
Enhancing Feedback to Students in Automated
Diagram Assessment∗

Helder Correia1, José Paulo Leal2, and José Carlos Paiva3

1 CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto, Porto,
Portugal
up201108850@fc.up.pt

2 CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto, Porto,
Portugal
zp@dcc.fc.up.pt

3 CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto, Porto,
Portugal
up201200272@fc.up.pt

Abstract
Automated assessment is an essential part of eLearning. Although comparatively easy for mul-
tiple choice questions (MCQs), automated assessment is more challenging when exercises involve
languages used in computer science. In this particular case, the assessment is more than just
grading and must include feedback that leads to the improvement of the students’ performance.

This paper presents ongoing work to develop Kora, an automated diagram assessment tool
with enhanced feedback, targeted to the multiple diagrammatic languages used in computer
science. Kora builds on the experience gained with previous research, namely: a diagram assess-
ment tool to compute differences between graphs; an IDE inspired web learning environment for
computer science languages; and an extensible web diagram editor.

Kora has several features to enhance feedback: it distinguishes syntactic and semantic errors,
providing specialized feedback in each case; it provides progressive feedback disclosure, controlling
the quality and quantity shown to each student after a submission; when possible, it integrates
feedback within the diagram editor showing actual nodes and edges on the editor itself.

1998 ACM Subject Classification D.2.6 [Programming Environments] Interactive Environments

Keywords and phrases automated assessment, diagram assessment, feedback generation,language
environments, e-learning

Digital Object Identifier 10.4230/OASIcs.SLATE.2017.11

1 Introduction

Automated assessment is essential for effective eLearning. Both in formative and summative
assessment, eLearning students need to have their exercises compared with standard solutions,
so that they know if they are achieving the expected result. Any form of assessment, even if
it is just a grade, is already feedback to the student. However, feedback should be more than
just a distance to the correct solution. Students need to be guided, see evidence of their
mistakes and receive suggestions to improve their performance [8].

∗ This work is financed by the ERDF – European Regional Development Fund through the Operational
Programme for Competitiveness and Internationalisation – COMPETE 2020 Programme, and by
National Funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for
Science and Technology) within project POCI-01-0145-FEDER-006961.

© Hélder Correia, José Paulo Leal, and José Carlos Paiva;
licensed under Creative Commons License CC-BY

6th Symposium on Languages, Applications and Technologies (SLATE 2017).
Editors: R. Queirós, M. Pinto, A. Simões, J. P. Leal, and M. J. Varanda; Article No. 11; pp. 11:1–11:8

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2017.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


11:2 Enhancing Feedback to Students in Automated Diagram Assessment

When the set of all possible answers to an exercise is small, grading and feedback are fairly
easy to automate. This is arguably the reason why multiple choice questions (MCQs) are
so popular on eLearning. In fact, simple skills and superficial knowledge can be completely
assessed using MCQs, but for some cases they are insufficient. For instance, it is impossible
to assess a student proficiency on a language using only MCQs. This is obviously true in
natural languages, such as English and Portuguese, and is also the case for the artificial
languages used in computer science. This fact lead to the development of several systems for
assessing both programming languages [4] and diagrammatic languages [11, 2]. Nevertheless,
feedback in these systems is still largely an open issue [5].

Diagram assessment has been less researched than program assessment, which is under-
standable since programs are more relevant than diagrams in computer science. However,
programs are much more difficult to assess than diagrams, since their semantics is more
complex. That is, a program has an operational semantics that needs to be checked with test
data but diagrams have only a declarative semantics. Feedback on a diagram exercise can be
solely based on the differences between the student’s diagram and a solution. The relevance
of the research on diagram assessment feedback is twofold: diagram languages are studied in
several computer science disciplines, such as theory of computation (DFA), databases (EER)
and software modeling (UML), thus it is useful for teaching those subjects; the tools and
techniques developed for diagrammatic languages may later on be extended to more complex
languages such as programming languages.

The research presented in this paper builds on previous work to develop the components
for diagram assessment, namely a computer language learning environment [9], a diagram
editor [6] and a a graph comparator [12]. Diagrams are modeled by graphs, hence it is
possible to compare two diagrams by computing the differences between their model graphs.
For large graphs, the computational complexity is prohibitive, but using heuristics and for
graphs of the size typically used in programming exercises, this method is effective. However,
the validation of the graph comparator revealed several issues related to feedback generation.

This paper presents Kora, a component for assessing diagrams with enhanced feedback. It
was designed to support any diagrammatic language used in computer science. Nevertheless,
some of its features were inspired by existing UML editors and it will validated with class and
use case diagrams. Hence, Section 2 surveys in particular the existing editors and assessment
systems for that language. Kora relies on components resulting from previous research that
are described in Section 3. One the contribution of this work is the Diagrammatic Language
Definition Language (DL2) that is presented in Section 4. The enhanced feedback features
provided by Kora required a redesign of diagram editor Eshu, as explained in Section 5.
The design and implementation of the Kora component is presented in Section 6. The final
section addresses the work currently being done and the planned validation of Kora.

2 Related work

Kora supports the creation and assessment of diagram exercises of any type, with visual and
textual feedback. To the best of authors’ knowledge, no other tool described in the literature
includes all these features. Hence, this section reviews several works including some of these
features.

Most of the existent automatic diagram assessment systems are designed for a specific
diagram type. Some examples of these system are deterministic finite automata (DFA) [2, 10],
UML class diagrams [1, 11, 14], Entity-Relationship diagrams [3], among others.

There are many diagram editing tools targeted to UML and most of them are commercial.



H. Correia, J. P. Leal, and J. C. Paiva 11:3

Because they are developed for companies that normally use them for the modeling of complex
systems, they present more features and functionalities (e.g forward engineering,reverse
engineering). Most of these tools are visual tools defined for multi-domain modeling (e.g
computational modeling) that support UML diagram modeling or drawing. Examples of this
kind of tools are MagicDraw1 and Modelio2.

Nevertheless, there are a few non-commercial UML tools such as ArgoUML3, and Dia4.
These are usually developed by research groups with pedagogical scope, they usually have
fewer features and functionality than commercial tools. However, in general, they are tools
developed for the domain of modeling UML diagrams and present models that faithfully
follow the specification UML.

A growing number of UML editing tools are deployed on the web, such as Cacoo5. These
tools typically allow real-time multi-user collaboration in diagram editing, with specific
features that facilitate this mode of editing (chat and version control). They are tools for
drawing and not modeling, they have few features and functionalities and it is mandatory to
have an account.

From the diagram assessment viewpoint, critiquing systems are a relevant feature of many
UML editing and modeling tools. A critiquing system acts on modeling tools to provide
corrections and suggestions on the models to be designed. Much research has been devoted
to critiquing tools and they are incorporated in systems such as ArgoUML, ArchStudio5 6

ABCDE-Critic [13].

3 Background

In project Eshu [6], we develop an extensible diagram editor, embeddable in Web applications
that require diagram interaction, such as modeling tools or e-learning environments. Eshu
is a JavaScript library with an API that supports its integration with other components,
including importing/exporting diagrams in JSON. In order to validate the API of Eshu
we created an EER diagram editor in Javascript using the library provided by Eshu and
HTML5 canvas. The editor allows to edit ERR diagram, import / export diagram into JSON
format, apply ERR language restrictions in diagram editor (constraints on links), display
visual feedback on EER diagram submissions. The editor has been integrated into the Enki
[9] with a diagram evaluator and was used in database course to edit and evaluate EER
diagrams.

Diagrams are schematic representations of information that, ignoring the positioning of
its elements, can be abstracted in graphs. Based on this, structure driven approach to assess
graph-based exercises was proposed [12]. Given two graphs, a solution and an attempt of
a student, this approach computes a mapping between the node sets of both graphs that
maximizes the students grade, as well as a description of the differences between the two
graph. Then, it uses an algorithm with heuristics to test the most promising mappings first
and prune the remaining when it is sure that a better mapping cannot be computed.

Enki [9] is a web-based IDE for learning programming languages, which blends assessment
(exercises) and learning (multimedia and textual resources). It integrates with external

1 https://www.nomagic.com/products/magicdraw.html
2 https://www.altova.com/umodel.html
3 http://argouml.tigris.org/
4 http://dia-installer.de/
5 https://cacoo.com
6 https://basicarchstudiomanual.wordpress.com/

SLATE 2017

https://www.nomagic.com/products/magicdraw.html
https://www.altova.com/umodel.html
http://argouml.tigris.org/
http://dia-installer.de/
https://cacoo.com
https://basicarchstudiomanual.wordpress.com/


11:4 Enhancing Feedback to Students in Automated Diagram Assessment

services to provide gamification features and to sequence educational resources at different
rhythms according to students’ capabilities. The assessment of exercises is provided by the
new version of Mooshak [7] – Mooshak 2.0 –, which, among other features, allows the creation
of special evaluators for different types of exercises.

4 Language configuration-DL2

Kora was designed to be extensible, to be able to incorporate new diagrammatic languages
defined by an XML configuration file. This file includes configurations for syntactic feedback
and editor. It configures types of nodes, types of edges, restrictions of the language, among
others, that are used while validating the syntax. It includes configurations of the editor and
toolbar style that applied on Eshu.

The configuration file consists of two top elements Style and Diagram. Type Style
contains information such height, width, background and grid of the editor and the toolbar.
Type Diagram configures the syntax of the language (nodes, edges and constraints), and has
two types of elements, nodeTypes and edgeTypes, and two attributes, name and pathFile.
The attribute name contains the name of the language, pathFile contains the path of the
configuration file. Elements of nodeTypes contain a set of nodeInfo and each nodeInfo is
a configuration of a node (type, svg image, label, URL for node type information, visible
properties in the configuration window, type of connections of the node and degree in/out of
this node). Elements of edgeTypes, similar to nodeTypes, contain a set of edgeInfo, and
each edgeInfo contains the configuration of an edge type.

5 Eshu 2.0

A diagram is composed of a set of Node and a set Edge; Nodes have a position and dimension;
Edges connect a source and a target node. Although Eshu 2.0, similarly to Eshu 1.0 [6],
follows an object-oriented approach for Javascript, it separates the data part from the
visualization and editing part.

Eshu 2.0 consists of three packages: eshu, graph and commands. The package graph
has the classes responsible for creating nodes and edges, storing the graph (Quadtree) and
operating on the data of the graph (insert, remove, save changes and select an element).
Package eshu contains the classes responsible for the user interface, including handlers for
user interaction, methods to export and import the graph of the diagram in JSON format,
methods to present visual feedback in the diagram editor, among many others. The package
commands contains the classes that are responsible for the implementation of operations, such
as undo, redo, paste, remove or resize.

One of the main improvements of Eshu 2.0 is the extensibility of nodes and edges. In
Eshu 1.0, the creation of a new type of node (or edge) involves the creation of a new class
that extends Vertice (or Edge for edges) and defines the method draw. With Eshu 2.0, a
new type of node (or edge) can be inserted by only adding a nodeConfig (or edgeConfig)
element to nodeTypes (or edgeTypes), in the configuration file. This element contains
general information for a node (or edge), such as its SVG image path (used to represent it in
the UI), type name, constraints on connections, among others.

Eshu is a pure JavaScript library, hence it can be integrated in most web applications.
However, some frameworks, such as Google Web Toolkit (GWT), use different languages
to code the web interfaces, in this case Java. To enable the integration of Eshu in GWT
applications, a binding to this framework was also developed. The binding is composed



H. Correia, J. P. Leal, and J. C. Paiva 11:5

Figure 1 Diagram Class Eshu.

of a Java class (that is converted to JavaScript by GWT) with methods to use the API,
implemented using the JavaScript Native Interface (JSNI) of GWT.

The undo and redo commands are very important to the user while editing the graph.
These two operations were not included in the first version of Eshu [6], but were now added.
To facilitate the integration of these operations, a set of classes that implement the command
design pattern were developed. Now, operations, such as insert, delete and paste, are
encapsulated as an object allowing to register them in a stack, and thus pop or push them.

Also, the API allows the host application to send feedback in the form of changes to the
existing diagram. If these changes are deletions or modifications, they can be rendered by
displaying the existing nodes and edges with a different color (blue – insert, red – delete).
However, if the difference is a node insertion then it has to be positioned by Eshu. The layout
of these new nodes is computed using a force-directed algorithm. In this approach, nodes
repel each other according to Coulomb’s law, as if they were electrically charged particles
with the same signal, and edges bind them together as springs following Hooke’s law.

6 Kora component

The Kora component is divided into two parts, client and server. The client part is
integrated on the web interface and is responsible for running the Eshu editor, as well
as handling user actions and presenting the feedback. The server part is responsible for
evaluating diagrams, generating feedback, and exchanging information with the client side,
such as language configurations.

A diagram is a schematic representation of information. This representation has associated
to itself elements that have certain characteristics and a positioning in the space. By
abstracting the layout (the position of the elements), the diagrams can be represented as
graphs. The approach that is intended to follow for the assessment of the diagrams is the
comparison of the graphs. Thus, it is possible to analyze the contents of the diagram without
giving relevance to its positioning or graphic formatting.

In Eshu 1.0, types of connections are checked during creation editing, that is, if a source
and target nodes could not be connect it would be reported immediately. However, during

SLATE 2017



11:6 Enhancing Feedback to Students in Automated Diagram Assessment

Figure 2 Assessment diagram in Kora system.

the validation of Eshu 1.0, it was noticed that the editor was getting slower as the number of
nodes increased, although not all syntactic issues were actually covered. Also, syntactically
incorrect graphs were causing problems in the generation of feedback by the evaluator. Due
to these issues, syntactic verification was moved to Kora.

The diagram assessment in the system is split in two parts: syntactic assessment and
semantic assessment. The syntactic assessment involves the conversion of the JSON file
to a graph structure, and validation of the language syntax. It consists of validating the
structural organization of the language, based on the set of rules, defined in the configuration
file, for the types of nodes and edges. In this phase, the following tasks are done: validation
of the types for the language; validation of the edges – for each edge it is checked if the type,
source and target are valid; validations of the nodes – the degree of in and out are valid;
validation of the number of connected components in the graph. The semantic assessment
has to do with the comparison of the diagrams and follows graph assessment algorithm [12].
The evaluator receives a graph as an attempt to solve a problem and compares it with a
graph solution, aims to find out which mapping of the solution nodes in nodes attempt
to minimize the set of differences and therefore maximize the classification. For this, it is
necessary to find out which solution node corresponds to the attempt node.

Figure 2 presents the UML sequence diagram of the diagram assessment in the Kora
system. The Kora client gets the graph of the diagram in JSON format through a function
of the Eshu API – Eshu exportGraph(). It parses the JSON graphs of the solution and the
attempt, gathering the information necessary, in the form of graph, to represent them in the
next assessments of these diagrams. Then, the Kora system performs syntactic validation
and reports the existence of any syntax error, aborting the evaluation if a syntax error exists.
If it does not contain any syntax error, it proceeds to semantic evaluation. This evaluator
receives two graphs, the attempted graph and a solution graph. In the wrong answers, the
errors are located and inserted into the lists of differences. Based on this list, the respective
feedback is generated and a classification is calculated, so that the diagram can be improved.

The semantic assessment provided by Kora is based on the differences computed by a
graph evaluator. The graph evaluator compares two graphs (attempt and solution), returns
a set of differences and based on these differences is generated a feedback that is presented



H. Correia, J. P. Leal, and J. C. Paiva 11:7

Figure 3 Feedback Manager.

in Eshu, both in visual and textual form. However, when the student’s attempt is far from
the solution, it reports too many differences.

To cope with this problem Kore uses an incremental feedback generator. The generator
uses several strategies to summarize a list of differences in a single message. The most general
message that was not yet presented to the user is then selected as feedback.

Kora uses a repertoire of strategies to summarize a list of differences. Some strategies
manage to condense several differences. For instance, several differences reporting a missing
node of the same type may be condensed in the message “n missing nodes of type T .” Another
strategy may select one of these nodes and show its label. An even more detailed strategy may
show the actual missing node on the diagram. A particular strategy may not be applicable
to some list of differences. In this case no message is produced.

The resulting collection of feedback messages is sorted according to generality. General
messages have precedence over specific messages. However, if a message was already provided
as feedback than it is not repeated. The following message is reported instead. Using this
approach, messages of increasing detail are provided to the student if she or he persist on
the same exact error.

Figure 3 presents the UML class diagram of the feedback implementation. The class
FeedbackMessage contains the feedback information, including message, property number,
weight, and in / out degrees (if it is a node). The property number indicates the property to
which the message refers, the weight defines how much important is the mistake of the student,
the degree of input/output allows to determine the importance of the node comparing to
other nodes (i.e. higher degree, generally, means higher importance), and the message is
the message itself. The class FeedbackManager generates and selects the feedback to be
sent to the student. From the list of differences that is returned by the graph evaluator,
it is generated a list of FeedbackMessage. From this list, the feedback already sent to the
student is removed, and the remaining is sorted based on the fields of the FeedbackMessage
class. The first FeedbackMessage from the list is selected and sent to the student.

7 Current and Future Work

Kora is work in progress. The project is in the final stage of development, just before
validation. The design of Kora, including the diagrammatic language definition language, is
already concluded. The implementation of the components described in this paper is in an
advanced stage. Currently, most of the development effort is in the integration of Kora in
Eshu, the learning environment where it will be deployed. In parallel, the definitions for two
types of UML diagrams, namely class and use case, are also in development. Exercises for
these diagram types will be used in the validation of Kora.

SLATE 2017



11:8 Enhancing Feedback to Students in Automated Diagram Assessment

The research question that Kora aims to answer is: can feedback be enhanced by processing
the output of an evaluator? Thus, the validation of the proposed approach will compare
the efficacy of feedback with and without Kora. An experiment on the effect of Kora as
a “treatment” to improve the efficacy of feedback is also being designed. Two groups of
randomly chosen students will solve the same exercises, one group will receive raw feedback
(just a grade and a list of differences) and the other will receive feedback processed by
Kora. Both quantitative and qualitative differences are expected in the outcomes of the two
groups. A number of variables will be measured to quantify those differences, including: the
percentage of solved exercises, the number of submissions per problem and the time spent
per exercise. To estimate the qualitative difference, students of both groups will be asked to
fill in a questionnaire on their experience using diagram assessment tool.

References
1 Noraida Haji Ali, Zarina Shukur, and Sufian Idris. A design of an assessment system

for UML class diagram. In International Conference on Computational Science and its
Applications, pages 539–546, 2007.

2 Rajeev Alur, Loris D’Antoni, Sumit Gulwani, Dileep Kini, and Mahesh Viswanathan. Auto-
mated grading of DFA constructions. In International Joint Conference on Artificial Intel-
ligence (IJCAI), volume 13, pages 1976–1982, 2013.

3 Firat Batmaz and Chris J. Hinde. A diagram drawing tool for semi-automatic assessment of
conceptual database diagrams. In 10th CAA International Computer Assisted Assessment
Conference, pages 71–84, 2006.

4 Christopher Douce, David Livingstone, and James Orwell. Automatic test-based assessment
of programming: A review. Journal on Educational Resources in Computing (JERIC),
5(3):4, 2005.

5 Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. Towards a systematic review of
automated feedback generation for programming exercises. In Conference on Innovation
and Technology in Computer Science Education, pages 41–46, 2016.

6 José Paulo Leal, Helder Correia, and José Carlos Paiva. Eshu: An extensible web editor for
diagrammatic languages. In 5th Symposium on Languages, Applications and Technologies
(SLATE), pages 12:1–12:13, 2016.

7 José Paulo Leal and Fernando Silva. Mooshak: A web-based multi-site programming contest
system. Software: Practice and Experience, 33(6):567–581, 2003.

8 Robin Mason and Frank Rennie. Elearning: The key concepts. Routledge, 2006.
9 José Carlos Paiva, José Paulo Leal, and Ricardo Queirós. Enki: A pedagogical services ag-

gregator for learning programming languages. In Conference on Innovation and Technology
in Computer Science Education, pages 332–337, 2016.

10 Zarina Shukur and Nurul F. Mohamed. The design of ADAT: A tool for assessing automata-
based assignments. Journal of Computer Science, 4(5):415, 2008.

11 Josep Soler, Imma Boada, Ferran Prados, Jordi Poch, and Ramon Fabregat. A web-based
e-learning tool for UML class diagrams. In Education Engineering Conference (EDUCON),
pages 973–979, 2010.

12 Rúben Sousa and José Paulo Leal. A structural approach to assess graph-based exercises.
In International Symposium on Languages, Applications and Technologies (SLATE), pages
182–193, 2015.

13 Cleidson R.B. Souza, J. S. Ferreira, Kléder Miranda Gonçalves, and Jacques Wainer. A
group critic system for object-oriented analysis and design. In The Fifteenth International
Conference on Automated Software Engineering (ASE), pages 313–316, 2000.

14 Vinay Vachharajani and Jyoti Pareek. A proposed architecture for automated assessment
of use case diagrams. International Journal of Computer Applications, 108(4), 2014.


	Introduction
	Related work
	Background
	Language configuration-DL2
	Eshu 2.0
	Kora component
	Current and Future Work

