
XML Parsing in JavaScript
Alberto Simões

Centro Algoritmi, University of Minho, Braga, Portugal; and
Instituto Politécnico do Cávado e do Ave, Barcelos, Portugal
asimoes@ipca.pt

Abstract
With Web 2.0 the dynamic web got to a reality. With it, some new concepts arived, like the
use of asynchronous calls to receive missing data to render a website, instead of requesting a full
new page to the server. For this task, and in the recent years, developers use mostly the JSON
format for the interchange of data, than XML. Nevertheless, XML is more suitable for some kind
of data interchange but, and even if the web is based in SGML/XML standards, processing XML
using directly JavaScript is tricky.

In this document, a set of different approaches to parse XML with JavaScript will be described,
and a new module, based on a set of translation functions, will be presented. At the end, a set
of experiments will be discussed, trying to evaluate how versatile the proposed approach is.

1998 ACM Subject Classification I.7.2 Document Preparation / Markup languages, D.3.4 Pro-
cessors / Parsing

Keywords and phrases XML, JSON, Parsing, JavaScript

Digital Object Identifier 10.4230/OASIcs.SLATE.2017.9

1 Introduction

The Internet is built in a set of standards. First, the SGML (Standard Generalized Markup
Language) from which HTML (HyperText Markup Language) was derived. Despite the fact
that a lot of problems arrived from the use of such a permissive standard, the XHTML version
of HTML, built on top of XML (eXtensible Markup Language) did not stick. Example of
it is the HTML5 standard that, although suggesting XML well formed documents, is still
based in SGML.

On account of that, browsers needed to implement two different parsers, one for each of
the standards1(SGML and XML). Although not discussed in this document, the Cascading
Style Sheets (CSS) standards started to appear. Since JavaScript entered the web world
enabling dynamic web sites, the Internet is no longer the same.

To support JavaScript, browsers needed to add a new parser, for the language, together
with its interpreter. As for other programming languages, JavaScript support constructs to
define data structures, and soon JSON, the JavaScript Object Notation was defined to allow
the serialization of data.

The simplicity of JSON compared to the verbosity of XML lead to the use of JSON for
most of the Web 2.0 asynchronous calls. And this happened because most tools developed
for the web deal with very structured data that is easily serializable in JSON. But XML and
JSON has very different capacities, and when in the need of mixed content, XML stands
out [6].

1 In fact, each one of these parsers has a lot of tweaks in order to cope with some behaviors that were the
default during the first browsers implementations, and for which compatibility was desired [12].

© Alberto Simões;
licensed under Creative Commons License CC-BY

6th Symposium on Languages, Applications and Technologies (SLATE 2017).
Editors: R. Queirós, M. Pinto, A. Simões, J. P. Leal, and M. J. Varanda; Article No. 9; pp. 9:1–9:10

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.SLATE.2017.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

9:2 XML Parsing in JavaScript

But, even if XML parsers were added a long time ago on browsers, the truth is that it
is still quite hard to manipulate data obtained from an XML file. There are a couple of
possibilities:

taking the advantage of including XML directly in a web page, and just format it using
Cascading StyleSheets [3], with the disadvantage that the structure manipulation is
limited to the addition or generated content, or the hiding of non relevant data;
another option is to use XSLT (Extensible Stylesheet Language Transformations) [5, 7, 8],
but although browser support for its first version is available on all major browsers,
newer versions not available natively on any browser. It also has the major drawback of
requiring programmers to learn how to use it. If the syntax itself is basic, given it is a
XML based language, the way transformations are declared (in a declarative way, not
imperative as most programmers are used to use) can be quite challenging.
using a JavaScript library, either the built-in DOMParser [10] or any other available, like
jQuery. The usage of DOMParser would be the better approach, given its availability
on all browsers, and even as a module for node.js. Nevertheless, the Document Object
Model (DOM) structure is not trivial, and the methods available directly in JavaScript
to manipulate it are not versatile.

This document will only focus on the usage of JavaScript to manipulate the XML file,
given the limitations of CSS, and the lack of support of XSLT.

In the next section I will start by explaining what mixed content is, and why and when
it matters. Section 3 will discuss the two main approaches used for processing XML in
any language. Section 4 will restrict it to JavaScript, and present some of the available
tools to manipulate the XML DOM available in Browsers. Section 5 describes the approach
implemented and why it is useful. Before concluding, section 6 will show some uses of the
tool.

2 XML, JSON and Mixed Content

As stated in the introduction, XML and JSON, both, can be used for serialization and, in
that arena, JSON is more compact and, with its binary counterparts, like BSON, can be
quite fast. Nevertheless, when the goal is to encode mixed content, XML is more adequate,
as discussed in depth in [6].

In order to understand the problem, we will consider an example extracted from the project
that motivated this problem [13], an on-line dictionary with a RESTful API: Dicionário-
Aberto.2

One of the methods available in the API is the retrieval of entries from the dictionary
(either randomly or by a specific word). Figure 1 shows a random entry from the dictionary
as presented to the common user in the web interface.

As can be seen, there are multiple lines, with different definitions. Some of them can be
of pure text, but other include quotes and examples, that need to be differentiated. Although
this could be codified in JSON, it is not so natural.

The current API for Dicionário-Aberto can return records in both formats. Listing 1
shows how the entry in Figure 1 is encoded in JSON, while Listing 2 shows that same entry
encoded in XML.

2 http://dicionario-aberto.net

http://dicionario-aberto.net

A. Simões 9:3

Figure 1 Entry for the word ‘amar’ (to love).

Listing 1 Entry for ‘amar’ encoded in JSON.
{ " entry " : {

"@id " : " amar " ,
" form " : { " orth " : "Amar" } ,
" s ense " : [{

" gramGrp " : " v . t . " ,
" de f " : [

[" Ter amor a : " , { " quote " : "Dom Pedro amou In ê s de Castro " }] ,
[" Querer bem a : " , { " example " : " os bons f i l h o s amam seus pa i s " }] ,
[" Gostar muito de : " , { " example " : " amar as v iagens " }] ,
[" Dese jar ; e s c o l h e r : " , { " example " : " amai o campo" }]

] } ,
" etym" : { " @orig " : " Lat " , "#text " : " amare " }

} }

Listing 2 Entry for ‘amar’ encoded in XML.
<entry id="amar">
<form><orth>Amar</orth></form>
<sense>
<gramGrp>v . t .</gramGrp>
<def>Ter amor a : <quote>Dom Pedro amou In ê s de Castro</quote>.</def>
<def>Querer bem a : <example>os bons f i l h o s amam seus pais </example>.</def>
<def>Gostar muito de : <example>amar as viagens </example>.</def>
<def>Dese jar ; e s c o l h e r : <example>amai o campo</example>.</def>

</sense>
<etym or i g="Lat">(Lat . <mentioned>amare</mentioned>)</etym>

</entry>

While the presented JSON is not too complicated as in some other entries, this example
shows how to encode a simple entry a set of recursive lists and dictionaries are needed.

The best thing about the JSON approach, is how JavaScript makes it easy to manipulate.
For the XML, there is a big advantage. New browsers allow the inclusion of this snippet
directly inside an HTML page, able to be formatted through CSS. The problem is when
there are minor details that need to be manipulated somehow.

3 XML Processors

There are two main approaches when parsing XML documents:
SAX (Simple API for XML), that works mostly by defining callbacks to every element
tag found in the document, or any entity [4]. Instead of processing the document in a
structural fashion, SAX parsers will transform the document progressively, as it is parsed.
While this approach is quite simple to implement, it is not versatile for complex XML

SLATE 2017

9:4 XML Parsing in JavaScript

transformations. For that, a couple of external data structures would be needed, mostly
as if the user create her own document tree structure.
DOM (Document Object Model) parsing, in the other hand, works by creating an abstract
syntax tree for the whole document, as created by mostly compilers of conventional
programming languages [9]. The main disadvantage of this approach is the amount
of memory needed when processing large documents, as it needs to be all loaded into
memory. But, in the other hand, it is quite easy to traverse the tree and do changes,
rearranging the branches, pruning them, or adding new ones.
For the pointed disadvantage, there are two main approaches that have been used for
large documents:

XML Pull Parsing allows the construction of DOM trees for specific parts of a document,
that are retrieved as needed.
As most of the large XML documents have a repetitive structure, just as logs or
collections of resources, there are parser implementations that chunk the large document
on the repetitive element, and parses their contents using a standard DOM Parser.

Nevertheless, usually the size of XML documents sent through the web during AJAX
calls are small, and this is not a relevant problem.

Most programming languages have libraries or modules that use some of these approaches.
The well known Expat3 parser and LibXML4 support both approaches, and have binding for
most of the common programming languages. Unfortunately that is not true for JavaScript.

4 XML and JavaScript

Despite the fact that XML is parsed by browser for a long time, the amount of tools to
process XML with JavaScript is quite limited. This might be a result of the arrival of JSON
and the small number of users actually needing real mixed content.

Browsing the Internet for JavaScript libraries to manipulate XML there are two obvious
answers:

use the built-in DOMParser [10], and its DOM structure, navigating through each element
top-down (from the root node to the leafs), looking for the relevant data;
use jQuery [2, 11] and its selectors5 (based on CSS selectors).

Both approaches are easy to use, but not very versatile. To explain this, consider the
example shown in Listing 2, and a pair of simple tasks:

Task I. Find the orthographic form of the entry (orth tag):
DOM using the DOM tree is not too hard, specially when looking for a specific leaf of

the DOM tree. Considering the variable entry to contain the XML fragment above,
the following code would retrieve the orthographic form:

var par s e r = new DOMParser () ;
var doc = par s e r . parseFromString (entry , " t ex t /xml ") ;
var term = doc . act iveElement . ch i l d r en [0]

. c h i l d r en [0] . ch i ldNodes [0] . data) ;

3 https://libexpat.github.io/
4 http://xmlsoft.org/
5 Note that jQuery can be used to manipulate the DOM as well, but it just adds a couple of extra methods
to make the tree traversal easier. Also, although jQuery uses CSS selectors, there is the possibility to
add support for XPath as well.

https://libexpat.github.io/
http://xmlsoft.org/

A. Simões 9:5

Accordingly with the standard, the method getElementsByName should be available
in an XMLDocument instance (doc in the code above). Nevertheless, it does not
work correctly on all browsers. A recent Firefox would complain about a non existing
function (even if the Mozilla Developers Network documents that an XMLDocument
instance inherits methods from Document).

jQuery this is the simplest task for jQuery: as there is only one tag with that name, a
simple selector can be used. Considering that the variable entry is a string containing
the XML fragment, the following code would suffice:

var term = $ (entry) . f i nd (’ orth ’) [0] ;

Task II. Remove the example elements, and remove the colon before them.
DOM giving the quite unstable API to manipulate an XMLDocument directly in the

browser, no solution will be presented using directly the DOM. From the example before
it could be seen that a traversal approach would take too long to write, and would be
error prone (how many children levels?), and the lack of support for XMLDocument
methods would make the resulting code work (or completely not work) accordingly
with the used browser.

jQuery using jQuery for this task is a little more tiresome. The first task is to remove
the example elements, while the second is to cycle all def elements to remove the
colon. While the whole jQuery syntax is based in the functional paradigm, for this task
it is needed to remind that JavaScript is an object oriented programming language,
and therefore, changes need to be done directly on the XML object. Also, notice that
at the end the user gets a jQuery XML document, and not a string with the parsed
XML6.

$xml = $ (entry) ;
$xml . f i nd (’ example ’) . remove () ;
$xml . f i nd (’ def ’) . map(func t i on (i , va l){

va l . innerText = va l . innerText . r ep l a c e (/ : \ s ∗\ .\ s ∗$ / , " . ") ;
}) ;

5 Traversing the DOM Tree

The implemented approach is based in a Perl module, named XML::DT [1], that uses a
bottom-up approach to process the DOM tree. Following its brother name, the JavaScript
implementation is named XML-DT-JS.

It works like a dispatch table where, for each element, a function is defined. The traversal
algorithm will start with the leafs, and feed the function with the element name, its contents
(the CDATA) and the associated properties. The function can do whatever is needed to this
data, and must return a string (that can contain XML).

The non-leaf nodes’ functions receive the element name, and the associated properties,
as the leaf nodes’ functions, but the content itself, is supplied as returned by the child
nodes processors. In the case the element has more than one child, then their results are
concatenated into a single string.

Listing 3 shows the code to convert from the following input XML document to the
respective output string:

6 This fact can be seen as an advantage or disadvantage, depending on the user goals.

SLATE 2017

9:6 XML Parsing in JavaScript

Input:
<root><foo>zbr</foo><bar>Something</bar></root>

Output:
<root><zbr>foo</zbr>Hello</root>

Listing 3 Simple XML-DT-JS code example.
xml$dt . p roce s s (input ,
{ root : f unc t i on (q , c , v) { re turn xml$dt . tag (q , c , v) ; }

foo : f unc t i on (q , c , v) { re turn xml$dt . tag (c , v) ; } ,
bar : f unc t i on (q , c , v) { re turn " He l lo " ; } }) ;

The xml$dt.process function is the main method to call for the structural processing.
First argument is the XML string to process. Second argument is a mapping from tag names
to functions. Each function receive the tag name (q variable7, the tag contents (c variable)
and a map of attribute names to their values (v variable). The functions should return the
processed node as a string.

The utility xml$dt.tag function allows the quick creation of a XML string, given the tag
name, tag contents, and attributes (in the same order as they are received by the process
function.

There are three special element names that can be defined:
#document allows to define a function associated to the root node, without the need
to know what is its name. It also allows to define a function to deal with the final tree,
after the root node processing. By default it is the identity function.
#text allows to define a function to process all the text nodes, before them being
processed by the respective enclosing element. By default it is the identity function.
Listing 4 shows the code to convert from the following input XML document to the
respective output string:

Input:
<list><item qt="2">banana</item><item qt="5">pineapple</item></list>
Output:
<list>two bananas</item><item>five pineapples</item></list>

Listing 4 XML-DT-JS code using #text rule.
var nrs = [’ zero ’ , ’ one ’ , ’ two ’ , ’ three ’ , ’ four ’ , ’ f i v e ’] ;
xml$dt . p roce s s (input , {
’#text ’ : f unc t i on (q , c) { re turn c + " s " ; } ,
item : func t i on (q , c , v) { re turn xml$dt . tag (q , nrs [v . qt] +" "+ c) ; } ,
l i s t : f unc t i on (q , c , v) { re turn xml$dt . tag (q , c , v) ; } }) ;

#default defines a function to process any element whose processing function is not
defined. Therefore, in cases where the processing algorithm can be derived from the
element name or its attributes, a simple default processing function can be enough.
Listing 5 shows the code to prefix every tag with a namespace, as in the following example:

Input:
<list><item qt="2">banana</item><item qt="5">pineapple</item></list>

7 These variable names can be changed, but are kept in our examples to keep the same variable names
used by the Perl version that were, also, kept from Omnimark.

A. Simões 9:7

Output:
<ex:list><ex:item qt="2">banana</ex:item>

<ex:item qt="5">pineapple</ex:item></ex:list>

Listing 5 XML-DT-JS code using #default rule.
xml$dt . p roce s s (input , {
’#de fau l t ’ : f unc t i on (q , c , v) { re turn xml$dt . tag (" ex :"+q , c , v) ; }) ;

On top of this basic traversal algorithm, a few features were added, to allow more control
of the processing functions, and to allow easier definition of markup converters:

For markup conversion, where the goal is just to change the element name from one to
another, a shortcut mapping can be defined.
Listing 6 shows the code to convert some tags directly to HTML tags:
Input:
<list><item>bananas</item><item>pineapples</item></list>
Output:
bananaspineapples

Listing 6 XML-DT-JS code using #map shortcut.
xml$dt . p roce s s (input , { ’#map’ : { l i s t : ’ ul ’ , item : ’ l i ’ } }) ;

In some situations, it is relevant to store some data from one node on its father, rather
than just returning it as a string. For example, it can be handy when returning two
distinct values, or when it is easier for the elements fathers to process a list rather than a
concatenated string, as shown in the next example:
Listing 7 shows the code to convert some tags directly to HTML tags:
Input:
<list><item qt="4">bananas</item><item qt="2">pineapples</item></list>
Output:
<list total="6’’><item qt="4">bananas</item>

<item qt="2">pineapples</item></list>

Listing 7 XML-DT-JS code using father variable.
xml$dt . p roce s s (input , {

item : func t i on (q , c , v){
i f (’ t o ta l ’ in xml$dt . f a t h e r) xml$dt . f a t h e r . t o t a l += v . qt ;
e l s e xml$dt . f a t h e r . t o t a l = v . qt ;
r e turn xml$dt . tag (q , c , v) ;

} ,
l i s t : f unc t i on (q , c , v) { re turn xml$dt . tag (q , c , v) ; } }) ;

Notice that the father shortcut accesses the attributes of the father element. Therefore,
when calling the processing function for that element, the attributes defined using that
shotcut will be available in the v variable.

This section concludes with the implementation of the two tasks described in section 4:
Obtaining the orthographic form for an entry:

var term ;
xml$dt . p roce s s (entry , { orth : func t i on (q , c , v) { term = c ; } }) ;

SLATE 2017

9:8 XML Parsing in JavaScript

This is not a clean solution, as it is not a functional approach, doing the job using lateral
effects. Nevertheless, it is not that easy to implement this same behavior using the
functional paradigm.
Removing examples from the definitions:

var r e s u l t = xml$dt . p roce s s (entry ,
{ example : f unc t i on () { re turn " " ; } ,

de f : f unc t i on (q , c , v) {
re turn xml$dt . tag (q , c . r ep l a c e (/ : \ s ∗\ .\ s ∗$ / , " . ") , v) ; }

}) ;

The main advantage from this solution when compared with the jQuery solution presented
before, is that it does not require the user to know how to use the map function, or to
deal with the rather obscure innerText property.

6 Using XML-DT-JS

This section presents some real examples where XML-DT-JS is being used, in the context
of Dicionário-Aberto. Fortunately, modern browsers allow the embedding of XML snippets
inside of HTML documents, and their formatting with CSS rules. Therefore, everything that
can be accomplished just by the definition of CSS rules has priority over the processing of
the entries. Simple tasks, like changing the font weight or the block-formatting of tags are
done directly in CSS.

Extracting the orthographic form from the entry identifier and, if present, the sense
number, formatting it properly in HTML (see Listing 8.

Listing 8 Extract orthographic form and sense number from an entry.
f unc t i on getEntryTerm (data) {

re turn xml$dt . p roce s s (data , {
entry : f unc t i on (q , c , v) {

var word = v . id ;
i f (word . match (/ : \ d+$/) {

word = word . r ep l a c e (/ : (\ d+)/ , "<sup>$1</sup >") ;
}
re turn word ;

}
}) ;

}

This task is quite similar to the extraction of the orthographic form presented before. In
this case, only the id attribute from the entry tag is processed and extracted. Given
this is the root node, it suffices to return it, obtaining a better functional approach.
Other task currently being solved with XML-DT-JS is the formatting of an entry. Given
some entries include definitions with old wiki-like markup (underscores instead of italic),
some rules treat the element textual contents. In the other hand, some entries include
common new-lines to mark different senses, and therefore, they need to be correctly
formatted as line breaks. Finally, the form tag needs to be renamed, given that HTML
already uses it (see Listing 9).

There are some other places where XML-DT-JS is handy, but those situations does not add
any more to this document, and therefore, will not be presented.

A. Simões 9:9

Listing 9 Formatting a dictionary entry, with some pre-processing.
f unc t i on formatEntry (data) {

re turn = xml$dt . p roce s s (data , {
’#map’ : { ’ form ’ : ’ div ’ } ,
’#de fau l t ’ : f unc t i on (q , c , v) { re turn xml$dt . tag (q , c , v) ; } ,
’ def ’ : f unc t i on (q , c , v) {

var s = c . r ep l a c e (/(^\n(\ s ∗\n)∗ | \ n(\ s ∗\n)∗ $)/g , " ")
. r ep l a c e (/_([^_]+)_/g , "<i>$1</i >")
. r ep l a c e (/\n(\ s ∗\n)∗/g ,"<br / >");

r e turn xml$dt . tag (q , s , v) ;
} ,
’ etym ’ : f unc t i on (q , c , v) {

re turn c . r ep l a c e (/_([^_]+)_/g , "<i>$1</i >") ;
} ,

}) ;
}

7 Conclusions

In this document a small library to process XML documents using JavaScript in the browser
was presented8. The library uses a bottom-up approach to process the structure of an XML
document. Given that the traversal algorithm is predefined, the user just needs to implement
the rules of how each XML tag will be processed.

The tool was developed in the context of a project where the mixed content support
of XML is relevant. While current usage in the context of the project is quite limited, the
experience of using this kind of processors with the Perl programming language shows that
this approach is very versatile.

In the future, it is intended to add to this tool the following functionality:
support types: allow the definition of structural types for some tags (for example,
specifying that a list is a collection of items) instead of always using the concatenation of
strings;
allow its usage in the server side, with node.js, where DOMParser is not available by
default;
support direct access to the root element of the tree (using a similar approach as the
father attribute presented before);
better support for entities and entities escaping;
an analysis on the impact of the traversal time, versus the usage of CSS or XPath
expressions.

References
1 José João Almeida and José Carlos Ramalho. XML::DT a Perl Down-Translation module.

In XML-Europe’99, Granada, Spain, May 1999.
2 Bear Bibeault and Yehuda Katz. jQuery in Action, Second Edition. Manning Publications,

2 edition, 2010.
3 Bert Bos. Descriptions of all CSS specifications. Technical report, World Wide Web Con-

sortium (w3c), 2017. URL: https://www.w3.org/Style/CSS/specs.en.html.
4 David Brownell. Processing XML Efficiently with Java. O’Reilly Media, 2002.

8 The current version of the library is available at the following GIT repository: https://gitlab.com/
ambs/xml-dt-js

SLATE 2017

https://www.w3.org/Style/CSS/specs.en.html
https://gitlab.com/ambs/xml-dt-js
https://gitlab.com/ambs/xml-dt-js

9:10 XML Parsing in JavaScript

5 James Clark. XSL Transformations (XSLT) – version 1.0. Technical report, World Wide
Web Consortium (w3c), 1999. URL: https://www.w3.org/TR/xslt.

6 Rúben Fonseca and Alberto Simões. Alternativas ao XML: YAML e JSON. In José Carlos
Ramalho, João Correia Lopes, and Luís Carríço, editors, XATA 2007 – 5th Conferência
Nacional em XML, Aplicações e Tecnologias Associadas, pages 33–46, February 2007.

7 Michael Kay. XSL Transformations (XSLT) – version 2.0. Technical report, World Wide
Web Consortium (w3c), 2007. URL: https://www.w3.org/TR/xslt20/.

8 Michael Kay. XSL Transformations (XSLT) – version 3.0. Technical report, World Wide
Web Consortium (w3c), 2017. URL: https://www.w3.org/TR/xslt30/.

9 Peter-Paul Koch. The document object model: an introduction. Digital Web Magazine,
May 2001.

10 Travis Leithead. DOM parsing and serialization. Technical report, World Wide Web
Consortium (w3c), 2016. URL: https://www.w3.org/TR/DOM-Parsing/.

11 Code Lindley. jQuery Succinctly. Syncfusion, 2012.
12 Mark Pilgrim. HTML5: Up and Running. O’Reilly Media, Inc., 1st edition, 2010.
13 Alberto Simões, Álvaro Iriarte, and José João Almeida. Dicionário-aberto – a source of

resources for the portuguese language processing. Computational Processing of the Por-
tuguese Language, Lecture Notes for Artificial Intelligence, 7243:121–127, April 2012.

https://www.w3.org/TR/xslt
https://www.w3.org/TR/xslt20/
https://www.w3.org/TR/xslt30/
https://www.w3.org/TR/DOM-Parsing/

	Introduction
	XML, JSON and Mixed Content
	XML Processors
	XML and JavaScript
	Traversing the DOM Tree
	Using XML-DT-JS
	Conclusions

