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Abstract
Estimation of worst-case execution times (WCETs) is required to validate the temporal behavior
of hard real time systems. Heptane is an open-source software program that estimates upper
bounds of execution times on MIPS and ARM v7 architectures, offered to the WCET estima-
tion community to experiment new WCET estimation techniques. The software architecture of
Heptane was designed to be as modular and extensible as possible to facilitate the integration of
new approaches. This paper is devoted to a description of Heptane, and includes information on
the analyses it implements, how to use it and extend it.
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1 Introduction

Knowing task worst-case execution times (WCET) is of prime importance for the timing
analysis of hard real-time systems. Timing analysis of multi-task software is in general made
of two levels: WCET analysis and schedulability analysis. WCET analysis estimates the
worst-case timing requirements of an isolated task. At this level, activities other than ones
related to the considered task (interrupts, blocking, pre-emptions or any kind of interference
from other tasks in the system) are ignored. At the schedulability analysis level, the analysis
considers multiple tasks executing on the processor and competing for resources, and thus
may block while attempting to access the resources.

WCETs may be obtained using static analysis techniques, measurement-based techniques
or hybrid techniques (see [29] for a survey). A static WCET analysis tool provides an
upper bound (WCET estimate) on the time required to execute a given code on a given
hardware without program execution. A static WCET analysis tool should be able to work
at a high level to determine the longest path in a code. It should also work at low-level
(hardware-level), to capture the worst impact of the target processor on timing. Static
WCET analysis is complicated due to the presence of architectural features that improve the
processor performance: instruction and/or data caches, branch prediction and pipelines for
example. Precisely modeling these architectural features is the key to have precise WCET
estimates.
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8:2 The Heptane Static Worst-Case Execution Time Estimation Tool

A number of static WCET analysis tools exist. The objective of this paper is to give
a high-level and up-to-date view of the static WCET analysis tool we have designed and
maintained over the years, named Heptane1. The first version of Heptane was developed
in the late nineties during the PhD thesis of Antoine Colin. That first version, described
in [6] was a research prototype written in OCaml, and originally implemented tree-based
WCET calculation. At that time, it included the analyses required to obtain WCETs for a
Pentium 1 processor (cache analysis, pipeline analysis, branch prediction analysis). Heptane
was re-developed in 2003 to have a cleaner software architecture, use C++ instead of OCaml,
and support more target processors. This second version [29] implemented both tree-based
and IPET calculation. This version was used up to 2010 to implement all research related
to WCET estimation in our group (compiler-directed branch prediction, cache locking,
scratchpad management, analysis of data caches and shared caches in multi-cores, etc.). We
then decided to change our development strategy to ease code readability and development
of new analyses. We selected to integrate in the main branch of the tool only a minimum
number of robust analyses. At that point in time, the software architecture of Heptane was
refined again based on our past experience. This paper describes the last version of Heptane.

The aim of Heptane is to produce upper bounds of the execution times of applications.
It targets applications with hard real-time requirements (automotive, railway, aerospace
domains). Heptane computes WCETs using static analysis at the binary code level. It
includes static analyses of micro-architectural elements such as caches and cache hierarchies.

Heptane is an open source software program available under GNU General Public License
v32. Heptane is now a reliable research prototype, developed in C++ (approximately 13,000
lines of code) and supports MIPS and ARM v7 instruction sets. In particular, we are using
a continuous integration framework to check that the tool builds correctly and perform non
regression testing, for the supported target processors and host operating systems. Heptane
was demonstrated during the 1st Tutorial on Tools for Real-Time Systems [28].

As compared to other open-source static WCET analyzer tools, Heptane has a special focus
on cache analysis (analysis of cache hierarchies, support for multiple replacement policies),
but currently supports only two target processors. OTAWA [20] supports more processor
architectures than Heptane but implements less advanced cache analyses. SWEET [26]
focuses on flow fact analysis and does not include any hardware-level analysis. Bound-T [4]
supports different processor architectures but does not provide a cache analysis. Platin is
a static WCET estimation tool dedicated to the analysis of the Patmos architecture [24].
Chronos [5] implements advanced low-level analyses, but is limited to the SimpleScalar
architecture.

The commercial tool aiT [2] is the most advanced static WCET analysis tool, but
unfortunately is not open-source and as such cannot be extended for research studies that
require the tool to be modified.

The remainder of the paper provides more details on Heptane and is organized as follows.
An overview of Heptane is presented in Section 2. Section 3 describes the WCET estimation
techniques implemented in Heptane. The usage of Heptane is detailed in Section 4. Some
number to evaluate the performance of Heptane are given in Section 5. Some hints to extend
Heptane are mentioned in Section 6. Finally, conclusions and plans for future extensions of
the tool are given in Section 7.

1 The web site of Heptane is: https://team.inria.fr/pacap/software/heptane/.
2 Heptane is registered with APP (Agence de Protection des Programmes) under number

IDDN.FR.001.510039.000.S.P.2003.000.10600.

https://team.inria.fr/pacap/software/heptane/.
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Figure 1 Heptane toolchain: from source code to WCET estimate.

2 Overview of Heptane

2.1 The Heptane toolchain

As illustrated in Figure 1, Heptane is divided in two parts: HeptaneExtract for Control Flow
Graph (CFG) extraction and HeptaneAnalysis for the actual WCET estimation.

HeptaneExtract generates a control flow graph (CFG) from a set of program source-code
files written in C or assembly language. It calls the compiler and linker to generate the
binary file and then construct the CFG. After the construction of the CFG, HeptaneExtract
identifies the different loops, attaches the loop bounds information provided in the source
file and attaches the instruction addresses based on the binary file. The CFG is stored in
XML format to be used by HeptaneAnalysis or be manually inspected if needed.

HeptaneAnalysis applies low-level and high-level analyses to produce the WCET estimate.
HeptaneAnalysis can also be used to generate extra information like a graphical representation
of the CFG, a HTML version of the source that highlights the lines on (one of) the longest
execution path(s) and some statistics of the application under study.

The CFG produced by HeptaneExtract will be gradually enriched by every analysis of
HeptaneAnalysis with the analysis results. For that purpose, a library named cfglib has
been developed. This library is designed to manage an extensible program representation
that includes objects for programs, functions, loops, basic blocks, edges, instruction, etc.
The library also provides so-called attributes that can be attached to any of the objects
that represent the program. The library provides a small number of built-in attribute types
(string, integers, floats, etc.), and new attribute types can be defined for the purpose of an
analysis. When attaching an attribute to an object (e.g. a loop), an analysis developer calls
the attribute attachment function of cfglib for the corresponding attribute type (e.g. integer)
and provides as inputs the name of the attribute to be attached (e.g. “maxiter”) and the
corresponding value (e.g. 10). The library includes serialization and deserialization facilities
for objects and built-in attribute types. As explained later, each analysis may export its
results in XML.

WCET 2017
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2.2 Source code constraints
Since Heptane does not include any analysis of maximum numbers of loop iterations, the
source code has to be augmented by the user with annotations to provide loop bounds. At
the beginning of each loop body, a dedicated macro named ANNOT_MAXITER has to
be inserted (see Listing 1). The macro is defined in the header “annot.h” that has to be
included. Loop bounds are local loop bounds (maximum number of iterations for each entry
in the loop) and should be constant values. The macro expands to assembly code, that will
create a specific section in the final binary with the maximum number of iterations.

# include "annot.h"
int i,j;
for (i = 0; i < 20; i++) {

ANNOT_MAXITER (20);
for (j = 0; j < 10; j++) {

ANNOT_MAXITER (10);
...
}

}

Listing 1 ANNOT_MAXITER usage.

Furthermore, some restrictions on the C code are required to be able to generate the
CFG statically:

Pointers to functions are not supported to be able to generate the call graph.
Indirect jumps and jump tables are not supported. They can be generated for instance
by switches constructs.
Each loop must have a single entry. The identification of loops in Heptane uses DJ
Graphs [25]
Pointer arithmetic is not supported by the data address analysis

Programs not meeting these restrictions are detected and reported as errors. Finally, to
be able to perform a correct matching between the loop bounds defined in the source file
and the binary file the use of compiler optimization should not affect this matching. It is the
user responsibility to select the compiler optimizations that do not change loop bounds.

3 WCET estimation in Heptane

Static WCET estimation methods are generally divided into two steps, commonly named
high-level analysis and low-level analysis. The high-level analysis determines the longest
execution path among all possible flows in a program. The low-level analysis is used to
account for the processor microarchitecture. In HeptaneAnalysis, each analysis is contextual,
meaning the analysis of a function is performed for every call path of the function (e.g. main
→ g → f and main → f for a function f called directly by function main and also called by
g that is called by main).

3.1 High-level analysis
For the high-level analysis, HeptaneAnalysis implements the most prevalent technique,
named IPET for Implicit Path Enumeration Technique[17]. IPET is based on an Integer
Linear Programming (ILP) formulation of the WCET calculation problem. It reflects
the program structure and the possible execution flows using a set of linear constraints.
An upper bound of the program’s WCET is obtained by maximizing objective function
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∑
i∈BasicBlocks Ti ∗ fi. Ti (constant in the ILP problem) is the timing information of basic

block i. Ti integrates the effects of micro-architecture, and is determined by the low-level
analysis.

The variable fi in the ILP system, to be instantiated by the ILP solver, corresponds to
the number of times basic block i is executed. The values of all variables fi, once set by the
ILP solver to maximize the objective function, identify a set of paths in the program leading
to the estimated WCET.

3.2 Low-level analysis
For the low-level analysis, HeptaneAnalysis implements a data address analysis, a cache
analysis and a pipeline analysis.

Data address analysis

The data address analysis conservatively determines the addresses of referenced data. In
case the exact address of the referenced data cannot be determined, a range of addresses
is conservatively provided. The addresses of instructions are determined during the CFG
extraction thanks to the addresses present in the binary file.

Heptane includes a stack analysis, that calculates the range of addresses for every stack
frame, in any call context. The analysis assumes an acyclic call graph, which is common in
real-time systems because recursion raises predictability issues. The analysis relies on the
knowledge of the base of the stack based address, given as input to HeptaneAnalysis, and
the size of all functions’ stack frames, obtained by scanning the first instruction of every
function, responsible for allocating the stack frame. The address of every stack frame is
obtained by propagating the address of the stack frame for every callee of every function
along the acyclic call graph.

Data address analysis is implemented by an inter-procedural data flow analysis based on
abstract interpretation, that evaluates the contents of every register before and after each
instruction. Since Heptane does not currently support pointers, it is sufficient to analyze
register contents to compute the addresses of load and store instructions and thus no analysis
of memory contents is required. The possible abstract values for a register are: ⊥ , > or an
interval of addresses. Value ⊥ represents an invalid register content; it is used as an initial
register value for the first instruction of every basic block. Value > represents a correct but
unknown value (any possible value but ⊥). We use > to specify the contents of a register
after a load from memory because memory contents are not analyzed. Data flow equations,
detailed in [9] for an early version of the data address analysis, are defined for all instructions,
to specify the impact of the instruction on the registers abstract values. When the address
of a static variable is loaded into a register (e.g. when loading the start address of an array
in a register), the symbol table is used to determine the corresponding address interval; for
local data the entire stack frame is used as interval.

Cache analysis

The cache analysis is the most developed analysis in HeptaneAnalysis. It allows to analyze
set-associative3 instruction and data cache hierarchies under different cache replacement
policies (LRU, PLRU, FIFO, MRU, Random).

3 Direct mapped caches and fully-associative caches are specific cases of set-associative caches.

WCET 2017
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The cache analysis of a cache level in HeptaneAnalysis is an implementation of the Must,
May and Persistence analyses [27, 13] based on abstract interpretation [7]. The principle
of the analyses is to statically associate a Cache Hit/Miss Classification (CHMC) for every
memory reference. The CHMC defines for each reference its worst-case behavior with respect
to the cache under analysis (e.g. the CHMC is set to always-hit only when it is guaranteed
the reference will always result in a cache hit, regardless of the execution path followed at
run-time).

The Must, May and Persistence analyses calculate for every basic block and every call
context a corresponding Abstract Cache State (ACS) whose semantics depend on the analysis.
For example, the ACS for the Must analysis at a given program point contains the addresses
of the memory blocks that are guaranteed to be in the cache at that point. The structure of
ACS depends on the cache replacement policy. For the most predictable replacement policy
LRU [23], the associativity of the ACS is the same as the one of the concrete cache. For
LRU replacement, the position of a memory block in a set and a dataflow equations depends
on the type of analysis (Must, May and Persistence); for example, for the Must analysis, a
memory block in the Must ACS has an age that is higher than or equal to the age of the
block in the LRU stack.

To analyze cache replacement policies other than LRU, we have implemented a method
using the metrics proposed in [23] that characterize the life time of references in a cache
for different replacement policies. These metrics are used to set the associativity of the
ACS to a value lower than the associativity of the concrete cache state for the Must and
Persistence analyses. For example, for a cache with a random replacement policy, any memory
block in a set may be replaced upon cache replacement, making such caches equivalent to a
direct-mapped cache for the Must and Persistence analyses regarding CHMC classification.

To analyze cache hierarchies, we have implemented the method proposed in [10, 14] that
introduces in the cache analysis a Cache Access Classification (CAC) to take into account
the filtering effect of the previous cache level in the hierarchy.

For data caches, we assume a write-through no-write-allocate policy. A write-through
policy was analyzed because it is easier to analyze than a write-back strategy (in contrast
to write-back caches, it is easy to know for write-through caches when memory accesses will
take place). A no-write-allocate policy is assumed because write-through no-write-allocate is
the most common configuration found for write-through caches.

Pipeline analysis

The pipeline analysis for all supported architectures, currently considers a simple in-order
pipeline free from timing anomalies, [18] with one cycle per stage except for the fetch and
memory stages where the results of the cache analysis are taken into account.

Interactions between analyses

The initial CFG is gradually enriched with the results of the analyses, thanks to the attribute
attachment facilities provided by the cfglib library. For instance, the instruction cache analysis
attaches to every instruction and cache level an attribute defining the instruction CHMC
and CAC. The attribute will be used by the pipeline analysis to compute the worst-case
execution time of every basic block, that will be attached as an attribute to every basic
block. The WCET calculation phase will use WCETs of basic blocks to compute the overall
WCET. Every analysis has a dedicated method that checks the presence of its inputs (i.e. the
corresponding attributes were attached by the analyses executed before). Checking is based
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on attribute names. For example, the WCET calculation analysis checks that all loops have
an attribute named maxiter attached.

4 Using Heptane

Heptane can be installed on Linux and Mac OS X. For its installation, Heptane has some
requirements: libxml2 and an ILP solver (lpsolve or IBM CPLEX). To use the optional
analyses of Heptane described at the end of this section (graphical output, documentation
extraction), dot, epstopdf and Doxygen have to be installed as well. The rest of this
section gives an overview of how to use HeptaneAnalysis, after CFG extraction (complete
documentation can be found in the Heptane web page).

HeptaneAnalysis takes as parameter an XML configuration file describing the architecture
under analysis and the analyses to be applied. The analyses operate on a CFG produced by
the CFG extractor HeptaneExtract. The extracted CFG, whose format is not presented here
for space considerations, is a human-readable file with one XML tag per object (program,
function, basic block, edge, loop, instruction) with attributes attached when relevant (loop
bounds, instruction addresses, etc). A unique identifier is assigned to each object as an XML
attribute for deserialization.

4.1 Description of the architecture under analysis
In case the user wishes to use custom parameters describing the architecture or the analyses
to perform, a template of configuration file is available in the config_files directory. The
configuration file starts with an INPUTOUTPUTDIR XML tag to set the working directory:
<INPUTOUTPUTDIR name=" HEPTANE_ROOT / benchmarks / simple "/>

This directory should contain the XML files resulting from CFG extraction and, will contain
the result files of the analyses. Then the processor type, the cache hierarchy and the memory
have to be described as follows:
<ARCHITECTURE >

<TARGET NAME="MIPS" ENDIANNESS ="BIG"/>
<CACHE nbsets ="32" nbways ="2" cachelinesize ="32"
replacement_policy ="LRU" type=" icache " level="1" latency ="1"/>
<CACHE nbsets ="64" nbways ="8" cachelinesize ="64"
replacement_policy ="LRU" type=" icache " level="2" latency ="10"/>
<CACHE nbsets ="32" nbways ="2" cachelinesize ="32"
replacement_policy ="LRU" type=" dcache " level="1" latency ="1"/>
<CACHE nbsets ="64" nbways ="8" cachelinesize ="64"
replacement_policy ="LRU" type=" dcache " level="2" latency ="10"/>
<MEMORY load_latency ="100" store_latency ="100"/>

</ ARCHITECTURE >

The user has to provide the target processor (i.e. MIPS or ARM) and the architecture
endianness, the memory latency for the loads and stores in processor cycles and for each
level of cache:

the number of sets, the number of ways (associativity), the size of a cache line in Bytes;
the replacement policy (LRU, PLRU, MRU, FIFO or RANDOM):
the type of the cache (icache/picache for an instruction cache and dcache/pdcache for
a data cache). Letter p indicates that the cache is a perfect cache that always hits. In
this case, only one cache level can be specified and the other parameters except the hit
latency are ignored.

WCET 2017
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the level in the hierarchy (1 for L1, 2 for L2 and so on)
the hit latency in processor cycles

4.2 Using the main analyses
The main part of the configuration file is the description of the analyses the user wants to
perform. They have to be defined inside an ANALYSIS XML Tag and they are applied in
their order of appearance in the configuration file. In case an analysis A relies on the results
of previously applied analyses, analysis A checks the presence of all its mandatory input
information. Each analysis has three common parameters:

keepresults set to true to keep CFGs and the results of the analysis in memory and false
otherwise
input_file set to empty string in case the user wants to reuse the results of a previous
analysis, or to a XML file previously exported by an analysis,
output_file set to empty string in case the user does not want to serialize the modifications
done by the analysis or to file.xml to store it in the mentioned file

The first analysis to apply is to fix the entry point of the program and to compute the
calling context of functions accordingly. This is illustrated below:
<ENTRYPOINT keepresults ="on" input_file =" simple .xml" output_file =""

entrypointname ="main"/>

In case the user wants to perform a data cache analysis, the data address analysis has to be
performed beforehand, to determine the memory addresses of load and store instructions.
This analysis takes as parameter the address of the stack pointer before the execution of the
entry point, as shown below:
<DATAADDRESS keepresults ="on" input_file ="" output_file ="" sp="7FE000"/>

For the cache analysis, an analysis has to be defined for each cache4 of the architecture, and
the different levels of caches have to be analyzed in order (i.e. L1 before L2 and so on). The
name of the analyses are ICACHE and DCACHE for an instruction cache and a data cache
respectively. The analysis has to indicate the cache level and if the must, persistence and
may analyses has to be performed, as shown below for a L1 instruction cache:
<ICACHE keepresults ="true" input_file ="" output_file =""

level="1" must="on" persistence ="on" may="off"/>

The pipeline analysis can be called once the caches have been analyzed only. The analysis
is defined by a PIPELINE XML tag, with only the common parameters. Finally, WCET
estimation is performed by the IPET analysis:
<IPET keepresults ="on" input_file ="" output_file =""

solver =" lp_solve " attach_WCET_info ="true" generate_node_freq ="true"/>

The declaration should provide the name of the ILP solver (i.e. lp_solve or cplex). Fur-
thermore, the user should indicate if the estimated WCET of the program as well as the
estimated frequency of each basic block have to be kept for the next analyses.

4 In case of a perfect cache, the analysis has to be performed as well and the corresponding cache level
has to be set to 1.
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4.3 Other useful analyses
HeptaneAnalysis can provide useful feedback to the user through additional analyses. The
first one is the cache statistics analysis, that provides for each cache the number of references,
the number of hits and misses along the longest path identified by IPET. The analysis is
defined by a CACHESTATISTICS XML tag with only the common parameters.

The user may want to have a graphical representation of the program. HeptaneAnalysis
can generate a pdf file representing the CFG of the benchmark by inserting a DOTPRINT
XML tag with only the common parameters.

The user can also print in text format the estimated WCET, the CFG, the call graph, and
the loop structure and loop bounds of the benchmark. This is achieved by the SIMPLEPRINT
analysis:
<SIMPLEPRINT keepresults ="on" input_file ="" output_file =""

printWCETinfo ="on" printcfg ="off"
printcallgraph ="off" printloopnest ="off"/>

Finally, HeptaneAnalysis offers the possibility to display the path identified by IPET as the
longest path on the source code, with the estimated execution frequency of each line of code
in a HTML file (several times in presence of different calling contexts). To do so, a mapping
between the source and the binary5 is first performed by calling the addr2line tool on the
binary. In the configuration file, this is performed in two steps: (i) the mapping and (ii) the
production of the HTML file:
<CODELINE keepresults ="on" input_file ="" output_file =""

binaryfile =" simple .exe"
addr2lineCommand =" HEPTANE_ROOT / CROSS_COMPILERS /MIPS/bin/mips - addr2line "

/>
<HTMLPRINT keepresults ="on" input_file ="" output_file =""

colorize ="true" html_file =" simple .html"/>

5 Performance of Heptane

Table 5 gives the analysis time in seconds (total and per analysis) and WCET in cycles for the
set of Mälardalen benchmarks6 that are supported by Heptane. The analysis was performed
on MIPS code, with two levels of instruction and data caches with the same structure (2-way
set-associative cache with 32 sets and 32-byte blocks for L1, 8-way set-associative cache with
64 sets and 64-byte blocks for L2). The analysis was executed on an Intel Core i7 quad-core .
The solver used by the IPET analysis is lp_solve 5.5.2.

The analysis time of all benchmarks except the biggest ones (nsichneu and statemate) is
very low (below one second and up to 3.1 seconds for fft). The worst-case analysis time was
observed on nsichneu and was clearly dominated by the cache analysis time.

6 Extending Heptane

The software architecture of Heptane was designed to be modular and extensible. In
addition, it was decided to keep in the main branch of Heptane only the analyses that
we think can be useful to a wide audience. Other analyses, developed over the year to

5 The benchmark has to be compiled with the -ggdb gcc option.
6 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

WCET 2017
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Table 1 Analysis time (seconds) per analysis steps and resulting WCET (cycles).

benchmark icache icache dcache dcache IPET Total WCET
(L1) (L2) (L1) (L2)

bs 0.005 0.009 0.007 0.010 0.005 0.079 4020
bsort100 0.010 0.016 0.009 0.014 0.006 0.150 5812114
crc 0.038 0.049 0.034 0.058 0.013 0.630 1782419
expint 0.012 0.024 0.012 0.020 0.008 0.224 647343
fft 0.261 0.297 0.136 0.175 0.063 3.144 1253683
fibcall 0.002 0.004 0.003 0.005 0.003 0.050 14023
insertsort 0.003 0.006 0.004 0.008 0.004 0.090 52355
jfdctint 0.017 0.019 0.022 0.023 0.011 1.026 100331
lcdnum 0.074 0.116 0.021 0.057 0.009 0.366 9106
ludcmp 0.068 0.085 0.324 0.283 0.016 1.289 381353
matmult 0.014 0.023 0.017 0.027 0.008 0.317 1795585
minver 0.039 0.069 0.044 0.060 0.020 2.784 66835
ns 0.007 0.013 0.011 0.015 0.005 0.153 146208
nsichneu 18.314 21.468 2.815 3.250 0.874 52.775 515015
qurt 0.070 0.089 0.059 0.080 0.027 1.599 111554
select 0.068 0.073 0.023 0.034 0.014 0.547 91798
sqrt 0.012 0.016 0.010 0.018 0.011 0.183 20159
statemate 3.563 5.643 0.322 0.391 0.141 10.730 229575
ud 0.042 0.068 0.096 0.101 0.015 0.674 210770

experiment research techniques are kept in dedicated folders (non exhaustively: analysis
of shared cache interference [8, 21], analysis of cache hierarchy management policies [11],
cache related preemption delay estimation [19, 22], cache-partitioning [15], traceability of
flow information [16], static probabilistic WCET analysis [1, 12] analysis of code caches in
just-in-time compilers [3]).

Each analysis is located in a distinct directory and inherits from an Analysis base class
such that the developer of a new analysis respects good practice (checks the presence of
the inputs required by the analyses and cleans up internal attributes). A dummy ana-
lysis DummyAnalysis is provided as an example. Moreover, the cfglib library, central for
implementing analyses, is well documented.

7 Conclusion and future work

We have described in this paper Heptane, an open-source software program for WCET
estimation, that estimates WCETs from program binaries. Heptane has reached over the
years sufficient reliability to be used by researchers external to our group. The most advanced
analyses integrated in Heptane are the static cache analyses (support for multiple replacement
policies and cache hierarchies). Its weaknesses, that we hope to address in the future, are its
lack for automatic extraction of loop bounds, its small number of target processors, and its
pessimistic albeit safe data address analysis. Our current work on the tool is to address the
latter issue, in particular for stack-allocated data and accesses to arrays. Another direction
is to use the XML format used by our open-source CFG management library cfglib as an
exchange format between tools, to gather the best analysis techniques from different groups
into a common WCET estimation infrastructure.
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