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Abstract
In this paper, we investigate how model-driven engineering (MDE) of Internet of Things (IoT)
systems and Wireless-Sensor Networks (WSN) can be supported and introduce a domain-specific
metamodel for modeling such systems based on the well-known Contiki operating system. The
unique lightweight thread structure of Contiki makes it more preferable in the implementation
of new IoT systems instead of many other existing platforms. Although some MDE approaches
exist for IoT systems and WSNs, currently there is no study which addresses the modelling
according to the specifications of Contiki platform. The work presented in this paper aims at
filling this gap and covers the development of both a modeling language syntax and a graphical
modeling environment for the MDE of IoTs according to event-driven mechanism and protothread
architecture of Contiki. Use of the proposed modeling language is demonstrated with including
the development of an IoT system for forest fire detection.
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1 Introduction

Internet as a global information and communication infrastructure, is evolving to form of
a platform for letting machines and smart objects communicate, dialogue, compute and
coordinate [17]. The term “Internet-of-Things” (IoT) is broadly used for these interconnected
objects which build the smart environments, e.g. smart homes [12]. IoT systems do not only
present diverse context of smart implementations, but also present diverse computing and
communication capabilities. This heterogeneity in devices brings management challenges
in architectural and protocol issues [17] which requires network, embedded and distributed

∗ Authors would like to thank the Scientific and Technological Research Council of Turkey (TUBITAK)
Electric, Electronic and Informatics Research Group (EEEAG) for covering SLATE conference attendance
and paper presentation expenses under the project grant 115E449.

© Caglar Durmaz, Moharram Challenger, Orhan Dagdeviren, and Geylani Kardas;
licensed under Creative Commons License CC-BY

6th Symposium on Languages, Applications and Technologies (SLATE 2017).
Editors: R. Queirós, M. Pinto, A. Simões, J. P. Leal, and M. J. Varanda; Article No. 5; pp. 5:1–5:13

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2017.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


5:2 Modelling Contiki-Based IoT Systems

programming knowledge [2, 18]. Although advances in the development of low-cost and
low-power micro-controllers play an important role during the construction of IoT systems,
the scarcity of application developers who possess the required knowledge and experience
for such systems, limits the power of using the micro-controller technologies in IoT. Proper
software platforms, which facilitate the design and implementation of IoT applications, may
bring more developers into this domain. For the sake of increasing need for application
development on IoT, several operating systems for Wireless Sensor Network (WSN) and
IoT motes are realized. Contiki [9] and TinyOS [14] are two of these best known sensor
node operating systems (OS) [20]. TinyOS provides interfaces and components for common
abstractions to implement algorithms designed for eneergy-efficient devices [1, 5]. Contiki
gained popularity recently because of built in TCP/IP stack and lightweight preemptive
scheduling over event-driven kernel [9] which is a very motivating feature for IoT.

Even if operating systems play the role of an abstraction layer for low-level hardware
heterogeneity, distributed programming and network related concerns dominate the workload
in software development. The separation of hardware-related and application related concerns
will improve the software engineering processes of IoT systems [15] which may pave the way
to deal with the system’s structural complexity coming from the heterogeneity.

One possible approach to cope with this complexity is to increase the abstraction level
using system models [16], for WSN and IoT in a Model Driven Engineering (MDE) approach.
MDE moves software development from code to models and may increase productivity and
reduce development costs [23]. Fruitfulness of this approach is demonstrated in several other
domain studies, e.g. [4, 26].

MDE for IoT systems and WSNs is being researched in several studies especially for
the purpose of separation of concerns [3, 11, 21, 25]. Although, some of these studies deal
with the structural complexity of IoT, most of them do not provide a complete and/or a
systematic approach for their MDE solutions. Moreover, most of these studies only consider
the MDE of IoT only on TinyOS as reported in [11]. In order to contribute these studies and
fill the gap for providing an MDE approach for developing IoT systems based on Contiki OS,
in this paper, we introduce a domain-specific metamodel, which can be used for modeling
Contiki applications. Based on the metamodel, a visual concrete syntax is derived and a
graphical modeling environment is developed for modeling IoT systems. Use of the proposed
modeling language is demonstrated with including the development of an IoT system for
forest fire detection.

Rest of the paper is organized as follows. In Section 2, Contiki OS is briefly discussed.
Section 3 introduces the metamodel proposed for Contiki. Section 4 covers the derived
concrete syntax, its notations and the related graphical modeling environment. A use case
study is given in Section 5 for exemplifying the use of the proposed modeling environment.
Section 6 includes the related work. Finally, Section 7 concludes the paper and states the
future work.

2 Contiki Operating System

Contiki1 is a lightweight open source OS written in C for IoT. Contiki connects tiny low-cost,
low-power micro-controllers to the Internet. As indicated in [24], Contiki and its micro IP
(uIP) stack are used worldwide by hundreds of projects and companies. The uIP implements
only the minimal set of features needed for a full TCP/IP stack.

1 Contiki: http://www.contiki-os.org/index.html.

http://www.contiki-os.org/index.html
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Figure 1 The architecture and main components of Contiki [24].

Operating systems, like TinyOS [14] and SOS [13] are based on event-driven model
which is often used on memory constrained devices. Contiki is also event-driven and
provides a lightweight thread model called protothreads [10] over event-driven kernel which
is not available in the other peer operating systems. User and built-in applications can be
implemented over protothreads which are basic OS threads. Protothreads simplify event-
driven programming by reducing the need for explicit state machines by providing abstraction
of conditional blocking wait operation [10]. PT_WAIT_UNTIL() statement in Contiki [10]
blocks conditional execution of a process. On the other hand, PT_YIELD() statement blocks
execution of process unconditionally. Protothread waits until the next time the protothread
is invoked and continues executing the code following the PT_YIELD() statement.

The architecture of Contiki is shown in Figure 1. Hardware Drivers, Platform and CPU
abstractions form the abstraction for the real low-level hardware. Platform and CPU layers are
implemented independently due to portability concern. The Rime system provides medium
access control and a set of lightweight communication primitives for network protocols. The
uIPv6 stack makes use of Rime, and provides TCP, UDP and ICMP and also a socket-like
API, protosockets 2. The protosocket implementation makes use of Contiki protothreads.

The Contiki also provides timer support and dynamic linking capabilities as system
services. Both updating the system which contains hundreds or even thousands of nodes with
new functionality and correcting software bugs are often needed in deployed IoT systems [8].
Developing full system image replacement is a solution for this situations but it is not feasible
to physically collect and reprogram all sensor devices [9]. By the help of dynamic linking,
new code modules can be added at runtime to the application running on a node.

In this study, we address the modelling of the following sections of Contiki architecture
given in Figure 1: ContikiOS, User apps, and uIPv6 (including Socket-like API, UDP, TCP).
In this way, by using the provided metamodel of ContikiOS and uIPv6, we can model a user
application for an IoT system.

3 The Metamodel for Contiki-based IoT Systems

In this section, a metamodel is presented for MDE of Contiki-based systems to provide the
concepts and their relations pertaining to IoT domain. This metamodel can be used as an
abstract syntax and pave the way for developing a modelling language for Contiki.

2 ContikiOS 2.6 Documentation: http://contiki.sourceforge.net/docs/2.6/index.html.
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5:4 Modelling Contiki-Based IoT Systems

As shown in Figure 2, the proposed metamodel provides the meta-entities and their
relations required for the structural architecture of Contiki programs. Entities of the
metamodel are given in italics throughout the paper.

Since Contiki is primarily an OS, main entities of Contiki are process and thread inside
each Node. A process in Contiki consists of a single protothread. Process_Thread is
used to define this single protothread of the process [10]. A process thread can also call
several stand alone protothreads represented as PT_Thread in the metamodel by the use
of PT_Thread_Call. Boolean value of Autostart attribute of Process_Thread designates
whether the thread will be started at the beginning of the mote execution, or not. Also,
Name attribute is the declaration of the thread while Description attribute represents a short
description for debugging concerns. Being an event-driven OS, Contiki kernel sends events
to Process_Thread with event and data arguments. The attributes, EventArgument and
DataArgument in the metamodel, define variable names of event and data arguments.

PT_Thread_Call holds the destination PT_Thread and a concrete PT_Thread_Struct
argument of PT_Thread. PT and Psock are concrete structures that can be sent as arguments
when calling PT_Threads. Psock ,which can only be used in PT_Threads, offers TCP and
UDP socket implementations in Contiki.

Messaging among processes and threads is another core function of operating systems.
Due to being again event-driven, messages received from other processes are handled by a
specialized event, Process_Event, and the messages are sent by Process_Post. Process_Post
has exactly one Data attribute that stores message payload and exactly one Process_Event
that is going to be triggered. Sync attribute of Process_Post defines the execution of caller
process thread which is going to be synchronous or asynchronous.

Besides this messaging between processes in the same mote, messaging among processes
residing in different motes is another requirement of an IoT OS. Contiki is differentiated itself
from other WSN operating systems by implementing network IP stack and built-in TCP/IP
and UDP support. Related feature is modelled in the proposed metamodel as follows: One
mote can start a connection and send first message via Client_Connection with an outgoing
Data with RemoteIP and RemotePortNumber attributes. This connection can also be used
to retrieve incoming messages from the relevant remote host. Contiki fires TCPIP_Event
when a UDP or TCP packet is arrived. There is no special event type for UDP IP events.
By the help of connection and TCPIP_event, messages from other host can be detected and
processed. On the other side, Server_Connection entity can receive messages from hosts by
defining ListeningPort. Same TCPIP_Event and connection entity types are also used to
process messages on the server side. Connections can be used for several messages with the
remote host, several incoming and outgoing data may be related to a connection in the model.
The Last event type is Time_Event and it occurs when Etimer gets to zero. Etimer has
Name attribute which holds a variable name in Process_Thread, and Period attribute which
defines durations between the current moment and the time of next firing of Time_Event.

4 The Concrete Syntax

The metamodel introduced in the previous section represents an abstract syntax for a
modeling language for Contiki-based IoT systems. While the abstract syntax includes the
concepts and their relations between those concepts, a concrete syntax provides a mapping
between these concepts (meta-elements) and their textual and/or graphical representation. In
this study, we also introduce a graphical concrete syntax for modelling Contiki applications.
Table 1 lists the graphical notations for some of the important entities discussed in Section 3.
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Figure 2 A domain-specific metamodel for Contiki OS.
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Table 1 Some of the concepts and their notations for the Contiki modeling environment.

Concept Notation Concept Notation

Node Data

Process_Thread Process_Event

PT_Thread TCPIP_Event

PT_Thread_Call Port

Process_Post Server_Connection

Etimer Client_Connection

Event Psock

Time_Event PT

Some of the graphics used for the concept representations are adopted and modified from
Flaticon3.

As it is shown in Table 1, the notations are selected in a way that the concepts with the
same range of semantics have common symbols. For example, the elements with interior
structure of processes and threads, such as Process_Thread, PT_Thread, Process_Event,
and PT, have the same symbol of a gear as part of their notation. Similarly, the event
related concepts, such as Event, Time_Event, Process_Event, and TCPIP_Event have the
symbol of a screen as part of their notations. The notations are selected in a way that their
presentation in both black-white or color will let the user to differentiate them from each
other.

The metamodel discussed in the previous section is encoded in Ecore format inside Eclipse
Modelling Framework (EMF4). Using this Ecore file, the notations depicted in Table 1, are
mapped in Eclipse Epsilon Framework5 to develop a graphical editor, as shown in Figure 3.
To this end, the Ecore model, as our abstract syntax, is converted to Epsilon format which is
used by Epsilon Eugenia tool. Then the required configurations are applied to inject the
concrete syntax related information as some annotations in the Epsilon file.

Since we already provide some constraints in the abstract syntax (the metamodel),
such as multiplicities, the graphical editor can check some of the connection rules during
modelling, e.g. checking the source and target and also the number of relations for an element.
Furthermore, we have benefited from the features of Eclipse Graphical Modeling Framework
(GMF6) for automatically checking some consistency constraints when the model is modified,
e.g. removing all the input/output links for an element when the element is removed from
the model.

In addition to the GMF-based constraint checks, we have provided some domain rules
to be checked to restrict the user to provide a more accurate model. This will lead to have
artifacts with less errors in the generation phase. To this end, some static semantic rules

3 http://www.flaticon.com
4 http://www.eclipse.org/modeling/emf/
5 http://www.eclipse.org/epsilon/
6 https://www.eclipse.org/modeling/gmp/

http://www.flaticon.com
http://www.eclipse.org/modeling/emf/
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Figure 3 A screenshot from the developed graphical editor for modeling Contiki-based IoT
systems.

are provided for the system. These rules are implemented in Eclipse Validation Language
(EVL7) to be integrated with the provided graphical modeling environment. Some of these
rules are given below:

A Port element in an instance model must have exactly one incoming link from a
Server_Connection, but it should also have at least one incoming link from some Cli-
ent_Connections. In this way, no Port element will be used improperly (without client
side or server side links).
The message payloads which are held in Data element are forced to be same in the
relevant client and server connections.
All client and server Connections are forced to be linked to Process_Threads, as each
Process_Threads may have 0-* Client_Connection and/or Server_Connection.
All events must be handled by a Process_Thread

The graphical editor developed in this study provides a convenient modeling environment in
which the developers can create instance IoT models conforming to our metamodel by using
the graphical concrete syntax. As can be seen in Figure 3, entities are listed in the palette
residing in the right side of the graphical modeling editor. A developer can drag and drop
an entity from this palette to create an instance of this entity. While the instances are added
into the model, the related associations between the entities are automatically established
and controlled by the defined constraints.

5 Case Study: Modeling an IoT System for Forest Fire Detection

There are many applications of WSNs [27] and IoT [19]. One of these applications is a Forest
Fire Detection System [28]. In this application domain, IoT components are used to recognize

7 http://www.eclipse.org/epsilon/doc/evl/
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Figure 4 A WSN for real-time forest fire detection.

the symptoms of a fire in an area such as a jungle and take in-time reactions. By the help of
periodic measurements of some critical parameters in a wide area, the system predicts the
risk of forest fire and warns in order to minimize the loss of forests, wild animals, and people
in the forest. In this section, to give some flavour of using both the proposed metamodel and
our modeling environment, we discuss the development of such an IoT system.

Densely deployed large number of sensor nodes collect measured data and send them
to their respective cluster nodes that collaboratively process the data. Battery limitation
forces WSN researchers to minimize power consumption. Since, communication among nodes
consume more energy over computing, the option of sending aggregate data from sensor
nodes to cluster header and from cluster header to sink node is chosen as an architectural
design. The total size of messages transmitted in the system is reduced by clustering nodes
and aggregating measured data.

The system specifications require collecting regular measurements, getting immediate
fire alarms from nodes and querying instant measurements of a particular cluster from
management office for analyzing. Tasks of cluster headers are to transfer raw messages among
sink and sensor nodes, to prepare aggregate reports and to transfer them in the name of
cluster. This use case is analyzed to extract the main scenarios of the system (see Figure 4).
Sensor, cluster header and sink nodes in Figure 4 are considered by focusing on the internal
node structure and communication of node groups.

Following the analysis, the system to be built is designed by using Contiki modeling tool
previously introduced in Section 4. It is worth indicating that the modeling discussed in here
takes into account the main process of the system and does not cover the setup procedure
including clustering.

The instance model conforming to our metamodel for this case study is given in Figure 5.
A SensorNode can measure environment temperature, relative humidity and smoke in every
minute. RegularProcess in SensorNode gathers data of some consecutive measurements,
e.g. 10 times, and posts their average to SendProcess to be sent to the respective cluster
head. The node ClusterHeader, see Figure 5, calculates the weather index from the messages,
which is held in RR_Data payload, in SensorListenerProcess. Then it sends the weather
index which is encapsulated in process report called PR_Data, to SinkNode by the use of
ClientCon_Report connection.
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Each SensorNode can generate three classes of data packets:
1. Regular Report (RR_Data);
2. Query Response (QR_Data);
3. Emergence Report (ER_Data).

When a SensorNode detects an abnormal event in RegularProcess, e.g. smoke, it will
immediately generate and send an ER_Data packet to the ClusterHeader containing the
information related to the abnormal event without waiting for the rest of consecutive
measurements, e.g. 10 times. SensorListenerProcess in ClusterHeader, uses a socket named
Pscok_ER defined in EmergencyThread to transmit the emergency report by calling AlarmCall
PT_Thread_Call.

The QR_Data packet is only transmitted to SinkNode when the sink asks ClusterHeader
for the current measurement aspects defined in QueryData, e.g. temperature, which be-
longs to respective cluster. To implement this feature, Sensor_Port numbered ‘32900’ is
opened by QueryProcesses in SensorNode and ClusterHeader to accept instant data queries.
CurrentMeasurement is sent back to ClusterHeader when a client connection is initiated.
Then, ClusterHeader aggregates minimum, maximum, and average of the measurements
from SensorNodes and constructs QR_Data to send the SinkNode via previously opened
ServerCon_Query.

The resulting modeling artifact paves the way to do some analysis such as formal validation
and verification of the system model based on the domain rules which can lead to less logical
errors in the development of the system. Furthermore, the generation mechanism can be
defined over this systematic modeling to generate the architectural code which can reduce
the cost and number of errors for the embedded software development of IoT systems.

6 Related Work

Some MDE studies are provided in the literature to simplify the design, development,
deployment and configuration of WSN and IoT systems. As there is considerable attention of
researchers on applying MDE approaches on WSNs and IoT, two surveys ([11, 15]) studied
systematic mapping of this domain to provide organized view of existing MDE approaches
for WSN and IoT.

According to the above-mentioned surveys, among the reported studies, different MDE-
based languages developed between the years 2007 and 2015. Furthermore, the modeling
motivation of most of these studies is code-generation [11]. Among these studies, the code
generation in nesC language for TinyOS is considered. However, none of these studies address
Contiki OS.

LwiSSy is a Domain-specific Language (DSL) [6] to model Wireless Sensor and Actuators
Network (WSAN) systems. LwiSSy allows the separation of responsibilities between domain
expertise and network expertise. It also involves separation of structure, behavior, and
optimization concerns by multiple views. In the study of [22], a model-driven architecture
(MDA) is proposed which composes platform independent modeling (PIM), platform-specific
modeling (PSM), and transformation rules for WSAN application development. PIM helps
the domain experts to develop applications without knowing the programming details on
WSAN platforms. PSM allows network experts to focus on the specific characteristics
of their area of expertise without the need of knowing each specific application domain.
Doddapaneni et al. [7] proposed a framework to model separately the software components
and their interactions, the low-level and hardware specification of the nodes, and the physical

SLATE 2017
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Figure 5 The instance model for the forest fire detection system.
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environment where the nodes are deployed. This multi-view architectural approach 8 requires
linking the models together for mapping models.

Tei et al. [25] propose a process that enables stepwise refinement to separately address
data processing-related and network-related concerns. Their approach is similar to the
modeling purpose of Rodrigues et al. [21] which especially takes into consideration the
separation of responsibilities between domain experts and network experts. Rodrigues et
al. [21] propose PIM for domain experts and PSM for network experts which can be used for
the MDE of systems working on TinyOS. However, Tei et al. [25] have limited support for
experts. PSM is not supported in their study and the experts simply create templates over
platform independent models.

As also indicated in Section 1, our work contributes to the aforementioned noteworthy
studies in the way of providing an MDE for developing IoT systems based on Contiki OS. To
the best of our knowledge, currently no study addresses modelling WSNs or IoT systems
according to the specifications of Contiki platform. The unique lightweight thread structure
of Contiki makes it more popular in the implementation of new IoT systems and conduces
the developers preferring Contiki instead of many other existing platforms such as TinyOS
and SOS. Hence, providing a modeling language as proposed in this study can facilitate the
efficient development of IoT systems based on this fashionable OS.

7 Conclusion

A metamodel and its supporting graphical modeling environment for the MDE of IoT
systems are discussed in this paper. The metamodel includes all entities and relations
required for modeling systems according to the event-driven mechanism of Contiki OS.
Modeling based on the Contiki protothread architecture is also possible with using this
metamodel. Moreover, a concrete syntax has been derived from this metamodel. Developers
can use the proposed modeling language inside a graphical modeling environment to design
the IoT systems as described in the conducted use case study. Both the modeling editor
and the instance model discussed in this paper are available online with including required
installation and configuration instructions at: http://serlab.ube.ege.edu.tr/Bundles/
ContikiOS_Editor.zip.

The work discussed herein is our initial effort towards providing a full-fledged MDE
environment for the development of Contiki-based IoT systems. Our next work will include
design and implementation of model-to-text transformations which enable the automatic
code generation from the modeled systems. This facility will be built-in for the existing
Eclipse-based graphical modeling environment and hence the developers quickly achieve the
required codes for deploying the designed systems on the embedded devices running Contiki
OS.
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