v, t)

∧
a∈A0∪A0

to∪A0
time

enc_continue(a, u, v, t)

∧ enc_stop(u, v, t)∧
i∈Ē

∧
a,a′∈Ā:

a=(i,j),a′=(i,j′)

enc_only_one_successor(a, a′)

∧
j∈Ē

∧
a,a′∈Ā:

a=(i,j),a′=(i′,j)

enc_only_one_predecessor(a, a′)
)

Together, the feasibility can be modeled as

ΩN 0 ∧ΨN 0 ∧ΘN 0 ,

i.e., by a conjunction of clauses. Thus, the feasibility of the Timetabling Problem with
Passenger Routing can be modeled as a SAT problem.

Note that the number of clauses needed for passenger routing can be reduced in a
preprocessing step. This process is described in more detail in the experimental evaluation
in Section 5.

4.1.3 Considering only one time slice
If only one time slice is considered, the index t is not needed for any of the variables. The arc
set A0

time reduces to the empty set. Additionally the clauses enc_slice_1 and enc_slice_2
are not needed anymore.

4.2 Objective function
It remains to show that the objective function can be written as a set of weighted clauses,
such that the Timetabling Problem with Passenger Routing can be formulated as a partial
weighted MaxSAT problem. We refer to the following theorem and its proof which can be
found in the appendix.

ATMOS 2016
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Figure 1 Line plan of Germany’s inter city network.

I Theorem 2. The Timetabling Problem with Passenger Routing can be formulated as a
partial weighted MaxSAT problem.

5 Experiments

The MaxSAT model introduced in Section 4 is implemented and the experiments are evaluated
on an Intel® Core™ i7-4790K CPU with 32GB RAM. However, the memory limit has never
been reached for any instance. As MaxSAT Solver we apply the solver open-wbo [15]. As IP
solver we use Gurobi 6.0.3 [6] which is used with 4 CPU cores.

The line plan in our experiments is fixed as input. The periodic event-activity network is
generated automatically from the given input data. This is necessary, as large timetabling
problems can consist of up to one million activities and ten thousands of events, which cannot
be calculated manually. The program automatically assigns an optimal route on the track
layout to each train and calculates the running times within seconds. All minimum headways
are calculated individually based on microscopical infrastructure data and are part of the
PESP instance as well as symmetry constraints for pairwise connected train paths [13]. For
details for encoding symmetry constraints we refer to the literature [3] that basically follows
the same encoding as enc_rec(A), A ∈ ζ(a) shown in the previous sections.

In our instance, the German long-distance passenger railway network is examined, which
in our scenario has 158 periodic lines and 181 stations. The macroscopic network is visualized
in Figure 1. The PESP instance consists of 1 176 periodic events and 10 651 (periodic)
activities. For comparison we also use the traditional approach in which

first, the passengers are routed on shortest paths through the network (where the lower
bounds La of the activities a are used as edge weights),
second, a timetable is computed minimizing the weighted slacks on driving, waiting and
transfer activities. (In our implementation the driving times are fixed to their lower
bounds, i.e., La = Ua for driving activities a ∈ A0

drive.) The resulting problem is then a
traditional PESP including headway constraints which is solved by the above mentioned
IP solver. The outcome is an optimal timetable π∗.
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Figure 2 Graph of the computation for instance ic1 of the integrated approach.

Finally, for the evaluation of the optimal timetable π∗ from the second step we proceed as
follows: We use this timetable as given in the integrated formulation, i.e., we determine
the best routes for the passengers with respect to this timetable and evaluate the sum of
their traveling times.

For a fair comparison we use a single time slice such that Tu,v = 1 for all regarded OD-
pairs (u, v).

In order to reduce the number of possible constraints we proceed as follows. For every
OD-pair (u, v) we do the following: We search for the fastest path (again with respect to the
lower bounds La) between u and v and then only add the constraints for paths that deviate
at most by a given detour factor. For the experiments, we choose a maximum detour factor
of 1.2. This seems reasonable, especially in terms of long-distance train networks.

The computational times contain both the encoding times and the solver times. Neverthe-
less, in Figure 2 and in Figure 3 just the solver times are shown, since the encoding times for
large networks are neglectable. Note that the solvers formulate the problem as minimization
problem and show the sum of weighted violated clauses which is displayed in the graphs.

The number of OD-pairs in the first run (ic1) is 38, in order to experimentally validate
the method. These are the most important OD-pairs in Germany. The value of the objective
function (1) in minutes of passenger traveling time is 1 219 which in this case (accidentally)
equals the sum of weighted lower bounds, i.e., the theoretically best travel times for all
given OD-pairs. Thus, no better timetable is possible. If we compare this to the traditional
approach, which has an objective value of 1 279, we can conclude that the integrated approach
results as expected in better results. Regarding only the travel times without the weights
results in an improvement of 60 min from the traditional approach to the integrated one.

We also compared the computation times (encoding and optimization):
For the integrated model using the SAT formulation the computation time was 133 s.
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Figure 3 Graph of the computation for instance ic2 of the integrated approach.

Table 1 PESP instances and their results.

OD-pairs objective value slack objective value traveling time
instance integrated traditional integrated traditional

ic1 38 0 60 1 219 1 279
ic2 192 141 572 13 515 13 946

For the traditional approach using an IP solver the computation time was 3 075 s.
Hence, comparing the computational times for this instance, we get even better results with
the integrated approach. This is probably due to the fact that SAT solvers perform better
on PESP instances than integer programming solvers, see [5]. This promising result directly
leads to the question whether more OD-pairs may be considered, which is investigated in the
sequel.

In the second run (ic2) we had a total number of 192 OD-pairs, which are yet again the
top most important OD-pairs in Germany. The computation times are 2 453 s and 620 s for
the integrated and traditional method, respectively. Evaluating the objective functional’s
value (1) and then computing the sum of traveling times for all OD-pairs yields 13 515 for
the new and 13 946 for the traditional approach. The absolute lower bound, i. e., the sum of
weighted minimum travel times for the OD-pairs is 13 374. As usual we hence evaluate the
sum of slack times on all passengers’ paths, i.e., the differences of absolute lower bound and
the objective values. These are 141 for the integrated approach and 572 for the traditional
approach. Cutting off the passenger weights and comparing the difference in travel time for
both approaches conducts in an improvement of 301 min.

The results of the computations for both instances is provided in Table 1. Note that
both instances were solved to optimality, so the duality gap is zero (and hence not listed). It
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can be concluded that at least for these first experiments the new approach leads always to
better objective values compared to the traditional approach. Looking at the slack times the
passengers may save, these reductions are rather large.

Nevertheless, the computational times for the traditional approach seem to vary de-
pending on the instance. It should be mentioned that increasing the number of OD-pairs
heavily increases the optimization times and hence, further methods or possible encoding
improvements should be applied. Possible variable reduction methods are shortly discussed
in Section 6.

6 Conclusion

In this paper, we provided an integer programming and a satisfiability formulation for the in-
tegrated problem of finding a periodic timetable and optimal passengers’ paths simultaneously.
We use time slices to distribute the passengers temporally.

The results on a restricted set of OD-pairs clearly show that the newly introduced,
integrated method yields better objective values compared to the traditional approach. This
is a promising position for regarding more OD-pairs. However, currently the computational
times increase drastically with the number of OD-pairs such that no good objective value
can be found in a reasonable time.

Nevertheless, the computational experiments have shown that there exists high potential
for improvements. Firstly, we reduced the number of variables by reducing the possible path
constraints with a detour factor. Secondly, by reducing the upper bounds of the transfer
activities, the number of variables in the SAT formulation can be reduced as well.

Furthermore, we suggest the following possibilities for handling more OD-pairs: Currently,
the lower and upper bounds of the constraints are coded in minutes which yields many binary
variables in the resulting constraints in the SAT formulation. This leaves a lot of room for
cutting off variables in two ways. On the one hand, we can reduce the search space – and
not the solution space – by applying constraint propagation [16] and eliminating all variables
that are no longer part of a constraint. This technique can even be applied for the possible
routes with their possible detours. This results in better constraints’ lower bounds for the
path search which eventually results in fewer constraints per OD-pair [9]. On the other
hand, from an engineering perspective we could also reduce the solution space by cutting off
solutions that seem to be irrelevant in real-world scenarios. Therefore, we suggest a scaled
variable encoding for the constraints to be optimized, which has a high granularity on the
lower parts and a coarse-grained granularity on the higher parts of the constraints feasible
areas. However, each variable’s weight has to be adopted in the objective (1). The reasoning
is that flows that are already badly fulfilled, e. g. contain transfer times above 60 min, are for
better primal bounds not important, since the resulting solutions will be avoided anyway.

In future work we will implement the integrated approach as IP model and compare the
computation times of state-of-the-art IP solvers to the state-of-the-art MaxSAT solvers. Also
the number and distribution of the time-slices are subject of further experiments.

Finally, the SAT formulation provided in this paper can be easily extended to also include
planning the lines (for a survey on line planning, see [25]), i.e., for modeling the problem of
integrated line planning and timetabling. To this end, all potential lines from a given line
pool have to be included in the formulation, and decision variables determine if a line is used
(and should hence get a timetable) or not. We currently work on an implementation of this
integrated formulation to make a step forward to integrated planning in public transportation.

All in all, it can be concluded that the introduced, integrated approach provides a
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promising scientific outlook that could highly improve travel times for passengers in periodic
public railway transport networks in real-world scenarios.
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A Objective function of the SAT formulation

I Theorem 2. The Timetabling Problem with Passenger Routing can be formulated as a
partial weighted MaxSAT problem.

Proof. We already showed that the feasibility of the Timetabling Problem with Passenger
Routing can be modeled by SAT constraints. Thus it remains only to show that the objective
can be expressed as set of clauses with positive weight.

At first we need auxiliary variables τk
a ∈ {0, 1} for all activities a = (i, j) ∈ A0, k ∈

{0, . . . , Ua + 1} which determine if πj −πi + zaT ≥ k holds. Here za ∈ Z is the corresponding
modulo parameter.

We need to make sure that τk
a is consistent for all k ∈ {1, . . . , Ua}, i.e., that it really

models a ≥-constraint. We encode this similar to the encoding enc of the variables πi:

enc′ : a 7→ (τ0
a ∧ ¬τUa+1

a

∧
k∈{1,...,Ua+1}

(¬τk
a ∨ τk−1

a )).

It remains to ensure that τk
a is true if πj − πi + za · T ≥ k. For k ≤ La we already know this

due to the timetabling constraints. Therefore, we consider the following:

(πj − πi + za · T ≥ k)⇒ τk
a

⇐⇒ ¬(πj − πi + za · T ≥ k) ∨ τk
a

⇐⇒ πj − πi + za · T ∈ [La, k − 1]︸ ︷︷ ︸
F2

∨τk
a

for all a ∈ A0, k ∈ {La + 1, . . . , Ua}.

As F2 can be encoded in the same way as any other timetabling constraint, we again get
conjunction of clauses here.

Now we can express the length of an activity as the sum of τk
a variables.

πj − πi + za · T =
Ua∑

k=1
τk

a
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Now we can formulate the objective function using only binary variables:

max
∑

u,v∈V

Tu,v∑
t=1

Ct
u,v · (Du,v · xt

u,v −
∑

a∈A0

zu,v,t
a · (

Ua∑
k=1

τk
a )

−
∑

a=((u,v,t,t′,source),•)∈A0
time

P t,t′

u,v · zu,v,t
a )

⇐⇒ max
∑

u,v∈V

Tu,v∑
t=1

Ct
u,v · (Du,v · xt

u,v +
∑

a∈A0

(−zu,v,t
a · Ua + zu,v,t

a ·
Ua∑

k=1
¬τk

a )

−
∑

a=((u,v,t,t′,source),•)∈A0
time

P t,t′

u,v︸ ︷︷ ︸
fixed

+
∑

a=((u,v,t,t′,source),•)∈A0
time

P t,t′

u,v · ¬zu,v,t
a )

⇐⇒ max
∑

u,v∈V

Tu,v∑
t=1

Ct
u,v ·Du,v · xt

u,v

+
∑

u,v∈V

Tu,v∑
t=1

∑
a∈A0

−Ct
u,v · Ua · zu,v,t

a

+
∑

u,v∈V

Tu,v∑
t=1

∑
a∈A0

Ua∑
k=1

Ct
u,v · zu,v,t

a · ¬τk
a

+
∑

u,v∈V

Tu,v∑
t=1

∑
a=((u,v,t,t′,source),•)∈A0

time

Ct
u,v · P t,t′

u,v · ¬zu,v,t
a

⇐⇒ max
∑

u,v∈V

Tu,v∑
t=1

Ct
u,v ·Du,v · xt

u,v

+
∑

u,v∈V

Tu,v∑
t=1

∑
a∈A0

−Ct
u,v · Ua︸ ︷︷ ︸

fixed

+
∑

u,v∈V

Tu,v∑
t=1

∑
a∈A0

Ct
u,v · Ua · ¬zu,v,t

a

+
∑

u,v∈V

Tu,v∑
t=1

∑
a∈A0

Ua∑
k=1

Ct
u,v · zu,v,t

a · ¬τk
a

+
∑

u,v∈V

Tu,v∑
t=1

∑
a=((u,v,t,t′,source),•)∈A0

time

Ct
u,v · P t,t′

u,v · ¬zu,v,t
a
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As we want to maximize, we can substitute zu,v,t
a · ¬τk

a by a variable yu,v,t,k
a which is set to 0

if either ¬τk
a = 0 or zu,v,t

a = 0.

⇐⇒ max
∑

u,v∈V

Tu,v∑
t=1

Ct
u,v ·Du,v · xt

u,v

+
∑

u,v∈V

Tu,v∑
t=1

∑
a∈A0

Ct
u,v · Ua · ¬zu,v,t

a

+
∑

u,v∈V

Tu,v∑
t=1

∑
a∈A0

Ua∑
k=1

Ct
u,v · yu,v,t,k

a

+
∑

u,v∈V

Tu,v∑
t=1

∑
a=((u,v,t,t′,source),•)∈A0

time

Ct
u,v · P t,t′

u,v · ¬zu,v,t
a

From the substitution we get the following clauses:

¬¬τk
a ⇒ ¬yu,v,t,k

a ⇐⇒ ¬τk
a ∨ ¬yu,v,t,k

a

¬zu,v,t
a ⇒ ¬yu,v,t,k

a ⇐⇒ zu,v,t
a ∨ ¬yu,v,t,k

a

We see that the objective is to maximize a sum of weighted booleans. This can modeled
in a partial weighted MaxSAT problem, where all the clauses appearing in the objective get
their respective weight from the objective function and all other clauses which are needed to
model the constraints get weight infinity, i.e., they have to be fulfilled anyway.

J
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