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Abstract
We present an application of Integer Programming to the design of arrival routes for aircraft in a
Terminal Maneuvering Area (TMA). We generate operationally feasible merge trees of curvature-
constrained routes, using two optimization criteria: (1) total length of the tree, and (2) distance
flown along the tree paths. The output routes guarantee that the overall traffic pattern in the
TMA can be monitored by air traffic controllers; in particular, we keep merge points for arriving
aircraft well separated, and we exclude conflicts between arriving and departing aircraft. We
demonstrate the feasibility of our method by experimenting with arrival routes for a runway at
Arlanda airport in the Stockholm TMA. Our approach can easily be extended in several ways,
e.g., to ensure that the routes avoid no-fly zones.
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1 Introduction

Air transportation experienced significant growth over the last decades, and the International
Air Transport Association (IATA) projected that the number of passengers will double to
reach 7 billion/year by 2034 [1]. On the one hand, this reflects a healthy economic and
technological development, on the other hand, the increased volume of air traffic poses many
challenges. The Terminal Maneuvering Area (TMA), i.e., the area surrounding one or more
neighboring aerodromes, is particularly affected by congestion. Thus, designing arrival and
departure procedures in the TMA to allow for a high throughput is crucial for handling
higher and higher volumes of air traffic.

One of the main challenges in route planning for air traffic management (ATM) is brought
by the central role of humans-in-the-loop: the planes in the air are constantly monitored
and guided by air traffic controllers (ATCOs) taking the highest level of responsibility for
safe separation between aircraft (in contrast with other types of transportation—e.g., cars
on roads are a fully distributed system). This imposes additional constraints on the route
design—the aircraft following the flight paths should give rise to "low complexity" traffic
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patterns and avoid creating conflict points where human attention would be constantly
needed to resolve the potential loss of separation between the aircraft.

At most airports predesigned standard routes for departure and arrival are established.
Currently, these Standard Instrument Departures (SIDs) and Standard Terminal Arrival
Routes (STARs) are designed manually. This design is based on the airspace layout and
incorporates constraints like avoidance of no-fly zones, manageability by ATCOs, and others.
However, the manual design will generally not result in optimal routes for any specific criteria.

1.1 Problem description and Results
In this paper, we present a mathematical programming framework for finding optimal STAR
merge trees. As part of the input to the problem, we are given locations of the entry points
to the TMA, and the location and direction of the airport runway. In the output we seek an
arrival tree that merges traffic from the entries to the runway, i.e., a tree that has the entries
as leaves and the runway as the root (contrary to the common convention, we assume that
the edges of this arborescence are directed from leaves to root).

The novelty of the considered problem is that the merge tree must take into account a
set of operational constraints imposed on the STAR:
1. No more than two routes merge at a point: Points where routes merge require elevated

level of attention from the controllers, and thus traffic complexity around the merges
should be kept at a minimum [12]. This translates to the requirement that every vertex
of the tree must have in-degree less than or equal to 2.

2. Merge point separation: Having two merge points very close to one another (even if at
each of the points only two paths merge) effectively creates a small zone with several
routes merging together—which is, again, undesirable for control. Thus, it is required that
the separation between any two merge points is larger than a given distance threshold L
[12].

3. No sharp turns: Aircraft dynamics impose a limit on the angle at which the routes can
turn (bank angle) [4, p. 61]. We thus require that the turn from a segment of a route to
the consecutive segment is never smaller than a given angle threshold α. If we would allow
arbitrarily short edges this would still allow to simulate a sharp turn with a sequence of
many short edges. Hence, we obtain the limited turning angle by combining the parameter
α with the limit, L, on the minimum length for any edge [8]. We assume that the runway
is the last segment of every route: this way, the turn onto the runway must also be larger
than α—the aircraft must align with the runway before the touchdown.

4. Obstacle avoidance: The routes should not pass over a specified set of regions (we do not
digress into the specific nature of the obstacles—they may be no-fly zones, noise-sensitive
areas, etc.).

5. STAR–SID separation: Since TMA traffic consists of aircraft arriving to and departing
from the same airport, it is unavoidable that the STARs and SIDs cross; to alleviate the
potential conflicts between in- and outbound flights (and relieve ATCOs from constantly
solving the conflict-free scheduling problem by delaying or speeding up the planes), the
STAR–SID crossings should happen far from the runway, where the arriving and departing
planes are sufficiently separated vertically due to the difference of descend and climb
slopes [4, p. 25]. We thus require that SIDs are not crossed by STARs closer than a given
distance d from the runway. Note that we assume that the SIDs are given in the input:
arriving traffic is slower and thus has more room for maneuverability; in addition, it was
confirmed with the practitioners that, e.g., in Stockholm TMA (our guinea pig), current
SIDs are satisfactory while the STARs are in need of improvement.



T. Andersson Granberg, T. Polishchuk, V. Polishchuk, and C. Schmidt 9:3

1.1.1 Objective functions
It is natural to seek STARs featuring short flight routes for aircraft. Thus, one objective
function in our optimization problem is the total length of the routes from the entry points to
the runway. At the same time, the STAR tree should "occupy little space"—both from the
ATCO perspective (to minimize attention attraction area), and to avoid spreading the noise
and other environmental impact of aviation over the larger region. This can be modeled
by requiring that the produced tree has small total length of the edges.1 We consider both
objectives, and call them paths length and tree weight respectively (these shorter names
better emphasize the difference between the objectives).

We explore the Pareto frontier of our multicriteria optimization problem: we output
a set of Pareto optimal solutions – those that cannot be improved with respect to one of
the objectives without sacrificing on the other. (In particular, from the Pareto frontier,
it is easy to obtain the solution optimizing any linear combination of the two objectives.)
Our development may thus be viewed as a decision support tool, presenting the airspace
designers with a set of options to choose from, and helping the decision makers in quantifying
tradeoffs between the route length and complexity of the solution (exploring such tradeoffs is
standard in multi-criteria optimization, and has been studied also in ATM, e.g., with respect
to airspace capacity estimation [7]).

Note that if we compute a tree with minimum tree weight that complies with operational
constraints 1 and 3, we would compute a minimum Steiner tree, that guarantees degree 3 for
Steiner nodes and an angle of 120◦ between edges incident to such a node. If we add the
operational constraint 2—the initial version we are interested in—we obtain a generalized
version of the minimum Steiner tree problem (L = 0 representing the original problem).
Thus, as the minimum Steiner tree problem is NP-complete, the same holds for our problem.

1.2 Roadmap
In the remainder of this Section we review related work. Section 2 presents our main tool: a
grid-based integer programming (IP) formulation for the most basic version of the STAR
finding problem; it considers only the constraints 1, 2 and 3. In Section 3 we apply the IP to
produce STAR trees for RWY19L of Arlanda airport in Stockholm TMA. We output the trees
on the Pareto frontier, and also show how the obstacle avoidance constraint 4 is handled. In
Section 3.2 we experiment with adding a large number of entry points, which highlights the
difference between the two objective functions. Handling STAR–SID separation (constraint 5)
is explored in Section 3.3. Section 4 concludes the paper.

1.3 Related work
Automatic design of STARs/SIDs has been studied earlier, but to the best of our knowledge,
finding optimal trees, taking into account the turn constraints, has not been considered
before. In prior work, the routes have been constructed iteratively (one-by-one) and/or did
not adhere to the full set of our constraints and/or did not route the traffic all the way to
the runway.

1 Note the differences between the objectives: in the former, the length of each edge of the tree is counted
as many times as it is used by the leaf-to-root paths; in the latter, each edge is counted only once. In
a graph the optimal solution for the former objective is the Shortest-Paths tree; the optimizer of the
latter is a Steiner tree (or Steiner arborescence, in a directed graph).

ATMOS 2016
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Pfeil [10] focusses on weather forecast and the redesign or design of TMAs pertaining
to different weather scenarios. The author develops an IP model to optimally choose fix
locations and corresponding routes in fixed sectors, and to renegotiate sector boundaries.
For the TMA design from scratch a two-step solution is presented: first optimal outer fixes
are selected with an IP, then 3D routes between fix-runway pairs are chosen with a modified
version of the A* algorithm. This defines some first chosen routes as obstacles for later
routes, that is, the construction is sequential. All algorithms are presented for the US model
of a TMA: two circles of different radii around the runway, where all merges and maneuvers
are assumed to be performed within the inner circle and are not considered. The same TMA
model is used by Prete et al. [12].

Krozel et al. [8] considered turn-constrained route planning for a single path; trees and
the merging of paths are not considered. Zhou et al. [16, 15] also construct single, individual
routes (not arrival merge trees) through weather-impacted TMA. Similarly, Visser and
Wijnen [13] construct single routes, the objective in their work is to minimize noise impact.

Choi et al. [2] present results on STAR merging, testing the impact of different merge
topologies on scheduling of aircraft along the routes; however, the actual location of merge
points is not of interest and turn constraints are not taken into account. In [11], circular
arcs are used to iteratively construct a curvature-constrained tree; however, no optimality
guarantee is given for the solution.

An example for mainly manual STAR construction is Micallef et al.’s [9] design for Malta
international airport.

2 Grid-based IP formulation

We discretize the search space by laying out a square grid in the TMA, and snapping the
locations of the entry points and the runway onto the grid; let P denote the set of (snapped)
entry points, and r the runway. The side of the grid pixel is equal to our lower bound L on
the distance between route vertices—this ensures that the merge point separation (constraint
2) is satisfied by any path in the grid. Every grid node is connected to its 8 neighbors, thus
forming a graph G = (V,E). The graph is bi-directed, i.e., for any two neighboring nodes i
and j, both edges (i, j) and (j, i) exist in E; the only exceptions are the entry points (they
do not have incoming edges) and r (it does not have outgoing edges). The length of an edge
(i, j) ∈ E is denoted by `ij .

Our model is an integer program, which in general is NP-hard, but we are able to solve
relevant sizes of instances in Section 3. Our IP formulation is based on the flow IP formulation
for Steiner trees [14, 5] (Min Cost Flow Steiner arborescence). We use decision variables
xe that indicate whether the edge e participates in the STAR. In addition, we have flow
variables: fe gives the flow on edge e = (i, j) (i.e., the flow from i to j). The constraints are
given in Equations (1)-(4):

∑
k:(k,i)∈E

fki −
∑

j:(i,j)∈E

fij =


|P| i = r

−1 i ∈ P
0 i ∈ V \ {P ∪ r}

(1)

xe ≥
fe

N
∀e ∈ E (2)

fe ≥ 0 ∀e ∈ E (3)
xe ∈ {0, 1} ∀e ∈ E (4)

where N is a large number (e.g., N = |P|).
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Equation (1) ensures that a flow of |P| reaches the runway r, a flow of 1 leaves every
entry point, and in all other vertices of the graph the flow is conserved. Equation (2) enforces
edges with a positive flow to participate in the STAR. The flow variables are non-negative
(Equation (3)), the edge variables are binary (Equation (4)).

Our two objective functions—paths length and tree weight—are given in Equations (5)
and (6), respectively:

min
∑
e∈E

`efe (5)

min
∑
e∈E

`exe (6)

2.1 Degree constraints

We extend the above vanilla MinCostFlow Steiner tree IP to handle the constraints defined
in Section 1. First, we ensure that the outdegree of every node is at most 1 and that the
maximum indegree is 2 (operational constraint 1):

∑
k:(k,i)∈E

xki ≤ 2 ∀i ∈ V \ {P ∪ r} (7)

∑
j:(i,j)∈E

xij ≤ 1 ∀i ∈ V \ {P ∪ r} (8)

∑
k:(k,r)∈E

xkr = 1 (9)

∑
j:(r,j)∈E

xrj ≤ 0 (10)

∑
k:(k,i)∈E

xki ≤ 0 ∀i ∈ P (11)

∑
j:(i,j)∈E

xij = 1 ∀i ∈ P (12)

Equations (9) and (10) ensure that the runway r has one ingoing and no outgoing edges,
respectively; Equations (12) and (11) make sure that each entry point has one outgoing and
not ingoing edge, respectively; the maximum indegree of 2 for all other vertices is given by
Equation (7), the maximum outdegree of 1 by Equation (8).

2.2 Turn angle constraints

If an edge e = (i, j) is used, all outgoing edges at j must form an angle of at least α with
e (operational constraint 3). Let Ae be the set of all outgoing edges from j that form an
angle ≤ α with e, i.e., Ae = {(j, k) : ]ijk ≤ α, (j, k) ∈ E}, and let ae = |Ae|, see Figure 1.
We add the constraint:

aexe +
∑

f∈Ae

xf ≤ ae ∀e ∈ E (13)

ATMOS 2016
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Figure 1 Limited turn: if edge e = (i, j) is used, only edges within the light green region are
allowed, that is, edges with an angle of at least α with e. If edges in the light blue region, Ae, are
used, xe must be set to zero. Here: e1 ∈ Ae, e2 /∈ Ae.

(a) (b)

Figure 2 (a) A STAR in the grid with L = 6nmi and turns sharper than a threshold angle α of
135 degrees not allowed. (b) The same STAR underlaid with a map of the Stockholm region.

2.3 SID constraints
In Section 1 (constraint 5) we described the necessity to exclude conflicts between arriving
aircraft on the constructed STAR and departing aircraft on the given SID. Specifically, we
disallow STAR edges to intersect SID edges within distance d from the runway. That is,
we consider the set of all points on SID edges that along the SID have a distance of at
most d to the runway, and delete all edges from E that intersect with this set. Formally:
let distSID(x, y) denote the distance of two points x, y along the SID, SID(d) = {p ∈ SID :
distSID(p, vST AR) ≤ d}, p({i, j}) = {i, p} for p ∈ {i, j} a subset of edge {i, j} up to a given
point p, ESID = {edges {i, j} ∈ SID : i, j ∈ SID(d)} ∪ {p({i, j}) : {i, j} ∈ SID, i ∈ SID(d), j /∈
SID(d), distSID(p, vST AR) = d}, F = {e ∈ E : e ∩ESID 6= ∅}, and E′ = E \ F . If we integrate
the SID constraints, we simply use the edge set E′ instead of E.

3 Experimental Study: Arlanda Airport

In this section we present solutions to our IP for the STAR design for the Arlanda airport in
Stockholm TMA. The TMA is managed by LFV (Swedish Air Navigation Service Provider),
and is manually designed based on expert opinion. In 2012 LFV ordered an initial study
that confirmed the need to investigate possibilities of improving the TMA design with
the help of advanced optimization tools. Currently, a collaboration between LFV and
Linköping University (LiU) researchers this topic within the ODESTA (Optimal Design of
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Figure 3 The path through the grid (left) is shortcut (right).

(a) (b) (c)

(d) (e)

Figure 4 Total paths length: (a) 286, (b) 292.5, (c) 295.75, (d) 299, (e) 302.25. Tree weight: (a)
232.7, (b) 230.1, (c) 227.37, (d) 222.95, (e) 222.17.

Terminal Airspace) project. A reference group with members from LFV, EUROCONTROL,
Trafikverket (Swedish Traffic Agency), Swedavia (a company that owns and operates the
major airports of Sweden), and Transportstyrelsen (Swedish Transportation Authority) is a
vital part of this project.

We consider Arlanda’s runway 19L, and the four main entry points NILUG, XILAN, HMR,
and ARS. We solve an IP with constraints (1)-(4), (7)-(12), (13), and objective functions (5)
and (6) on square grids of size 14× 20 and 25× 30. The entry points and the runway are
snapped to the closest grid vertices. Figure 2 shows the STAR in the grid and overlaid on
a map for Stockholm’s TMA. We use 8 edge directions: horizontal and vertical grid edges,
and grid diagonals. After the solution is found, we postprocess it in order to have smoother
paths (not restricted to the grid): we do shortcuts by removing vertices as long as the turn
angle constraint is not violated (Figure 3).

Figure 4 shows Pareto optimal solutions, the Pareto frontier is shown in Figure 5. Table 1
presents the associated CPU times and number of branch and bound nodes.

The IP was solved using AMPL and Gurobi [6] on a single server with 24GB RAM,
processor Intel(R) Xeon(R) CPU E5-2650 0 @ 2.00GHz and 64-bit operating system.

ATMOS 2016
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Figure 5 Pareto optimal solutions, the corresponding STARs are shown in Figure 4. The x-axis
shows the total paths length, the y-axis the tree weight.

Table 1 The CPU time and number of branch and bound nodes to find the Pareto-optimal trees,
from heaviest to lightest.

CPU time, s 993 2950 6949 7793 9447
# B&B nodes 8912 24342 33314 45244 52740

3.1 Obstacle avoidance
It can be seen from Figure 6(a) that for the Pareto optimal solution from Figure 4(e) our route
from the west flies directly over Enköping. We can easily mitigate noise impact and other
environmental consequences for populated areas, and remove all edges that intersect those
areas from the edge set E. Figure 6(b) shows the resulting output STAR that circumnavigates
Enköping.

Note, that our approach based on solving an IP on a graph easily allows to incorporate
arbitrary obstacles, e.g. no-fly zones, as edges crossing these can simply be forbidden for a
solution.

3.2 Increased Number of Entry Points
One might argue that our trees on the Pareto frontier (refer to Figure 4) do not differ too
much between themselves. To emphasize the difference between our two objective functions,
we ran experiments with additional (artificial) entry points. From the practical perspective,
adding more entries may be appreciated by airlines, as this would give them the flexibility
to plan straighter routes, and thus save time and fuel; however, the traffic situation might
become more complex and difficult to control. To show how the model can be used to provide
different suggestions for the TMA design, we created scenarios with 8, 16, and 32 entry
points. Figure 7 (a)-(c) shows STARs of minimum paths length, Figure 7 (d)-(f) shows
STARs of minimum tree weight.

For optimal total length, the trees merge paths from different entry points as soon as
allowed. This implies that most merge points are located in close proximity to the TMA
boundary—an effect ATCOs would not appreciate, since they would rather have some time
to get a good "hold" on the planes before merging them (in fact, conflicts close to the
boundary with adjacent sectors is one of the top 5 operational safety priorities identified
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(a) (b)

Figure 6 (a) Routes without obstacle avoidance, same routes as in Figure 4(e), (b) routes avoiding
Enköping.

(a) (b) (c)

(d) (e) (f)

Figure 7 Solutions for increased number of entry points: eight entries (a),(d), 16 entries (b),(e),
and 32 entries (c),(f). In (a)-(c) we minimize the paths length (objective function (5)), in (d)-(f) we
minimize the tree weight (objective function (6)). Paths length: (a) 458.60, (b) 893.61, (c) 1751.68,
(d) 567.69, (e)1181.48, (f) 2108.86. Tree weight: (a) 311.33, (b) 451.47, (c) 671.06, (d) 268.64, (e)
465.74.

ATMOS 2016
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by EUROCONTORL [3]). On the other hand, the solutions with an optimal paths length,
though they clearly serve the airlines’ request for short trajectories best under the given
constraints, are trees that produce a quite dense network of routes within most of the TMA,
which might make it hard to control the traffic. Thus, it might be helpful to use linear
combination of these two functions. As we mentioned before, the optimizer of any linear
combination is found among the Pareto optimal solutions.

In addition, solutions for a large number of entry points, for example, the 32 entry point
solutions, could be used to suggest the number and location of entry points for a design from
scratch. If we assume that the grid covers an area larger than the TMA, the minimum tree
weight solution, Figure 7(f), suggests two entry points, based on the minimum paths length
solution, Figure 7(c), we might advocate for 16 entry points.

3.3 SID constraints
In this section, we experiment with keeping the STARs vertically separated from SIDs at the
points where the arrival and departure routes cross; i.e., we experiment with constraint 5
outlined in Section 1—STARs are not allowed to intersect a given SID closer than d from
the runway (the necessary modifications to the IP are described in Section 2.3). Figure 8
shows minimum route length STARs for increasing values of d. Each tree was obtained
within approximately 2 CPU hours (∼ 105 B&B nodes); the numbers did not differ much for
different values of d. The whole SID is light gray, and the parts that are not allowed to be
intersected by the STAR are red. Figure 9(a) shows that, as expected, the objective function
(total length of the routes in the tree) grows with increasing d. To explain the apparently
non-linear growth, we model the STAR–SID interaction as follows (Fig. 9(b)): Assume the
STAR needs to connect vertices of a regular polygon (the entry points) to its center (the
runway), but there is some shape (for simplicity—a set of radius-d circular sectors disjoint
other than at the common apex at the center) that needs to be avoided. The length of each
route in the STAR depends on d as d+

√
(1− d)2 + 1/2 (assuming the entry points lie on

unit circle), which is similar to what we observed in the experiments (Fig. 9(c)).

4 Conclusion and Discussion

In this paper we present a proof of concept for our grid-based IP approach for finding aircraft
arrival routes with limited turning angle. The approach incorporates constraints on the
merge points in the STAR that facilitate handling for aircraft controllers: separation of merge
points and a limit on the number of routes that merge. In addition, to allow for handling of
both arriving and departing aircraft, we show that we can easily integrate constraints from
the departure routes. We present arrival routes for the Stockholm TMA.

Static obstacles, e.g., no-fly zones, can be added to our method: all edges that intersect
the obstacle are deleted from the edge set E (actually, reducing the problem instance size).
This gives also the potential to integrate flexible obstacles like weather, when we recompute
based on weather forecast. Our STARs might still cross noise-sensitive areas; in Section 3.1
we chose to completely forbid these areas, in future work we may integrate noise impact by
increasing the cost for edges that intersect noise-sensitive areas.

Moreover, the number of aircraft that enter the TMA via different entry points varies.
Thus, we might choose to not only minimize the length of paths from entry points to the
runway, but consider a weighted version that minimizes the sum of trajectory lengths flown
by all arriving aircraft. That is, each path is counted as many times as it is used by aircraft.
Hence, we minimize the demand-weighted distance. We can easily integrate this by changing
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Figure 8 Minimum paths length STARs for increasing values of d. The SID is shown in light
gray, edges in ESID are shown in red. Paths lengths: (a) 201.34, (b) 201.34, (c) 202.37, (d) 202.37,
(e) 202.37, (f) 204.85, (g) 207.34, (h) 213.34, (i) 221.82, (j) 228.55, (k) 238.79, (l) 247.28, (m) 266.01,
(n) 284.01. Tree weight: (a) 176.88, (b) 176.88, (c) 177.64, (d) 181.88, (e) 181.88, (f) 184.37, (g)
186.85, (h) 186.85, (i) 185.09, (j) 188.82, (k) 200.31, (l) 205.79, (m) 216.04, (n) 228.04.
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Figure 9 (a) Paths length (y-axis) over the radius d (x-axis) for the STARs from Figure 8.
(b) Black dots are the entries and the blue is a STAR route avoiding the forbidden sectors. (c)
d+

√
(1− d)2 + 1/2 as a function of d.

the right-hand side of Equation (1): If wk aircraft enter the TMA via entry k ∈ P, we
substitute the −1 for i ∈ P by −wi, and the |P| for i = r by

∑
k∈P wk (and increase N

accordingly).
Our approach can be embedded into a tool for simultaneous optimization of routes and

the TMA control sectors (within which the ATCOs control the traffic)—a topic for future
research. Further possible extensions include simultaneous design of both SIDs and STARs,
and 3D routes.
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