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Abstract
An XML document can be viewed as a tree in a natural way. Processing tree data structures
usually requires a pushdown automaton as a model of computation. Therefore, it is interesting
that a finite automaton can be used to solve the XML index problem. In this paper, we attempt
to support a significant fragment of XPath queries which may use any combination of child (i.e.,
/) and descendant-or-self (i.e., //) axis. A systematic approach to the construction of such XML
index, which is a finite automaton called Tree Paths Automaton, is presented. Given an XML
tree model T , the tree is first of all preprocessed by means of its linear fragments called string
paths. Since only path queries are considered, the branching structure of the XML tree model
can be omitted. For individual string paths, smaller Tree Paths Automata are built, and they
are afterwards combined to form the index. The searching phase uses the index, reads an input
query Q of size m, and computes the list of positions of all occurrences of Q in the tree T . The
searching is performed in time O(m) and does not depend on the size of the XML document.
Although the number of queries is clearly exponential in the number of nodes of the XML tree
model, the size of the index seems to be, according to our experimental results, usually only
about 2.5 times larger than the size of the original document.
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1 Introduction

XML plays an important role in many aspects of software development, often to simplify
data storage and sharing. Therefore, efficient storing and querying XML data are key tasks
which have been extensively studied during the past years. XML data is stored in a plain
text format. This provides a software- and hardware-independent way of storing data. To
be able to retrieve data from XML documents, various query languages such as XPath [2],
XPointer [5], and XLink [6] have been designed.

However, without a structural summary, query processing can be quite inefficient due to
an exhaustive traversal on XML data. To achieve fast searching and efficient processing of
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queries, we can preprocess the data subject and construct an index. This allows us to answer
number of queries with low requirements for time complexity.

An XML document can be simply treated as a stream of plain text. Thus, stringology
algorithms [3, 4] are applicable in this field. The theory of text indexing is well-researched and
uses many sophisticated data structures, such as suffix tree, suffix array, or factor automaton.

However, the internal structure of XML documents can be also viewed as a tree in a
natural way. The algorithmic discipline interested in processing tree data structures is
called arbology, and it was officially introduced at London Stringology Days 2009 conference.
Arbology solves problems such as tree pattern matching, tree indexing, or finding repeats in
trees. For its algorithms, arbology uses a standard pushdown automaton as the basic model
of computation, unlike stringology where a finite automaton is used.

Nowadays, many methods for indexing XML documents exist, but most of them lack
clear references to a systematic approach of the standard theory of formal languages and
automata. XML indexes usually work with the tree structure of an XML document, and
according to their approaches, we can divide them as follows:

Graph-based methods construct a structural path summary; used to improve especially
single path queries. See DataGuides [7], 1-Index [12], PP-Index [17], F&B-Index [8], or
MTree [13].

Sequence-based methods transform both the source data and query into sequences. There-
fore, querying XML data is equivalent to finding subsequence matches. See ViST [18],
PRIX [14].

Node coding methods design codes for each node in order to evaluate the relationship
among nodes by computation. See XISS [9].

Adaptive methods adapt their structure to suit the query workload. Therefore, adaptive
methods index only the frequently used queries. See APEX Index [1].

Each of the methods listed above has its own advantages and disadvantages. Graph-based
methods often do not support complex queries; sequence-based methods are likely to generate
approximate solutions; node coding methods are difficult to be applied to ever changing data
source; and adaptive methods perform low efficiency on non-frequent queries.

In [16], we discussed the automata-based approach for solving the XML index problem
and presented Tree String Path Subsequences Automaton (TSPSA), an index for all linear
XPath queries using descendant-or-self axis (i.e., //) only. In this paper, we introduce
Tree Paths Automaton (TPA) which is designed to process more significant fragment of
XPath queries. It is able to answer all queries with any combination of child (i.e., /) and
descendant-or-self (i.e., //) axis, noted as XP {/,//,name−test}.

Given an XML document D with its corresponding XML tree model T (D), the searching
phase uses the index, reads an input query Q of size m, and computes the list of positions of
all occurrences of Q in the tree T (D). The searching is performed in time O(m) and does
not depend on the size of the original document D. Although the number of distinct queries
is exponential in the number of nodes of the XML tree model, our experiments suggest that
determinisation will result in a smaller number of states.

Both TSPSA and TPA support only linear XPath queries. However, the techniques
described here may also be relevant to the general XPath processing problem. First, processing
linear expressions is a subproblem in processing more complex queries, as we can decompose
them into linear fragments. Second, this can be seen as a building block for more powerful
processors, such as pushdown automata, able to process branching queries. Moreover, it is



E. Šestáková and J. Janoušek 10:3

Figure 1 XML Index Problem.

easy to combine the index presented in this paper with other automata-based indexes using
standard methods of automata theory.

2 Basic Notions

An alphabet A is a finite non-empty set whose elements are called symbols. A nondeterministic
finite automaton (NFA) is a 5-tuple M = (Q,A, δ, q0, F ), where Q is a finite set of states, A
is an alphabet, δ is a state transition function from Q×A to the power set of Q, q0 ∈ Q is
an initial state, F ⊆ Q is a set of final states. A finite automaton is deterministic (DFA) if
∀a ∈ A, q ∈ Q : |δ(q, a)| ≤ 1.

A rooted and directed tree T is an acyclic connected directed graph T = (N,E), where N
is a set of nodes and E is a set of ordered pairs of nodes called directed edges. A root is a
special node r ∈ N with in-degree 0. All other nodes of a tree T have in-degree 1. There
is just one path from the root r to every node n ∈ N , where n 6= r. A node n1 is a direct
descendant of a node n2 if a pair (n2, n1) ∈ E.

A labelling of a tree T = (N,E) is a mapping N into a set of labels. T is called a labelled
tree if it is equipped with a labelling. T is called an ordered tree if a left-to-right order among
siblings in T is given. Any node of a tree with out-degree 0 is called a leaf. A depth of a
node n, noted as depth(n), is the number of directed edges from the root to the node n.

3 Problem Statement

Basically, the XML index problem is to construct an effective data structure able to efficiently
process XML query languages, such as XPath. There are two crucial issues connected with
all indexing methods. First, the requirement for a small size of the index which, in the best
case, should be linear in the size of the preprocessed subject. The second essential feature of
the index is very fast query processing. Ideally, queries should be answered in time linear to
the size of the query and should not depend on the size of the subject where the queries are
located. If these requirements are fulfilled, the index structure allows us to answer number
of queries with low requirements for both space and time complexity.

At first, indexing methods usually preprocess the data subject and then construct a
structure (an index) that allows to efficiently answer queries related to the content of the
subject. In other words, occurrences of input patterns in the subject can be located repeatedly
and quickly. See the diagram of the XML index problem in Figure 1.

Among others, the theory of indexing a data structure and finding efficient solutions
for particular indexing problems allow us to understand the problem better. Moreover,
sometimes various indexes for particular problems can be combined to index, for instance,
unions or concatenations. In this last aspect, especially the use of the theory of formal
languages and automata could be helpful.

However, the XML index problem is a challenging area. Using only the two most
commonly used XPath axes (child axis / and descendant-or-self // axis), the number of
potential queries is exponential (e.g., O(2.62n) for a simple linear XML tree with n nodes [10]).

SLATE 2017
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HOUSES,1

HOUSE,2

LORD,3 SIGIL,4 SEAT,5 VASSALS,6

HOUSE,7

LORD,8 SEAT,9

HOUSE,10

LORD,11 SIGIL,12

Figure 2 XML tree model T (D) of the XML document D from Example 2.

In this paper, we attempt to support exactly this significant fragment of XPath queries,
noted as XP {/,//,name−test}.

4 XML Tree Model

We model an XML document as an ordered labelled tree where nodes correspond to elements,
and edges represent element inclusion relationships. Hence, we only consider the structure of
XML documents and, therefore, ignore attributes and the text in leaves.

A node in an XML tree model is represented by a pair (label, id) where label and id

represent a tag name and an identifier, respectively. We use a preorder numbering scheme
to uniquely assign an identifier to each of the tree nodes. Unique tag names of an XML
document form its XML alphabet, formally defined as follows.

I Definition 1 (XML alphabet). Let D be an XML document. An XML alphabet A of D,
represented by A(D), is an alphabet where each symbol represents a tag name (label) of an
XML element in D.

I Example 2. Let D be the following XML document. The corresponding XML alpha-
bet A is A(D) = {HOUSES, HOUSE, LORD, SIGIL, SEAT, VASSALS}. Figure 2 shows its
corresponding XML tree model T (D).

<HOUSES >
<HOUSE name =" Stark">

<LORD > Eddard Stark </LORD >
<SIGIL >Direwolf </ SIGIL >
<SEAT >Winterfell </SEAT >
<VASSALS >

<HOUSE name =" Karstark ">
<LORD > Rickard Karstark </LORD >
<SEAT >Karhold </SEAT >

</HOUSE >
</VASSALS >

</HOUSE >
<HOUSE name =" Targaryen ">

<LORD > Daenerys Targaryen </LORD >
<SIGIL >Dragon </ SIGIL >

</HOUSE >
</HOUSES >
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5 Tree Paths Automaton

Tree Paths Automaton (TPA) is a finite automaton designed to process a significant fragment
of XPath queries which may use any combination of child (i.e., /) and descendant-or-self (i.e.,
//) axis, noted as XP {/,//,name−test}. Formally, we can represent such fragment of XPath
queries over an XML document D by the following context–free grammar:

G = ({S}, A(D), {S → SS | /a | //a} ∧ a ∈ A(D), S) .

This section describes a systematic approach to the construction of TPA and demonstrates
it by several examples. Hence, the index is simple and well understandable for anyone who
is familiar with the automata theory.

Given an XML tree model T , the tree is first of all preprocessed by means of its linear
fragments called string paths. Since only path queries are considered, the branching structure
of the XML tree model can be omitted. For individual string paths, smaller Tree Paths
Automata are built, and they are afterwards combined using product construction (union)
to form the index.

I Definition 3 (String path). Let T be an XML tree model of height h. A string path
P = n1n2 . . . nt (t ≤ h) of T is a linear path leading from the root r = n1 to the leaf nt.

I Definition 4 (String path alphabet). Let P be a string path of some XML tree model.
A string path alphabet A of P , represented by A(P ), is an alphabet where each symbol
represents a node label in P .

I Definition 5 (String paths set). Let T be an XML tree model with k leaves. A set of all
string paths over T is called a string paths set, denoted by P (T ) = {P1, P2 . . . Pk}.

I Example 6. Consider the XML tree model T illustrated in Figure 2. We show the content
of the corresponding string paths set P (T ) below. Each node n of T is represented by its
label and identifier, which is shown in parenthesis.

P1 = HOUSES(1) HOUSE(2) LORD(3),
P2 = HOUSES(1) HOUSE(2) SIGIL(4),
P3 = HOUSES(1) HOUSE(2) SEAT(5),
P4 = HOUSES(1) HOUSE(2) VASSALS(6) HOUSE(7) LORD(8),
P5 = HOUSES(1) HOUSE(2) VASSALS(6) HOUSE(7) SEAT(9),
P6 = HOUSES(1) HOUSE(10) LORD(11),
P7 = HOUSES(1) HOUSE(10) SIGIL(12).

The corresponding string path alphabets are as follows:

A(P1) = A(P6) = {HOUSES, HOUSE, LORD},
A(P2) = A(P7) = {HOUSES, HOUSE, SIGIL},
A(P3) = {HOUSES, HOUSE, SEAT},
A(P4) = {HOUSES, HOUSE, VASSALS, LORD},
A(P5) = {HOUSES, HOUSE, VASSALS, SEAT}.

XPath queries containing only child axis (i.e., /) are basically prefixes of individual string
paths. Therefore, to support only XP {/,name−test} fragment of XPath queries, we can use a
prefix automaton constructed for a set of strings (a string paths set). At first, for each string
path P , a deterministic prefix automaton accepting all XP {/,name−test} queries of P can be
constructed. Afterwards, individual automata can be combined using product construction
(union).

SLATE 2017



10:6 Indexing XML Documents Using Tree Paths Automaton

0start 1 2 6 7 8
/HOUSES /HOUSE /VASSALS /HOUSE /LORD

Figure 3 Deterministic prefix automaton for the string path P = HOUSES(1) HOUSE(2) VASSALS(6)
HOUSE(7) LORD(8) from Example 7.

0start 1 2, 7 6 7 8
//HOUSES

//HOUSE

//VASSALS

//LORD

//HOUSE

//VASSALS

//LORD

//VASSALS

//HOUSE

//LORD

//HOUSE

//LORD

//LORD

Figure 4 Deterministic subsequence automaton for the string path P = HOUSES(1) HOUSE(2)
VASSALS(6) HOUSE(7) LORD(8) from Example 7.

Data: A string path P = n1n2 . . . n|P |.
Result: DFA M = (Q,A, δ, 0, F ) accepting all XP {/,name−test} queries of P .

1. Q← {0, id(n1), id(n2), . . . , id(n|P |)},
2. F ← Q \ {0},
3. A = {/a : a ∈ A(P )},
4. δ(0, /label(n1))← id(n1), ∀i ∈ {1, 2, . . . , |P | − 1} : δ(id(ni), /label(ni+1))← id(ni+1).

Algorithm 1: Construction of a deterministic prefix automaton for a single string path.

Data: A string path P = n1n2 . . . n|P |.
Result: DFA M = (Q,A, δ, 0, F ) accepting all XP {//,name−test} queries of P .
1. Construct DFA M1 = (Q1, A, δ1, 0, F1) accepting all non-empty “prefixes” of P as

follows:
a. Q1 ← {0, id(n1), id(n2), . . . , id(n|P |)},
b. F1 ← Q1 \ {0},
c. A = {//a : a ∈ A(P )},
d. δ1(0, //label(n1))← id(n1),
∀i ∈ {1, 2, . . . , |P | − 1} : δ1(id(ni), //label(ni+1))← id(ni+1).

2. Insert ε-transitions into the automaton M1 leading from each state to its next state.
Resulting automaton M2 = (Q2, A, δ2, 0, F2) where
a. Q2 ← Q1, F2 ← F1,
b. δ2 ← δ1 ∪ δ′ and δ′(0, ε)← id(n1),
∀i ∈ {1, 2, . . . , |P | − 1} : δ′(id(ni), ε)← id(ni+1).

3. Eliminate all ε-transitions. The resulting automaton is M3.
4. Construct a deterministic finite automaton M equivalent to M3 using standard

determinisation algorithm based on the subset construction (see [11], Algorithm 1.40).
Algorithm 2: Construction of a deterministic subsequence automaton for a single string
path.
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0start 1 2, 7

2

6 7 8
/[/]HOUSES

//HOUSE

//VASSALS

//LORD

//HOUSE

/HOUSE

//VASSALS

//LORD

/[/]VASSALS

//HOUSE

//LORD

/[/]VASSALS

//HOUSE

//LORD

/[/]HOUSE

//LORD

/[/]LORD

Figure 5 Deterministic Tree Paths Automaton for the string path P = HOUSES(1) HOUSE(2)
VASSALS(6) HOUSE(7) LORD(8) from Example 7.

To satisfy XPath queries XP {//,name−test} containing descendant-or-self-axis (i.e., //)
only, we are interested in subsequences of a string path rather than its prefixes. For each string
path P , we can construct a deterministic subsequence automaton, in this case, accepting
all XP {//,name−test} queries of P . Afterwards, by product construction, we get Tree String
Path Subsequences Automaton, which we presented earlier in [16].

To provide a solution for XPath queries XP {/,//,name−test} containing any combination
of child and descendant-or-self axis, we first propose a building algorithm that combines
prefix and subsequence automata for a single string path P to answer all XP {/,//,name−test}

queries of P . See Algorithm 3 and Example 7.

I Example 7. Let D and T (D) be the XML document and its corresponding XML tree
model from Example 2 and Figure 2, respectively. Given P = HOUSES(1) HOUSE(2) VASSALS(6)
HOUSE(7) LORD(8) as the input string path, Algorithm 3 conducts these steps:
1. constructing a deterministic prefix automaton for P as shown in Figure 3,
2. building a deterministic subsequence automaton for P as shown in Figure 4,
3. combining these two automata as described in step 3 of the algorithm. See resulting

Tree Paths Automaton for P in Figure 5. Note, that transition rules δ(p,/[/]LABEL) = q

represent two transitions leading from the state p to the state q: δ(p,/LABEL) = q and
δ(p,//LABEL) = q.

To obtain the final index for an XML document, we again use the product construction (union)
of automata that were constructed for individual string paths by Algorithm 3. Algorithm 4
describes the whole process in detail and Example 8 demonstrates the result.

I Example 8. Let D be the XML document from Example 2. The corresponding Tree
Paths Automaton accepting all XP {/,//,name−test} queries, constructed by Algorithm 4, is
shown in Figure 6. Again, we note that transition rules δ(p,/[/]LABEL) = q represent two
transitions leading from the state p to the state q: δ(p,/LABEL) = q and δ(p,//LABEL) = q.

5.1 Evaluation of Input Queries
This section describes the searching phase using the index. To compute positions of all
occurrences of an input query Q in an XML tree model T (D) of given XML document D,
we simply run Tree Paths Automaton on the input query. Eventually, the answer for the
input query is given by the d-subset contained in the terminal state of the automaton. If
there is no transition that matches the input symbol, the automaton stops and rejects the
input. Therefore, there are no elements in the XML document satisfying the query.

SLATE 2017



10:8 Indexing XML Documents Using Tree Paths Automaton

Data: A string path P = n1n2 . . . n|P | of an XML tree model using preorder
numbering scheme.

Result: DFA M = (Q,A, δ, 0, F ) accepting all XP {/,//,name−test} queries of P .

1. Construct a deterministic finite automaton M1 = (Q1, A1, δ1, 0, F1) accepting all
XP {/,name−test} queries of P using Algorithm 1.

2. Construct a deterministic finite automaton M2 = (Q2, A2, δ2, 0, F2) accepting all
XP {//,name−test} queries of P using Algorithm 2.

3. Construct a deterministic finite automaton M = (Q,A1 ∪A2, δ, 0, Q \ {0}) accepting all
XP {/,//,name−test} queries of P as follows:

initialize Q = Q1 ∪Q2;
create a new queue S and initialize S = Q;
while S is not empty do

State q ← S.pop;
forall a ∈ A1 do

create a new d-subset d;
forall numbers n in the d-subset of q do

if δ1(n, a) 6= ∅ then
add n into d;

end
end
if d /∈ Q then

Q = Q ∪ {d};
S.push(d)

end
δ(q, a)← d ; . add / transitions

end
find the smallest number m in the d-subset of q;
find a matching state q2 ∈ Q2 containing m as the smallest number in its d-subset;
∀a ∈ A2 : δ(q, a)← δ2(q2, a) ; . add // transitions

end

Algorithm 3: Construction of Tree Paths Automaton for a single string path.

Data: A string paths set P (T ) = {P1, P2, . . . , Pk} of an XML tree model T (D) with
k leaves.

Result: DFA M accepting all XP {/,//,name−test} queries of the XML document D.

1. For all Pi ∈ P (T ) construct a finite automaton Mi = (Qi, Ai, δi, 0, Fi) accepting all
XP {/,//,name−test} queries of Pi using Algorithm 3.

2. Construct a deterministic Tree Paths Automaton
M = (Q, {/a, //a : a ∈ A(D)}, δ, 0, Q \ {0}) accepting all XP {/,//,name−test} queries of
the XML document D using product construction (union).

Algorithm 4: Construction of Tree Paths Automaton for an XML document D.
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0start 1 2, 7, 10 2, 10 3, 11 3, 8, 11 4, 12 5, 9 5
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/[/]LORD

/[/]SEAT

Figure 6 Deterministic Tree Paths Automaton from Example 8.

6 Time and Space Complexities

Tree Paths Automaton is designed to efficiently evaluate all XP {/,//,name−test} queries of an
XML document D. The number of such queries is exponential in the number of nodes of the
XML tree model T (D). However, the running time for answering a query is clearly linear in
the size of the query and does not depend on the size of the XML document, i.e., O(m) for a
query of size m.

The size of the index, i.e., the number of states of the deterministic Tree Paths Automaton,
is closely related to the equivalence problem of XPath queries. Two XPath queries are
equivalent if and only if their result sets of elements are equal. Each state of TPA corresponds
to an answer of a single query or a collection of queries. Although the number of different
queries accepted by TPA is exponential, usually a lot of them is equivalent.

That is, if we know the number of unique query answers, we can construct a deterministic
automaton answering all queries using exactly this number of states. On the other hand,
we can obviously use TPA to decide the equivalence of two queries and even determine
equivalence classes.

From another point of view, we can examine the number of states of TPA by using our
knowledge about smaller automata Mi constructed for individual string paths. Assume
|Mi|max is the maximum possible size of TPA for a single string path. Therefore, the number
of states of TPA for the XML document can by trivially bounded by O(|Mi|kmax) (size of a
product of k automata with maximum of O(|Mi|max) states). However, this is the asymptotic
upper bound. The size of the index seems to be according to our experimental results much
smaller.

For a common XML document (XML with l-property), in which nodes with the same
label can only appear at the same level of the XML tree model, the asymptotic upper bound
is O(h · 2k).

SLATE 2017
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Figure 7 System Architecture of tpalib.

I Definition 9 (Level property). Let T = (N,E) be a labelled directed rooted tree. Level
property (l-property):

∀n1, n2 ∈ N ∧ n1 6= n2 : label(n1) = label(n2) =⇒ depth(n1) = depth(n2) .

I Definition 10 (State level). Let M = (Q,A, δ, q0, F ) be an acyclic deterministic finite
automaton. A state level s of a state q is a maximal number of transitions leading from the
initial state q0 to q.

I Theorem 11. Let D be an XML document and T (D) be its XML tree model satisfying
l-property with height h and k leaves. The number of states of the deterministic TPA
constructed for the XML document D by Algorithm 4 is O(h · 2k).

Proof. There is k string paths in T (D), for which we construct a set S of k deterministic
TPA of no more than h states each (due to l-property). We can run all automata “in parallel”,
by remembering the states of all automata by constructing k-tuples q while reading the
input. This is achieved by the product construction. This way we construct the Tree Paths
Automaton M for T (D).

Due to l-property of T (D) it holds that: The target state of a transition labelled with l is
either a sink state or its state level is the same in each automaton in S. Hence, the k-tuples
(q1, q2, . . . , qk) are restricted as follows: If state level of q1 is s, then each of q2, . . . , qk is
either a sink state or of state level s. If q1 is a sink state, then q2 is arbitrary, but each of
q3, . . . , qk is either a sink state or the same state level as q2. In addition, the k-tuples of
levels 0 and 1 are always (01, 02, . . . , 0k) and (11, 12, . . . , 1k), respectively. Therefore, the
maximum number of states of M is 2 + 2k−1 · (h− 1) + 2k−2 · (h− 2). J

7 Experimental Evaluation

This section explores the performance of Tree Paths Automaton. We first present TPA
System Architecture. Then, we introduce the testing environment for our experiments and
characteristics of selected XML data sets. Afterwards, we study space requirements of TPA
and finally present a performance study over XPath queries that are supported by TPA.
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Figure 8 Partial scheme of XMark data sets.

Table 1 Characteristics of XMark benchmark files.

Key XML File Xmark xmlgen Scaling Factor # Elements File size [MB]
D1 XMark-f0 0 382 0.03
D2 XMark-f0.001 0.001 1, 729 0.10
D3 XMark-f0.005 0.005 8, 518 0.60
D4 XMark-f0.01 0.01 17, 132 1.20
D5 XMark-f0.5 0.5 832, 911 58.00

7.0.1 System Architecture and Testing Environment
The XML index software was developed using Java SE, JDK 8u45 in the NetBeans IDE
8.0.2 and was designed as Java Class Library called tpalib. The system architecture of the
tpalib is illustrated in Figure 7. The library consists of three virtual parts called JDOM,
Index Builder and XML Data Index.

The experiments were conducted under the environment of Intel Core i7 CPU @ 2.00
GHz, 8.0 GB RAM and 240 GB SSD disk with Windows 8.1 operation system running.

7.1 XML Data Sets
For our experimental evaluation, we selected XML benchmark XMark data sets generated by
xmlgen [15]. The XMark data set is a single record with a very large and fairly complicated
tree structure with a maximal depth of 11 and average depth of 4.5. The XML data models
an on-line auction site. Some of element relationships are illustrated in Figure 8.

Table 1 describes relevant characteristics of generated data sets. the first column defines
data set keys. The second column shows names of generated XML files. The next column
contains XMark xmlgen document scaling factors,1 float values where 0 produces the “minimal
document.” The fourth column shows numbers of element nodes in generated files and, finally,
the last column contains the size of files in megabytes.

7.2 Index Size and Performance on Query Processing
Table 2 shows the experimental results on the index size for generated XMark data sets.
The space requirements of the index structure was measured using the size of the file with
serialized TreePathsAutomaton Java object. The results suggest that the ratio of the index

1 http://www.xml-benchmark.org/faq.txt
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Table 2 Experimental results on index size.

Key Index Size [MB] Index Size / XML File Size
D1 0.08 2.60
D2 0.30 3.00
D3 1.35 2.25
D4 2.68 2.23
D5 129.00 2.22

Table 3 Set of queries used in performance analysis.

Key XPath Query
Q1 /site/open_auctions
Q2 /site/people/person/name
Q3 /site/regions/europe/item/description/parlist/listitem/text/emph
Q4 //person//watch
Q5 //regions//mail//date
Q6 //site//regions//europe//description//listitem//text//emph
Q7 /site//open_auction
Q8 //people/person//watch
Q9 //regions/europe//item//parlist/listitem//text/emph

size to original XML data size stays linear since the second column shows that the size of
TPA data is only about 2.5 times larger than the size of the original document size.

The analysis on performance of query processing was conducted in comparison with a
well-known reference implementation called Saxon.2 The Saxon package is a collection of Java
tools for processing XML documents. One of the main components is an XPath processor
accessible to applications via its supplied API. Our measurements reflect query processing
time only. Hence, document loading cost and query parsing cost have been excluded from
the measurements.

Table 2 lists 9 sample queries we used for the experiments. The queries are split into
categories depending on the type of axis used: Q1–Q3 queries contain child axis only, Q4–
Q6 include descendant-or-self axis only, and Q7–Q9 queries use combination of both axes.
Numbers of elements satisfying individual queries in each of generated data sets are shown
in Table 4.

Figure 9 summarizes the experimental results of Tree Paths Automaton and Saxon. The
graph is plotted using logarithmic scale. The x-axis represents the data sets, while the y-axis
shows the response time in milliseconds. We used light blue dashed lines to display Saxon
results, whereas TPA score is depicted as dark blue solid lines.

As for Saxon, there appears to be a clear upward pattern in the query processing time
with growing size of data sets. We can also see that queries Q1–Q3 that use only child
axis are easier to evaluate than more complex queries including also descendant-or-self axis.
However, TPA results remain stable with processing time around 1 to 3 milliseconds. That
is since the searching phase of all elements satisfying the query depends only on the size of a
query and does not depend on the size of a data set. Overall, the sample queries achieve
better response time using our proposed indexing method.

2 Available from http://saxon.sourceforge.net/
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Table 4 Number of elements satisfying queries in the generated data sets.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

D1 1 1 2 1 5 2 1 1 2
D2 1 25 2 50 20 4 12 50 2
D3 1 127 5 247 124 6 60 247 5
D4 1 255 17 488 205 50 120 488 43
D5 1 12, 750 1, 235 25, 414 10, 455 2, 357 6, 000 2, 5414 2, 099
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Figure 9 Performance comparison of TPA and Saxon (logarithmic scale).

8 Conclusion and Future Work

A simple method for indexing XML documents using the theory of formal languages and
automata was presented. Tree Paths Automaton is able to answer all queries which
may use any combination of child (i.e., /) and descendant-or-self (i.e., //) axis, noted
as XP {/,//,name−test}.

Given an XML document D with its corresponding XML tree model T (D), the tree is
preprocessed and an index, which is a finite automaton, is constructed. The searching phase
uses the index, reads an input query Q of size m, and computes the list of positions of all
occurrences of Q in the tree T (D). The searching is performed in time O(m) and does not
depend on the size of the original XML document.

Although the number of distinct queries is exponential in the number of nodes of the
XML tree model, the size of the index seems to be according to our experimental results
only about 2.5 times larger than the size of the original document. There is also a number of
interesting open problems that we hope to explore in the future:

develop an incremental building algorithm for our automata-based indexes to efficiently
adapt their structure to ever changing XML data sources,

adapt our indexing methods to be able to support multiple XML documents,

extend our methods to support more complex queries (e.g., including attributes, wildcards,
branching etc.).

SLATE 2017
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